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Finite convergence of sum-of-squares hierarchies for the stability

number of a graph
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Abstract

We investigate a hierarchy of semidefinite bounds ϑ(r)(G) for the stability number α(G) of a graph
G, based on its copositive programming formulation and introduced by de Klerk and Pasechnik
[SIAM J. Optim. 12 (2002), pp.875–892], who conjectured convergence to α(G) in r = α(G) − 1
steps. Even the weaker conjecture claiming finite convergence is still open. We establish links
between this hierarchy and sum-of-squares hierarchies based on the Motzkin-Straus formulation of
α(G), which we use to show finite convergence when G is acritical, i.e., when α(G \ e) = α(G)
for all edges e of G. This relies, in particular, on understanding the structure of the minimizers of
Motzkin-Straus formulation and showing that their number is finite precisely when G is acritical.
As a byproduct we show that deciding whether a standard quadratic program has finitely many
minimizers does not admit a polynomial-time algorithm unless P=NP.
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1 Introduction

Given a graph G = (V,E), its stability number α(G) is defined as the largest cardinality of a stable set in G. Comput-
ing the stability number of a graph is a central problem in combinatorial optimization, well-known to be NP-hard [14].
Many approaches based, in particular, on semidefinite programming have been developed for constructing good relax-
ations. A starting point to define hierarchies of approximations for the stability number is the following formulation
by Motzkin and Straus [30], which expresses α(G) via quadratic optimization over the standard simplex ∆n:

1

α(G)
= min{xT (AG + I)x : x ∈ ∆n}, (M-S)

where ∆n = {x ∈ R
n : x ≥ 0,

∑n
i=1 xi = 1} and AG is the adjacency matrix of G. Based on (M-S), de Klerk and

Pasechnik [10] proposed the following reformulation:

α(G) = min{t : xT (t(I +AG)− J)x ≥ 0 for all x ∈ R
n
+}, (1.1)

which boils down to linear optimization over the copositive cone

COPn := {M ∈ Sn : xTMx ≥ 0 ∀x ∈ R
n
+}.

Indeed, α(G) equals the smallest scalar t for which the matrix MG,t := t(I +AG) − J is copositive, i.e., belongs to

COPn. For x ∈ R
n set x◦2 := (x2

1, . . . , x
2
n) and for a matrix M ∈ Sn define the polynomials

pM (x) = xTMx and PM (x) = pM (x◦2) = (x◦2)TMx◦2. (1.2)
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Then M is copositive precisely when the polynomial pM is nonnegative over Rn
+ or, equivalently, when PM is non-

negative over Rn. Based on this observation, Parrilo [34] introduced the following two subcones of Sn:

C(r)
n =

{

M :
(

n
∑

i=1

xi

)r

pM (x) ∈ R+[x]
}

, K(r)
n =

{

M :
(

n
∑

i=1

x2
i

)r

PM (x) ∈ Σ
}

, (1.3)

which provide sufficient conditions for matrix copositivity: C(r)
n ⊆ K(r)

n ⊆ COPn for any r ≥ 0. Here R+[x] is the
set of polynomials with nonnegative coefficients and Σ denotes the set of sum-of-squares polynomials. De Klerk and
Pasechnik [10] used these two cones to define the following parameters:

ζ(r)(G) = min{t : t(I +AG)− J ∈ C(r)
n }, (1.4)

ϑ(r)(G) = min{t : t(I +AG)− J ∈ K(r)
n }, (1.5)

which provide upper bounds on the stability number: α(G) ≤ ϑ(r)(G) ≤ ζ(r)(G). It is known that the program (1.4)

is feasible, i.e., ζ(r)(G) < ∞, if and only if r ≥ α(G)− 1 and also that ζ(r)(G) < α(G)+ 1, i.e., ⌊ζ(r)(G)⌋ = α(G),
if and only if r ≥ α(G)2 − 1 [10, 42]. On the other hand, the parameter ϑ(r)(G) provides a nontrivial bound already

at order r = 0. Indeed, as shown in [10], the parameter ϑ(0)(G) coincides with ϑ′(G), the strengthening of the theta
number ϑ(G) by Lovász [24], proposed in [41]. Recall that

ϑ(G) = max{〈J,X〉 : Tr(X) = 1, Xij = 0 ({i, j} ∈ E), X � 0},
and ϑ′(G) is obtained by adding the nonnegativity constraint X ≥ 0 to the above program. As is well-known we have

α(G) ≤ ϑ′(G) ≤ ϑ(G) ≤ χ(G), (1.6)

where χ(G) denotes the coloring number of G (the complementary graph of G), i.e., the smallest number of cliques
of G needed to cover V .

Hence one can find α(G), after rounding, in (α(G))2 steps of the hierarchy ζ(r)(G) or ϑ(r)(G). It is known that the

linear bound ζ(r)(G) is never exact: if G is not the complete graph then ζ(r)(G) > α(G) for all r [42]. On the other

hand, de Klerk and Pasechnik [10] conjecture that rounding is not necessary for the semidefinite parameter ϑ(r)(G)
and moreover that α(G) steps suffice to reach convergence.

Conjecture 1 (De Klerk and Pasechnik [10]). For any graph G we have: ϑ(α(G)−1)(G) = α(G).

In fact, it is not even known whether finite convergence holds at some step, so also the following weaker conjecture is
still open in general.

Conjecture 2. For any graph G we have: ϑ(r)(G) = α(G) for some r ∈ N.

Let us call the smallest integer r for which ϑ(r)(G) = α(G) the ϑ-rank (or, simply, the rank) of G, denoted as
ϑ-rank(G). Then Conjecture 2 asks whether the rank is finite for all graphs, while Conjecture 1 asks whether
ϑ-rank(G) ≤ α(G) − 1.

We recap some of the known results on these conjectures. In view of (1.6), if α(G) = χ(G) then ϑ(0)(G) = α(G)
and thus G has ϑ-rank 0; this holds, e.g., for perfect graphs [24]. Every graph satisfying ϑ(G) = α(G) also has
ϑ-rank 0; this is the case, e.g, for the Petersen graph and, more generally, for Kneser graphs [23]. It is known that
odd cycles and wheels have ϑ-rank 1 and thus satisfy Conjecture 1 [10]. Conjecture 1 has been shown to hold for all
graphs with α(G) ≤ 8 in [12] (see also [42] for the case α(G) ≤ 6), but the general case is still wide open. Note
that the conjectured bound α(G) − 1 on ϑ-rank(G) is tight. As a first example, the cycle C5 has α(C5) = 2 and
ϑ-rank(C5) = 1. As a second example, the complement of the icosahedron has α(G) = 3 and ϑ-rank(G) = 2;

indeed, ϑ-rank(G) ≥ 2 as ϑ(1)(G) = 1 +
√
5 > 3 [10], and ϑ-rank(G) ≤ 2 as Conjecture 1 holds when α(G) = 3.

In this paper we want to further investigate the above conjectures.

Links to other hierarchies of Lasserre type

Our approach is to relate the bounds ϑ(r)(G) to other bounds that can be obtained by applying the Lasserre hierarchy
to the polynomial optimization problem (M-S). For this consider the polynomials

fG(x) = xT (I +AG)x and FG(x) = fG(x
◦2) = (x◦2)T (I +AG)x

◦2.
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That is, fG = pM and FG = PM for the matrix M = I + AG (recall (1.2)). Yet another reformulation of (M-S) is
that α(G) can also be obtained via polynomial optimization over the unit sphere:

1

α(G)
= min

{

FG(x) : x ∈ R
n,

n
∑

i=1

x2
i = 1

}

. (M-S-Sphere)

Now one can obtain bounds on α(G) by applying the sum-of-squares approach of Lasserre [17] to any of the two
formulations (M-S) and (M-S-Sphere). First we recall some notation. Given polynomials g0 = 1, g1, . . . , gm ∈ R[x]
and r ∈ N define the sets

M(g1, . . . , gm)r =
{

m
∑

j=0

σjgj : σj ∈ Σ, deg(σjgj) ≤ 2r
}

, (1.7)

T (g1, . . . , gm)r = M
(

∏

j∈J

gj : J ⊆ [m]
)

r
, (1.8)

known, respectively, as the quadratic module and the preordering generated by the gj’s, truncated at degree 2r. In
addition, given polynomials h1, . . . , hk ∈ R[x], the set

〈h1, . . . , hk〉r =
{

k
∑

i=1

uihi : ui ∈ R[x], deg(uihi) ≤ r
}

(1.9)

is the ideal generated by the hi’s, truncated at degree r. Throughout,R[x]r denotes the set of polynomials with degree
at most r and we set Σr = Σ ∩ R[x]2r , which consists of all polynmials of the form

∑

i p
2
i for some pi ∈ R[x]r .

Corresponding to problems (M-S) and (M-S-Sphere) we now define the parameters

f
(r)
G = sup

{

λ : fG − λ ∈ M(x1, . . . , xn)r +
〈

1−
n
∑

i=1

xi

〉

2r

}

, (1.10)

f
(r)
G,po = sup

{

λ : fG − λ ∈ T (x1, . . . , xn)r +
〈

1−
n
∑

i=1

xi

〉

2r

}

, (1.11)

F
(r)
G = sup

{

λ : FG − λ ∈ Σr +
〈

1−
n
∑

i=1

x2
i

〉

2r

}

, (1.12)

which clearly satisfy 1/α(G) ≥ f
(r)
G,po ≥ f

(r)
G , 1/α(G) ≥ F

(r)
G and F

(2r)
G ≥ f

(r)
G for any r ∈ N. We will establish

further links, also to the parameters ϑ(r)(G). In particular, we show that the approach based on approximating the

copositive cone by the cones K(2r)
n (as in (1.5)) and the approach based on using the preordering truncated at degree

r + 1 (as in (1.11)) are equivalent: for any r ≥ 0 we have

1

α(G)
≥ 1

ϑ(2r)(G)
= F

(2r+2)
G = f

(r+1)
G,po ≥ f

(r+1)
G . (1.13)

We say that finite convergence holds for the parameter f
(r)
G if f

(r)
G = 1/α(G) for some r ∈ N, and analogously for the

other parameters. Based on the inequalities (1.13) we see that finite convergence for the parameters f
(r)
G implies finite

convergence for the other parameters, and thus in particular for ϑ(r)(G), which would settle Conjecture 2.

Role of critical edges

Our first main result is showing finite convergence of the bounds f
(r)
G for the class of acritical graphs. Recall that an

edge e of G is said to be critical if α(G\e) = α(G) + 1. The graph G is called α-critical (or, simply, critical) when
all its edges are critical, and acritical when G does not have any critical edge. For example, odd cycles are α-critical
while even cycles are acritical. Critical edges and critical graphs have been studied in the literature; see, e.g. [25].
It turns out that the notion of critical edges plays a central role in the study of the finite convergence of the above
hierarchies of bounds.

On the one hand, it can be easily observed that deleting noncritical edges can only increase the ϑ-rank. Indeed,
if α(G \ e) = α(G) then MG − MG\e = α(G)(AG − AG\e) is entry-wise nonnegative and thus belongs to

K(0) ⊆ K(r). Hence, MG\e ∈ K(r)
n implies MG ∈ K(r)

n , which shows ϑ-rank(G) ≤ ϑ-rank(G \ e). Hence, af-

ter iteratively deleting noncritical edges, we obtain a subgraph H of G which is critical with α(H) = α(G) and
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Figure 1: Graph G (left), graph H1 (middle), graph H2 (right)

satisfies: ϑ-rank(G) ≤ ϑ-rank(H). As shown in Example 1.1 below this inequality can be strict. Therefore, finite

convergence of the parameters ϑ(r)(G) (or f
(r)
G,po, F

(r)
G ) for the class of critical graphs implies the same property for

general graphs. Summarizing, it would suffice to show Conjectures 1 and 2 for the class of critical graphs.

On the other hand, we can show finite convergence of the parameters f
(r)
G for the class of acritical graphs (see Theo-

rem 5.1) and thus Conjecture 2 holds for acritical graphs (see Corollary 5.2).

It turns out that critical edges also play a crucial role in the analysis of the graphs with ϑ-rank 0. In [22] we can
indeed characterize the critical graphs with ϑ-rank 0, namely, as those that be covered by α(G) cliques, i.e., such that

α(G) = χ(G). In addition, we show that the problem of deciding whether a graph has ϑ-rank 0 can be algorithmically
reduced to the same question restricted to the class of acritical graphs.

Example 1.1. Consider the graph G in Figure 1, obtained by adding one pending node to the cycle C5. Then, α(G) =
3 = χ(G) and thus ϑ-rank(G) = 0. Note that G has two critical subgraphs H1 and H2 with α(H1) = α(H2) = 3,
shown in Figure 1: H1 is C5 with an isolated node, which has ϑ-rank(H1) = 1 (see, e.g., [10]), while H2 consists of
three independent edges with ϑ-rank(H2) = 0 (since α(H2) = χ(H2) = 3).

Number of global minimizers and finite convergence

A main reason why critical edges play a role in the study of finite convergence comes from the fact that problem (M-S)
has infinitely many global minimizers when G has critical edges. Indeed, next to the global minimizers arising from
the maximum stable sets (of the form χS/α(G) with S stable of size α(G)), also some special convex combinations of
them are global minimizers when G has critical edges; see Proposition 4.3. Our approach to prove finite convergence

of the bounds f
(r)
G is to apply a result by Nie [31] (itself based on the so-called Boundary Hessian Condition of Mar-

shall [27]), which requires to check whether the classical sufficient optimality conditions hold at all global minimizers
of (M-S). These conditions imply in particular that the problem must have finitely many minimizers, which explains
why we can only apply it to acritical graphs.

There is an easy remedy to force having finitely many minimizers, simply by perturbing the Motzkin-Straus formu-
lation (M-S). Indeed, if we replace the adjacency matrix AG by (1 + ǫ)AG for any ǫ > 0, then the corresponding
quadratic program still has optimal value 1/α(G), but now the only global minimizers are those arising from the
maximum stable sets. To get this property it would in fact suffice to perturb the adjacency matrix at the positions
corresponding to the critical edges of G. For the hierarchies of parameters obtained via this perturbed formulation we
can show the finite convergence property, see Theorem 5.8. However, since we do not know a bound on the order of
convergence, which does not depend on ǫ, it remains unclear how this can be used to derive the finite convergence of
the original (unperturbed) parameters.

Nevertheless, as a byproduct of our analysis of the minimizers of the (perturbed) Motzkin-Straus formulation, we can
show NP-hardness of the problem of deciding whether a standard quadratic optimization problem has finitely many
global minimizers. The key idea is to reduce it to the problem of testing critical edges which is itself NP-hard, see
Section 6.

Links to related literature

Given a graph G define the poynomial QG(x) = (x◦2)T (α(G)(I + AG) − J)x◦2, which is an even form (i.e., a
homogeneous polynomial, with all variables appearing with an even degree) with degree 4. As QG is nonnegative
on R

n, by Artin’s theorem, it can be written as a sum of squares of rational functions: QG =
∑m

i=1 p
2
i /h

2 for some

pi, h ∈ R[x]. Then, what Conjecture 2 claims is that the denominator h2 can be chosen to be of the form (
∑

i x
2
i )

r

for some r ∈ N. Note that if QG would be strictly positive (i.e., vanish only at the origin) then this claim would
follow from a result of Pólya [35] (see also Reznick [37]). However, the polynomial QG is not strictly positive,
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since any global minimizer of problem (M-S) provides a nonzero root of QG lying in ∆n. On the positive side,
Scheiderer [39] shows that if Q is an arbitrary form in three variables that is nonnegative on R

3 then it is indeed

true that (
∑3

i=1 x
2
i )

rQ ∈ Σ for some r ∈ N. On the negative side, for any n ≥ 4, there are examples of n-variate

nonnegative polynomials Q for which (
∑

i x
2
i )

rQ 6∈ Σ for all r ∈ N; such Q can be chosen to be an even form of
degree 4 for n ≥ 7 (following arguments in [11]). So Conjecture 2 claims a rather remarkable property for the class
of forms QG (and Conjecture 1 claims an even stronger property). In this paper we will show that Conjecture 2 holds
when the graph G is acritical, which corresponds to the case when the polynomial QG has finitely many zeros in the
simplex ∆n. We will in fact show this property for a larger class of degree 4 even forms (see Section 5.2).

Our approach relies on considering the Lasserre hierarchy (1.10) for problem (M-S) and using the fact that its finite

convergence implies finite convergence of the hierarchy ϑ(r)(G) (in view of (1.13)). The goal is thus to show finite
convergence of Lasserre hierarchy (1.10) or, equivalently, that the polynomial fG−1/α(G) = xT (I+AG)x−1/α(G)
belongs to the quadratic module M(x1, . . . , xn,±(1−∑i xi)). The question of identifying sufficient conditions for
finite convergence of Lasserre hierarchy applied to a polynomial optimization problem has been much studied in the
literature; see, in particular, the works by Scheiderer [38, 39], Marshall [27, 28, 29], Kriel and Schweighofer [15, 16],
Nie [31], and references therein. Assume f is a polynomial nonnegative on a basic closed semialgebraic set K defined
by polynomial (in)equalities, whose associated quadratic module M is Archimedean. Marshall [29, Theorem 1.3]
gives a set of algebraic conditions on the zeros of the polynomial f in the set K , known as the Boundary Hessian
Condition (BHC), that ensures that f belongs to the quadratic module M. Nie [31] shows that (BHC) holds if the
natural sufficient optimality conditions hold at all the global minimizers of f over K and thus Lasserre hierarchy
has finite convergence (see Theorem 2.3 below). Note that a restriction to the application of these results is that
these optimality conditions (and (BHC)) can hold only when the number of global minimizers is finite. Since these
conditions depend on the optimization problem, one faces the same issues also when using the (richer) preordering
instead of the quadratic module. We make this remark in view of the equivalent reformulation of the parameters

ϑ(r)(G) in terms of the preordering-based hierarchy f
(r)
G,po mentioned in (1.13). Let us also mention that while the

result in [29] does not come with a degree bound for the order of the relaxation where finite convergence takes place,
such a degree bound is given in [15]. However the results in [15] require (among others) the additionnal restriction that
the finitely many global minimizers should all lie in the interior of the set K , which is not the case for problem (M-S),
neither for its perturbations introduced in the paper. Finally, there are other results that show finite convergence of the
Lasserre hierarchy, for instance, under some convexity assumptions (see [8, 19]), or when the semi-algebraic set K is
finite (see Nie [32]), or when the description of the set K is enriched with various additional polynomial constraints
(e.g., arising from KKT conditions) (see, e.g., [13, 33] and further references therein).

There is also interest in the literature in understanding when the first level of Lasserre hierarchy (also known as the
Shor relaxation or the basic semidefinite relaxation) is exact when applied to quadratic optimization problems (see,
e.g., the recent papers [7, 43] and further references therein). For standard quadratic programs, where one wants to
minimize a quadratic form pM (x) = xTMx over ∆n, we characterize the set of matrices M for which the first level
relaxation is exact. Moreover, we show that this holds precisely when the first level relaxation is feasible (see Lemma

3.1). In the special case of problem (M-S), when M = I + AG, the first level relaxation gives the parameter f
(1)
G ,

which will be shown to be exact (i.e., equal to 1/α(G)) precisely when the graph G is a disjoint union of cliques (see
Lemma 3.13). One can also use the preordering instead of the quadratic module and ask when the corresponding first

level relaxation is exact. For problem (M-S) this amounts to asking when f
(1)
G,po = 1/α(G) or, equivalently (in view of

(1.13)), when ϑ(0)(G) = α(G). Characterizing these graphs seems difficult in general, but, when restricting to critical

graphs, ϑ(0)(G) = α(G) if and only if G can be covered by α(G) cliques (see [22]).

Finally let us point out that the hierarchies considered in this paper are all based on continuous formulations of the
stability number. Alternatively, one can formulate α(G) as the maximum value of

∑

i∈V xi taken over all x in the

discrete cube {0, 1}n that satisfy the edge constraints xi + xj ≤ 1 for all {i, j} ∈ E. One can model the binary

variables by the quadratic constraints x2
i = xi (i ∈ [n]) and apply the Lasserre/Parrilo approach, which provides

a hierarchy of bounds, known to converge to α(G) in finitely many steps, in fact in α(G) steps [18, 20]. When

adding suitable nonnegativity conditions one gets parameters lasr(G) satisfying α(G) ≤ lasr(G) ≤ ϑ(r−1)(G), with

las1(G) = ϑ(0)(G) [12]. Hence, what Conjecture 1 claims is that the continuous copositive-based hierarchy ϑ(r)(G)
has the same finite convergence behaviour as the discrete Lasserre hierarchy. As observed above this question is also
relevant to several other interesting aspects of real algebraic geometry.

Organization of the paper

The paper is organized as follows. In Section 2, we recall the classical optimality conditions in nonlinear programming
and their use to show finite convergence of the Lasserre hierarchy for polynomial optimization. In Section 3 we link
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several sum-of-squares approximation hierarchies for standard quadratic programs and we discuss some questions
about the feasibily and exactness of these relaxations and their application to the Motzkin-Straus formulation (M-S).
Section 4 is focused on the study of the minimizers of problem (M-S), where, in particular, we prove that the problem
has finitely many minimizers precisely when the graph is acritical. In Section 5 we apply the previous results to

show finite convergence of the semidefinite hierarchy ϑ(r)(G) for acritical graphs. In addition, we propose perturbed
hierarchies for the stability number and we give some facts and open questions about them. In Section 6, we investigate
the complexity of the problem of deciding whether a standard quadratic program has finitely many minimizers.

Notation

Notation about polynomials will be given in Section 2, but here we group some notation about graphs and matrices
that is used throughout the paper. Given a graph G = (V = [n], E), a set S ⊆ V is stable if it does not contain an
edge, and α(G) is the maximum cardinality of a stable set. A set C ⊆ V is a clique if any two distinct vertices in

C are adjacent, and χ(G) denotes the minimum number of cliques whose union is V . For a set S ⊆ V and a vertex
j ∈ V \ S, we set degS(j) = |NS(j)|, where NS(j) = {i ∈ S : {i, j} ∈ E} denotes the set of vertices in S adjacent
to j. Given two sets S, T ⊆ V we set NS(T ) = {i ∈ S : {i, j} ∈ E for some j ∈ T }. An edge e ∈ E is critical
if α(G \ e) = α(G) + 1, G is called critical if all its edges are critical and G is called acritical if none of its edges
is critical. Observe that G is acritical precisely when degS(j) ≥ 2 for every stable set S with |S| = α(G) and every
j ∈ V \ S. For a subset U ⊆ V , G[U ] denotes the induced subgraph, with vertex set U and edges the pairs {i, j} ∈ E
that are contained in U . For a vector x ∈ R

n we let Supp(x) = {i ∈ [n] : xi 6= 0} denote the support of x. In addition,
e = (1, . . . , 1)T denotes the all-ones vector, {e1, . . . , en} denotes the standard unit basis of Rn, I ∈ Sn denotes the
identity matrix and J = eeT ∈ Sn the all-ones matrix. We also use the symbols Jn and Jn,m to denote the all-ones
matrix of size n× n and n×m, respectively.

2 Preliminaries on polynomial optimization

Given polynomials f , gj for j ∈ [m], and hi for i ∈ [k], consider the polynomial optimization problem:

fmin = inf{f(x) : gj ≥ 0 (j ∈ [m]), hi(x) = 0 (i ∈ [k])} = inf{f(x) : x ∈ K}, (P)

setting K = {x ∈ R
n : gj(x) ≥ 0 (j ∈ [m]), hi(x) = 0 (i ∈ [k])}. A well-known approach for solving problem

(P) is the Lasserre-Parrilo approach, which is based on using positivity certificates arising from suitable sums of
squares representations for polynomials that are nonnegative over the feasible set K . Such positivity certificates arise
by considering the (truncated) quadratic module, preordering and ideal introduced in relations (1.7), (1.8) and (1.9).
Set g = (g1, . . . , gm) and h = (h1, . . . , hk) for a short-hand, and M(g) =

⋃

r≥0 M(g)r, 〈h〉 =
⋃

r≥0〈h〉r. Then

M(g) + 〈h〉 is said to be Archimedean if the polynomial R2 −∑n
i=1 x

2
i belongs to M(g) + 〈h〉 for some R ∈ R.

Note this implies that K is compact. The following results by Schmüdgen [40] and Putinar [36] play a central role in
polynomial optimization.

Theorem 2.1. Assume the feasible region K of (P) is compact. Then any polynomial that is strictly positive on K
belongs to T (g) + 〈h〉 (Schmüdgen [40]). If in addition M(g) + 〈h〉 is Archimedean, then any polynomial that is
strictly positive on K belongs to M(g) + 〈h〉 (Putinar [36]).

Using the truncated quadratic module and preordering leads to the parameters:

f (r) := sup{λ : f − λ ∈ M(g)r + 〈h〉2r}, (2.1)

f (r)
po := sup{λ : f − λ ∈ T (g)r + 〈h〉2r}, (2.2)

to which we will refer as the Lasserre hierarchy (or the sum-of-squares hierarchy), sometimes adding the adjective

‘preordering-based’ when referring to f
(r)
po . Clearly we have f (r) ≤ f

(r)
po ≤ fmin, f (r) ≤ f (r+1) and f

(r)
po ≤ f

(r+1)
po for

all r. As a direct application of Theorem 2.1, the parameters f
(r)
po converge asymptotically to fmin when K is compact,

while the (possibly weaker) parameters f (r) also converge asymptotically to fmin under the Archimedean condition.

We are interested in problems for which the Lasserre hierarchy has finite convergence. We say the parameters f (r)

have finite convergence if f (r) = fmin for some r ∈ N; analogously for the parameters f
(r)
po .

In order to prove finite convergence of the Lasserre hierarchy for some special classes of polynomial optimization
problems, we will use a result of Nie [31], which relies on the optimality conditions for nonlinear optimization. So
we start with a quick recap on these optimality conditions, which we state here for problem (P) though they hold in a
more general setting (see, e.g., [4]).
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Let u be a local minimizer of problem (P) and let J(u) = {j ∈ [m] : gj(u) = 0} be the index set of the active
inequality constraints at u. We say that the constraint qualification condition (CQC) holds at u if the gradients of the
active constraints at u are linearly independent:

The vectors in {∇gj(u) : j ∈ J(u)} ∪ {∇hi(u) : i ∈ [k]} are linearly independent. (CQC)

If (CQC) holds at u then there exist Lagrange multipliers λ1, . . . , λk, µ1, . . . , µm ∈ R satisfying

∇f(u) =

k
∑

i=1

λi∇hi(u) +

m
∑

j=1

µj∇gj(u), (FOOC)

µ1g1(u) = 0, . . . , µmgm(u) = 0, µ1 ≥ 0, . . . µm ≥ 0. (CC)

The condition (FOOC) is known as the first order optimality condition and (CC) as the complementarity condition. If
it holds that

µj > 0 for every j ∈ J(u), µj = 0 for j ∈ [m] \ J(u), (SCC)

then we say that the strict complementarity condition (SCC) holds at u. Define the Lagrangian function

L(x) = f(x)−
k
∑

i=1

λihi(x)−
∑

j∈J(u)

µjgj(x).

Another necessary condition for u to be a local minimizer is the second order necessity condition (SONC):

vT∇2L(u)v ≥ 0 for all v ∈ G(u)⊥, (SONC)

where G(u) is the matrix with rows the gradients of the active constraints at u and G(u)⊥ is its kernel:

G(u)⊥ = {x ∈ R
n : xT∇gj(u) = 0 for all j ∈ J(u) and xT∇hi(u) = 0 for all i ∈ [k]}.

If it holds that

vT∇2L(u)v > 0 for all 0 6= v ∈ G(u)⊥, (SOSC)

then we say that the second order sufficiency condition (SOSC) holds at u. The relations between these optimality
conditions and the local minimizers are summarized in the following classical result.

Theorem 2.2 (see, e.g., [4]). Let u be a feasible solution of problem (P).

(i) Assume u is a local minimizer of (P) and (CQC) holds at u. Then the conditions (FOOC), (CC) and (SONC) hold
at u.

(ii) Assume that (FOOC), (SCC) and (SOSC) hold at u. Then u is a strict local minimizer of (P).

The relation between the optimality conditions for problem (P) and finite convergence of the parameters f (r) is given
by the following result of Nie [31].

Theorem 2.3 (Nie [31]). Consider problem (P) and the parameters f (r) from (2.1). Assume that the Archimedean
condition holds, i.e., R2 −∑n

i=1 x
2
i ∈ M(g) + 〈h〉 for some R ∈ R, and that the constraint qualification (CQC),

strict complementary (SCC) and second order sufficency (SOSC) conditions hold at every global minimizer of (P).
Then Lasserre’s hierarchy f (r) has finite convergence, i.e., we have f (r) = fmin for some r ∈ N.

Note that, under the assumptions of Theorem 2.3, all global minimizers of (P) are strict minimizers (by Theorem 2.2
(ii)) and thus (P) has finitely many global minimizers.

3 Links between the various hierarchies

In this section we prove relation (1.13), which establishes links between the various hierarchies of bounds ϑ(r)(G),

f
(r)
G f

(r)
G,po and F

(r)
G from relations (1.5), (1.10), (1.11) and (1.12). We start with establishing these links in the more

general setting of standard quadratic programs.
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3.1 Links between the hierarchies for standard quadratic programs

Given a symmetric matrix M ∈ Sn, recall the polynomials pM (x) = xTMx and PM (x) = pM (x◦2) from (1.2). We
consider the following standard quadratic optimization problem:

pmin = min
{

pM (x) : x ∈ ∆n

}

, (3.1)

which can be equivalently reformulated as optimization over the unit sphere:

pmin = min
{

PM (x) : x ∈ R
n,

n
∑

i=1

x2
i = 1

}

. (3.2)

In analogy to definitions (1.10), (1.11) and (1.12) we can define the corresponding sum-of-squares hierarchies for
both problems (3.1) and (3.2), and the preordering-based hierarchy for the simplex formulation (3.1), leading to the
parameters

p
(r)
M = max

{

λ : pM − λ ∈ M(x1, x2, . . . , xn)r +
〈

n
∑

i=1

xi − 1
〉

2r

}

, (3.3)

p
(r)
M,po = max

{

λ : pM − λ ∈ T (x1, x2, . . . , xn)r +
〈

n
∑

i=1

xi − 1
〉

2r

}

, (3.4)

P
(r)
M = max

{

λ : PM − λ ∈ Σr +
〈

n
∑

i=1

x2
i − 1

〉

2r

}

(3.5)

for any integer r ≥ 1. Observe that we are in the Archimedean setting and that the above programs are feasible for
any r ≥ 2. To see this one can use the following identities: for any i ∈ [n],

1− xi = 1−
n
∑

k=1

xk +
∑

k∈[n]\{i}

xk, 1− x2
i =

(1 + xi)
2

2
(1 − xi) +

(1− xi)
2

2
(1 + xi).

This implies n−∑i x
2
i ∈ M(x1, . . . , xn)2 + 〈1−∑i xi〉4, thus showing the Archimedean condition holds. We next

verify feasibility of the programs. If M � 0 then the polynomial pM belongs to Σ1 and thus the programs defining

p
(1)
M , p

(1)
M,po, P

(2)
M are feasible. Otherwise, µ := λmin(M) < 0 and pM (x) − nµ = xT (M − µI)x − µ(n −∑i x

2
i ),

which shows feasibility of the programs defining p
(r)
M , p

(r)
M,po, P

(r)
M for r ≥ 2. In addition note that p

(1)
M,po is finite when

M is entry-wise nonnegative. Observe also that the optimum is attained in the above programs since the search region
for p− λ is a closed set (see [26]).

Now, we characterize the set of matrices M for which the program (3.3) is feasible at order r = 1. Moreover, we

prove that in that case the program is exact, i.e., p
(1)
M = pmin.

Lemma 3.1. Given a symmetric matrix M ∈ Sn, the following assertions are equivalent.

(i) The program (3.3) is feasible for r = 1, i.e., p
(1)
M is finite.

(ii) There exist λ ∈ R and a ∈ R
n
+ such that M − λJ − (aeT + eaT )/2 � 0.

(iii) p
(1)
M = pmin.

Proof. We first prove (i) ⇐⇒ (ii). Assume program (3.3) is feasible, i.e., there exist λ ∈ R, a ∈ R
n
+, Q � 0 and

u(x) ∈ R[x] such that

xTMx− λ = xTQx+ aTx+ (eTx− 1)u(x).

Then there exists v(x) ∈ R[x] such that

xTMx− λ(eTx)2 = xTQx+ (aTx)(eTx) + (eTx− 1)v(x).

Hence the quadratic polynomial xT (M − λJ −Q − (aeT + eaT )/2)x vanishes on {x : eTx = 1} and thus on R
n,

which implies M − λJ −Q− (aeT + eaT )/2 = 0 and thus (ii) holds. The argument can be clearly reversed, which
shows the equivalence of (i) and (ii).
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As (iii) implies (i) it suffices now to show (ii) =⇒ (iii). By the above argument, if (ii) holds then we have

p
(1)
M = sup{λ : λ ∈ R, a ∈ R

n
+, M − λJ − (aeT + eaT )/2 � 0}. (3.6)

Define the matrices Ai = (eie
T + eeTi )/2 for i ∈ [n]. Then the dual program of (3.6) reads

inf{〈M,X〉 : 〈J,X〉 = 1, 〈Ai, X〉 ≥ 0 (i ∈ [n]), X � 0}. (3.7)

As program (3.7) is strictly feasible and bounded from below by p
(1)
M , strong duality holds and the optimum value of

(3.7) is equal to p
(1)
M . We now show that pmin ≤ p

(1)
M . For this let X be feasible for (3.7) and define the vector x = Xe.

Then x ∈ ∆n since xi = 〈Ai, X〉 ≥ 0 for all i ∈ [n], and eTx = 〈J,X〉 = 1, which implies xTMx ≥ pmin. In
addition, we have X − xxT � 0, which follows from the fact that

(

1 xT

x X

)

� 0,

(as X � 0, x = Xe and eTXe = 1). Consider also a feasible solution (λ, a) to (3.6), so that M−λJ−∑n
i=1 aiAi � 0.

Then we have 〈M −λJ −∑i aiAi, X−xxT 〉 ≥ 0 which, combined with 〈J,X−xxT 〉 = 0 and 〈Ai, X−xxT 〉 = 0

for all i ∈ [n], implies that 〈M,X〉 ≥ xTMx ≥ pmin and thus p
(1)
M ≥ pmin, as desired.

Here is an immediate consequence of the reformulation of the parameter p
(1)
M given in (3.6), that we will need later.

Lemma 3.2. Assume that the program (3.6) defining p
(1)
M is feasible, i.e., M = λJ + Q + (aeT + eaT )/2 for some

λ ∈ R, Q � 0 and a ∈ R
n
+. Then, for any i 6= j ∈ [n], we have Mii +Mjj − 2Mij = Qii + Qjj − 2Qij ≥ 0. In

addition, if Mii +Mjj − 2Mij = 0 then Q(ei − ej) = 0.

Proof. Direct verification.

Alternatively, following [6, 10], problem (3.1) can be reformulated as a copositive program:

pmin = max
{

λ : M − λJ ∈ COPn

}

. (3.8)

By replacing the cone COPn by its subcone K(r)
n we now obtain the following lower bound for pmin:

Θ
(r)
M := max

{

λ : M − λJ ∈ K(r)
n

}

(3.9)

for any integer r ≥ 0. Note that λ = mini,j Mij provides a feasible solution for (3.9) since then M − λJ belongs to

K(0)
n . We begin with the following easy relationships among the above parameters:

Lemma 3.3. For all r ≥ 1 we have: max{p(r)M , p
(r)
M,po, P

(r)
M ,Θ

(r)
M } ≤ pmin and p

(r)
M ≤ min{P (2r)

M , p
(r)
M,po}.

Proof. That all parameters are lower bounds for pmin follows from their definition, the inequality p
(r)
M ≤ p

(r)
M,po follows

from the inclusion M(x1, . . . , xn)r ⊆ T (x1, . . . , xn)r and, for the inequality p
(r)
M ≤ P

(2r)
M , note that pM − λ ∈

M(x1, . . . , xn)r +〈1−∑i xi〉2r implies PM − λ ∈ Σ2r + 〈1−∑i x
2
i 〉4r.

Following [9] we can now relate the bounds in (3.5) and (3.9). For this we use the following result from [9] (see
Proposition 2 and Lemma 1 there).

Theorem 3.4 (de Klerk et al. [9]). Let q be a form of even degree 2d ≥ 2. For any r ∈ N we have:

q(x)

(

n
∑

i=1

x2
i

)r

∈ Σr+d ⇐⇒ q ∈ Σr+d +
〈

1−
n
∑

i=1

x2
i

〉

2(r+d)
.

Lemma 3.5. For any M ∈ Sn and r ≥ 0, we have: Θ
(r)
M = P

(r+2)
M .
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Proof. By definition, Θ
(r)
M is the largest λ for which the matrix M − λJ belongs to the cone K(r)

n or, equivalently, the

polynomial (
∑

i x
2
i )

r(PM (x) − λ(
∑

i x
2
i )

2) belongs to Σr+2. In view of Theorem 3.4 this is equivalent to requiring

that PM − λ(
∑

i x
2
i )

2 belongs to Σr+2 + 〈1−∑i x
2
i 〉2(r+2). Now observe that

PM (x)− λ = PM (x) − λ
(

∑

i

x2
i

)2

+ λ
((

∑

i

x2
i

)2

− 1
)

, (3.10)

where (
∑

i x
2
i )

2 − 1 = (
∑

i x
2
i − 1)(

∑

i x
2
i + 1) ∈ 〈1 −∑i x

2
i 〉2(r+2). From this we obtain the desired identity

Θ
(r)
M = P

(r+2)
M .

Next we relate the preordering-based bound p
(r)
M,po (for the simplex formulation) and the Lasserre bound P

(r)
M (for the

sphere formulation). For this we use the following result of [44].

Theorem 3.6 (Pena et al. [44]). Let q be a homogeneous polynomial of degree d and define the polynomial Q(x) =
q(x◦2). Then, Q ∈ Σd if and only if q can be decomposed as

q(x) =
∑

I⊆[n]
|I|≤d,|I|≡d (mod 2)

σI(x)
∏

i∈I

xi, (3.11)

where σI is a homogeneous polynomial with degree at most d− |I| and σI ∈ Σ.

As an application we recall the characterization for the cone K(0)
n , consisting of the matrices M for which the polyno-

mial PM (x) = (x◦2)TMx◦2 is a sum of squares.

Proposition 3.7 (Parrilo [34]). A matrix M belongs to K(0)
n if and only if there exist matrices P � 0 and N ≥ 0 such

that M = P +N , where we may assume without loss of generality that Nii = 0 for all i ∈ [n].

Lemma 3.8. For any M ∈ Sn and r ≥ 0, we have: p
(r)
M,po = P

(2r)
M .

Proof. First, assume λ is feasible for p
(r)
M,po, i.e.,

pM (x)− λ =
∑

I⊆[n]
|I|≤r,|I|≡r (mod2)

σI(x)
∏

i∈I

xi + u(x)

(

1−
n
∑

i=1

xi

)

,

where σI ∈ Σ is a form of degree at most 2r − |I| and deg(u) ≤ 2r − 1. Replacing throughout x by x◦2 we obtain

a decomposition of PM − λ in Σ2r + 〈1 −∑i x
2
i 〉4r, which shows that P

(2r)
M ≥ p

(r)
M,po. We now show the reverse

inequality. For this assume λ is feasible for P
(2r)
M , i.e.,

PM (x)− λ = σ(x) +
(

1−
∑

x2
i

)

u(x),

where σ ∈ Σ2r and deg(u) ≤ 4r − 2. Hence, using (3.10), the homogeneous polynomial PM (x) − λ(
∑

i x
2
i − 1)2

belongs to Σ2r + 〈1−∑i x
2
i 〉4r. Applying Theorem 3.4 to it we can conclude that

(

n
∑

i=1

x2
i

)2r−2(

PM (x) − λ
(

n
∑

i=1

x2
i

)2)

∈ Σ2r.

Since this is a homogeneous polynomial in x◦2 we can apply Theorem 3.6 to it and conclude that

(

n
∑

i=1

xi

)2r−2(

pM (x) − λ
(

n
∑

i=1

xi

)2)

=
∑

I⊆[n]
|I|≤2r,|I|≡2r (mod 2)

σI(x)
∏

i∈I

xi, (3.12)

where σI ∈ Σ has degree at most 2r − |I|. Notice that

(

n
∑

i=1

xi

)2r−2

=
(

1− 1 +

n
∑

i=1

xi

)2r−2

= 1 + h(x)
(

1−
n
∑

i=1

xi

)

,
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for some h ∈ R[x]2r−3. Using this observation, (3.12) implies

pM (x) − λ
(

n
∑

i=1

xi

)2

∈ T (x1, . . . , xn)r +
〈

1−
n
∑

i=1

xi

〉

2r
.

Using again (3.10) we obtain

pM (x)− λ ∈ T (x1, . . . , xn)r +
〈

1−
n
∑

i=1

xi

〉

2r
,

which shows p
(r)
M,po ≥ P

(2r)
M .

As a direct consequence of Lemmas 3.3, 3.5 and 3.8 we obtain the following links among the above parameters.

Corollary 3.9. For any M ∈ Sn and r ≥ 0 we have:

pmin ≥ P
(2r+2)
M = Θ

(2r)
M = p

(r+1)
M,po ≥ p

(r+1)
M . (3.13)

Remark 3.10. In view of the formulation (3.6) for the parameter p
(1)
M , the difference with the parameter p

(1)
M,po =

P
(2)
M = Θ

(0)
M lies in the fact that, while for p

(1)
M we search for a decomposition M = λJ +Q + (eaT + aeT )/2 � 0

with Q � 0 and a ∈ R
n
+, in the definition of Θ

(0)
M we search for a decomposition M = λJ +Q+N � 0 with Q � 0,

but now N can be an arbitrary entry-wise nonnegative matrix.

3.2 Application to the stable set problem

Here we apply the results in Section 3.1 to the formulation of the stability number α(G) via the Motzkin-Straus
formulation (M-S), the special instance of standard quadratic program where we select the matrix M = I+AG. As in
the introduction we set fG = pM , FG = PM and fG,po = pM,po for this matrix M = I +AG. As a direct application
of Corollary 3.9, we obtain

1

α(G)
≥ F

(2r+2)
G = f

(r+1)
G,po ≥ f

(r+1)
G . (3.14)

It remains to link the parameters ϑ(r)(G) and Θ
(r)
M for the matrix M = I +AG.

Lemma 3.11. For any graph G and r ≥ 0, we have: Θ
(r)
I+AG

=
1

ϑ(r)(G)
.

Proof. Directly from the definitions of ϑ(r)(G) in (1.5) and Θ
(r)
I+AG

in (3.9).

Combining (3.14) and Lemma 3.11 we obtain the inequalities claimed in (1.13), which we repeat here for convenience.

Corollary 3.12. For any graph G and r ≥ 0 we have

1

α(G)
≥ 1

ϑ(2r)
= F

(2r+2)
G = f

(r+1)
G,po ≥ f

(r+1)
G .

We now use the result of Lemma 3.1 to characterize when the parameter f
(1)
G is feasible (and thus exact).

Lemma 3.13. For any graph G, the parameter f
(1)
G is finite or, equivalently, f

(1)
G = 1/α(G), if and only if G is a

disjoint union of cliques.

Proof. We use Lemma 3.1 applied to the matrix M = I + AG. First, assume M = λJ + Q + (aeT + eaT )/2 for
some λ ∈ R, Q � 0 and a ∈ R

n
+, we show that G is a disjoint union of cliques. For this it suffices to show that

{1, 2}, {1, 3} ∈ E implies {2, 3} ∈ E. This follows easily using Lemma 3.2. Indeed, if {1, 2}, {1, 3} ∈ E then
we have M11 + M22 − 2M12 = 0 and thus Q(e1 − e2) = 0 and, in the same way, Q(e1 − e3) = 0. This implies
Q(e2 − e3) = 0 and thus M22 +M33 − 2M23 = 0, i.e., {2, 3} ∈ E.
Conversely, assume G is a disjoint union of cliques, say V = C1 ∪ . . . ∪ Ck where k = α(G) and each Ci is a clique

of G. We show that p
(1)
M = pmin. For this note that, for any x ∈ ∆n, we have

xT (I +AG)x =

k
∑

i=1

(

∑

j∈Ci

xj

)2

≥ 1

k
=

1

α(G)
,

where we use Cauchy-Schwartz inequality for the inequality. This shows p
(1)
M ≥ pmin and thus equality holds.
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In Section 5 we will investigate finite convergence of the hierarchy f
(r)
G , which, in view of Corollary 3.12, directly

implies finite convergence of the hierarchy ϑ(r)(G). For this we will use Theorem 2.3 that requires to understand the
structure of the global minimizers of problem (M-S), which is what we do in the next section.

4 Minimizers of the Motzkin-Straus formulation

In this section we prove some properties of the (global and local) minimizers of the Motzkin-Straus formulation
(M-S) for the stability number α(G). In particular, we characterize the global minimizers and we prove that their
number is finite if and only if the graph G has no critical edges (see Proposition 4.3 and Corollary 4.4). As mentioned
earlier the property of having finitely many minimizers is indeed important in the analysis of finite convergence of the
Lasserre hierarchy.

We start with a useful property of the local minimizers for a class of standard quadratic programs.

Lemma 4.1. Consider the standard quadratic program

pmin = min{pM (x) = xTMx : x ∈ ∆n}, (4.1)

where M is a matrix of the form

M =





1 1 aT1
1 1 aT2
a1 a2 M0



 , (4.2)

i.e., with M11 = M12 = M22 = 1, a1, a2 ∈ R
n−2 and M0 ∈ Sn−2. Assume x is a local minimizer of (4.1) with

x1, x2 > 0 and define the vectors x̃ = x + x2e1 − x2e2 and x = x − x1e1 + x1e2 ∈ ∆n. Then, for any scalar
t ∈ [0, 1], we have pM (tx̃ + (1 − t)x) = pM (x) and thus, in particular, pM (x̃) = pM (x) = pM (x). In addition, if x
is a strict local minimizer of (4.1) then x1x2 = 0.

Proof. Set z := (x3, x4, . . . , xn) ∈ R
n−2 and consider the optimization problem obtained from (4.1), where we let

the first two variables free and fix the remaining n− 2 variables equal to z:

min{(y1 + y2)
2 + 2y1a

T
1 z + 2y2a

T
2 z + zTM0z : y1, y2 ≥ 0, y1 + y2 = 1− eT z}. (4.3)

Since y1 + y2 = 1 − eT z is constant, problem (4.3) is a linear program and therefore it has an optimal solution with
y1 = 0 or y2 = 0. Assume, e.g., that aT1 z ≤ aT2 z, then (y1 = 1 − eT z, y2 = 0) is an optimal solution of (4.3),
with objective value pM (x̃). In addition, we have pM (x̃) ≤ pM (x) since (x1, x2) is feasible for (4.3). We claim that
pM (x̃) = pM (x). For this assume pM (x̃) < pM (x) or, equivalently, aT1 z < aT2 z. Then, for any t ∈ (0, 1), one can
easily verify that pM (tx + (1 − t)x̃) < pM (x). Since this holds for any t close to 1, we contradict the assumption
that x is a local minimum of (4.1). Therefore, equality pM (x̃) = pM (x) holds, which implies aT1 z = aT2 z. In turn this
also implies that pM (x) = pM (x) and thus pM (x) = pM (tx̃+ (1 − t)x) for any t ∈ [0, 1].
Finally, assume x is a strict local minimizer and x1, x2 > 0. As pM (x) = pM (tx̃ + (1 − t)x), where tx̃ + (1 − t)x
tends to x when t tends to x1/(x1 + x2), we get a contradiction with the fact that x is a strict local minimizer. Thus
x1x2 = 0 holds.

In what follows we consider a graph G = (V = [n], E) and the corresponding Motzkin-Straus problem (M-S). We
now show some structural results for the (strict) local and global minimizers of (M-S).

Lemma 4.2. Let x ∈ ∆n and assume its support S = Supp(x) is a stable set of G. If x is a local minimizer of problem
(M-S) then x = χS/|S| and S is a maximal stable set. In particular, if x is a global minimizer then x = χS/α(G)
where S has cardinality α(G).

Proof. First we show that x = χS/|S|. For this assume for contradiction that xi > xj for some i 6= j ∈ S. Consider
the vector x̃ = x+ ǫ(ej − ei) ∈ ∆n where 0 < ǫ < xi − xj . Then we have

fG(x̃) = fG(x) − 2ǫ(xi − xj − ǫ) < fG(x),

which contradicts the fact that x is a local minimizer. This shows x = χS/|S|. Then fG(x) =
1
|S| and thus |S| = α(G)

if x is a global minimizer, which shows the last claim of the lemma. Now we show that S is a maximal stable set.
Assume for contradiction that there exists j /∈ S such that S∪{j} is stable and consider the vector x̃ = x+ǫ(ej−ei) ∈
∆n for some i ∈ S and 0 < ǫ < xi. Then we have

fG(x̃) = fG(x) − 2ǫ(xi − ǫ) < fG(x),

contradicting again that x is a local minimizer. Thus S is a maximal stable set.
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We will characterize the (strict) local minimizers whose support is a stable set in Proposition 4.5 and Proposition 4.7
below. First we characterize the global minimizers of problem (M-S).

Proposition 4.3. Let x ∈ ∆n with support S = Supp(x) and let C1, . . . , Ck denote the connected components of the
graph G[S]. Then x is a global minimizer of problem (M-S) if and only if k = α(G), the sets C1, . . . , Ck are cliques of
G and

∑

i∈Ch
xi = 1/k for all h ∈ [k]. In that case all the edges of G[S] are critical. Therefore, if G has no critical

edges then the global minimizers are the vectors of the form x = χS/α(G), where S is a stable set of size α(G).

Proof. We first show the ‘only if’ part. Let x be a global minimizer. Pick nodes a1 ∈ C1, . . . ak ∈ Ck in the different
connected components of G[S]. Then the set I = {a1, . . . , ak} is a stable set of G. Define the vector y ∈ ∆n, with
entries yah

=
∑

i∈Ch
xi for h ∈ [k] and yi = 0 for all remaining vertices i ∈ V \I . By applying iteratively Lemma 4.1

(with the matrix M = I + AG, using the edges in a spanning tree in each connected component Ch) we obtain that
fG(y) = fG(x). Therefore, y is a global minimizer whose support is a stable set and thus, by Lemma 4.2, we obtain
k = α(G) and

∑

i∈Ch
xi = yh = 1

k for all h ∈ [k]. It is clear that each component (say) C1 is a clique. Indeed, if

i 6= j ∈ C1 are not adjacent then the set {i, j} ∪ {a2, . . . , ak} would be a stable set of size α(G) + 1. Moreover, the
edge {i, j} is critical since both sets {i, a2, a3, . . . , ak} and {j, a2, a3, . . . , ak} are stable sets of size α(G).

We now show ‘if part’. For this assume k = α(G), each component Ch of G[S] is a clique and
∑

i∈Ch
xi = 1/k for

h ∈ [k]. Then we have

fG(x) =

k
∑

h=1

(

∑

i∈Ch

xi

)2

=
1

k
=

1

α(G)
,

which shows x is a global minimizer.

The final claim about the global minimizers when G has no critical edges follows as a direct consequence of the above
characterization.

Corollary 4.4. The following conditions are equivalent:

(i) The graph G has no critical edges.

(ii) The number of global minimizers of problem (M-S) is finite (and equal to the number of maximum stable sets).

Proof. The implication (i) =⇒ (ii) follows directly from Proposition 4.3.
(ii) =⇒ (i): Assume for contradiction that {1, 2} is a critical edge ofG, we construct infinitely many global minimizers.
Indeed, as {1, 2} is a critical edge there exists a set I ⊆ V such that I ∪ {1} and I ∪ {2} are stable sets of size α(G).
Then, for any t ∈ [0, 1], fG(x) = 1/α(G) for the vector x = (tχI∪{1} + (1 − t)χI∪{2})/α(G), which thus gives
infinitely many global minimizers.

In Lemma 4.2 we saw that if χS/|S| is a local minimizer then S is a maximal stable set, i.e., degS(j) ≥ 1 for all
j ∈ V \ S. We now sharpen this result and show that the stronger condition ‘degS(j) ≥ 2 for all j ∈ V \ S’
characterizes the strict local minimizers.

Proposition 4.5. Let G be a graph and let u ∈ ∆n. The following assertions are equivalent.

(i) u is a strict local minimizer of problem (M-S).

(ii) degS(j) ≥ 2 for all j ∈ V \ S and u = χS/|S|, where we set S = Supp(u).

(iii) The optimality conditions (FOOC), (SCC) and (SOSC) hold at u.

Proof. We first prove (i) ⇒ (ii). Assume u is a strict local minimizer with support S = Supp(u) and set k = |S|. By
the second part of Lemma 4.1, we know that S is a stable set and, by Lemma 4.2, u = χS/|S| and S is a maximal
stable set. Assume there exists j /∈ S with degS(j) = 1, and let i ∈ S be the (unique) neighbor of j in S. Then the set

S̃ = (S \ {i}) ∪ {j} is a stable set of size k. Consider the vectors ũ = χS̃/k and z = tu + (1 − t)ũ for t ∈ (0, 1).
Then zi = t/k, zj = (1− t)/k, zv = 1/k for all v ∈ S \ {i}, zv = 0 otherwise, and we have

fG(z) =
∑

v∈S∪{j}

z2v + 2zizj =
t2

k2
+

(1 − t)2

k2
+

k − 1

k2
+ 2

t(1− t)

k2
=

1

k
,

which contradicts that u is a strict local minimizer when considering t close to 1. Hence one must have degS(j) ≥ 2
for all j /∈ S.
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Now we prove (ii) ⇒ (iii). Assume u = χS/k, where S is a stable set with k = |S| and degS(j) ≥ 2 for all j 6∈ S.
Consider the polynomials gi(x) = xi for i ∈ [n], h(x) =

∑n
i=1 xi − 1, so that the feasible region of problem (M-S)

is defined by the constraints gi(x) ≥ 0 for i ∈ [n], and h(x) = 0. The active constraints at u are the constraints
gi(x) ≥ 0 for i /∈ S, and h(x) = 0. Hence J(u) = V \ S. Clearly, (CQC) holds at u since the gradients of the active
constraints at u are the vectors e and ei for i ∈ V \ S, which are linearly independent (as S 6= ∅). Next note that

∂fG
∂xi

(u) =

{

2
k if i ∈ S,
2
k degS(i) if i /∈ S.

(4.4)

The first order optimality condition reads

∇fG(u) = λe+
∑

i/∈S

µiei, where λ ∈ R, µi ≥ 0 for i ∈ V \ S.

Looking at coordinate i ∈ S we obtain λ = 2/k and then, for each coordinate i /∈ S, we obtain µi = 2(degS(i)−1)/k.
Since, by assumption, degS(i) ≥ 2 for i 6∈ S it follows that µi > 0 and thus (FOOC) and (SCC) hold at u. Finally,
we check that also (SOSC) holds. For this consider the Lagrangian function

L(x) = fG(x) − λ
(

n
∑

i=1

xi − 1
)

−
∑

i∈J(u)

µixi = fG(x)−
2

k

(

n
∑

i=1

xi − 1
)

−
∑

i/∈S

(degS(i)− 1)xi.

As all the constraints are linear we have ∇2L(x) = ∇2fG(x) = 2(AG + I). Consider a vector 0 6= v ∈ G(u)⊥. Then
vi = 0 for i /∈ S, therefore vT∇2L(u)v = 2

∑

i∈S v2i > 0 since v 6= 0. So (SOSC) holds at u.
Finally, the implication (iii) ⇒ (i) follows from Theorem 2.2 (ii).

Example 4.6. Given an integer r ≥ 3 consider disjoint sets V2, . . . , Vr with |Vi| = i for 2 ≤ i ≤ r. Let G be the
complete (r − 1)-partite graph with vertex set V = V2 ∪ . . . ∪ Vr. Then, by Proposition 4.5, each vector χVi/i is a
strict local minimizer of problem (M-S) for graph G, while χVr/r is the only global minimizer.

Now, we characterize the local minimizers of (M-S) whose support is a stable set of G.

Proposition 4.7. Let S be a stable set of G. For i ∈ S let N1(i) = {j ∈ V \ S : NS(i) = {i}} be the set of vertices
having only the vertex i as neighbour in S. Then x = χS/|S| is a local minimizer of (M-S) if and only if S is a
maximal stable set and N1(i) is a clique for all i ∈ S.

Proof. First, we show the “only if” part. Assume that x = χS/|S| is a local minimizer. Then, by Lemma 4.2, S is
a maximal stable set. Assume that N1(i) is not a clique for some i ∈ S. Then there exist j, k ∈ N1(i) such that
{j, k} /∈ E. Consider the vector x̃ = x− ǫxi +

ǫ
2xj +

ǫ
2xk for ǫ close to 0. Then we have

fG(x̃) =
∑

v∈S\{i}

x2
v + (xi − ǫ)2 +

ǫ2

2
+ 2(xi − ǫ)ǫ = fG(x)−

ǫ2

2
< fG(x),

contradicting that x is a local minimizer.

We now show the “if part”. Define the sets T = {i ∈ V : degS(i) = 1} and R = {i ∈ V : degS(i) ≥ 2}, which
partition the set V \ S. Let x̃ = x+ ǫ ∈ ∆n with ǫ = (ǫ1, ǫ2, . . . , ǫn) ∈ R

n, ǫi ≥ 0 for i ∈ T ∪R and
∑

i∈V ǫi = 0.
Then

fG(x̃) = fG(x) + ǫT (AG + I)ǫ+ 2xT (AG + I)ǫ.

We claim that fG(x) ≤ fG(x̃), i.e.,

ǫT (AG + I)ǫ + 2xT (AG + I)ǫ ≥ 0 whenever ||ǫ||∞ ≤ 1/|S|2. (4.5)

We use the following notation: for a subset I ⊆ V , ǫI ∈ R
n has entries (ǫI)i = ǫi for i ∈ I and (ǫI)i = 0 for

i ∈ V \ I . We bound the first term in (4.5):

ǫT (AG + I)ǫ ≥ ǫTS∪T (AG + I)ǫS∪T + 2ǫTR(AG + I)ǫS + ǫTR(AG + I)ǫR.

By assumption S ∪ T is a disjoint union of cliques, hence the submatrix of AG + I indexed by S ∪ T is positive
semidefinite and thus ǫTS∪T (AG + I)ǫS∪T ≥ 0. Also, we have ǫTR(AG + I)ǫR ≥ 0 because ǫj ≥ 0 for j ∈ R. Hence
we obtain

ǫT (AG + I)ǫ ≥ 2ǫTR(I +AG)ǫS = 2
∑

j∈R

ǫj
∑

i∈NS(j)

ǫi ≥ − 2

|S|
∑

j∈R

ǫj ,

14



where we use the fact that ǫi ≥ −1/|S|2 for i ∈ S and ǫj ≥ 0 for j ∈ R. Now, we bound the second term in (4.5):

2xT (AG + I)ǫ = 2
|S|

(

∑

i∈S ǫi +
∑

j∈V degS(j)ǫj

)

≥ 2
|S|

(

∑

i∈S ǫi +
∑

j∈T ǫj + 2
∑

j∈R ǫj

)

= 2
|S|

∑

j∈R ǫj ,

where we have used the fact that degS(j) ≥ 2 for j ∈ R, degS(j) = 1 for j ∈ T , and
∑

i∈V ǫi = 0. Combining these

two inequalities, we obtain fG(x) ≤ fG(x̃) as desired.

Example 4.8. As an illustration consider the graph G on V = [5] with edges {1, 3}, {2, 4} and {2, 5}, so α(G) = 3.
Consider the vector x = χS/2, where S = {1, 2} is a maximal stable set, but N1(2) = {4, 5} is not a clique. Then,

as shown in the above lemma, x is not a local minimum. Indeed, setting z = χ{3,4,5}/3, we have fG((1− t)x+ tz)−
fG(x) = −t2/6 ≤ 0 for all t ∈ [0, 1]. On the other hand, fG(1/2 + ǫ, 1/2− ǫ, 0, 0, 0) = 1/2 + 2ǫ2 > fG(x) for all
small ǫ > 0. Hence, x is not a local minimizer, nor a local maximizer.

5 Finite convergence and perturbed hierarchies

In this section we give a partial positive answer to Conjecture 2 and show that the de Klerk-Pasechnik hierarchy

ϑ(r)(·) has finite convergence for the class of acritical graphs. Our approach relies on proving finite convergence of
the (weaker) Lasserre hierarchy applied to problem (M-S) for acritical graphs. In addition, we propose a perturbed
formulation for the stability number for which the corresponding hierarchy has finite convergence for all graphs.

5.1 Finite convergence of Lasserre hierarchy for the Motzkin-Straus formulation

In Section 4 we proved that the set of global minimizers of problem (M-S) is finite if and only if the graph G is acritical
or, equivalently, every global minimizer is a strict minimizer. In addition, as a direct application of Proposition 4.5,
we have shown that this holds if and only if the classical optimality conditions hold at all the global minimizers.
Hence, in summary, if G has a critical edge then we cannot apply Theorem 2.3 since problem (M-S) has infinitely
many minimizers. On the other hand, if G is acritical then we may directly apply Theorem 2.3 and conclude that the

Lasserre hierarchy f
(r)
G corresponding to problem (M-S) has finite convergence. So the following holds.

Theorem 5.1. Let G be a graph with no critical edges. Then, f
(r)
G = 1/α(G) for some r ∈ N.

Corollary 5.2. Let G be a graph with no critical edges. Then, ϑ(r)(G) = α(G) for some r ∈ N.

Proof. This follows directly from Theorem 5.1 and Corollary 3.12.

Hence, for problem (M-S), having finitely many global minimizers implies finite convergence of the Lasserre hier-
archy. We now recall a known example which shows that this does not hold for general polynomial optimization
problems.

Example 5.3. (See, e.g., [21, Example 6.19]). Consider the problem of minimizing a polynomial p over the unit ball
in R

n. Assume p is homogeneous, p(x) > 0 for all x ∈ R
n \ {0}, and p is not a sum of squares of polynomials.

Then the minimum of p over the unit ball is pmin = 0 and the origin is the unique global minimizer. However it
is known that the corresponding Lasserre hierarchy does not have finite convergence, see Example 6.19 in [21] for
details. The main reason is that a decomposition of the form p = s0 + s1(1 − ∑i x

2
i ) with s0, s1 ∈ Σ would

imply p ∈ Σ. For the polynomial p one may, for instance, consider a perturbation of the Motzkin form: pǫ =
x4
1x

2
2 + x2

1x
4
2 − 3x2

1x
2
2x

2
3 + x6

3 + ǫ(x6
1 + x6

2 + x6
3), selecting ǫ > 0 such that pǫ 6∈ Σ.

5.2 Perturbed Motzkin-Straus formulation and hierarchies

The above finite convergence result relies on Theorem 2.3 that can only be applied to problems with finitely many
optimal solutions, which holds for problem (M-S) only for acritical graphs. We now propose an alternative formulation
for α(G), which is a perturbation of problem (M-S) designed in such a way that the number of global minimizers
becomes finite, thus allowing us to prove finite convergence of the corresponding (perturbed) hierarchies for any
graph G.

Given a scalar ǫ > 0, consider the following perturbation of problem (M-S):

min{xT ((1 + ǫ)AG + I)x : x ∈ ∆n}. (M-S-eps)
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So, for the perturbed matrix M = I + (1 + ǫ)AG, we have Mij = Mji > Mii = Mjj = 1 for any edge {i, j} of G.
First, we show a useful property for the global minimizers of any standard quadratic program (4.1) whose matrix M
has this property.

Lemma 5.4. Given a scalar t > 1 consider the standard quadratic program (4.1), where the matrix M is of the form

M =





1 t aT1
t 1 aT2
a1 a2 M0



 , (5.1)

where a1, a2 ∈ R
n−2 and M0 ∈ Sn−2. Then u1u2 = 0 holds for every global minimizer u of (4.1).

Proof. Set z = (u3, u4, . . . , un) and assume for contradiction that u1, u2 > 0. Consider the feasible points ũ =
(u1 + u2, 0, z) and u = (0, u1 + u2, z). Then, for the polynomial PM (x) = xTMx, we have

pM (ũ) = (u1 + u2)
2 + 2(u1 + u2)z

Ta1 + zTM0z,

pM (u) = (u1 + u2)
2 + 2(u1 + u2)z

Ta2 + zTM0z,

pM (x) = u2
1 + u2

2 + 2tu1u2 + 2u1z
Ta1 + 2u2z

Ta2 + zTM0z.

By assumption, u is a global minimizer of pM over ∆n, thus pM (ũ), pM (u) ≥ pM (u). This implies, respectively,
2u2(z

Ta1 − zTa2), 2u1(z
Ta2 − zTa1) ≥ 2u1u2(t− 1) > 0 since u1, u2 > 0 and t > 1, and thus zTa1 − zTa2 > 0

and zTa2 − zTa1 > 0, a contradiction.

Lemma 5.5. For any graph G the optimal value of problem (M-S-eps) is 1/α(G) and the global minimizers are the
vectors of the form u = χS/α(G), where S is a stable set of G with size α(G).

Proof. If S is a stable set of size α(G), then uT ((1 + ǫ)AG + I)u = 1/α(G) for u = χS/α(G) ∈ ∆n, which shows
the optimal value of (M-S-eps) is at most 1/α(G). On the other hand, for any x ∈ ∆n, xT ((1 + ǫ)AG + I)x ≥
xT (AG + I)x ≥ 1/α(G), and thus the optimal value of (M-S-eps) is equal to 1/α(G) and every global minimizer u
of (M-S-eps) is also a global minimizer of (M-S). By Lemma 5.4 the support of any global minimizer u of (M-S-eps)
must be a stable set S and, as u is also a global minimzer of (M-S), it follows from Lemma 4.2 that S has size α(G)
and u = χS/α(G).

Remark 5.6. A first observation is that Lemma 5.4 still holds if we use different perturbations ǫ for the edges, since
the only property of the matrix M = I+(1+ ǫ)AG appearing in (M-S-eps) that we used is the fact that Mij = Mji >
Mii = Mjj = 1 for the edges {i, j} of G.

A second observation is that Lemma 5.4 also holds if we only perturb the entries corresponding to the critical edges of
G. Indeed, let Gc = (V,Ec), where Ec denotes the set of critical edges of G, and consider the variation of (M-S-eps)
where we use the matrix M = I +AG + ǫAGc

(instead of I + AG + ǫAG). Then the optimum value is still equal to
1/α(G). Indeed, if u is a global minimizer with support S then, by Lemma 5.4, the only edges that can be contained
in S are the non-critical of G. On the other hand, as u is also a global minimizer of (M-S), by Corollary 4.4, any edge
contained in S must be a critical edge. It therefore follows that S must be a stable set and |S| = α(G).

Again, we can reformulate (M-S-eps) as a polynomial optimization problem over the sphere:

1

α(G)
= min{(x◦2)T ((1 + ǫ)AG + I)x◦2 : x2

1 + x2
2 + · · ·+ x2

n = 1}. (M-S-Sphere-eps)

For convenience define the polynomials

fG,ǫ(x) = xT ((1 + ǫ)AG + I)x = fG(x) + ǫxTAGx and FG,ǫ(x) = fG,ǫ(x
◦2).

We can also define the Lasserre hierarchies for the stability number based on the formulations (M-S-eps) and
(M-S-Sphere-eps):

f
(r)
G,ǫ = max

{

λ : xT ((1 + ǫ)AG + I)x − λ ∈ M
(

x1, x2, . . . , xn

)

r
+
〈

n
∑

i=1

xi − 1
〉

2r

}

, (5.2)

f
(r)
G,po,ǫ = max

{

λ : xT ((1 + ǫ)AG + I)x− λ ∈ T
(

x1, x2, . . . , xn

)

r
+
〈

n
∑

i=1

xi − 1
〉

2r

}

, (5.3)

F
(r)
G,ǫ = max

{

λ : x◦2T ((1 + ǫ)AG + I)x◦2 − λ ∈ Σr +
〈

n
∑

i=1

x2
i − 1

〉

2r

}

, (5.4)
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as analogues of (1.10), (1.11) and (1.12). We also have the corresponding copositive programming formulation:

α(G) = min{t : t((1 + ǫ)AG + I)− J ∈ COPn} (5.5)

for the stability number and the associated ǫ-perturbed linear and semidefinite hierarchies:

ζ(r)ǫ (G) = min{t : t((1 + ǫ)AG + I)− J ∈ C(r)
n }, (5.6)

ϑ(r)
ǫ (G) = min{t : t((1 + ǫ)AG + I)− J ∈ K(r)

n }, (5.7)

in analogy to (1.4) and (1.5).

From the discussion in Section 3.1, the parameters f
(r)
G,po,ǫ (r ≥ 1), f

(r)
G,ǫ, F

(r)
G,po,ǫ (r ≥ 2) and ϑǫ(G) (r ≥ 0) are finite.

In addition, as a direct application of Lemma 3.2, if G is not the empty graph then the program (5.2) is infeasible at

order r = 1, i.e., f
(1)
G,ǫ = −∞ for any ǫ > 0.

As an application of Corollary 3.9, we have the following analogue of Corollary 3.12 linking the above hierarchies.

Lemma 5.7. Let G be a graph and ǫ > 0. Then, for any r ≥ 0, we have

1

α(G)
≥ 1

ϑ
(2r)
ǫ (G)

= F
(2r+2)
G,ǫ = f

(r+1)
G,po,ǫ ≥ f

(r+1)
G,ǫ .

We now show finite convergence of these hierarchies for any graph G.

Theorem 5.8. Let G be a graph and ǫ > 0. Then, we have f
(r)
G,ǫ =

1
α(G) for some r ∈ N.

Proof. We make again use of Theorem 2.3. Let u be a global minimizer of (M-S-eps), we show that the conditions
(FOOC), (SCC), (SOSC) hold at u. By Lemma 5.5, u = χS/α(G), where S is a stable set of size α(G). As the
constraints of (M-S-eps) are the same as those of (M-S) we can follow the proof of the ‘if part’ of Proposition 4.5,
where the gradient of the objective function now reads

∂fG,ǫ

∂xi
(u) =

{

2
α(G) if i ∈ S,
2(1+ǫ)
α(G) degS(i) if i /∈ S.

Writing ∇fG,ǫ(u) = λ∇h(u)+
∑

i∈V \S µi∇gi(u), where h(x) =
∑

i xi−1 and gi(x) = xi, we obtain that λ = 2
α(G)

and µi =
2
α ((1 + ǫ) degS(i) − 1) ≥ 2

α(G)ǫ > 0 for i /∈ S, since degS(i) ≥ 1. Hence, strict complementarity (SCC)

holds. Finally, we check (SOSC). For the Lagrangian function L(x) = fG,ǫ(x) − λh(x) −∑i6∈S µigi(x), we have

∇2L(x) = ∇2fG,ǫ(x) = 2(AG + I). Now, take v ∈ G(u)⊥ \ {0}, so vi = 0 for i ∈ S and thus vi 6= 0 for some

i ∈ V \ S. Then vT (AG + I)v =
∑

i/∈S v2i > 0, which shows (SOSC) holds and thus concludes the proof.

Corollary 5.9. Let G be a graph and ǫ > 0. Then there exists r ≥ 0 such that ϑr
ǫ(G) = α(G).

We conclude this section with some observations on the role of the perturbation parameter ǫ in the different hierarchies.

Clearly we have ζ
(r)
ǫ (G) ≤ ζ(r)(G) and ϑ

(r)
ǫ (G) ≤ ϑ(r)(G) for any r ≥ 0 and any ǫ > 0. We first show that the

perturbation parameter ǫ in fact plays no role for the linear hierarchy ζ
(r)
ǫ (G).

Theorem 5.10. For all r ∈ N and ǫ > 0, we have ζ
(r)
ǫ (G) = ζ(r)(G).

Proof. The inequality ζ
(r)
ǫ (G) ≤ ζ(r)(G) is clear, so we show the reverse inequality. For this assume the matrix

Mt,ǫ := t(I + (1 + ǫ)AG) − J belongs to the cone C(r)
n , we show that also the matrix Mt := t(I + AG) − J

belongs to C(r)
n , which implies ζ(r)(G) ≤ ζ

(r)
ǫ (G), as desired. By assumption, Mt,ǫ ∈ C(r)

n means that the polynomial
(
∑

i xi)
rpMt,ǫ

(x) has nonnegative coefficients. (Recall the notation from (1.2)). Following [5], for any matrix M and
r ∈ N we have

(

∑

i

xi

)r

pM (x) =
(

∑

i

xi

)r

xTMx =
∑

β∈I(n,r+2)

r!

β!
cβx

2β ,

where cβ := βTMβ − βT diag(M) and diag(M) ∈ R
n is the vector with entries Mii for i ∈ [n]. Therefore, for

the matrix M = Mt,ǫ, the polynomial (
∑

i xi)
rpM (x) has nonnegative coefficients if and only if cβ ≥ 0 for all
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β ∈ I(n, r+2). We will now prove that the propery of having cβ ≥ 0 for all β ∈ I(n, r+2) is independent on ǫ. For
this let β ∈ I(n, r + 2). We have

cβ = βTMβ − βT diag(M)

= t

n
∑

i=1

β2
i + t(1 + ǫ)βTAGβ −

(

n
∑

i=1

βi

)2

− (t− 1)

n
∑

i=1

βi

= t

(

n
∑

i=1

β2
i + (1 + ǫ)βTAGβ − (r + 2)

)

− (r + 2)(r + 1).

Therefore, cβ ≥ 0 for all β ∈ I(n, r + 2) if and only if t ≥ (r+1)(r+2)
β∗−(r+2) , where we set

β∗ = min{fG,ǫ(β) = βT (I + (1 + ǫ)AG)β : β ∈ I(n, r + 2)}. (5.8)

We now observe that the optimum value of the program (5.8) is attained at some β ∈ I(n, r + 2) whose support is
stable. For this let β be a minimizer of (5.8) and assume β1, β2 > 0 where {1, 2} is an edge of G; we use the usual
argument of shifting weights to create another minimizer whose support does not contain the edge {1, 2}. For this
note that the matrix I + (1 + ǫ)AG has the form (5.1) with t = 1 + ǫ. Set z = (β3, . . . , βn), say zTa1 ≤ zTa2 and

consider the new vector β̃ = (β1 + β2, 0, z) ∈ I(n, r + 2), so that fG,ǫ(β̃) ≥ fG,ǫ(β). On the other hand, we have

fG,ǫ(β̃)− fG,ǫ(β) = −2ǫβ1β2 − 2β2(z
Ta2 − zTa1) ≤ 0,

which implies fG,ǫ(β̃) = fG,ǫ(β), as desired.

So we have shown that the optimum value of (5.8) does in fact not involve the parameter ǫ. Therefore, if the polynomial
(
∑

i xi)
rpMt,ǫ

(x) has nonnegative coefficients then also the polynomial (
∑

i xi)
rpMt

(x) has nonnegative coefficients.

This shows that ζ(r)(G) ≤ ζ
(r)
ǫ (G).

For the semidefinite hierarchy ϑ
(r)
ǫ (G) we can only prove that the first level of the hierarchy is independent on ǫ.

Lemma 5.11. For any ǫ > 0 we have ϑ
(0)
ǫ (G) = ϑ(0)(G).

Proof. The inequality ϑ
(0)
ǫ (G) ≤ ϑ(0)(G) is clear, so we show the reverse inequality. For this let t be feasible for

ϑ
(0)
ǫ (G), we show that t is also feasible for ϑ(r)(G). By assumption, the matrix t((1+ ǫ)AG+ I)−J belongs to K(0),

i.e., there exists a matrix P � 0 such that Pii = t − 1 for any i ∈ [n] and P ≤ t((1 + ǫ)AG + I) − J (entry-wise)

(recall the characterization of K(0) in Proposition 3.7). We now claim that P ≤ t(I + AG) − J , which shows that

t is feasible for ϑ(0)(G), as desired. Indeed, if {i, j} is an edge, then the inequality Pij ≤ t − 1 follows using the
fact that P � 0 and Pii = Pjj = t − 1 and, if {i, j} is not an edge, then Pij ≤ −1 follows from the assumption
P ≤ t((1 + ǫ)AG + I)− J .

Question 5.12. Is it true that, for any ǫ > 0 and any r ∈ N, ϑ
(r)
ǫ (G) = ϑ(r)(G)?

Clearly, a positive answer to this question would imply the finite convergence of the hierarchy ϑ(r)(G) and thus settle
Conjecture 2.

Observe that the parameters ϑ
(r)
ǫ and F

(r)
G,ǫ are monotone in ǫ:

0 < ǫ1 < ǫ2 =⇒ α(G) ≤ ϑ(r)
ǫ2 (G) ≤ ϑ(r)

ǫ1 (G) and F
(r)
G,ǫ1

≤ F
(r)
G,ǫ2

≤ 1

α(G)
,

which follows using the fact (ǫ2 − ǫ1)AG is entry-wise nonnegative. So, if we increase ǫ, we can only get improved

bounds for α(G). On the other hand, the behaviour of the parameters f
(r)
G,ǫ is not clear as ǫ changes. In fact, the

perturbed bound can be worse than the original one. For instance, f
(1)
G,ǫ = −∞ for every ǫ > 0 when G is not the

empty graph, while f
(1)
G = 1/α(G) when G is a disjoint union of cliques.
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6 Complexity of deciding finiteness of the global minimizers

As we saw earlier, having finitely many minimizers is a property which plays an important role in the study of finite
convergence of Lasserre hierarchy for polynomial optimization. This raises the question of understanding the com-
plexity of deciding whether a polynomial optimization problem has finitely many minimizers. Here, as a byproduct
of our results in the previous sections about global minimizers of standard quadratic programs, we show that unless
P=NP there is no polynomial-time algorithm to decide whether a standard quadratic program has finitely many global
minimizers. The complexity of several other decision problems about minimzers in polynomial optimization has been
studied rencently in [1, 2]. In particular, Ahmadi and Zhang [2] show that it is strongly NP-hard to decide whether a
polynomial of degree 4 has a local minimizer over Rn; they also show that the same holds for deciding if a quadratic
polynomial has a local minimizer (or a strict local minimizer) over a polyhedron. In addition they show that unless
P=NP there cannot be a polynomial-time algorithm that finds a point within Euclidean distance cn (for any constant
c ≥ 0) of a local minimizer of an n-variate quadratic polynomial over a polytope.

In this section we consider the following problem:

FINITE-MIN: Given an instance of problem (P), does it have finitely many global minimizers?

Consider first the case when (P) is a linear optimization problem, i.e., when the objective and the constraints are linear
polynomials. Then the problem is convex and thus, if x1 and x2 are two distinct global minimizers then, for every
0 ≤ t ≤ 1, the point z = tx1+(1−t)x2 is also a global minimizer. Hence the problem has finitely many minimizers if
and only if it has a unique one. Therefore, the problem of deciding whether a linear program has finitely many global
minimizers is equivalent to the problem of deciding whether it has a unique optimal solution and a polynomial-time
algorithm for this problem was given by Appa [3].

In the rest of the section we prove that problem FINITE-MIN is hard even when restricting to standard quadratic
programs. For this, we first consider the following combinatorial problems, which we will use to prove this hardness
result. Recall that given a graph G = (V,E), an edge e ∈ E is critical if α(G \ e) = α(G) + 1.

CRITICAL-EDGE: Given a graph G = (V,E) and an edge e ∈ E, is e a critical edge of G?

STABLE-SET: Given a graph G and k ∈ N, does α(G) ≥ k hold?

The problem STABLE-SET is well-known to be NP-Complete [14]. From this we now prove that unless P=NP there
is no polynomial-time algorithm to decide whether an edge is critical.

Theorem 6.1. If there is a polynomial-time algorithm that solves the problem CRITICAL-EDGE, then P=NP.

Proof. Assume that there exists a polynomial-time algorithm for CRITICAL-EDGE; we show how to use it to solve
STABLE-SET. For this let G = ([n], E) be an instance of STABLE-SET and order its edges as e1, e2, . . . , em. Then,
for each i = 1, 2, . . . ,m, we check whether the edge ei is critical in the graph Gi−1 := G \ {e1, . . . , ei−1}. If the
answer is yes then we have α(Gi) = α(Gi−1) + 1 and, otherwise, α(Gi) = α(Gi−1). After checking all the m edges
we end up with the empty graph Gm on n nodes, with α(Gm) = n. Let p be the number of critical edges that have
been encountered while checking all the m edges. Then we have n = α(Gm) = p + α(G) and thus α(G) = n − p
has been computed. Hence a polynomial-time algorithm for CRITICAL-EDGE implies a polynomial-time algorithm
for computing α(G).

Using this reduction we now prove that the problem of deciding whether a standard quadratic optimization problem
has finitely many optimal solutions is hard. For this, given a graph G = ([n], E) and a fixed edge e ∈ E, consider the
following standard quadratic program:

min xT (I +AG +AG\e)x subject to x ≥ 0,
n
∑

i=1

xi = 1, (6.1)

where in the matrix defining the objective function, all edges of G get weight 2, except the selected edge e which keeps
weight 1. First observe that the optimum value of (6.1) is equal to 1/α(G); the argument is analogous to the one used
for the corresponding claim in Lemma 5.5 and thus omitted.

Lemma 6.2. The optimal value of problem (6.1) is equal to 1/α(G).

Theorem 6.3. Given a graph G = (V = [n], E) and an edge e ∈ E, problem (6.1) has infinitely many global
minimizers if and only if e is a critical edge of G.
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Proof. Say e is the edge {1, 2}. First assume e is a critical edge, we show that (6.1) has infinitely many optimal
solutions. Since e is critical, there exists I ⊆ V such that both sets I ∪ {1} and I ∪ {2} are stable sets of size α(G).
Then both vectors x̃ = χI∪{1}/α(G) and x̄ = χI∪{2}/α(G) are optimal solutions of (6.1). Now we prove that, for
every 0 < t < 1, x = tx̃+ (1 − t)x̄ is also an optimal solution. Indeed, xi = 1/α(G) for i ∈ I , x1 = t, x2 = 1− t
and xj = 0 otherwise, and the objective value of x is equal to

α(G) − 1

α(G)2
+ t2 + (1 − t)2 + 2t(1− t) =

1

α(G)
.

Hence problem (6.1) has infinitely many solutions if e is critical.

Conversely, assume that (6.1) has infinitely many global minimizers, we show that e is a critical edge. Let u be a
global minimizer of (6.1) and S = Supp(u), then u is also a global minimizer of the original problem (M-S). If S is
a stable set then, by Lemma 4.2, S has size α(G) and u = χS/α(G) (since u is a global minimizer of (M-S)). On
the other hand, if S is not stable then, in view of Lemma 5.4, we know that the only edge that can be contained in
S is the edge e. As we assume that (6.1) has infinitely many global minimizers, at least one of them (say u) has its
support S which contains the edge e. From this, we will now show that the edge e is critical. Note that the matrix
I + AG + AG\{e} is of the form (4.2). Hence, by Lemma 4.1, we know that both points ũ = u + u2e1 − u2e2 and

u = u− u1e1 + u1e2 are optimal solutions of (6.1). Moreover, Supp(ũ) = S \ {2} and Supp(u) = S \ {1} are stable
sets, since {1, 2} is the only edge contained in S. Therefore, as we just argued above, |S \ {1}| = α(G), which shows
that the edge e is critical.

Corollary 6.4. If there is a polynomial-time algorithm to decide whether a standard quadratic program has finitely
many global minimizers then P=NP.

7 Concluding remarks

We have shown finite convergence of the de Klerk-Pasechnik hierarchy ϑ(r)(G) for the class of acritical graphs by
relating it to the sum-of-squares hierarchy (1.10) for the Motzkin-Straus formulation of α(G). Proving finite conver-
gence for all graphs remains wide open. In fact, as we have observed, it would be sufficient to show finite convergence
for the class of critical graphs. The hierarchy (1.10) however is weaker than the sum-of-squares hierarchy (1.11)
based on using the preordering (generated by the polynomials defining the simplex ∆n), which we have shown to be

equivalent to the hierarchy ϑ(r)(G). A possible approach to solve Conjecture 2 could therefore be to fully exploit this
additionnal real algebraic structure. Another approach could be to use the perturbed sum-of-squares hierarchies that
we have introduced and for which we could show finite convergence; such a strategy would require to be able to show
degree bounds on the level of finite convergence that do not depend on the perturbation parameter.

Showing the stronger Conjecture 1, which asks whether ϑ-rank(G) ≤ α(G) − 1, seems even more challenging. The
resolution in [12] for graphs with small stability number α(G) ≤ 8 required technically involved arguments. It is
likely that the full resolution will need a new set of dedicated tools. As pointed out in [12], one of the difficulties lies
in understanding the behaviour of the ϑ-rank under the operation of adding isolated nodes. We will further investigate
this question in follow-up work [22].

While we could characterize the graphs for which the first level of the sum-of-squares hierarchy (1.10) (at order r = 1)
is exact, the analogous question for the first level of the pre-ordering based hierarchy (1.11) is much more difficult.
This is equivalent to understanding which graphs have ϑ-rank 0, a question which we will investigate in [22] and
where critical edges also play a crucial role.
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