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Short-Sighted Robust LPV Model Predictive Control: Application to
Semi-Active Suspension Systems

Marcelo M. Morato1,2, Julio E. Normey-Rico1 and Olivier Sename2

Abstract— This paper develops a novel Linear Parameter
Varying (LPV) Model Predictive Control (MPC) algorithm
for Semi-Active Suspension systems. The current state-of-the-
art comprises two possible implementations: a) to consider
the future variations of the LPV scheduling variables as
uncertainties, thereby solving a robust optimization, which is
usually time-consuming; or b) to estimate the future scheduling
variables and solve a sub-optimal quadratic program, which can
be evaluated rapidly. This paper proposes a control paradigm in
between these paths, considering a robust min-max procedure
with small predictions horizons, being implementable within
the short 5ms sampling period of the suspension system. The
method includes terminal ingredients, derived via LMIs, that
ensure input-to-state stability and recursive feasibility. Realistic
simulations show the effectiveness of the proposed method,
when compared against a nonlinear MPC and a sub-optimal
LPV MPC. The results show that the method is indeed able to
run in real-time (in the order of milliseconds), almost as fast
as the sub-optimal MPC, while still guaranteeing good safety
and comfort performances for the vehicle.

I. INTRODUCTION

Automotive suspension systems provide better safety and
passenger comfort. Semi-Active (SA) suspensions are stan-
dard in many high-range cars and topic of a good deal of
academic and industrial research [1]. The major investigation
problem is how to provide real-time laws for the controllable
damper, which operates within some milliseconds, ensuring
performance requirements, such as more comfortable rides
altogether with easier maneuvering, while accounting for
the SA (input) dissipativity constraints. Recently, some pa-
pers have demonstrated the application of Model Predictive
Control (MPC) to this problem [2]–[4], which is a topic
increasingly sought by the automotive industry, in particular
when considering more complex, nonlinear models for the
vehicle dynamics. MPC is indeed a good option to address
the issue of SA suspension control, since it is able to
elegantly deal with the SA input and state constraints [5].

In this paper, we are concerned with quasi-/Linear Pa-
rameter Varying (qLPV/LPV) model structures, which are
able to embed1/represent the complex, nonlinear vertical
dynamics of a SA suspension system [7]. A recent survey
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1Many nonlinear processes can indeed be represented within qLPV model
structures, as long as the Linear Differential Inclusion (LDI) property is
respected [6]; in this case, the nonlinearities are appropriately “hidden” to
the LPV scheduling parameters.

details the possibilities of issuing LPV MPC by exploiting
the linearity properties of the input/output channels [8]; the
main difficulty is how to cope with the future scheduling
parameters, which are unknown. Regarding this topic, the
state-of-the-art comprises, basically, two main threads [8]:
robust “min-max” algorithms and sub-optimal approaches.

On one hand, robust LPV MPC methods [9] ensure that
the performances hold for the worst-case scenario given
w.r.t. the LPV parameters ρ. The major drawback is that the
max. step is computationally costly, which forbids real-time
applications. On the other hand, literature displays a variety
of sub-optimal methods that replace the Nonlinear Problem
(NP) by a Quadratic Problem (QP) based on fixed/adaptative
prediction guesses for ρ [10], [11]. Their major drawback is
that, by being sub-optimal, local minima can be found, which
might not ensure sufficient performances.

The designer faces a complexity vs. optimality trade-off
in order to synthesize MPC for systems with LPV models
[8]: One can either opt for ensuring robust stabilization of
the process with performances guarantees, with numerically
tougher and more time-consuming implementation, or use
sub-optimal QPs, which are able to operate in real-time
but may result in poor performances. Recent SA suspension
literature shows only sub-optimal LPV MPC approaches [3],
[4], since robust procedures are seemingly unable to operate
within their short sampling periods. Methods in between
these two lanes are missing, which is a literature gap.

A. Problem Statement

Motivated by this lacuna, the goal of this paper is to
propose an alternative, robust MPC design method for SA
suspensions systems with LPV models. The method is here-
after named as “short-sighted”. Its innovation is not the LPV
MPC problem itself, but rather the heuristically-tuned short-
sighted paradigm, which is a novel approach to the theme.

The main contribution of this short-sighted paradigm con-
sists in solving the LPV MPC problem with short prediction
horizons, of only some discrete-time steps ahead, which
enables the operation of the proposed method for the real-
time SA suspensions application. The MPC is formulated
as a robust min-max procedure, comprising the use of
parameter-dependent terminal ingredients. An input-to-state
stability proof is accordingly provided.

The considered problem is how to design a robust LPV
MPC algorithm for SA suspension systems which is able
to balance the (road holding, passenger comfort) perfor-
mances vs. complexity trade-off, respecting the sampling
period threshold limitation. Furthermore, despite using small



horizons, the regulation performance should be maintained,
which means that input-to-state stability and recursive feasi-
bility properties are required.

The paper is organized as follows: Sec. II details the short-
sighted LPV MPC problem setup, discussing the prediction
problem with respect to the scheduling variable. The pro-
posed short-sighted heuristic to tune the prediction horizon
is proposed therein. Sec. III details the offline computation
of the optimization terminal ingredients, which comprises
an LMI-solvable remedy that ensures recursive feasibility
and input-to-state stability of the closed-loop system. Sec.
IV presents the application of the method to the nonlinear
SA suspension problem and comparisons to other methods.
General conclusions are drawn in Sec. V.

II. SHORT-SIGHTED LPV MPC ALGORITHM SETUP

A. The LPV Process Model

In this paper, we consider2 the following LPV model:

x(k + 1) = A(ρ(k))x(k) +B(ρ(k))u(k) (1)
+ B2(ρ(k))w(k) ,

ρ(k) = ρ(k − 1) + ∂ρ(k) ∈ P , (2)

where x : N → Rnx stands for the system states, u :
N → Rnu represents the control inputs and w : N →
Rnw are unmeasured load disturbances. Note that ρ(k) :
N → Rnp denotes a bounded scheduling variable, which is
known, online, at each instant k, but generally unknown for
any future instant k + j , ∀j ∈ N+.

This process must be regulated in such way that the state
trajectories are steered to the origin, in an admissible manner,
despite disturbances. The admissible realization follows:

Assumption 1: The admissible operation for the states is
given by a 2-norm upper bound on each entry xj , this is:

X :=
{
x ∈ Rnx | ||xj ||2 ≤ xj , ∀ j ∈ N[1,nx]

}
. (3)

Assumption 2: The admissible control inputs are those
within the following set:

U :=
{
u ∈ Rnu | ||uj ||2 ≤ uj , ∀ j ∈ N[1,nu]

}
. (4)

Assumption 3: The scheduling variable evolves with
bounded rates of variation, i.e. ∂ρ ∈ ∂P . We note that this
is a very reasonable hypothesis for any real application3.

Assumption 4: The states are measurable for all sampling
instants and the process is controllable. This means that
the control policy can be formulated under state-feedback:
u(k) = K(k)x(k).

B. Predictive Control Framework

In order to ensure this regulation goal, we consider a
predictive control algorithm. We proceed by detailing how
MPC can be applied within a short-sighted paradigm. The
essential idea behind MPC is to use a finite-horizon cost,
which embeds the performance objectives of the system

2Notation ν(k+i|k) denotes the prediction of ν at instant k+i, computed
based on the information available at instant k. N[a,b] denotes the set of
natural numbers from a to b.

3Assuming that ρ varies arbitrary implies in conservative synthesis.

within a prediction horizon. The implementation resides in
minimizing this cost w.r.t. a control signal sequence Uk,
using the model of the system to make predictions for the
future variables, along the horizon. The optimization also
includes the operational constraints of the process variables
(admissibility region, given by Assumptions 1 and 2). Gener-
ically, we consider the following performance cost:

J(x, u, k) =

`(·)︷ ︸︸ ︷
Np∑
i=1

‖x(k + i|k)‖2Q + ‖u(k + i− 1|k)‖2R

+ V (x(k +Np|k)) , (5)

where Q and R are positive weighting matrices and
Np ≥ 2 is the prediction horizon. The terminal cost
V (x(k +Np|k)) > 0 is used to ensure input-to-state
stability and recursive feasibility.

MPC considers a moving-window strategy. Therefore, at
each sampling instant k, since x(k) and ρ(k) are known,
an optimization problem is solved, whose solution is Uk =
[u(k|k) . . . u(k +Np − 1|k)] ∈ Rnu×Np . The first input
of this vector u(k|k) = I1Uk is applied to the process. The
horizon slides forward and the procedure is updated.

Since ∂ρ(k + j) is an unknown variable along the future
horizon (i.e. for all j ∈ N+), this variable is considered
as an uncertainty, from the control viewpoint. The corre-
sponding robust control optimization resides in minimiz-
ing the worst-case/maximal performance cost J(x, u, k) =
max∂ρ(k+j)∈ ∂P J(x, u, k). The resulting min-max opti-
mization comprises the operation of a maximization NP
followed by a minimization QP:

U?k = argmin
Uk

(
max

∂ρ(k+j)∈ ∂P
`(x, u, k) + V (·)

)
(6)

s.t.

LPV Process Model︷ ︸︸ ︷
x(k + i+ 1|k) = A(ρ(k + i))x(k + i|k)
+B(ρ(k + i))u(k + i|k) , ∀i ∈ N[1,Np] ,

Control Input Admissibility︷ ︸︸ ︷
u(k + i− 1|k) ∈ U , ∀i ∈ N[1,Np] ,
Admissible Process Operation︷ ︸︸ ︷
x(k + i|k) ∈ X , ∀i ∈ N[1,Np] ,
Terminal Set Constraint︷ ︸︸ ︷

x(k +Np|k) ∈ Xf ,

where Xf and V (·) are the terminal ingredients. This
constrained optimization ensures that the regulation goal is
achieved with an admissible operation, respecting Assump-
tions 1 and 2.

C. Short-Sighted Heuristic

A complexity barrier is included to this min-max proce-
dure, in such way that it can be applied in real-time; the
prediction horizon Np is chosen according to the proposed
short-sighted heuristic:

Np =

{
argmin

Np

{J in Eq. (6)} | tc < Ts

}
, (7)



being Np the maximal horizon size, tc the average compu-
tational time needed by the embedded solver to analytically
evaluate Eq. (6) and Ts the sampling period of the discrete-
time process in Eq. (1). The horizon size Np will depend
on the processor, on the used solver and on the system size.
We note that, for the majority of time-critical processes (for
which Ts is given in the millisecond range), Np is simply a
few steps.

Despite using a small horizon size, terminal ingredients are
used to ensure input-to-state stability and recursive feasibility
of the MPC algorithm. The drawback of such short-sighted
paradigm is that the performances may be deteriorated w.r.t.
those obtained with a larger Np or with an NMPC approach.
We recall that the execution of an NMPC is computationally
unattractive because of its general nonlinear dependence of
the predicted states on the future control inputs and states
[12], i.e. “full-blown” NP.

Remark 1: With regard to this short-sighted paradigm, we
must comment that the pitfall of performance degradation is
not verified in the considered SA suspension application, as
shown in Sec. IV. From an application perspective, therefore,
the paradigm provides elegancy and implementation simplic-
ity.

III. INPUT-TO-STATE STABILITY PROOF

In this Section, we offer a Theorem to construct the LPV
MPC terminal ingredients and demonstrate the input-to-state
stability and recursive feasibility properties of the proposed
algorithm. The following procedures are independent of the
short-sighted heuristic as long as Np > 2. The usual
approach with terminal ingredients [13] resides in ensuring
that closed-loop energy-dissipating conditions are met by
(a) the terminal set Xf and by (b) the terminal cost V (·),
computed w.r.t. a nominal4 state-feedback controller u(k) =
K(·)x(k).

In this paper, we consider that there exists a parameter-
dependent state-feedback gain K : Rnp → Rnx×nu . We
consider an ellipsoidal terminal set:

Xf (ρ) =
{
x |xTP (ρ)x ≤ αP

}
, (8)

which is centered at the origin and has a radius of αP .
Furthermore, this terminal set is a sub-level set of terminal
cost V (·), taken as a Lyapunov function:

V (x, ρ) = xTP (ρ)x . (9)

Theorem 1: Input-to-State Stable MPC, from [13]
Let Assumption 4 hold. Assume that a nominal control law
u = K(ρ)x exists. Consider that the MPC is given by Eq.
(6), with a terminal state set given by Xf (ρ) and a terminal
cost V (x, ρ). Then, input-to-state stability is ensured if the
following conditions hold ∀ρ ∈ P:

4This nominal control policy is purely fictional, used simply to
demonstrate stability and recursive feasibility properties. We note,
anyhow, that it stands for the infinite-horizon parameter-dependent
Linear Quadratic Regulator (LQR) solution, which verifies K(ρ) =

argminK ∈Rnx ×nu

(∑+∞
i=1 ‖x(k + i|k)‖2Q + ‖Kx(k + i− 1)‖2R

)
and the admissibility on x and u.

(C1) The origin lies in the interior of Xf (ρ);
(C2) Any consecutive state to x, in closed-loop given by
(A(ρ) +B(ρ)K(ρ))x lies within Xf (ρ);
(C3) The discrete algebraic Ricatti equation is verified within
this invariant set, this is, ∀x ∈ Xf (ρ) and ∀ ρ ∈ P and
∀ ∂ρ ∈ ∂P: V ((A(ρ+B(ρ)K(ρ))x, ρ+ ∂ρ)− V (x, ρ) ≤
−xTQx− xT (K(ρ)TRK(ρ)x.
(C4) The image of the nominal feedback lies within the
admissible control domain: K(ρ)x ∈ U , ∀ρ ∈ P .
(C5) The terminal set Xf (ρ) is a subset of X .

Assuming that the initial solution of the MPC problem U?k ,
computed with respect to an initial state x(0), is feasible,
then, the MPC algorithm is recursively feasible, asymptoti-
cally stabilizing the state origin.

Proof: This is a standard Theorem, whose proof is
found by ensuring a energy-dissipative decay of the MPC
cost function, see e.g. [13].

Theorem 2: Terminal Ingredients, adapted from [12]
The conditions (C1)-(C5) of Theorem 1 are satisfied if
there exist a symmetric parameter-dependent positive definite
matrix P (ρ) : Rnp → Rnx×nx , a parameter-dependent
rectangular matrix W (ρ) : Rnp → Rnu×nx and a scalar
0 < α̂P ∈ R such that Y (ρ) = (P (ρ))−1 > 0,
W (ρ) = K(ρ)Y (ρ) and that LMIs (10)-(11) hold for all
ρ ∈ P and ∂ρ ∈ ∂P , while minimizing α̂P , where Ij
denotes the j-th row of the corresponding identity matrix I.

Proof: We proceed by demonstrating that the resulting
P (ρ) satisfies all five conditions of Theorem 1. (C1) trivially
holds due to the ellipsoidal form of Xf . (C2) is verified due
to the fact that Xf is a sub-level set of the terminal cost V (·).
Therefore, if condition (C3) is verified, (C2) is consequently
ensured.

The discrete Ricatti condition (C3) is verified through the
solution of LMI (10). Since Q−1 > 0, R−1 > 0 and Y (ρ+
∂ρ) > 0, we can take W (ρ) = K(ρ)Y (ρ) and apply two
consecutive Schur, complements. This procedures leads to:

(
Y (ρ) (A(ρ) +B(ρ)K(ρ))

T
)
(Y (ρ+ ∂ρ))

−1

(A(ρ) +B(ρ)K(ρ))Y (ρ)− Y (ρ) ≤
−Y (ρ)QY (ρ)− Y (ρ)(K(ρ))TRK(ρ)Y (ρ) .

This condition can be pre and post-multiplied by xTP (ρ)
and P (ρ)x, respectively, which leads to:

xT (A(ρ) +B(ρ)K(ρ))
T
P (ρ+ ∂ρ) (A(ρ) +B(ρ)K(ρ))x

−xTP (ρ)x ≤ −xTQx− xT (K(ρ))TRK(ρ)x .

This inequality is a sufficient condition for (C3) with V (·)
in the form of Eq. (9).

The fourth and fifth conditions (C4-C5) are verified by
the direct application of the Schur complement to Eq. (11a)
and Eq. (11b), respectively, using W (ρ) = K(ρ)Y (ρ). They
lead, respectively, to:

(IiK(ρ)) (αPY (ρ)) (IiK(ρ))
T ≤ u2i .

ITj (αPY (ρ)) Ij ≤ x2i .



Since the maximum normed Fx of an x that belongs to
some ellipsoid xTPx ≤ α is given by

√
FT (αP−1)F ,

it holds that the first inequality implies that the projection
IiK(ρ)x (i.e. i-th control signal) is upper-bounded, in norm,
by ui, which satisfies (C4). Analogously, the second in-
equality ensures that the projection Ijx (i.e. j-th state) is
norm-bounded by xj , which satisfies condition (C5). This
concludes the proof.

We note that the above proof demonstrates that the solution
of the LMIs presented in Theorem 2 ensure a positive definite
parameter dependent matrix P (ρ) which can be used to
compute the MPC terminal ingredients V (·) and Xf such
that input-to-state stability of the closed-loop in guaranteed,
verifying the conditions of Theorem 1. Furthermore, when

the MPC is designed with these terminal ingredients, for
whichever initial condition x(0) ∈ Xf it starts with, it
remains recursively feasible for all consecutive discrete time
instants k > 0.

Theorem 2 provides infinite-dimensional LMIs, that must
hold ∀ ρ ∈ P and ∀ ∂ρ ∈ ∂P , which appear due to
the time-variant condition (C3). In practice, this issue is
addressed by enforcing the LMIs over a sufficiently dense
grid of points (ρ, ∂ρ) along the P × ∂P plane. This converts
the problem into an ng-dimensional LMI problem, being ng
the number of gridding points. The continuity of matrices
A(ρ) and B(ρ) should be verified along the grid. The
parameter-dependency of P may be dropped if the system
is quadratically stabilizable, but this may result in quite
conservative performances.


Y (ρ) ? ? ?

(A(ρ)Y (ρ) +B(ρ)W (ρ)) Y (ρ+ ∂ρ) ? ?
Y (ρ) 0 Q−1 ?
W (ρ) 0 0 R−1

 ≥ 0 , (10)

(a)
[
α̂Pu

2
i IiW (ρ)

? Y (ρ)

]
≥ 0, i ∈ N[1,nu] , (b)

[
α̂Px

2
j IjY (ρ)

ITj Inx

]
≥ 0, j ∈ N[1,nx] . (11)

IV. SEMI-ACTIVE SUSPENSION APPLICATION

In order to validate the proposed short-sighted control
method, we consider the vertical dynamics of a 1/5-scaled
vehicle equipped with 4 SA dampers5 and nonlinear springs.
These dynamics are found through Newton’s second law of
motion:

msz̈s(t) = −Fs(t)− Fd(t) ,
musz̈us(t) = Fs(t) + Fd(t)−kt (zus(t)− w(t))︸ ︷︷ ︸

Tire force

,

which comprise the displacements of chassis zs(t) and of
the wheel zus(t), due to the road disturbances w(t). The
control input to the system is a voltage source which provides
an electrical field that controls the viscosity of the electro-
rheological damping fluid. In practice, u is simply the duty
cycle of a PWM signal that controls the damping force. The
nonlinear spring force is given according [14], i.e.:

Fs(t) = ks1 (zs(t)− zus(t)) + ks2 (zs(t)− zus(t))
3 ,

while the dynamic SA damping force [15] is given by:

Fd(t) = k0 (zs(t)− zus(t)) + c0 (żs(t)− żus(t)) + FER(t) ,
τḞER(t) + FER(t) =

fc tanh (k1 (zs(t)− zus(t)) + c1 (żs(t)− żus(t)))u(t) .

Taking the system states as x(k) =[
zs(k) żs(k) zus(k) żus(k) FER(k)

]T
, a

5Refer to http://www.gipsa-lab.fr/projet/inove/. All results are shown
considering the front-left corner of the vehicle; similar results were obtained
for the other corners.

corresponding qLPV model6 on the form of Eq.
(1) is found, with two scheduling parameters
ρ = {ρ1 , ρ2}, being ρ1 = (zs(t) − zus(t))

2 and
ρ2 = tanh (kd1 (zs(t)− zus(t)) + c2 (żs(t)− żus(t))), and
using an Euler discretization method with a sampling period
of Ts = 5ms (operational constraint of this vehicle system).
The model parameters are: ms = 2.27 kg, mus = 0.32 kg,
kt = 12270N/m, ks1 = 1396N/m, ks2 = 0.5 108 N/m3,
k0 = 170.4N/m, c0 = 68.83N/ms, k1 = 218.16N/m,
c1 = 21N/ms, fc = 28.07N, τ = 43ms.

The regulation goal for this vehicle system is to minimize
both chassis and wheel accelerations (z̈s and z̈us), seeking
a smoother and more comfortable drive for the passen-
gers together with safety concerns (better road holding)
[3]. This goal is expressed through the performance cost
JC =

∑+∞
j=0

(
asz̈

2
s(k + j|k) + ausz̈

2
us(k + j|k)

)
, being a1

and a2 unitary trade-off weights. In order to further enhance
comfort, they are taken, taken, respectively, as 0.95 and 0.05.
From an MPC perspective, this cost is translated as a finite-
horizon quadratic function in the form of `(·) in Eq. (5),
where Q and R are those from [4]. W.r.t. the admissibility7

of this regulation, Assumptions 1 and 2 must be respected;
the constraints of this system, the scheduling set P and the
scheduling variation rate set ∂P are presented in Table I.

Concerning this application, we present realistic numeric

6Matrices can be found in [15], adjusting the spring force term in order
to include the nonlinearity ks2 (zs(t)− zus(t))3 from [14].

7The input admissibility is given as u ∈ [0 , 0.35]. Therefore, in order
to use the input trajectory feasibility set in the form of Eq. (4), u is replaced
by uc + 0.175, where uc is the control input used for synthesis, which is
constrained according to ||uc||2 ≤

√
0.175.



TABLE I
STATE AND INPUT CONSTRAINTS

Var. Description Constraint
Chasis Displacement ||x1||2 ≤

√
0.125m

Chasis Velocity ||x2||2 ≤
√
2.5m/s

Wheel Displacement ||x3||2 ≤
√
0.125m

Wheel Velocity ||x4||2 ≤
√
2.5m/s

Semi-Active Damping Force ||x5||2 ≤
√
10N

Control Input 0 ≤ u ≤ 0.35
Spring Nonlinearity ρ1 ∈ [0 , 20] 10−6 m

” Variation Rate ∂ρ1 ∈ [−2.5 , 2.5] 10−6 m
Input Nonlinearity ρ2 ∈ [−1 , 1]
” Variation Rate ∂ρ2 ∈ [−0.5 , 0.5] 10−3 m

simulation results obtained8 with the aid of softwares pack-
ages Matlab, Yalmip and fmincon (NP) and Gurobi (QP)
solvers. The system is emulated with a high-fidelity 7DOF
validated nonlinear model [3]. Two different experiments
are conducted: (A) firstly, we tune the MPC prediction
horizon according to the proposed short-sighted heuristics
and (B) we compare the performances achieved with the
proposed method against those with other approaches from
the literature. For both these scenarios, Theorem 2 is solved
under a sufficiently dense grid of (ρ, ∂ρ) points.

A. Tuning of the Prediction Horizon

In order to heuristically tune the size of the short-sighted
prediction horizon (given in number of discrete-time sam-
ples), the considered suspension system is tested with a
frequency-rich 5mm chirp road profile w (ISO 8608 type
C), which implies in a great deal of vertical trepidation,
i.e. w(t) = 0.005sin(t2.5). The MPC tries to counter-act
the influences of w upon the vertical acceleration variables,
according to JC. W.r.t. the proposed heuristic criterion in Eq.
(7), Table II shows the different Np-dependent computational
stress index values tc = tMin

c + tMax
c (i.e. respective to the

min. QP and to the max. NP), compared with the NRMS9

index of the performance cost. As it can be seen, the perfor-
mances increase (smaller RMS) with larger horizons, but so
does the average computational time necessary to implement
the strategy. We note that this is a Pareto optimality issue,
since better performances are provided with longer horizons,
whereas the optimization becomes more demanding as they
increase. Fig. 1 illustrates two Pareto planes, showing how
the NRMS index of z̈s (comfort) and z̈us (safety) grow
smaller as Np increases, while the computational stress
tc increases. Therefore, w.r.t. the previous discussions, we
proceed with a short-sighted horizon of Np = 6 steps for
this SA suspension application, which enables its real-time
operation under the threshold of Ts = 5ms.

B. Performance Evaluation

Considering the application of the short-sighted strategy
with a horizon of Np = 6 steps, we proceed by compar-

8In an i5 CPU@2.4 GHz (2 Cores) Macintosh with 8 GB of RAM.
9The normalization is given w.r.t. to the passive damper condition.

TABLE II
SCENARIO (A): PREDICTION HORIZON TUNING SETS

Np NRMS{JC} tMin.
c tMax.

c tc
2 0.4132 0.44ms 2.51ms 2.95ms
3 0.3240 0.46ms 3.45ms 4.01ms
4 0.3234 0.48ms 3.56ms 4.05ms
5 0.3221 0.49ms 3.79ms 4.29ms
6 0.3220 0.54ms 4.17ms 4.72ms
7 0.3203 0.55ms 4.47ms 5.02ms
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Fig. 1. Scenario (A): Pareto Planes z̈s × tc and z̈us × tc

ing our method (denoted SSMPC) against others from the
literature: a) a full-blown NMPC method, which solves a
nonlinear program by embedding the scheduling functions as
nonlinear predictions, denoted NMPC; and b) a sub-optimal
LPV MPC method [4], which uses a frozen guess for the
scheduling parameters along the horizon, denoted SOMPC.
Both these methods are implemented with the same cost
function `(·), i.e. Eq. (5) without the terminal cost. They
are designed with a horizon of Np = 25 steps, as done
in recent SA suspensions MPC applications [4]. “Passive”
denotes a passive suspensions system, i.e. u = 0.

The following experiment is tested: the car is running in a
straight line on a dry road, when it encounters a sequence of
5mm bumps on all its wheels, exciting a bouncing motion.
The obtained performances are illustrated through z̈s, shown
in Fig. 2. The corresponding control and scheduling variables
are shown in Fig. 3.
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A quantitative assessment of the achieved results is pre-
sented in Table III, which compares the RMS index of
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Fig. 3. Scenario (B): Control Input and Scheduling Variables

the performance cost, the Total Variance (TV) index10 of
the control signal, and the average computational time tc
achieved with each strategy. Clearly, the best performances
would be obtained with the NMPC method (as expected),
but it is not able to be implemented in real-time (since
tc > Ts), which is expected due to the use of nonlinear
predictions. Anyhow, the SOMPC and the SSMPC methods
yield comparable performances to those of the NMPC, while
the proposed framework provides a smoother control signal
(smaller TV index). As seen in Fig. 2, the proposed method
is able to perform comparably to the other strategies, with
equivalent vertical accelerations, providing a comfortable
ride to passengers.

TABLE III
SCENARIO (B): PERFORMANCE RESULTS

Method RMS{z̈us} RMS{z̈us} RMS{JC} TV tc
NMPC 0.1168 0.9199 0.4326 3.73 703ms
SSMPC 0.1187 0.9236 0.4341 1.41 3.13ms
SOMPC 0.1179 0.9222 0.4336 3.37 1.96ms
Passive 0.1553 0.9284 0.4723 − −

Finally, in order to experimentally demonstrate the validity
of Theorem 2, Fig. 4 shows two 2D cuts of the control
invariant ellipsoid Xf (ρ), for different instances of ρ) and
the corresponding system trajectories. Clearly, the proposed
SSMPC method ensures input-to-state feasibility and recur-
sive feasibility with initial conditions given inside this set.
We note that this property is not theoretically verified for the
SOMPC method.
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Fig. 4. Scenario (B): Domain of Attraction and Plane Trajectories

10This index measures the total variation of the control signal over the
simulation, this is: TV =

∑∞
k=0 |δu(k)| =

∑∞
k=0 |u(k + 1) − u(k)|.

Bigger values for TV indicate that more variation is applied to the control
along the simulation. Values closer to zero indicate better (smoother) control
strategies in terms of the use of the actuator.

V. CONCLUSIONS

This paper elaborated on a novel LPV MPC algorithm
for semi-active suspensions systems, using a short-sighted
paradigm, with small prediction horizons. The method solves
a robust min-max procedure online, given w.r.t. to the bounds
on the variation rates of the scheduling parameters. The
strategy ensures input-to-state stability of the closed-loop
with terminal ingredients, computed offline via LMIs. The
algorithm achieves good performances, comparable to other
techniques from the literature. The method is an elegant
alternative to the available full-blown robust NMPCs and
to the sub-optimal LPV MPC procedures, with intermediate
computational complexity, while theoretically maintaining
optimality and stability.
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