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CONVERGENCE RATES OF RLT AND LASSERRE-TYPE
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THE SIMPLEX AND THE SPHERE

Felix Kirschner ∗ Etienne de Klerk †

March 5, 2021

Abstract

We consider the generalized moment problem (GMP) over the simplex and the sphere. This is a rich setting
and it contains NP-hard problems as special cases, like constructing optimal cubature schemes and rational op-
timization. Using the Reformulation-Linearization Technique (RLT) and Lasserre-type hierarchies, relaxations
of the problem are introduced and analyzed. For our analysis we assume throughout the existence of a dual op-
timal solution as well as strong duality. For the GMP over the simplex we prove a convergence rate of O(1/r)
for a linear programming, RLT-type hierarchy, where r is the level of the hierarchy, using a quantitative version
of Pólya’s Positivstellensatz. As an extension of a recent result by Fang and Fawzi [Math. Program., 2020,
https://doi.org/10.1007/s10107-020-01537-7] we prove the Lasserre hierarchy of the GMP [Math. Program.,
Vol. 112, 65-92, 2008] over the sphere has a convergence rate of O(1/r2). Moreover, we show the introduced
linear RLT-relaxation is a generalization of a hierarchy for minimizing forms of degree d over the simplex,
introduced by de Klerk, Laurent and Parrilo [J. Theoretical Computer Science, Vol. 361, 210-225, 2006].

Keywords Generalized moment problem with polynomials · linear and semidefinite programming hierarchies

1 Introduction

For a compact set K ⊂ R
n letM(K) denote the (infinite-dimensional) vector space of signed finite Borel measures

with support contained in K . Let [m] = {1, . . . ,m} for m ∈ N. The generalized moment problem (GMP) is an
optimization problem of the following form:

val := inf
µ∈M(K)+

∫

K

f0(x)dµ(x)

s.t.

∫

K

fi(x)dµ(x) = bi ∀i ∈ [m]

∫

K

dµ(x) ≤ 1,

(1)

where m ∈ N, bi ∈ R for all i ∈ [m],M(K)+ is the convex cone of positive finite Borel measures supported on K ,
and f0, f1, . . . , fm are integrable over K with respect to all µ ∈ M(K)+. We will always assume the GMP (1) has a
feasible solution, which implies that it has an optimal solution as well (see Theorem 1).

The constraint
∫

K
dµ(x) ≤ 1 essentially means that we know an upper bound on the measure of K for the optimal

solution, since, in this case, we may scale the functions fi a priori to satisfy this condition.

The GMP is a conic linear optimization problem whose duality theory is well understood, see e.g. [14]. A wide range
of optimization problems can be modeled as an instance of the GMP. The list includes problems from optimization,
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probability, financial economics and optimal control to name only a few, see e.g. [9]. For polynomial data, i.e.,
fi ∈ R[x] for all i = 0, 1, . . . ,m and the set K being a basic closed semialgebraic set, Lasserre [8] introduced a
monotone nondecreasing hierarchy of semidefinite programming (SDP) relaxations of (1). For a survey on SDP-based
approximation hierarchies and their error analysis, see [3].

In this paper, we will consider the case where K is the standard (probability) simplex

∆n−1 =
{

x ∈ R
n
+ : x1 + · · ·+ xn = 1

}
,

where Rn
+ is the nonnegative orthant, or the Euclidean sphere

Sn−1 =
{

x ∈ R
n : ‖x‖22 = x2

1 + · · ·+ x2
n = 1

}
.

Our main result is to establish a rate of convergence for the Lasserre hierarchy [8] for the GPM on the sphere, and
for a related, RLT-type linear programming hierarchy for the GPM on the simplex. This RLT hierarchy is in fact a
generalisation of LP hierarchies for polynomial optimization on the simplex, as introduced by Bomze and De Klerk
[2], and De Klerk, Laurent and Parrilo [4].

Outline of the paper. First we introduce some notation in section 1.1. In section 1.2 we review the duality theory
of the GMP. A brief overview of possible applications of our setting is given in section 1.3. For K the simplex we
introduce a linear relaxation hierarchy in this setting in section 2 and prove a convergence rate of O(1/r). Section
3 contains the new convergence analysis of the Lasserre [9] SDP hierarchies of the GPM on the sphere. In Section
4 we take a mathematical view of how the optimal measure is obtained in the limit as the level of the hierarchies
approaches infinity. In section 5 we explain how our LP hierarchy is a generalization of an approximation hierarchy
for the problem of minimizing a form of degree d over the simplex introduced by De Klerk, Laurent and Parrilo [4]
based on earlier results obtained by Bomze, De Klerk [2].

1.1 Notation

Let N = {0, 1, 2, . . .} denote the set of nonnegative integers, N+ = N \ {0} and N
n
t the set of sequences α ∈ N

n for
which |α| =

∑n
i=1 αi ≤ t for t ∈ N. For α ∈ N

n, xα denotes the monomial xα1
1 . . . xαn

n and its degree is |α|. The
ring of multivariate polynomials in n variables x = (x1, . . . , xn) is denoted by R[x] = R[x1, . . . , xn] and R[x]t is its
subspace of polynomials of degree at most t. The (total) degree of a polynomial is the maximal degree of its appearing
monomials. A monomial basis vector of order t is given by

[x]t = (1, x1, . . . , xn, x
2
1, x1x2, . . . , xn−1xn, x

2
n, . . . , x

t
1, . . . , x

t
n)

T .

Any polynomial p ∈ R[x] can be written as p =
∑

α∈Nn pαxα, where only finitely many pα are non-zero. A polyno-

mial p ∈ R[x] is a sum of squares (sos) if p =
∑k

j=1(hj)
2 for hj ∈ R[x] and k ≥ 1. The set of sos polynomials is

denoted by Σ[x] and the set of sos polynomials of degree at most t is denoted by Σ[x]t.

1.2 Duality of the generalized problem of moments

We shall briefly discuss the duality theory associated with the GMP. For this, let C(K) denote the space of bounded
continuous functions on K endowed with the supremum norm ‖·‖∞. For two vector spaces E,F of arbitrary dimen-
sion, a non-degenerate bilinear form 〈〉 : E × F → R is called a duality of E and F . The spacesM(K) and C(K)
can be put in duality by defining 〈〉 : C(K)×M(K)→ R as

〈f, µ〉 =

∫

K

f(x)dµ(x). (2)

Let again f0, f1, . . . , fm be continuous functions on K and b1, . . . , bm ∈ R. The dual of (1) is given by

val′ = sup
(y,t)∈Rm×R+

m∑

i=1

yibi − t

s.t. f0(x)−
m∑

i=1

yifi(x) + t ≥ 0 ∀ x ∈ K.

(3)

Note that the dual problem (3) is always strictly feasible, due to the constraint
∫

K
dµ ≤ 1 in the primal GMP (1).

Weak duality holds for this pair of problems, meaning val′ ≤ val. The difference val − val′ is called duality gap.
In fact, the duality gap is always zero, as the next theorem shows. Note that a zero duality gap does not imply the
existence of a dual optimal solution.
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Theorem 1. (see, e.g. [9, Theorem 1.3]) Assume problem (1) is feasible. Then it has an optimal solution (the inf is
attained), and val = val′.

We continue by recalling a sufficient condition for a dual optimal solution to exist.

Theorem 2. (see, e.g. [14, Proposition 2.8]) Suppose problem (1) is feasible. If

b ∈ int((〈f1, µ〉, . . . , 〈fm, µ〉) : µ ∈ M(K)+) (4)

then the set of optimal solutions of (3) is nonempty and bounded.

As discussed in Lasserre [8], it is customary in the literature to assume that condition (4) holds, but in practice it may
be a non-trivial task to check whether it does. We do stress, however, that condition (4) does hold for the applications
discussed in the next subsection.

Another result worth mentioning is that if the GMP (1) has an optimal solution, it has on which is finite atomic.

Theorem 3. (see, e.g. [3, Theorem 3]) If the GMP (1) has an optimal solution, then it has one which is finite atomic
with at most m atoms, i.e., of th form µ∗ =

∑m

ℓ=1 ωℓδx(ℓ) where ωℓ ≥ 0, x(ℓ) ∈ K and δx(ℓ) denotes the Dirac measure

supported at x(ℓ)(ℓ ∈ [m]).

1.3 Applications

Polynomial and rational optimization. Consider the problem of minimizing a rational function over K:

p∗ = inf
x∈K

p(x)

q(x)
, (5)

where q, p ∈ R[x] are relatively prime and we may assume q(x) > 0 for all x ∈ K . Indeed, if q changes signs on
K , Jibetean and De Klerk [7, Corollary 1] showed that p∗ = −∞. We will in fact make the stronger assumption that
q(x) ≥ 1 on K , i.e. that we know a positive lower bound on the minimum of q over K . The optimization problem (5)
can be modeled as a GMP:

val = inf
µ∈M(K)+

{∫

K

p(x)dµ(x) :

∫

K

q(x)dµ(x) = 1

}

. (6)

The inequality constraint
∫

K
dµ(x) ≤ 1 is redundant if q(x) ≥ 1 ∀x ∈ K and can be added to obtain a problem of

form (1).

We emphasize that minimizing a quadratic polynomial over the simplex ∆n−1 is already NP-hard, since it contains
the problem of computing the size (α(G)) of a maximum stable set of a graph G. Indeed, for a graph G with adjacency
matrix adjacency matrix A, Motzkin and Strauss [15] showed that

1

α(G)
= min

x∈∆n−1

xT (A+ I)x,

where I is the identity matrix, which is a quadratic polynomial optimization problem over the simplex.

Similarly, deciding convexity of a homogeneous polynomial f of degree 4 or higher is known to be NP-hard [1]. It
can be modeled as polynomial optimization problem over the sphere. A homogeneous polynomial f is convex if and
only if

min
(x,y)∈S2n−1

yT∇f(x)y ≥ 0,

which in turn be cast as a GMP over the sphere.

Polynomial cubature. Another application that goes beyond polynomial optimization is concerned with polynomial
cubature rules, see e.g. [5], [17]. Finding polynomial cubature rules is NP-hard in general, see [13]. Let N ∈ N.
Consider the problem of multivariate numerical integration of a function f over a set K with respect to a given

(reference) measure µ0 ∈ M(K)+. Loosely speaking, a cubature scheme consists of a set of nodes x(ℓ) ∈ K and
weights ωℓ ≥ 0 for ℓ ∈ [N ], respectively, such that

∫

K

f(x)dµ(x) ≈
N∑

ℓ=1

ωℓf(x
ℓ).

3



A possibility to mitigate the error in this scheme is to choose the weights and points such that the approximation is
exact for polynomials up to some fixed degree. The problem of finding such weights and nodes can be cast as a GMP.
Let d ∈ N and β ∈ N

n any vector such that |β| > d. Assume the reference measure µ0 is a probability measure,
otherwise set µ0 ← µ0/µ0(K). In the GMP given by

val := inf
µ∈M(K)+

∫

K

xβdµ(x)

s.t.

∫

K

xαdµ(x) =

∫

K

xαdµ0(x) ∀α ∈ N
n
d

(7)

the redundant constraint
∫

K
dµ(x) ≤ 1 can be added to turn it into a GMP of form (1). The solution µ∗ to (7) will

be of the form µ∗ =
∑N

ℓ=1 ωℓδx(ℓ) , where N ≤ |Nn
d | =

(
n+d
d

)
by Theorem 3. This result is known as Tchakaloff’s

theorem [16]. There is some freedom in the choice of the objective function, however, note that it should be linearly
independent of {xα} for α ∈ N

n
d . Hence, our approach discussed in this paper may be applied to the problem of

finding cubature rules for measures on the simplex or sphere.

2 A linear relaxation hierarchy over the simplex

A moment sequence (yα)α∈Nn ⊂ R of a measure µ ∈ M(K) is an infinite sequence such that

yα =

∫

K

xαdµ(x) ∀α ∈ N
n.

Let L : R[x]→ R be a linear operator

p(x) =
∑

α∈Nn

pαxα 7→ L(p) =
∑

α∈Nn

pαyα

that maps monomials to their respective moments. Thus, to an optimal solution µ∗ of a GMP there is an associated
linear functional L∗ such that L∗(f0) = val and L∗(fi) = bi for all i ∈ [m] as well as L∗(1) ≤ 1. The idea of
the relaxation we are about to introduce is to approximate the optimal solution by a sequence (hierarchy) of linear

functionals L(r) that depend on r = 1, 2, . . . . Let K = ∆n−1. For i = 0, 1, . . . ,m let fi be a real homogeneous
polynomial of degree d and let r ≥ d. Consider the following linear relaxation of (1):

f (r)

LP
= min L(r)(f0)

s.t. L(r)(fi) = bi ∀ i ∈ [m]

L(r)(1) ≤ 1

L(r)(xα) ≥ 0 ∀ |α| ≤ r

L(r)(xα) = L(r)

(

xα

n∑

i=1

xi

)

∀ |α| ≤ r − 1.

(8)

Every feasible solution µ′ to (1) provides an upper bound for (8) by setting L(r)(xα) = 〈xα, µ′〉. Hence, f (r)

LP
≤ val.

To see it is a linear program (LP) note that each L(r)(xα) can be replaced by a scalar variable yα and the resulting
program is an LP. The second last constraint is reflecting the necessary condition for a positive measure µ over the
simplex:

〈xα, µ〉 =

∫

∆n−1

xαdµ ≥ 0 ∀α ∈ N
n.

The last constraint in (8) arises from the fact that

L(r)(p) = L(r)(q) if p(x) = q(x) ∀x ∈ ∆n−1.

Equivalently, defining the ideal I = {x 7→ p(x) (1−
∑n

i=1 xi) : p ∈ R[x]} we require

L(r)(p) = L(r)(q)⇔ p = q mod I.

We state two lemmas that will come in handy in our later analysis.
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Lemma 1. Let r, k ∈ N with k ≤ r and let L(r) be a feasible solution to the linear relaxation (8) for some
f0, f1, . . . , fm. Then for all xγ with γ ∈ N

n and |γ| ≤ r − k we have

L(r) (xγ) = L(r)



xγ

(
n∑

i=1

xi

)k


 .

Proof. The last equality constraint in the relaxation forces

L(r)(xα) = L(r)

(

xα

n∑

i=1

xi

)

∀ |α| ≤ r − 1.

Therefore, noting that xej = xj we have

L(r)(xβxej ) = L(r)

(

xβxej

n∑

i=1

xi

)

∀ |β| ≤ r − 2

⇒
n∑

j=1

L(r)(xβxej ) =

n∑

j=1

L(r)

(

xβxej

n∑

i=1

xi

)

∀ |β| ≤ r − 2

⇔ L(r)



xβ
n∑

j=1

xej



 = L(r)



xβ
n∑

j=1

xej
n∑

i=1

xi



 ∀ |β| ≤ r − 2

= L(r)



xβ

(
n∑

i=1

xi

)2


 ∀ |β| ≤ r − 2.

Hence,

L(r)(xβ) = L(r)

(

xβ

n∑

i=1

xi

)

= L(r)



xβ

(
n∑

i=1

xi

)2


 ∀ |β| ≤ r − 2.

Reiterating this procedure leads us to the desired outcome.

Lemma 2. Consider the GMP given in (1) and let (y, t) ∈ R
m × R+. Then the pair (y, t) is dual optimal only if

0 = min
x∈K

(

f0(x)−
m∑

i=1

yifi(x) + t

)

.

Proof. The minimization problem

min
x∈K

(

f0(x)−
m∑

i=1

yifi(x) + t

)

is equivalent to

inf
µ∈M(K)+

{
∫

K

f0(x)−
m∑

i=1

yifi(x)d + tdµ(x) :

∫

K

dµ = 1

}

. (9)
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By Theorem 1 there is no duality gap and there exists a primal optimal solution µ∗ to the GMP (1). Set ν = µ∗/µ∗(K).
Hence, ν is a probability measure and therefore a feasible solution to (9). We deduce

0 ≤ min
x∈K

f0(x)−
m∑

i=1

yifi(x) + t

≤

∫

K

f0(x)−
m∑

i=1

ȳifi(x) + tdν(x)

=
1

µ∗(K)

(
∫

K

f0(x)dµ
∗(x)−

m∑

i=1

yi

∫

K

fi(x)dµ
∗(x) + t

∫

K

dµ∗(x)

)

≤
1

µ∗(K)

(
val− yT b+ t

)
= 0,

where the first inequality follows from the definition of the dual (3) of the GMP and the last equality from strong
duality.

When we consider the case where K = ∆n−1, we may, without loss of generality, assume the fi to be homogeneous

of the same degree for all i = 0, 1, . . . ,m. Indeed, let f(x) =
∑d

j=0 fj(x), where deg(fj) = j. Then, g(x) :=
∑d

j=0 fj(x) (
∑n

i=1 xi)
d−j

is homogeneous of degree d and f(x) = g(x) for all x ∈ ∆n−1.

2.1 Convergence analysis

The following theorem is a refinement of a result by Powers and Reznick [11], obtained by de Klerk, Laurent and
Parrilo [4, Theorem 1.1]. It is a quantitative version of Pólya’s Positivstellensatz (see, e.g. [12] for a survey), and it
will be crucial in our analysis of the simplex case.

Theorem 4. Suppose f ∈ R[x] is a homogeneous polynomial of degree d of the form f(x) =
∑

|α|=d fαxα. Let

ε = min∆n−1 f(x) and define

B(f) = max
|α|=d

α1! . . . αn!

d!
fα. (10)

Then the polynomial (x1 + · · ·+ xn)
kf(x) has only positive coefficients if

k >
d(d− 1)

2

B(f)

ε
− d. (11)

We continue by stating and proving one of the main results of this paper.

Theorem 5. Let val be the optimal value of the GMP (1) for input data K = ∆n−1, f0, f1, . . . , fm ∈ R[x] homoge-
neous of degree d and b1, . . . , bm ∈ R. Assume there exists a dual optimal solution (ȳ, t) and let fm+1(x) := 1 for
every x ∈ ∆n−1 and set ȳm+1 = −t. Then, setting y0 = 1 and yi = −ȳi for i ∈ [m+ 1] we have

0 ≤ val− f (r)

LP
≤

(
∑m+1

i=0 B(yifi) + t
)

d(d− 1)

2(r − 1)− d(d− 1)
, (12)

for B(·) as in (10) and r > d(d− 1)/2 + 1.

Proof. By Theorem 1 there is no duality gap. Let r > d(d − 1)/2 + 1 and let L(r) be an optimal solution to (8). Fix
some ε > 0. Then,

6



0 ≤ val− f (r)

LP
= val− L(r)

(
m∑

i=1

ȳifi − t+ f0 −
m∑

i=1

ȳifi + t

)

= val−
m∑

i=1

ȳiL
(r)(fi) + tL(r)(1)− L(r)

(

f0 −
m∑

i=1

ȳifi + t

)

≤ val−
m∑

i=1

ȳibi + t− L(r)

(

f0 −
m∑

i=1

ȳifi + t

)

= −L(r)

(

f0 −
m∑

i=1

ȳifi + t

)

= −L(r)

(

f0 −
m∑

i=1

ȳifi + t+ ε

)

+ εL(r)(1)

≤ −L(r)

(

f0 −
m∑

i=1

ȳifi + t+ ε

)

+ ε,

where both inequalities follow from the fact that L(r)(1) ≤ 1. By Lemma 2 we have minx∈∆n−1 f0(x) −
∑m+1

i=1 ȳifi(x) + ε = ε. We assume wlog that f0 −
∑m+1

i=1 ȳifi is homogeneous of degree d. Define

f := f0 −
m+1∑

i=1

ȳifi + ε

(
n∑

i=1

xi

)d

,

which is homogeneous as well and its minimum over the simplex is ε. Hence, by Theorem 4 for k as in (11) we have

f(x)

(
n∑

i=1

xi

)k

=
∑

β∈Nn
d+k

cβx
β

with cβ > 0 for all β ∈ N
n
d+k. To determine the smallest integer k for which the theorem holds we will bound B(f).

For this, set y0 = 1 and yi = −ȳi. We may rewrite f as

f =

m+1∑

i=0

yifi + ε

(
n∑

i=1

xi

)d

=

m+1∑

i=0

yifi + ε




∑

|α|=d

(
d

α1 . . . αn

)

xα





=
∑

|α|=d

(
m+1∑

i=0

yifi,α + ε

(
d

α1 . . . αn

))

xα.

Then,

B(f) = max
α

[(
m+1∑

i=0

yifi,α +
d!

α1! . . . αn!
ε

)

α1! . . . αn!

d!

]

=

(

max
α

(
m+1∑

i=0

yifi,α

)

α1! . . . αn!

d!

)

+ ε

≤
m+1∑

i=0

(

max
α

yifi,α
α1! . . . αn!

d!

)

+ ε

=

m+1∑

i=0

B(yifi) + ε.

7



If r is large enough, i.e.,

r ≥

⌈

d(d− 1)

2

∑m+1
i=0 B(yifi) + ε

ε

⌉

≥

⌈
d(d− 1)

2

B(f)

ε

⌉

,

it follows from Lemma 3 that

−L(r)

(

f0 −
m+1∑

i=1

ȳifi + ε

)

+ ε = ε− L(r)(f)

= ε− L(r)



f

(
n∑

i=1

xi

)k




= ε− L(r)




∑

β∈Nn
k+d

cβx
β



 ≤ ε,

where the last inequality follows from the fact that L(r)(xα) ≥ 0 for all |α| ≤ r. One may bound r as follows

r − 1 ≤
d(d− 1)

2

(∑m+1
i=0 B(yifi)

ε
+ 1

)

⇔ ε ≤

∑m+1
i=0 B(yifi)d(d− 1)

2(r − 1)− d(d− 1)
,

concluding the proof.

3 Lasserre hierarchy over the sphere

We now consider the GMP (1) over the sphere, i.e. we consider the case K = Sn−1. Additionally, we assume the
f0, f1, . . . , fm in (1) are homogeneous polynomials of even degree 2d.

The Lasserre hierarchy [9] of semidefinite relaxations of the GMP (1) over the sphere is given by

f (2r)

SDP
= min L(2r)(f0)

s.t. L(2r)(fi) = bi ∀i ∈ [m]

L(2r)(1) ≤ 1

L(2r)
(
[x]r[x]

T
r

)
� 0

L(2r)(xα) = L(2r)
(
xα‖x‖22

)
∀ |α| ≤ 2r − 2,

(13)

where the L(2r) operator is now applied entry-wise to matrix-valued functions, where needed.

The following lemma enables us to use a quantitative Positivstellensatz by Fang an Fawzi [6] for positive polynomials
on the sphere, to obtain a rate of convergence of the Lasserre hierarchy.

Lemma 3. Let L : R[x]2k → R be a linear operator and suppose L
(
[x]k[x]

T
k

)
� 0, where the operator is applied

entrywise to the matrix [x]k[x]
T
k . Then, L(σ) ≥ 0 for all σ ∈ Σ[x]k.

8



Proof. Let σ ∈ Σ[x]k be a sum of squares of degree 2k. Then there exists A � 0 such that σ = [x]TkA[x]k. Let 〈·, ·〉
denote the trace inner product. We have

L(σ) = L
(
[x]TkA[x]k

)

= L
(
〈A, [x]k[x]

T
k 〉
)

= L




∑

i,j

Ai,j([x]k)i([x]k)j





=
∑

i,j

Ai,jL (([x]k)i([x]k)j)

= 〈A,L
(
[x]k[x]

T
k

)
〉 ≥ 0,

since both A and L
(
[x]k[x]

T
k

)
are psd.

The quantitative Positivstellensatz by Fang and Fawzi [6] is as follows.

Theorem 6. [6, Theorem 3.8] Assume f is a homogeneous polynomial of degree 2d such that 0 ≤ f(x) ≤ 1 for all
x ∈ Sn−1 and d ≤ n. There are constants Cd, C

′
d that depend only on d such that if r ≥ Cdn then

f + C′
d(d/r)

2 = σ(x) + (1 − ‖x‖22)h(x)

for σ(x) ∈ Σ[x]r and h ∈ R[x]2r−2.

We may now use the theorem by Fang and Fawzi [6] and Lemma 3 to derive a rate of convergence for Lasserre
hierarchy [9] of the GMP on the sphere as follows.

Theorem 7. Let val be the optimal value of the GMP (1) for input data K = Sn−1, f0, f1, . . . , fm ∈ R[x] homoge-
neous of even degree 2d, b1, . . . , bm ∈ R and d ≤ n. Let (ȳ, t) be a dual optimal solution and let fm+1(x) := 1 for
every x ∈ Sn−1, set ȳm+1 = −t and set y0 = 1 and y = −ȳ. Further, let f i,yi

max = maxx∈Sn−1 yifi(x). There exist
constants Cd, C

′
d, only dependent on d, such that if r ≥ Cdn we have

0 ≤ val− f (2r)

SDP
≤

C′
dd

2
∑m+1

i=0 f i,yi
max

r2
.

Proof. As in the proof of Theorem 5, Theorem 1 gives us strong duality. Let r ≥ Cdn and let L(2r) be an optimal
solution to (13). Then by the same reasoning as in Theorem 5,

0 ≤ val− f (2r)

SDP
≤ −L(2r)

(

f0 −
m+1∑

i=1

ȳifi

)

.

Set f := f0 −
∑m+1

i=1 yifi and fmax = maxx∈Sn−1 f(x). Then f̃ = f/fmax satisfies 0 ≤ f̃ ≤ 1 by Lemma 2. We
find for any δ ≥ 0

−L(2r)

(

f0 −
m+1∑

i=1

ȳifi

)

= −fmaxL
(2r)

(

f̃
)

≤ −fmaxL
(2r)

(

f̃ + δ
)

+ δfmax.

Choosing δ =
C′

dd
2

r2
and applying Theorem 6 we see that f̃ + δ = σ + (1− ‖x‖22)h for σ ∈ Σ[x]r and h ∈ R[x]2r−2.

Thus, since L(2r)(xα) = L(2r)(xα‖x‖22) we have

−fmaxL
(2r)

(

f̃ +
C′

dd
2

r2

)

+
C′

dd
2

r2
fmax = −fmaxL

(2r)
(
σ + (1− ‖x‖22)h

)
+

C′
dd

2

r2
fmax

= −fmaxL
(2r) (σ) +

C′
dd

2

r2
fmax

≤ C′
d

d2

r2
fmax,

9



where the last inequality follows from Lemma 3. Noting that

fmax = max
x∈Sn−1

(

f0(x)−
m+1∑

i=1

ȳifi(x)

)

≤
m+1∑

i=0

max
x∈Sn−1

yifi(x) =

m+1∑

i=0

f i,yi
max

we arrive at the result.

4 Limiting behavior of the hierarchies of linear operators

Consider the case when K = ∆n−1. When looking at the linear operators in the relaxation hierarchies (8) one would

expect that in the limit, i.e. for r → ∞, the operators L(r)(·) behave like 〈·, µ〉 for some positive measure µ. In the
rest of this section we prove that this is in fact the case and we will define the limit in a meaningful way. Consider
again the ideal I = {x 7→ p(x) (1−

∑n

i=1 xi) : p ∈ R[x]} and let L : R[x]/I → R be a linear operator such that

1. L(xα) ≥ 0 for all α ∈ N
n

2. L(1) ≤ 1

and let
L = {L : R[x]/I → R : L fulfills conditions 1. and 2.}

be the class of all linear operators that satisfy the conditions above. Note that for every L ∈ L the relation

L

((

1−
n∑

i=1

xi

)

xα

)

= 0 for all α ∈ N
n

trivially holds. If ‖f‖ = supx∈∆n−1
|f(x)|, then (R[x]/I, ‖·‖) is a normed vector space.

Theorem 8. (see, e.g. [10, Theorem 1.4.2]) Suppose F : X → Y is a linear operator between two normed vector
spaces (X, ‖·‖X) and (Y, ‖·‖Y ), then the following are equivalent

1. F is continuous

2. ‖Fx‖Y ≤M‖x‖X for some M ∈ R.

Using Theorem 8 we can prove that the operators we consider are continuous in the limit.

Lemma 4. Every L ∈ L is continuous.

Proof. By Theorem 8 it suffices to show that every L ∈ L satisfies

|L(f)| ≤M‖f‖ = M sup
x∈∆n−1

|f |

for all f ∈ R[x]/I. Hence, let f ∈ R[x]/I and let ‖f‖ = supx∈∆n−1
|f(x)|. Also set

fmin = min
x∈∆n−1

f(x) ≥ −‖f‖ and fmax = max
x∈∆n−1

f(x) ≤ ‖f‖.

Let L∗ be the optimizer of
minL(f) s.t. L ∈ L

and note that L∗(f) = fmin as an immediate consequence of Theorem 5. Hence, for all L ∈ L we have

L(f) ≥ L∗(f) = fmin ≥ −‖f‖.

Similarly, let L′ be the optimizer of
maxL(f) s.t. L ∈ L.

By the same reasoning we have L′(f) = fmax and it follows that L(f) ≤ ‖f‖ for all L ∈ L. Hence one can set
M = 1 and we see

|L(f)| ≤ ‖f‖.

10



The set R[x]/I is dense in C(∆n−1). This means we can employ the following theorem in the next step.

Theorem 9. (see, e.g. [10, Theorem 1.9.1]) Suppose that M is a dense subspace of a normed space X , that Y is
a Banach space, and that T0 : M → Y is a bounded linear operator. Then there is a unique continuous function
T : X → Y that agrees with T0 on M . This function T is a bounded linear operator and ‖T ‖ = ‖T0‖.

Now let
L̄ =

{
L̄ : C(∆n−1)→ R : L̄ is the continuous linear extension of some L ∈ L

}
.

Proposition 1. Let L̄ ∈ L̄ and f ∈ C(∆n−1). Then

L̄(f) =

∫

∆n−1

f(x)dµ(x)

for some positive measure µ supported on ∆n−1, satisfying µ(∆n−1) ≤ 1.

Proof. It is sufficient to show L̄(f) ≥ 0 for all f ∈ C(∆n−1)+ = {f ∈ C(∆n−1) : f(x) ≥ 0 ∀x ∈ ∆n−1}. To see
this, note that the space C(∆n−1) can be ordered by the convex cone C(∆n−1)+. Now L̄(f) ≥ 0 for all f ∈ C(∆n−1)+
implies that L̄ ∈ (C(∆n−1)+)

∗
, i.e. the dual cone of C(∆n−1)+ which is known to be the set of finite Borel measures

on ∆n−1. Let f be a homogeneous continuous function that is non-negative on the simplex and consider its Bernstein
approximation of order r given by

Br
f (x) =

∑

α∈N
n
r

|α|=r

f
(α

r

)(r

α

)

.

The approximation converges uniformly to f as r→∞ since f is continuous. Using Lemma 4 we see

L̄(f) = L̄( lim
r→∞

Br
f)

L̄ cont.
= lim

r→∞
L̄(Br

f )

= lim
r→∞

∑

α∈N
n
r

|α|=r

f
(α1

r
, . . . ,

αn

r

)

︸ ︷︷ ︸

≥0

(
r

α

)

︸ ︷︷ ︸

≥0

L̄(xα)
︸ ︷︷ ︸

≥0

≥ 0.

Hence, it follows that L̄(f) = 〈f, µ〉 for some positive measure µ, such that µ(∆n−1) ≤ 1.

Remark 1. By the proof given above, it becomes clear that the continuous linear extension can in fact be defined in
terms of the limit of the Bernstein approximation, i.e., define L̄(f) := limr→∞ L(Br

f ) for f ∈ C(∆n−1) and L ∈ L.

For the sphere case, i.e. K = Sn−1 consider the following theorem.

Theorem 10. (see, e.g. [9, Theorem 3.8]) Let y = (yα)α∈Nn ⊂ R
∞ be a given infinite real sequence, L : R[x] → R

be the linear operator defined by

p(x) =
∑

α∈Nn

pαxα 7→ L(p) =
∑

α∈Nn

pαyα,

and let K = { x ∈ R
n : g1(x) ≥ 0, . . . , gm(x) ≥ 0}. The sequence y has a finite Borel representing measure with

support contained in K if and only if

L(f2gJ) ≥ 0 ∀J ⊆ {1, . . . ,m} and f ∈ R[x],

where gJ(x) =
∏

j∈J gj(x).

Now, let L be a linear operator such that

1. L(1) ≤ 1

2. L([x]t[x]
T
t ) � 0 ∀t ∈ N

3. L(xα) = L(xα‖x‖22) ∀α ∈ N
n

and let L′ = {L : R[x] → R : L satisfies 1. - 3.}. Recall that as a semialgebraic set the sphere can be written as
Sn−1 = {x ∈ R

n : g1(x) := 1 − ‖x‖22 ≥ 0, g2(x) := ‖x‖22 − 1 ≥ 0}. Then for K = Sn−1 every L ∈ L′ satisfies
all conditions of Theorem 10. To see this, note that the only possibilities for J are {∅, {1}, {2}, {1, 2}}. Because
of condition 3 we have that L(±(1 − ‖x‖22)p) = 0 for all p ∈ R[x] covering all cases except J = ∅. For J = ∅
the condition reduces to L(p2) ≥ 0 which holds for all p ∈ R[x] because of Lemma 3. Hence, every L ∈ L′ has a
representing measure whose support is contained in Sn−1.
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5 Concluding remarks

In this last section we conclude by outlining the connection of our results to previous work. We show that — in the
special case of polynomial optimization on the simplex — our RLT hierarchy reduces to one studied earlier by Bomze
and De Klerk [2], and De Klerk, Laurent and Parrilo [4].

De Klerk, Laurent and Parrilo [4] introduced the following hierarchy for minimizing a homogeneous polynomial
p ∈ R[x] of degree d over the simplex.

p(r) = maxλ s.t. the polynomial

(
n∑

i=1

xi

)r


p(x)− λ

(
n∑

i=1

xi

)d




has only nonneg. coefficients.

(14)

It was proved that limr→∞ p(r) = pmin = minx∈∆n−1 p(x). The LP hierarchy introduced in section 2 of this paper is
a generalization of the hierarchy (14), in the sense made precise in the following theorem.

Theorem 11. For some homogeneous polynomial p ∈ R[x] of degree d let f (r+d)

LP
be the solution to the LP relaxation

of the problem

min
x∈∆n−1

p(x) = val = inf
µ∈M(∆n−1)+

{
∫

∆n−1

p(x)dµ(x) :

∫

∆n−1

dµ(x) = 1

}

for some r ∈ N. Then,

p(r) = f (r+d)

LP
.

Proof. ” ≤ ” : Let λ∗ = p(r) be optimal for (14). Then (
∑n

i=1 xi)
r
(

p(x)− λ (
∑n

i=1 xi)
d
)

has only negative

coefficients and we find

0 ≤ L(r+d)





(
n∑

i=1

xi

)r


p(x)− λ∗

(
n∑

i=1

xi

)d








= L(r+d)

((
n∑

i=1

xi

)r

p(x)

)

− λ∗L(r+d)





(
n∑

i=1

xi

)r+d




= f (r+d)

LP
− λ∗

for L(r+d) being the optimal solution to the LP relaxation.
” ≥ ” : For the multinomial coefficient

(
k

α

)

=

(
k

α1, . . . , αn

)

=
k!

α1! . . . αn!

we define
(
k
α

)
= 0 if αi < 0 for some i ∈ [n].

Consider the expansion
(

n∑

i=1

xi

)r


p(x)− λ

(
n∑

i=1

xi

)d


 =
∑

|β|=r

(
r

β

)

xβ
∑

|α|=d

pαxα − λ
∑

|β|=r+d

(
r + d

β

)

xβ

=
∑

|β|=r+d




∑

|α|=d

(
r

β − α

)

pα − λ

(
r + d

β

)


 xβ .

Thus the LP formulation of (14) reads

p(r) = max λ

s.t.

(
r + d

β

)

λ ≤
∑

|α|=d

(
r

β − α

)

pα ∀|β| = r + d
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with its dual

p(r) = min
∑

|β|=r+d

∑

|α|=d

yβ

(
r

β − α

)

pα

s.t. yβ ≥ 0 ∀|β| = r + d
∑

|β|=d+r

(
r + d

β

)

yβ = 1.

Let y be an optimal solution for the dual and define

L(r+d)(xβ) = yβ ∀|β| = r + d.

Then for |α| = r + d− 1 we let

L(r+d)(xα) =

n∑

i=1

yα+ei

and proceed in this manner for all |γ| ≤ r + d− 2. The last constraint of the dual then implies

1 =
∑

|β|=d+r

(
r + d

β

)

yβ =
∑

|β|=d+r

(
r + d

β

)

L(r+d)(xβ) = L(r+d)





(
n∑

i=1

xi

)r+d


 .

By construction we have

1. L(r+d)(xα) ≥ 0 for all |α| ≤ r + d

2. L(r+d)(xα) = L(r+d) (xα
∑n

i=1 xi) for all |α| ≤ r + d− 1

3. 1 = L(r+d)
(

(
∑n

i=1 xi)
r+d
)

2.
= L(r+d)(1).

Hence, the constructed solution for the LP relaxation is feasible. Further,

p(r) =
∑

|β|=r+d

∑

|α|=d

yβ

(
r

β − α

)

pα

=
∑

|β|=r+d

∑

|α|=d

L(r+d)(xβ)

(
r

β − α

)

pα

= L(r+d)




∑

|β|=r+d

∑

|α|=d

(
r

β − α

)

pαxβ





= L(r+d)

((
n∑

i=1

xi

)r

p

)

= L(r+d)(p) ≥ f (r+d)

LP
.

In the case of polynomial optimization our estimate (12) becomes

fmin − f (r+d)

LP
≤

d(d− 1)

2(r + d− 1)− d(d− 1)
(B(f)− fmin)

and applying the inequality

B(p)− pmin ≤

(
2d− 1

d

)

dd (pmax − pmin) ,

shown in [4, Theorem 2.2], we find

fmin − f (r+d)

LP
≤

d(d− 1)

2(r + d− 1)− d(d − 1)

(
2d− 1

d

)

dd (fmax − fmin) .

This is essentially the same result as was obtained in [4, Theorem 1.3].
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