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Adaptive Task-Space Force Control for Humanoid-to-Human Assistance

Anastasia Bolotnikova1,2, Sébastien Courtois1, Abderrahmane Kheddar2

Abstract— We envision a humanoid robot to serve as a source
of an additional force in motion assistance for frail persons.
We present a control strategy for a humanoid to adaptively
regulate its assistive force contribution. First, we identify a
human model torque control strategy for an optimal execution
of a priori known motion task from sample recordings of
this task performed by a healthy individual. We utilize the
identified model in the proposed position discrepancy based
observer of the human torque contribution, the unknown and
unmeasurable variable. We propose an experience-based hu-
man contribution model learning strategy that allows improving
the human contribution estimate from trial-to-trial. The target
assistive torque contribution is then calculated as the difference
between the optimal torque required for the motion task
and the estimated human contribution. The target assistive
torque is integrated into a multi-robot quadratic programming
task-space controller to compute the desired interaction force
required for the robot to supply the necessary assistive torque
for the human model. We use the non-optimal recordings of the
human motion task to simulate human model frailty and apply
our proposed adaptive force control strategy to demonstrate
the results of a humanoid successfully assisting the simulated
human model to restore the optimal motion task performance.

I. INTRODUCTION

A promising area of the humanoid robots application
is daily assistance for frail and elderly, e.g. [1], [2], [3].
Such robotic platforms are specifically designed to be user-
friendly, multi-functional and safe [4]. These properties allow
us to envision a humanoid robot providing companionship
through social assistance [5] and helping people in need to
perform daily chores. Being a platform capable of physical
interaction, one of the useful functionalities for humanoids
would be to assist frail people with motion tasks that
typically require assistance from a human caregiver. Enabling
a humanoid to provide such assistance safely and efficiently
can help to increase frail person autonomy.

During the assistance, two sources of force contribute
to the human motion: forces that can be generated by the
human and the assistive forces supplied by the robot (Fig. 1).
The challenge for a robot control in such a scenario is the
fact that human force contribution is not known and cannot
be directly measured. The exact intended human motion is
not known either. Only if robot force contribution to the
human motion task is adaptively regulated to account for the
presence of another (unknown and unmeasurable) source of
force, the motion can be performed correctly. Lower than
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Fig. 1: Humanoid-to-human physical assistance in motion.

required wouldn’t provide the necessary assistance; more
than required could engender fear, stress or deviate the
motion greatly from the way it should be correctly executed,
causing discomfort and potentially harm to the human.

We propose a control scheme for a humanoid to assist
with a priori known human motion while accounting for
human force contribution. Using a human model and sample
recordings of the motion performed by a healthy individual,
a model of a human torque control that results in correct
execution of the motion is identified (Sec. III-A). This model
is used in the proposed position discrepancy based human
torque contribution observer (Sec. III-B). An experience-
based prediction strategy allows to improve human contri-
bution estimate from trial-to-trial (Sec. III-C). The assistive
torque required to restore desirable motion task performance
is then defined as a difference between the torque required for
the correct motion execution and the estimate of the human
contribution. Finally, the target assistive torque is integrated
into a Multi-robot Quadratic Programming (MQP) controller
to compute the desired force for the robot to apply that will
result in providing required assistive torque (Sec. III-D). We
use sample recordings of non-optimal human movement to
simulate human frailty and demonstrate how the proposed
method enables humanoid to assist the human model to
restore the desired motion task performance (Sec. IV).



II. PROBLEM STATEMENT

For a common and well defined human motion task (e.g.
reaching motion, sit-to-stand transfer, physical exercise) a
sample recording of the motion executed correctly unassisted
by a healthy individual can be obtained using motion capture
system. Such recording can be used to define the desired
motion task performance. This includes the position that
human joints must reach qtask

h , as well as the speed q̇task
h

and acceleration q̈task
h of the correctly performed exercise.

The torque τ task required to perform the motion correctly is
computed using a sample personalized model of a human
body with dynamic link properties [6], [7] (eq. 1).

τ task = Mh(qtask
h )q̈task

h + Ch(qtask
h , q̇task

h ) (1)

where Mh is a human model inertia matrix and vector Ch

incorporates Coriolis, centrifugal and gravity terms.
As mentioned in the introduction, in the physical assis-

tance process, the total torque required to perform a motion
task correctly is composed of two elements: human possible
generated torque τh and the assistive torque τa provided
by the robot through physical interaction, i.e. by applying
a force from robot to human frh at a point p on a link of the
human model (eq. 2).

τ task = τh + τa = τh + JT
hpfhr (2)

where Jhp is a human body model Jacobian that maps the
forces (fhr = −frh) applied at point p into human model
joint torques.

For a frail human τh < τ task, i.e. human muscular strength
is not sufficient for achieving the motion task correctly. The
goal of the robotic assistance is to apply the contact forces
that supplement the human generated torques to achieve
desired motion task performance, i.e. such that it resembles
as closely as possible the correctly executed motion. Thus,
roughly saying, the amount of the required assistive torque
is a difference between the total torque required for a given
human model to perform the motion task correctly and the
human generated torque (eq. 3).

τa = τ task − τh (3)

The human muscle generated torque cannot be known a
priori and cannot be directly measured. The main challenge
in the assistance process is the adaptation of the robot
force contribution to the unknown and unmeasurable variable
τh. In this letter, we suggest that the robot contribution
adaptation can be achieved by observing the discrepancies
between expected and measured human motion.

In the next section, we describe how the total torque
required for the correct motion task execution, τ task, is
computed and used to identify a model of a human torque
control strategy. Then, we present the position discrepancy
based human torque contribution observer coupled with an
experience based prediction model of τh. Finally, we present
details of integration of the target assistive torque into the
MQP task-space whole-body controller for steering assistive
humanoid robot behaviour.

III. PROPOSED METHOD

A. Identifying reference task torque control model

In our proposed method, first, we identify a torque control
strategy for a personalized human model from a sample
motion recordings of a correctly executed motion task to
compute the total motion task torque, τ task. In this section,
we describe the construction of a training dataset and a torque
control strategy model identification.

The recording of a correctly executed motion task contains
a time series of the human joint angles qtask

h (t), t = 0, . . . , T ,
where T is the time when the target joint position q∗h for the
given motion task is reached. We derivate this data to obtain
respective joint velocity q̇task

h (t) and acceleration q̈task
h (t) time

series. For every acceleration time series element, the torque
required for a human model to achieve this acceleration is
computed via inverse dynamics (ID, eq. 4).

τ task(t) = Mh(qtask
h (t))q̈task

h (t) + Ch(qtask
h (t), q̇task

h (t)) (4)

In parallel, the task error e = q∗h(t) − qh(t)task is recorded
along with its integral ∫ e and derivative ė.

With this dataset, the relation between task error evolution
data and the total torque required for the motion task to be
performed correctly can be identified.

In this study, we use a neural network (NN) model for
identifying this relation (eq. 5).

τ task = NN(e, ∫ e, ė) (5)

Given the current motion task error state (e, ∫ e, ė), this
model predicts what would be the total torque if a given
human subject (represented by a personalized human model)
would execute the motion task correctly un-assisted (τa = 0).
Network structure in our study comprises 3 neurons in the
input layer, 12 neurons in a single hidden layer and a single
neuron in the output layer. Based on our experimentations
with the model fitting, such structure proved to be an optimal
compromise between the model complexity and accuracy of
the prediction.

In the next subsection, we show what role τ task plays in
the estimation of the human contribution to the motion task
τh and subsequent computation of the target assistive torque
τa required to compensate for possible human frailty. In the
Sec. IV, we demonstrate the use of eq. 5 for τ task computation
in the proposed control framework (Fig. 2).

B. Human torque contribution observer

We derive a position discrepancy based observer for es-
timation of the human torque contribution τh to the motion
task. At the very start of the interaction, we use an initial
guess of the human torque contribution estimate, τ̂ init

h , to
compute the target assistive torque τ∗a = τ task − τ̂ init

h .
As shown on Fig. 2, the target assistive torque is passed to

the multi-robot QP controller (MQP) [8]. In the latter paper,
extension of the MQP to consider a human as an additional
robot model was left as future work that we partly address
in this letter. Indeed, the MQP computes the desired robot
motion, and the force for the robot to apply at a contact
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Fig. 2: The proposed control scheme for adaptive humanoid-to-human assistance with a motion task.

point with the human model to generate τ∗a . More details on
the MQP controller are provided in Sec. III-D. Such MQP
based control of the humanoid robot results in frh force being
applied on the human link. This force is mapped to the
human joint torques via contact Jacobian Jhp (eq. 2). The
result is the assistive torque τa provided by a humanoid to
the human model joints for the motion task, in addition to
all other humanoid current tasks and constraints.

In order to observe yet unknown human contribution to
the task τh, we assume τa to be the only joint torque acting
on the human model. With this assumption in mind, we
compute an expected acceleration of the human model joints
via forward dynamics (FD, eq. 6).

q̈exp
h = M−1

h (qh)[τa − Ch(qh, q̇h)] (6)

Then, we compute respective expected velocity and posi-
tion for the following time step t+ ∆t (eq. 7-8)

q̇exp
h (t+ ∆t) = q̇h(t) +M−1

h (qh)[τa − Ch(qh, q̇h)]∆t (7)

qexp
h (t+ ∆t) = qh(t) + q̇exp

h (t+ ∆t)∆t =

= q(t) + q̇h(t)∆t+M−1
h (qh)[τa − Ch(qh, q̇h)]∆t2

(8)

After τh and τa are applied to the human model at time
t, the resulting human joint position qh(t+ ∆t) is measured
(e.g. via motion tracking). This measured quantity can be
expressed through integration of forward dynamics, this time
taking both sources of torque, τa and τh, into account (eq. 9)

qh(t+ ∆t) = qh(t) + q̇h(t)∆t+

+M−1
h (qh)[τh + τa − Ch(qh, q̇h)]∆t2

(9)

Now, the difference between the expected and measured
human model joints position is computed (eq. 10).

qh(t+ ∆t)− qexp
h (t+ ∆t) = qh(t) + q̇h(t)∆t+

+M−1
h (qh)[τa − Ch(qh, q̇h)]∆t2 − qh(t)−

− q̇h(t)∆t−M−1
h (qh)[τh + τa − Ch(qh, q̇h)]∆t2

(10)

Simplifying this equation results in (eq. 11)

qh(t+ ∆t)− qexp
h (t+ ∆t) = M−1

h (qh)τh∆t2 (11)

which allows us to write an expression for position discrep-
ancy based observer of human contribution to the motion
task τh (eq. 12)

τ obs
h =

Mh(qh)[qh(t+ ∆t)− qexp
h (t+ ∆t)]

∆t2
(12)

The computations involved in the τh observer are pre-
sented schematically in the Fig. 2.

C. Experience based human contribution prediction

The position discrepancy based observer for human con-
tribution estimation presented in Sec. III-B only produces
the estimate τ obs

h after the motion is observed, i.e. after the
human has actually applied its contribution τh. This results
in a delayed one time-step behind estimation. Assuming that
between two consecutive timesteps human contribution does
not changes significantly, i.e. |τh(t)−τh(t−1)| < δ for some
small δ, this approach for human contribution estimation is
likely to result in an overall good assistance performance of
the proposed control scheme, regardless of the estimation of
τh being delayed.



As a strategy to compensate for being one step behind in
τh observation, we propose to combine the observer with an
experience based human contribution prediction. The idea is
based on trial-to-trial learning of the human contribution.
During the very first assistance trial, as there is no data
to learn from yet, we fully rely on the τ obs

h for computing
τ∗a . After the first trial, the experience gained –namely the
observed human contribution and the task error evolution
data computed during the assistance trial, can be used to learn
the model for predicting human contribution. We suggest the
task error evolution and assistive robot force contribution to
be the features for learning such a model (eq. 13)

τ pred
h = f(e, ∫ e, ė, τa) (13)

Thus, the training dataset is of the following structure: feature
vector (e(t), ∫ e(t) dt, ė(t), τa(t)); label (τ obs

h (t+ ∆t)).
During the next assistance trial (with the same human

subject and for the same motion task), besides relying only
on the observed human contribution τ obs

h , we can also make
use of the ability to predict τ pred

h and anticipate what the
human contribution is likely to be at the upcoming time
step based on the model learned from previous assistance
experiences.

The final τh estimate is then computed as a weighted sum
of two terms: one from observer and one from prediction
(eq. 14)

τ̂fin
h = Wocτ

obs
h +Wpcτ

pred
h (14)

where Woc is the diagonal matrix of observer confidence
weights and Wpc is that of the prediction confidence weights
that satisfy (eq. 15).

Woc = 1−Wpc (15)

1 is the identity matrix. The prediction confidence weight
Wpc is updated online based on the evaluation of the human
contribution prediction model test error. After each time-
step, the difference between predicted human contribution
and the one observed will inform the system how accurate
the experience based prediction model is (eq. 16).

Etest = |τ pred
h (t)− τ obs

h (t+ ∆t)| (16)

If the test error Etest is big, it is a sign that actual human
contribution is significantly different from what was learned
from previous experiences (e.g. the human is recovering and
thus can contribute more than in the previous trials). In this
case, the Wpc is decreased. If the prediction matches closely
the observed τ obs

h , the Wpc is increased.
After every assistance trial, the data gathered during

the process can be added to the training set and used to
retrain and improve the experience base human contribution
prediction model. If human performance does not improve
or degrade significantly from one trial to another, with every
new assistance trial such a model becomes an increasingly
more reliable source of human contribution estimation.

A supplementary benefit of iteratively and continuously
training an experience based human contribution prediction
model, is the ability to evaluate the human performance

during the assistance trial and report the progress compared
to the previous assistance experience. If human performance
does improve or degrade significantly, this change in human
performance can be detected by monitoring the magnitude
and sign of the prediction error Etest recorded during the
assistance process. For instance, if the observed human
contribution is systematically higher than predicted one, it
can be detected using the proposed system and subsequently
reported that the human is recovering from frailty.

D. Force control for human assistance via MQP

In the previous sections, we explained the strategies for
computing τ task and estimating τh. With these quantities, we
can compute the target amount of assistive torque (eq. 17).

if |τ̂fin
h | < |τtask|: τ∗a = τ task − τ̂fin

h ; else: τ∗a = 0 (17)

In this section, we explain how this value is used in the MQP
to compute the amount of required interaction contact force
for humanoid-to-human physical assistance.

Both humanoid and personalized human models are in-
cluded in the MQP formulation with all related typical MQP
constraints and objectives (eq. 18)

min
q̈,f

Pr +Or +Mr + Cr + Ph (18a)

s. t.


joint position/velocity/torque limits
(self-)collision avoidance
fixed environment contacts
friction cone limits

(18b)
(18c)
(18d)
(18e)

where Pr and Ph are robot and human model posture tasks
respectively, Or is robot head orientation task, Mr is robot
mobile base position task, Cr is robot CoM task, q̈ and f
are MQP decision variables accelerations of the joints of
the models and interaction contact forces. A set of contact
constraints between two models is defined. The contact point
locations can be planned in advance [3].

The feasibility of the physical interaction is ensured by
including a combined robot-human equation of motion as a
dynamics constraint in MQP, where robot-human interaction
forces Frh are part of the QP decision variables f (eq. 19)(

Mh(qh) 0
0 Mr(qr)

)
q̈ +

(
Ch(qh, q̇h) 0

0 Cr(qr, q̇r)

)
=

= Sτ +

(
JT

eh 0
0 JT

er

)
Fe +

(
JT

rh 0
0 −JT

hr

)
Frh

(19)

Here q = (qh, qr), τ = (τh, τr), Fe = (Feh, Fer), and
Feh, Frh, Fer are stacked vectors of environment-human,
robot-human and environment-robot exerted forces respec-
tively. For instance, for K environment-human contacts
Feh ∈ R6K , with corresponding Jacobians stacked into
Jeh ∈ R6K×dh , where dh is number of DoF in the human
body model. Selection matrix S indicates actuated DoFs.

For the presentation clarity, consider here a single contact
between humanoid and human p (e.g. as in Fig. 1) where



robot applies a force frh, which is represented by a geometric
contact constraint in MQP (eq. 20)

Jrpq̇r = Jhpq̇h (20)

where Jrp in a robot model link body Jacobian at the contact
point p and Jhp is a corresponding body Jacobian at a
contact point on a human model. For more details on MQP
implementation please refer to [9], [8].

With τ∗a computed, we know what is the human model
torque that the robot needs to generate through Frh applica-
tion. Therefore, we can incorporate this assistance require-
ment into MQP as a constraint (eq. 21).

τa = −JT
hpfrh (21)

However, considering many other constraints (such as
robot joint position or torque limits), it might be unfeasible
for a robot to satisfy (eq. 21) as a strict constraint. Alter-
natively, the target assistive torque can be incorporated into
MPQ objective function (eq. 22).

||τa + JT
hpfrh|| (22)

The amount of assistive force will be computed by the
MQP solver along with desired robot motion that satisfy all
MQP constraints.

In order for a position controlled robot to realize the
desired assistive force frh, the admittance task is additionally
included in the MQP. This task takes the difference between
desired force and force sensor readings and outputs the
desired end-effector velocity to minimize this difference,
see [8] for more details.

In the following section, we present and discuss the
simulation experimental results of the proposed force control
method in a sample assistive scenario in a rehabilitation
exercise use case.

IV. EXPERIMENTAL RESULTS

A. Data description

In this study, we use a rehabilitation exercise as a sample
human motion task that requires robotic assistance. We
use the data set of human body movements for physical
rehabilitation exercises [10] [11] that contains recordings of
both correct or optimal task execution as well as non-optimal
movement examples that we use to simulate human frailty
and study how our proposed method compensates for it.

We validate the performance of our proposed control
scheme in simulation using the human motion recordings
of the shoulder scaption rehabilitation exercise 1. The goal
of this exercise is for a human subject to raise one arm in
front of the chest until reaching the shoulders height, while
other joints remain static (the parts of such human motion
assisted by the robot are illustrated in Figs. 1 and 4).

For the study of the humanoid-to-human assistance pro-
cess we use the motion recordings of a correctly executed

1Due to the ongoing COVID-19 pandemic situation, it was not possible
to realize the real experiments and new data set collection. We hope to be
able to resume initially envisioned experimental activities as soon as sanitary
conditions allow it.

rehabilitation exercise as a reference motion (optimal/desired
performance of the motion task). The non-optimal movement
recordings, available in the same data set [10], are used to
simulate human model frailty.

From the whole-body motion recordings, we extract the
right shoulder joint position around the Y axis (indicated by
the green axis arrow in Fig. 4); it is the primary joint involved
in the exercise. The other joint of the human model are kept
at a fixed position in our study and only assistance supplied
to the shoulder Y joint is focused on. The human model is
configured to be in the sitting position to enable the Pepper
robot to reach the right forearm human model surface and
maintain the contact as the human arm is moving upwards
during the shoulder scaption exercise.

Using the sample human model, we compute the torques
required to follow the recorded motion using ID (eq. 1).
Fig. 3 shows the sample motion recording data used for
validation of our proposed approach.

Fig. 3: The correctly performed shoulder scaption (green),
non-optimal performance of the same exercise (red). Position
and torque plots for the right shoulder joint around Y axis.

The top plot of the above figure demonstrates that, com-
pared to the correctly performed exercise, during the non-
optimal motion recording the human subject failed to reach
the shoulders height level. The bottom plot shows that the
range of torques for the non-optimal motion recording is
indeed narrower compared to the correct motion. Therefore,
this sample data of the non-optimal motion is suitable for our
goal of simulating the lack of human joint torque (frailty) to
achieve the desired performance of the motion exercise.

B. Computing torques required for the task

We use a single sample correctly executed exercise motion
recording, to identify the task torque control model as
described in Sec. III-A. Fig. 5 shows the performance of the
NN model in computing task torque from the information of
the task error evolution.

Using the NN model, it is possible to compute a task
torque that matches closely the reference torque computed
from the correct motion recording sample and a personalized
human model.

C. Estimated human contribution

Now that the model to compute the τ task is obtained, we
study the performance of the proposed human contribution
observer τ obs

h . At this point, we consider that no previous



Fig. 4: MQP controller scenes of the interaction wrench and robot motion computation for assistance under pHRI constraints.

Fig. 5: Identified model of the task torque.

assistance trials took place, therefore no human contribution
models yet exists. That means: τ pred

h = NA;Wpc = 0;Woc =
1; τfin

h = τ obs
h ). Fig. 6 shows the observed and true value

(unknown to controller) of the human torque contribution.
Assuming that the position and velocity of the human

model joints (qh(0), q̇h(0)) are measured before the start of
the assistance process, the model based value is used as the
initial guess of human contribution estimate (eq. 23).

τ̂ init
h = Ch(qh(0), q̇h(0)) (23)

The observed human contribution data, collected in the
previous (first) assistance trial, excluding the initial guess,
is used to train the experience based human contribution
prediction model as explained in Sec. III-C. Starting from
the second assistance trial, this model is used in combina-
tion with the observer to improve the final human torque
contribution estimate. Fig. 6 shows that the initial guess of
the human contribution is improved significantly using the
experience based prediction model. This plot also shows that
the human torque contribution magnitude starts to exceed the
task torque magnitude after about 0.44 s of the assistance
process. After this point, according to eq. 17, the human
contribution to the task alone is considered to be sufficient
to achieve the desired performance, the robot is thus moving
along with the human, but is not required to generate an
assistive wrench.

D. Assisted motion

With τ task and τfin
h computed, the assistive torque τa

can be computed (eq. 3). As described in Sec. III-D, the

Fig. 6: Estimated human contribution.

human model state and the required amount of the assistive
torque are integrated into the MQP controller (eq. 21). The
latter computes the interaction wrenches and robot motion
that are necessary to perform the assistance process while
satisfying the human model-, robot- and contact constraints
and minimizing the MQP objective function (eq. 18).

The MQP computed assistive robot-human wrench for
the first assistance trial (with no prediction of the human
contribution) is shown in Fig. 7. The same computation
results for the second assistance trial (with prediction of
the human contribution) are shown in Fig. 8. The MQP
controller scenes during the wrench computation process at
different times of the rehabilitation exercise are shown in
Fig. 4. In Fig. 6, it is shown how the use of the predictive
model helps to significantly improve the initial guess of
the human contribution. This in turn results in lower τa
being computed at the very start of the interaction, and
consequently lower interaction forces being computed by
MQP (Fig. 8). This results in lower (and closer to the
reference motion) human joint acceleration at the start of
the assistance process (Fig. 10).

The MQP computed wrench is applied to the human
model forearm link in pybullet [12] simulation along with the
simulated insufficient human torque contribution, the result
is the improved motion performance shown in Figs. 9 and 10.
These plots demonstrate that, supplied assistive wrench helps
to achieve motion performance that is closer to the reference



Fig. 7: MQP computed assistive wrench.

Fig. 8: MQP assistive wrench with experience based human
contribution prediction.

Fig. 9: Joint position during correct motion, non-assisted
non-optimal motion and non-optimal assisted motion.

Fig. 10: Joint velocity and acceleration during correct mo-
tion, non-assisted non-optimal motion and non-optimal as-
sisted motion.

motion of a correctly executed rehabilitation exercise.

E. Discussion, limitations, related and future work

The proposed humanoid-to-human physical assistance
method and the presented simulation results assume perfect
knowledge of the human model links dynamic parameters.
The human state, namely position and velocity, is also
assumed to be measurable at every time-step. Finally, in
the presentation of the simulation results, it is assumed that
the assisting robot can instantly apply the desired assistive
wrench frh, as computed by the MQP, to generate the
required assistive torque τa at the human model joint.

In reality, however, the dynamic link properties of a human
model can only be approximately known via appropriate es-
timation [13], [7]. As the human torque contribution observer
and the MQP parts of the proposed method heavily rely on
the human model knowledge, their performance will degrade
if the human model knowledge is highly inaccurate. External
interaction forces of the human are computed from the MQP,
being a decision variable. However, they can be better guided
from the knowledge of the human dynamic parameters
estimation [13] and the knowledge of joint accelerations
obtained from external sensors as in [14] that can be replaced
by the human tracking from vision as in [15]

A study of the effects that the human model inaccuracies
have on the performance of the overall proposed assistive
pHRI system in terms of quality of the motion task perfor-
mance recovery can be done using the tools developed in
this work2. The proposed framework can then be enhanced
with robust mechanisms to better deal with human model
uncertainties. The same applies for the future study of
the influence of the human state measurement noise and
potential errors on the performance of the proposed method
for humanoid-to-human physical assistance with a known
motion task.

One promising method to investigate for making the
proposed framework more robust could be the domain ran-
domization technique [16], [17]. The proposed method could
be extended with an iterative reinforcement learning of the
optimal assistive strategy while different variations of the
human model are being tested against the method to help
with better transfer of the efficient assistive strategy from
simulation to real experiments.

In order for the position controlled Pepper robot to realize
the assistive wrench, a closed-loop admittance task based
system needs to be implemented as part of the interaction
MQP controller. This would require a real-time wrench
sensing solution to be implemented on the robot, either as
an additional sensor, or more preferably as a proprioceptive
sensor-based estimator [18], [19]. A study of the effect of
wrench application delays can be done as a future work to
make the proposed system robust against such effect.

Last, but not least, once the method is safely transferred
from studies in simulation to the real experiments, the user
studies must be conducted to evaluate how the proposed
robotic assistance is perceived by the real human user and

2The developed software tools to be made publicly available upon final
publication submission



answer such important questions as: (i) does the interaction
process feel safe and intuitive?, (ii) does the assistance pro-
vided by the robot feel useful? etc. Additionally, the benefits
of using a humanoid robot technology in such physical assis-
tance context can be investigated in such user studies. The
simpler robots specifically designed for the task of human
assistance during rehabilitation might be used in such context
more straightforwardly [20], [21]. Nevertheless, the use of
the humanoid technology can allow the developers to provide
a more user-friendly pHRI experience through the use of
additional Pepper humanoid features, such as verbal, visual
and body language communication [22]. Besides providing
just the physical assistance, a more interactive robot with a
humanoid form can also provide encouragement for better
exercise performance via communication channels familiar
to the human users [23], [24].

V. CONCLUSION

In this letter, we studied humanoid-to-human physical as-
sistance with a known motion task. An adaptive force control
framework has been proposed for a humanoid robot to supply
the required assistance. The proposed method consists of
several interacting components, explained in detail. First
component is the model for computing total human joint
torque required to achieve desired motion task performance,
trained on a sample data of the motion being performed
by a healthy individual. Second component, is the observer
of the actual and potentially insufficient human contribution
to the task. The third component is the experience based
human task contribution model training. The final component
is the multi-robot whole-body humanoid control framework
that computes the robot motion and the amount of assistive
wrench to apply on the human model to generate the required
amount of the assistive torque. We exemplify and discuss the
performance of the proposed method on a sample humanoid-
to-human assistance with a rehabilitation exercise, using
the data of a human subject performing the exercise in a
non-optimal way. Discussion of the proposed method, its
limitations and future axes of research and development for
the proposed method amelioration were discussed.
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