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FUNCTIONS RELATED TO JACOBI THETA FUNCTIONS AND APPLICATIONS I

Keywords: innite product expansions, theta functions, elliptic functions, trigonometric expansions

In this paper we highlight trigonometric holomorphic functions of two variables f j (v, τ ), j = 1, 2, 3, 4 where Imτ > 0, and | Imv |< 1 2 Imτ . These functions are related to the four theta functions :

We propose to describe some properties of these functions. In particular the quotient v+1,τ ) which makes it possible to deduce remarkable identities. Various aspects will be considered, expressions in the form of innite products and their convergence, their development in Fourier series, the convergence of their derivatives, and so on. We of course nd again the classical expansions of theta functions in trigonometric forms or innite products.

Introduction

Throughout this paper we assume Imτ > 0 and take q = e iπτ . Jacobi theta functions for j = 1, 2, 3, 4 are dened as ( [START_REF] Erdelyi | Higher transcendental functions Vol. I-II[END_REF] or [START_REF] Magnus | Formulas and Theorems for the Special Functions of Mathematical Physics Bd[END_REF])

θ 1 (v, τ ) = 2 n≥0
(-1) n q (n+ 1 2 ) 2 sin((2n + 1)πv) θ 2 (v, τ ) = 2 n≥0 q (n+ 1 2 ) 2 cos((2n + 1)πv)

θ 3 (v, τ ) = 1 + 2 n≥1 q n 2 cos(2nπv) θ 4 (v, τ ) = 1 + 2 n≥1 (-1) n q n 2 cos(2nπv)
These four theta functions can be extended to complex values for v and q such that | q |< 1. All four theta functions are entire and periodic functions of v, [START_REF] Appell | Fonctions elliptiques et applications Gauthiers-Villard[END_REF], [START_REF] Chouikha | On Properties of Elliptic Jacobi Functions and Applications[END_REF].

Using the Jacobi triple product identity, we can nd the innite product representation ( [START_REF] Erdelyi | Higher transcendental functions Vol. I-II[END_REF], [START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF]) for θ j (v, τ ), namely:

θ 1 (v, τ ) = 2q 1 4 sin v n≥1
(1 -q 2n )(1 -q 2n e 2iπv )(1 -q 2n e -2iπv ) = 2q 1 4 sin v(q 2 ; q 2 ) ∞ (q 2 e 2iπv ; q 2 ) ∞ (q 2 e -2iπv ; q 2 ) ∞ θ 2 (v, τ ) = n≥1 (1 -q 2n )(1 + q 2n e 2iπv )(1 + q 2n e -2iπv ) = 2q 1 4 cos v(q 2 ; q 2 ) ∞ (-q 2 e 2iπv ; q 2 ) ∞ (-q 2 e -2iπv ; q 2 ) ∞ θ 3 (v, τ ) = n≥1 (1 -q 2n )(1 + q 2n-1 e 2iπv )(1 + q 2n-1 e -2iπv ) = (q 2 ; q 2 ) ∞ (-qe 2iπv ; q 2 ) ∞ (-qe -2iπv ; q 2 ) ∞ θ 4 (v, τ ) = n≥1 (1 -q 2n )(1 -q 2n-1 e 2iπv )(1 -q 2n-1 e -2iπv ) = (q 2 ; q 2 ) ∞ (qe 2iπv ; q 2 ) ∞ (qe -2iπv ; q 2 ) ∞ where q = e iπτ , v ∈ C, τ ∈ H + , and (a; b) ∞ = n≥0 (1 -ab n ). Trigonometric expansions of theta functions can be proved by the methods of residue calculus as described by [5, p.358] and [START_REF] Magnus | Formulas and Theorems for the Special Functions of Mathematical Physics Bd[END_REF]. It is known that from these products we may deduce the Fourier expansions of log(θ j (v, τ ) and θ j θj . The four Jacobi theta functions are naturally related. Starting from one of them we may obtain the other three by simple calculation. Dierentiating θ 1 (v, τ ) with respect to v and putting v → 0 yields θ 1 (0, τ ) = 2q 1 4 (q 2 ; q 2 ) 3 ∞ .

Setting z = 0 in the other three expressions we obtain θ 2 (0, τ ) = 2q 1 4 (q 2 ; q 2 ) ∞ (-q 2 ; q 2 ) 2 ∞ , θ 3 (0, τ ) = (q 2 ; q 2 ) ∞ (-q; q 2 ) 2 ∞ , θ 4 (0, τ ) = (q 2 ; q 2 ) ∞ (q; q 2 ) 2 ∞ .

The aim of this paper is to represent θ j (v, τ ) as product

f j (v, τ ) f j (v + 1, τ )
and to give a complete description of these functions f j (v, τ ). We will see in the sequel that not only the products but also the quotients fj (v,τ ) fj (v+1,τ ) seem play a particular role. In particular, we derive their representation as innite products, their Fourier series expansions, as well as for log(f j (v, τ )) and for f j fj (v, τ ). Some other signicant properties and equalities will be derived, as the following identity valid for any integer n

1 -cos πv 1 + cos πv n k≥0 e iπv -q k e iπv + q k e -iπv + q k e -iπv -q k = k≥0 e iπv -q k-n e iπv + q k-n e -iπv + q k+n e -iπv -q k+n .
Moreover, using these innite products we prove

θ 4 (2 n+1 v, 2 n+1 τ ) θ 4 (0, 2 n+1 τ ) = θ 4 (v, τ ) θ 4 (0, τ ) p=n p=0 θ 3 (2 p v, 2 p τ ) θ 3 (0, 2 p τ ) , θ 1 (2 n+1 v, 2 n+1 τ ) θ 1 (0, 2 n+1 τ ) = θ 1 (v, τ ) θ 1 (0, τ ) p=n p=0 θ 2 (2 p v, 2 p τ ) θ 2 (0, 2 p τ ) ,
generalizing the known cases n = 0, n = 1 see [7,p.23].

Functions defined by an infinite product

Consider the complex functions of two variables f j , j = 1, 2, 3, 4 dened by the innite products

f 4 (v, τ ) = k≥0 1 - sin πv sin(k + 1 2 )πτ , f 3 (v, τ ) = k≥0 1 - (-1) k sin πv cos(k + 1 2 )πτ , f 1 (v, τ ) = k≥1 1 - sin πv sin kπτ , f 2 (v, τ ) = k≥1 1 - (-1) k sin πv cos kπτ
where v ∈ C and τ belongs to the half plane ( τ : Im(τ ) > 0).

Remarks: These products may also be rewritten under dierent forms. For example

f 4 (v, τ ) = 2 k≥0 cos ( k 2 + 1 4 )πτ + π v 2 sin ( k 2 + 1 4 )πτ -π v 2 sin(k + 1 2 )πτ = k≥0 cos ( k 2 + 1 4 )πτ + π v 2 cos( k 2 + 1 4 )πτ sin ( k 2 + 1 4 )πτ -π v 2 sin( k 2 + 1 4 )πτ . f 1 (v, τ ) = k≥0 cos ( k 2 )πτ + π v 2 cos( k 2 )πτ sin ( k 2 )πτ -π v 2 sin( k 2 )πτ .
The following ensures the convergence of these products.

Proposition 2-1 Consider the following sequences of functions

(U k,4 )(v, τ ) = sin πv sin(k + 1 2 )πτ , (U k,3 )(v, τ ) = sin πv cos(k + 1 2 )πτ , (U k,1 )(v, τ ) = sin πv sin kπτ , (U k,2 )(v, τ ) = sin πv cos kπτ .
For v such that 0 <| Imv |< 1 2 Imτ, the sums k≥0 | U k,j (v, τ ) |, j = 1, 2, 3, 4 converges uniformly. Equivalently the innite products k≥0 (1 -U k,j (v, τ )) are uniformly convergent.

Proof

We demonstrate that the innite products are absolutely and uniformly convergent by application of the M-test (see, e.g., [START_REF] Copson | Theory of Functions of a Complex Variable[END_REF] E.T. Copson, Theory of Functions of a Complex Variable, pp. 104-6) which states that an innite product (1 + g k (v)) converges uniformly and absolutely in a bounded closed region if :

g k (v) are such that | g k (v) |≤ M k and k M k is convergent. Indeed, write τ = τ 1 + iτ 2 where τ 1 ∈ , τ 2 > 0. Then | sin πv sin(k + 1 2 )πτ | 2 ≤ | sinh πτ2 2 sin(k + 1 2 )π(τ 1 + iτ 2 ) | 2 = (sinh πτ2 2 ) 2 [(sin(k + 1 2 )π(τ 1 )) 2 + (sinh(k + 1 2 )π(τ 2 )) 2 ] ≤ sinh πτ2 2 sinh(k + 1 2 )πτ 2 2 = M 2 k,4 < 1
Since τ 2 > 0 it is easy to see that the serie

k M k,4 = sinh πτ 2 2 k 1 sinh(k + 1 2 )πτ 2 converges.
By the same way, applying again the M-test for the other U k,j (v, τ ) we get

| sin πv cos(k + 1 2 )πτ |≤ M k,3 | sin πv sin kπτ |≤ M k,1 , | sin πv cos kπτ |≤ M k,2
Moreover, the series k M k,j , j = 1, 2, 3 converge.

Replacing v by v + 1, v + 2 and τ by τ + 1, ... we then obtain the following Proposition 2-2 The above function f j (v, τ ) veries the following properties

for Imτ > 0, Imv < 1 2 Imτ
1 -For j = 3, 4, one has

f j (v + 2, τ ) = f j (v, τ ) = f j (v, τ + 4), f j (v + 1, τ ) = f j (-v, τ ) = f j (v, τ + 2), f j (v, τ + 3) = f j (v + 1, τ + 1).
2 -For j = 1, 2 one has

f j (v + 2, τ ) = f j (v, τ ) = f j (v, τ + 2) f j (v + 1, τ + 2) = f j (-v, τ + 1),
Moreover,

f 4 (v, τ + 1) = f 3 (v, τ ), f 1 (v, τ + 1) = f 2 (v, τ ). f 1 (v, τ + 1 2 ) = f 4 (v, τ ), f 2 (v, τ + 1 2 ) = f 3 (v, τ ), f 4 (v + τ 2 , τ ) = f 1 (v, τ ) (e iπv -1) k≥1 1 -q 2k 1 -q 2k+1 = f 1 (v, τ ) (e iπv -1) f 4 (0, τ ) f 1 (0, τ ) .
Proof These identities are direct consequence of denitions of f j (v, τ ) and from the following relations

f 4 (v, τ + 1) = k≥0 1 -(-1) k sin πv cos(k + 1 2 )πτ = f 3 (v, τ ), f 1 (v, τ + 1) = k≥1 1 -(-1) k sin πv cos kπτ = f 2 (v, τ ).
The following gives a triple product identity for f j (v, τ )

Proposition 2-3 The functions f j (v, τ ) may also be expressed

f 4 (v, τ ) = k≥0 (e -iπv + q k+ 1 2 )(e iπv -q k+ 1 2 ) 1 -q 2k+1 = k≥0 (e -iπv +q k+ 1 2 )(e iπv -q k+ 1 2 )(1+q k ) f 1 (v, τ ) = k≥1 (e -iπv + q k )(e iπv -q k ) 1 -q 2k , f 4 (v+ τ 2 , τ ) = 1 e iπv -1 k≥0 1 -q 2k 1 -q 2k+1 f 1 (v, τ ) f 4 (v, τ ) f 4 (v + 1, τ ) = k≥0 e iπv -q k+ 1 2 e iπv + q k+ 1 2 e -iπv + q k+ 1 2 e -iπv -q k+ 1 2 , f 1 (v, τ ) f 1 (v + 1, τ ) = k≥1 e iπv -q k e iπv + q k e -iπv + q k e -iπv -q k , f 4 (v + τ, τ ) f 4 (v, τ ) = e iπv -q -1 2 e -iπv -q 1 2 , f 1 (v + τ, τ ) f 1 (v, τ ) = e iπv -q -1 e -iπv -q .
Theorem 2-4 For an integer n one has

f 4 (v + nτ, τ ) = k≥0 (e -iπv + q k+n+ 1 2 )(e iπv -q k-n+ 1 2 ) 1 -q 2k+1 = k≥0 e -iπv + q k+n+ 1 2 )(e iπv -q k-n+ 1 2 )(1 + q k ). f 1 (v + nτ, τ ) = k≥1 (e -iπv + q k+n )(e iπv -q k-n ) 1 -q 2k .
In particular, the following identities hold

1 -cos πv 1 + cos πv n k≥0 e iπv -q k e iπv + q k e -iπv + q k e -iπv -q k = k≥0 e iπv -q k-n e iπv + q k-n e -iπv + q k+n e -iπv -q k+n , 1 -cos π(v + τ ) 1 + cos π(v + τ ) n k≥1 e iπv -q k e iπv + q k e -iπv + q k e -iπv -q k = k≥1 e iπv -q k-n e iπv + q k-n e -iπv + q k+n e -iπv -q k+n .
Proof Incrementing v by v + τ one has

f 4 (v + τ, τ ) f 4 (v + 1 + τ, τ ) = k≥0 e iπv -q k-1 2 e iπv + q k-1 2 e -iπv + q k+ 3 2 e -iπv -q k+ 3 2 = e iπv -q -1 2 e iπv + q -1 2 k≥0 e iπv -q k+ 1 2 e iπv + q k+ 1 2 e -iπv -q 1 2 e -iπv + q 1 2 k≥0 e -iπv -q k+ 1 2 e -iπv + q k+ 1 2 = e iπv -q -1 2 e iπv + q -1 2 e -iπv -q 1 2 e -iπv + q 1 2 f 4 (v, τ ) f 4 (v + 1, τ ) .
Then we deduce for any integer n

f 4 (v + nτ, τ ) f 4 (v + 1 + nτ, τ ) = e iπv -q -1 2 e iπv + q -1 2 n e -iπv -q 1 2 e -iπv + q 1 2 n k≥0 e iπv -q k+ 1 2 e iπv + q k+ 1 2 e -iπv + q k+ 1 2 e -iπv -q k+ 1 2 = 1 -cos π(v + τ 2 ) 1 + cos π(v + τ 2 ) n k≥0 e iπv -q k+ 1 2 e iπv + q k+ 1 2 e -iπv + q k+ 1 2 e -iπv -q k+ 1 2 = k≥0 e iπv -q k-n+ 1 2 e iπv + q k-n+ 1 2 e -iπv + q k+n+ 1 2 e -iπv -q k+n+ 1 2 .
Equivalently, replacing v by v -τ 2 it yields

1 -cos πv 1 + cos πv n k≥0
e iπv -q k e iπv + q k e -iπv + q k e -iπv -q k = k≥0 e iπv -q k-n e iπv + q k-n e -iπv + q k+n e -iπv -q k+n .

By the same way one obtains

f 1 (v + nτ, τ ) f 1 (v + 1 + nτ, τ ) = e iπv -q -1 e iπv + q -1 n e -iπv -q e -iπv + q n k≥1 e iπv -q k e iπv + q k e -iπv + q k e -iπv -q k = 1 -cos π(v + τ ) 1 + cos π(v + τ ) n k≥1 e iπv -q k e iπv + q k e -iπv + q k e -iπv -q k = k≥1 e iπv -q k-n e iπv + q k-n e -iπv + q k+n e -iπv -q k+n .
The following yields trigonometric expansions of log (f j (v, τ )) , j = 1, 2, 3, 4

Proposition 2-5 The logarithmic expression log (f j (v, τ )) may be expressed as

log (f 4 (v, τ )) = k≥0 1 -e -iπv q k+ 1 2 1 -q 2k+1 = - p≥1 k≥0 1 p sin πv (sin(k + 1 2 )πτ ) p , log (f 3 (v, τ )) = - p≥1 k≥0 1 p sin πu (cos(k + 1 2 )πτ ) p log (f 1 (v, τ )) = - p≥1 k≥1 1 p sin πv (sin kπτ ) p , log (f 2 (v, τ )) = - p≥1 k≥1 1 p sin πv (cos kπτ ) p Proof Indeed, since we have k≥0 (1 -U k ) = k≥0 exp(log(1 -U k )) = exp   k≥0 log(1 -U k )   then f 4 (v, τ ) = exp   k≥0 log 1 - sin πv sin(k + 1 2 )πτ   log (f 4 (-v, τ )) =   - p≥1 k≥0 (-1) p p sin πv (sin(k + 1 2 )πτ ) p   .
On the other hand, since as we have seen by Proposition 1 :

sinh πτ 2 2 sinh(k+ 1 2 )πτ2 2 = M 2 k,4 < 1 then the following series is well dened log (f 4 (v, τ )) = - n≥1 k≥0 1 2n sin πv (sin(k + 1 2 )πτ ) 2n - n≥0 k≥0 1 2n + 1 sin πv (sin(k + 1 2 )πτ ) 2n+1 .
By the same way one obtains the other series expansions for log (f j (v, τ )) , j = 1, 2, 3.

In the next result we derive Fourier expansions of log (f j (v, τ )) , j = 1, 2, 3, 4 as well as for its derivative Theorem 2-6 A trigonometric expansion of the function log (f

4 (v, τ )) is log (f 4 (v, τ )) = n≥1 a n (τ ) cos(2nπv) + m≥1 b m (τ ) sin((2m + 1)πv)
where

a n (τ ) = q n n(1 -q 2n ) ; b m (τ ) = (-1) m q 2m+1 (2m + 1)(1 -q 4m+2 )
Proof Indeed, It suces to express cos(2nα) and sin((2m + 1)πv) in terms of sin α and to identify the coecients of the series

cos(2nα) = (-1) n 2 (2 sin α) 2n + n-1 k=0 (-1) n+k+1 2n k + 1 2n -k + 1 k (2 sin α) 2n-2k-2 = n 0≤p≤n (-1) p (n + p -1)! (2p)!(n -p)! (2 sin α) 2p = n p=0 b 2p,n (sin α) 2p , where b 2n,n = (-1) n 2 2n-1 ; b 0,n = 1; and b 2p,n = (-1) p 2 2p n n -p n + p -1 n -p -1 for n = p.
By the same way we rewrite

sin((2m + 1)πv) = (-1) n 2 (2 sin α) 2n-1 + n-1 k=0 (-1) n+k 2n k 2n -k k (2 sin α) 2n-2k-1 = n 0≤p≤n (-1) p (n + p)! (2p)!(n -p)! (2 sin α) 2p-1 .
After developing and identifying we nd the coecients of the Fourier expansions.

Proposition 2-7 A trigonometric expansion of the functions

d dv log (f j (v, τ )) , j = 1, 2, 3, 4 is 1 f 4 ∂f 4 ∂v (v, τ ) = k≥0 -π cos πv sin(k + 1 2 )πτ -sin πv , 1 f 3 ∂f 3 ∂v (v, τ ) = k≥0 -π cos πv cos(k + 1 2 )πτ -sin πv 1 f 1 ∂f 1 ∂u (u, τ ) = k≥0 -π cos πv sin(kπτ ) -sin πv , 1 f 2 ∂f 2 ∂v (v, τ ) = k≥0
-π cos πv cos(kπτ ) -sin πv f 3 and f 4 is dened in the "strip" | Imv |< 1 2 Imτ, while f 1 and f 2 is dened in the "strip" | Imv |< Imτ.

Link with Jacobi theta functions

Consider the Ramanujan theta function

φ(a, b) = k∈Z a k(k+1) 2 b k(k-1) 2 φ(a, b) = (-a, ab) ∞ (-b, ab) ∞ (ab, ab) ∞ with | ab |< 1.
We denote here (α, β) ∞ = i≥1 (1 -αβ i ). When a = -qe 2iπv , b = -qe -2iπv this function is related for example to the fourth theta function

θ 4 (v, q) = φ(-qe 2iπv , -qe -2iπv ).
From the knowledge of the zeros of θ 4 (v, q) it is possible to obtain innite products representing this function.

3.1. Link with θ 4 (v, τ ). There is a natural relation with θ 4 (v, τ )

Theorem 3-1 Let θ 4 (v, τ ) the fourth Jacobi theta function. Then we have

θ 4 (v, τ ) θ 4 (0, τ ) = f 4 (v, τ ) f 4 (-v, τ ) = f 4 (v, τ ) f 4 (v + 1, τ )
where f 4 and its logarithmic derivative satisfy the innite product

f 4 (v, τ ) = k≥0 1 - sin πv sin(k + 1 2 )πτ 1 θ 4 ∂θ 4 ∂v (v, τ ) = 1 f 4 ∂f 4 ∂v (v, τ ) + 1 f 4 ∂f 4 ∂v (-v, τ ). θ 4 is dened in the "strip" | Imv |< 1 2 Imτ.
Proof of Theorem 3-1 Write

log (f 4 (v, τ )) = 1 2 log θ 4 (v, τ ) θ 4 (0, τ ) - n≥1 k≥0 1 2n + 1 sin πv (sin(k + 1 2 )πτ ) 2n+1 .
Recall that ([5 p.358])

1 θ 4 ∂θ 4 ∂v (v, τ ) = 4π n≥1 q n 1 -q 2n sin 2nπv = -2π n≥1 sin 2nπv sin nπτ = -π k≥0 sin 2πv sin(k + 1 2 )πτ 2 -(sin πv) 2
On the other hand since θ4(v,τ ) θ4(0,τ

) = f 4 (v, τ ) f 4 (-v, τ ) then 1 θ 4 ∂θ 4 ∂v (v, τ ) = -π k≥0 cos πv sin(k + 1 2 πτ ) -sin πv + π k≥0 cos πv sin(k + 1 2 πτ ) + sin πv = 1 f 4 ∂f 4 ∂v (v, τ ) + 1 f 4 ∂f 4 ∂v (-v, τ ).
To state the convergence of 1 such that the series n g n converges on any compact set of Ω. Notice G the product of (1 + g n ) on Ω. Then the series of meromorphic functions n g n 1+gn is normally convergent to G G .

Link with other theta functions. Recall the others functions

f i (v, τ ), i = 1, 2, 3. f 3 (v, τ ) = k≥0 1 - (-1) k sin πv cos(k + 1 2 )πτ , f 1 (v, τ ) = k≥1 1 - sin πv sin kπτ , f 2 (v, τ ) = k≥1 1 - (-1) k sin πv cos kπτ .
Notice also the following relations between them

f 3 (v, τ ) = f 4 (v, τ + 1) = k≥0 1 - (-1) k sin πv cos(k + 1 2 )πτ f 2 (v, τ ) = f 1 (v, τ + 1) = k≥1 1 - (-1) k sin πv cos kπτ .
Theorem 3-4 The other theta functions may be expressed

θ 3 (v, τ ) = θ 3 (0, τ ) f 3 (v, τ ) f 3 (v + 1, τ ), θ 1 (v, τ ) = (π sin(πv) θ 1 (0, τ ) f 1 (v, τ ) f 1 (v + 1, τ ), θ 2 (v, τ ) = cos(πv) θ 2 (0, τ ) f 2 (v, τ ) f 2 (v + 1, τ ).
Moreover,

1 θ j ∂θ j ∂v (v, τ ) = 1 f j ∂f j ∂v (v, τ ) + 1 f j ∂f j ∂v (-v, τ ), j = 1, 2, 3.
Here θ 3 is dened in the "strip" | Imv |< 1 2 Imτ, while θ 1 and θ 2 is dened in the "strip" | Imv |< Imτ.

We then deduce expression of Jacobi theta functions as innite products Corollary 3-5 Let q = e iπτ , | q |< 1. The functions θ j , j = 1, 2, 3, 4 may also be expressed as innite products

θ 4 (v, τ ) θ 4 (0, τ ) = k≥0 1 - sin πv sin(k + 1 2 )πτ 2 = k≥0 cos 2πv -cos(2k + 1)πτ 1 -cos(2k + 1)πτ (1) 
θ 3 (v, τ ) θ 3 (0, τ ) = k≥0 1 - sin πv cos(k + 1 2 )πτ 2 = k≥0 cos 2πv + cos(2k + 1)πτ 1 + cos(2k + 1)πτ (2) θ 1 (v, τ ) (π sin πv) θ 1 (0, τ ) = k≥1 1 - sin πv sin kπτ 2 = k≥1 cos 2πv -cos 2kπτ 1 -cos 2kπτ
(3) Proof Indeed, we will only prove for θ 4 (v, τ ) the others will be deduced by the same way. Starting from [START_REF] Lawden | Elliptic functions and applications[END_REF] and notice that

θ 2 (v, τ ) (cos πv) θ 2 (0, τ ) = k≥1 1 - sin πv cos kπτ 2 = k≥1 cos 2πv + cos 2kπτ 1 + cos 2kπτ (4) 
log θ 4 (v, τ ) θ 4 (0, τ ) =   - p≥1 k≥0 1 p sin πv (sin(k + 1 2 )πτ ) 2p   = -2 k≥0 p≥1 1 2p (X k ) 2p
where

X k = sin πv (sin(k + 1 2 )πτ )
On the other hand we may calculate

-2 p≥1 1 2p (X k ) 2p = log(1 -(X k ) 2 ).
it follows that

log θ 4 (v, τ ) θ 4 (0, τ ) = k≥0 log(1 -(X k ) 2 ) = k≥0 log 1 - sin πv (sin(k + 1 2 )πτ ) 2
Therefore we obtain the innite product of θ 4

θ 4 (v, τ ) = θ 4 (0, τ ) k≥0 1 - sin πv sin(k + 1 2 )πτ 2 .
Similarly, the other expressions of theta functions θ j (v, τ ), j = 1, 2, 3 are obtained by the same manner (details omitted).

Remarks 3-5 Observe that we may derive

θ 4 ( 1 2 , τ ) θ 4 (0, τ ) = θ 3 (0, τ ) θ 4 (0, τ ) = k≥0 1 - 1 sin(k + 1 2 )πτ 2 , θ 3 ( 1 2 , τ ) θ 3 (0, τ ) = θ 4 (0, τ ) θ 3 (0, τ ) = k≥0 1 - 1 cos(k + 1 2 )πτ 2 .
Thus,

k≥0 1 - 1 sin(k + 1 2 )πτ 2 1 - 1 cos(k + 1 2 )πτ 2 = 1.
By the same way we have also

k≥1 1 - 1 sin kπτ 2 1 - 1 cos(kπτ 2 = 1.
Corollary 3-8 Let q = e iπτ , | q |< 1. The functions θ j , j = 1, 2, 3, 4 may also be expressed as From Corollary 3-5 we also deduce the following Corollary 3-9 Let q = e iπτ , | q |< 1. The logarithmic derivative of functions θ j , j = 1, 2, 3, 4 with respect to v may be expressed Proof Indeed, by logarithmic dierentiation (11) and ( 13) with respect to v we obtain 1 θ4 ∂θ4 ∂v and 1 θ1 ∂θ1 ∂v . The others are deduced in incrementing v by 1 2

θ 4 (v, τ ) θ 4 (0, τ ) = k≥0 1 - sin πv sin(k + 1 2 )πτ 2 = k≥0 sin[(k + 1 2 )πτ + πv] sin[(k + 1 2 )πτ -πv] (sin[(k + 1 2 )πτ ]) 2 (5) 
θ 3 (v, τ ) θ 3 (0, τ ) = k≥0 1 - sin πv cos(k + 1 2 )πτ 2 = k≥0 cos[(k + 1 2 )πτ + πv] cos[(k + 1 2 )πτ -πv] (cos[(k + 1 2 )πτ ]) 2 (6) 
θ 1 (v, τ ) (π sin πv) θ 1 (0, τ ) = k≥1 1 - sin πv sin kπτ 2 = k≥1 sin[kπτ + πv] sin[kπτ -πv] (sin[kπτ ]) 2 (7) 
θ 2 (v, τ ) (cos πv) θ 2 (0, τ ) = k≥1 1 - sin πv cos kπτ 2 = k≥1 cos[kπτ + πv] cos[kπτ -πv] (cos[kπτ ]) 2 (8) 
1 θ 4 ∂θ 4 ∂v (v, τ ) = -π k≥0 sin 2πv sin(k + 1 2 )πτ 2 -(sin πv) 2 1 θ 3 ∂θ 3 ∂v (v, τ ) = π k≥0 sin 2πv cos(k + 1 2 )πτ 2 -(sin πv) 2 1 θ 2 ∂θ 2 ∂v (v, τ ) = -(tan πv) + π k≥1 sin 2πv (cos kπτ ) 2 -(sin πv) 2 1 θ 1 ∂θ 1 ∂v (v, τ ) = (cot
1 θ 1 ∂θ 4 ∂v (v + 1 2 , τ ) = 1 θ 3 ∂θ 3 ∂v (v, τ ), 1 θ 1 ∂θ 1 ∂v (v + 1 2 , τ ) = 1 θ 2 ∂θ 2 ∂v (v, τ ).
For the convergence of 1 θj ∂θj ∂v we use again the above Lemma 3-2. Thanks to this expression in innite products of the Jacobi theta functions we are able to nd again several known theta identities. In particular, the identities derived from the Landen transformation, [7, p.18] we then deduce

θ 1 (2v, 2τ ) θ 4 (0, 2τ ) = θ 1 (v, τ ) θ 3 (0, τ ) θ 2 (v, τ ) θ 4 (0, τ ) = (π sin πv) k≥0 1 - sin 2πv sin 2kπτ 2 θ 2 (2 p v, 2 p τ ) θ 2 (0, 2 p τ ) .
Proof of Theorem Recall the expansions (Corollary 3-8)

θ 4 (v, τ ) θ 4 (0, τ ) = k≥0 sin[(k + 1 2 )πτ + πv] sin[(k + 1 2 )πτ -πv] (sin[(k + 1 2 )πτ ]) 2 θ 1 (v, τ ) π(sin πv)θ ( 0, τ ) = k≥0 sin[kπτ + πv] sin[kπτ -πv] (sin[kπτ ]) 2 .
Then we deduce θ 4 (4v, 4τ ) θ 4 (0, 4τ ) (sin 2(2k + 1)πτ ) 2 = 16 θ 4 (v, τ ) θ 4 (0, τ )

θ 3 (v, τ ) θ 3 (0, τ ) θ 3 (2v, 2τ ) θ 3 (0, 2τ ) ×(sin(k + 1 2 )πτ ) 2 (cos(k + 1 2 )πτ ) 2 (sin(2k + 1)πτ ) 2 ,
The last part of Theorem 3-11 may be proved by induction on n.

3.3. Link with elliptic functions. Consider now the zeta function of Jacobi.

It is dened by

Z(z, k) = 1 2K d dz log θ 4 (v, τ ), where v = z 2K and K = 2 π 2 0 dx √ 1-k 2 sin 2 x
is the complete elliptic integral of the rst kind and the modulus is such that 0 < k < 1. We have The zeta function of Jacobi has the following form

Z(z, k) = Z 1 (z, k) -Z 2 (z, k) = π 2K k≥0 sin(π2v) sin 2 (πv) -sin 2 (k + 1 2 πτ ) Z 1 (z, k) = 1 f 4 (v, τ ) ∂f 4 (-v, τ ) ∂u (u, τ ), Z 2 (z, k) = 1 f 4 ∂f 4 ∂u (-u, τ ) where v = z 2K satises | sin πv |<| (sin( 1 2 )πτ ) | .
In particular, the logarithmic derivatives of theta functions can be written under the forms

θ 4 (v, τ ) θ 4 (v, τ ) = 4π sin(π2v) k≥0 q 2k+1 1 -2q 2k+1 cos 2πv + q 4k+2 θ 3 (v, τ ) θ 3 (v, τ ) = -4π sin(π2v) k≥0 q 2k+1 1 + 2q 2k+1 cos 2πv + q 4k+2 θ 2 (v, τ ) θ 2 (v, τ ) = -tan(πv) -4π sin(π2v) k≥0 q 2k+2 1 + 2q 2k+2 cos 2πv + q 4k+4 θ 1 (v, τ ) θ 1 (v, τ ) = cot(πv) + 4π sin(π2v) k≥0 q 2k+2 1 -2q 2k+2 cos 2πv + q 4k+4 .
Moreover, the equations for θ 1 and θ 2 are valid in the strip | Imv |< Imτ, those for θ 3 and θ 4 are valid in the strip

| Imv |< 1 2 Imτ. Indeed, Z(z, k) = 1 2K d dz log θ 4 (v, τ ) = π 2K sin(π2v) k≥0 p≥1 sin πv (sin(k + 1 2 )πτ ) 2p .
Suppose the variable v satises | sin πv (sin( 12 )πτ )

|< 1.

We then obtain

sin πv (sin(k + 1 2 )πτ ) 2 p≥0 sin πv (sin(k + 1 2 )πτ ) 2p = sin πv (sin(k+ 1 2 )πτ ) 2 1 - sin πv (sin(k+ 1 2 )πτ ) 2 = (sin πv) 2 (sin(k + 1 2 )πτ ) 2 -(sin πv) 2 .
Therefore, the result follows. The domain of convergence for these series may be extended to the strip | Imv |< 1 2 Imτ (see for example [7 p.489]). Notice that the zeta function of Jacobi also has a Fourier expansion

Z(z, k) = 2π K n≥1 q n 1 -q 2n sin nπz K .
3.4. Link with classical innite products. From Corollaries 3-4 and 3-5 we nd again by another way the classical innite products for θ j (v, τ )

We then deduce the following classical expressions of theta functions as innite products (see [9, p. (1 -q 2k+1 ) 2 θ 3 (v, τ ) θ 3 (0, τ ) = k≥0 1 + 2q 2k+1 cos 2πv + q 4k+2 (1 + q 2k+1 ) 2 θ 1 (v, τ ) θ 1 (0, τ ) = sin πv π k≥1 1 -2q 2k cos 2πv + q 4k (1 -q 2k ) 2 θ 2 (v, τ ) θ 2 (0, τ ) = cos πv k≥1 1 + 2q 2k cos 2πv + q 4k (1 + q 2k ) 2

Proof Starting with the classical expansions of the theta functions as innite product [START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF]:

θ 4 (v, τ ) = k≥0 (1 -q 2k ) 1 -2q 2k+1 cos 2πv + q 4k+2 θ 3 (v, τ ) = k≥0
(1 -q 2k ) 1 + 2q 2k+1 cos 2πv + q 4k+2 θ 1 (v, τ ) = 2q 1/4 sin πv k≥1 (1 -q 2k ) 1 -2q 2k cos 2πv + q 4k θ 2 (v, τ ) = 2q 1/4 cos πv k≥1 (1 -q 2k ) 1 + 2q 2k cos 2πv + q 4k . In particular θ 4 (0, τ ) = k≥0 (1 -q 2k )(1 -q 2k+1 ) 2 , θ 3 (0, τ ) = k≥0 (1 -q 2k )(1 + q 2k+1 ) 2 θ 2 (0, τ ) = 2q 1/4 k≥1 (1 -q 2k )(1 + q 2k ) 2 , θ 1 (0, τ ) = 2πq 1/4 k≥1 (1 -q 2k ) 3 .

Thus, since q = e iπτ Corollary 4 yields (1 + q 2k+1 ) 2 θ 1 (v, τ ) θ 1 (0, τ ) = (π sin πv) θ 1 (0, τ ) (1 -q 2k ) 2 θ 2 (v, τ ) θ 2 (0, τ ) = (cos πv) θ 2 (0, τ ) (1 + q 2k ) 2 . θ 4 (v, τ ) θ 4 (0, τ ) = k≥0 (q k+ 1 2 ) 2 q -2k-1 -2 cos 2πv + q 2k+1 (1 -q 2k+1 ) 2 = 2 k≥0 q -2k-1 -2 cos 2πv + q 2k+1 sin(k + 

2

 2 Let (g n ) n a sequence of holomorphic functions dened on Ω ∈ C

θ 3 and θ 4

 4 is dened in the "strip" | Imv |< 1 2 Imτ, while θ 1 and θ 2 are dened in the "strip" | Imv |< Imτ.

  θ 3 and θ 4 is dened in the band | Imv |< 1 2 Imτ, while θ 1 and θ 2 are dened in the band | Imv |< Imτ.

1 -

 1 2q 2k+1 cos 2πv + q 4k+2

1 - 1 -q 2k+1 ) 2 θ 3 (v, τ ) θ 3 (

 11233 2q 2k+1 cos 2πv + q 4k+2 (2k+1 cos 2πv + q 4k+2

1 -

 1 2q 2k cos 2πv + q 4k

  2k cos 2πv + q 4k

  πv) -π 3 and θ 4 is dened in the "strip" | Imv |< 1 2 Imτ, while θ 1 and θ 2 is dened in the "strip" | Imv |< Imτ.

		sin 2πv
	k≥1	(sin kπτ ) 2 -(sin πv) 2

θ

  [START_REF]Chouikha Expansions of Theta Functions and Applications ArXiv[END_REF][START_REF] Copson | Theory of Functions of a Complex Variable[END_REF][START_REF] Erdelyi | Higher transcendental functions Vol. I-II[END_REF][START_REF] Lang | Elliptic functions Addison-Wesley[END_REF][START_REF] Lawden | Elliptic functions and applications[END_REF][START_REF] Magnus | Formulas and Theorems for the Special Functions of Mathematical Physics Bd[END_REF][START_REF] Whittaker | A course of Modern Analysis Cambridge[END_REF][10][11] Consider the following trigonometric equalities

	sin(2t + 2x) sin(2t -2) = 4 sin(t + x) cos(t + x) sin(t -x) cos(t -x),
	sin(4t + 4x) sin(4t -4x) = 4 sin(2t + 2x) cos(2t + 2x) sin(2t -2x) cos(2t -2x)
	= 16 sin(t + x) sin(t -x) cos(t + x) cos(t -x) cos(2t + 2x) cos(2t -2x).

  Repetition of this calculation (details omitted) for θ 3 (v, τ ), θ 2 (v, τ ), θ 1 (v, τ ) yields the other expressions.

		1 2 )πτ	2	= 4	k≥0	-cos (2k + 1)πτ + cos 2πv sin (k + 1 2 )πτ 2
	=	k≥0	(sin (k + 1 2 )πτ ) 2 -(sin πv) 2 sin (k + 1 2 )πτ

2

On the other hands, since θ 4 (v + 1 2 , τ ) = θ 3 (v, τ ), and

we may derive Let q = e iπτ and v ≤ Im τ 2 the innite products satisfy the following relations

In particular for v = 0 we have

With respect the quasi periodicity we have

which permits to derive Corollary 3-7 Let q = e iπτ and v ≤ Im τ 2 we have the relations

Another expression of theta functions as innite products Corollary 3-10 Let q = e iπτ , | q |< 1. Then the followings identities hold

However, By the same way we may prove Since θ 4 (0, 2τ ) = θ 3 (0, τ )θ 4 (0, τ ) = θ 1 (0, τ )θ 2 (0, τ ) 2θ 1 (0, 2τ )