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1. Introduction

Estimation of the kinematics of the natural or pros-
thetic knee joint from skin markers is challenging due
to soft tissue artefact (Camomilla et al. 2017). A solu-
tion can be to perform a multibody kinematics opti-
misation but the model-derived kinematics is very
sensitive to the kinematic constraints. Subject-specific
kinematic constraints based on contact point trajecto-
ries (obtained by a series of static biplane X-rays on
healthy subjects) have been recently implemented in a
musculoskeletal model (Zeighami et al. 2018). Such
constraints based on fluoroscopic data have never
been obtained nor assessed yet.

The objective of this study is to evaluate subject-
specific kinematic constraints obtained by fluoroscopy
on patients with a total knee prosthesis.

2. Methods

2.1. Experimental data

Skin marker data from the Grand Challenge
Competition to Predict in vivo Knee Loads (Fregly et al.
2012) are analysed to evaluate the knee prosthesis kine-
matics and slip velocities during level walking.

For one patient (JW), the contact point trajectories
derive from a contact model driven by fluoroscopy-
based kinematics (i.e., monoplane measurements at
foot strike and foot-off of treadmill gait) (Zhao et al.
2007). For the three other patients (DM, SC, and PS),
the contact point trajectories are directly measured by
biplane fluoroscopy during lunge (Varadarajan et al.
2008). The four contact point trajectories (i.e., on med-
ial and lateral condyles and plateaus) are interpolated

by third-order polynomial functions of the knee flexion
to be applied to any other motion task.

2.2. Multibody kinematics optimisation

Joint kinematics during gait is estimated by multibody
kinematics optimisation, formulated as:

min
Qi

f ¼ 1
2

Umð ÞTUm subject to Uk

Ur

� �
¼ 0:

The lower limb model is parameterised with natural
coordinatesQi (i.e., i¼ 1, 2, 3, 4 for foot, shank, thigh, and
pelvis, respectively) (Dumas and Ch�eze 2007). Objective
function f, driving constraints Um, kinematic constraints
Uk, and rigid body constraints Ur are detailed in Duprey
et al. (2010). Explicitly, the kinematic constraints stand for
a universal joint at the ankle, the superimposition of the
medial and lateral contact points of tibia and femur at
the knee, and a spherical joint at the hip. The positions of
the contact points embedded in the shank and thigh seg-
ments are prescribed as a function of the knee flexion
angle h. These positions are obtained in the inertial coord-
inate system using an interpolation matrix (Dumas and
Ch�eze 2007) as, for example, for the jth virtual marker
(here a contact point) of the ith segment:

rVj
i
¼ N

Vj
i

i Qi:

Therefore, the kinematic constraints, set equal to
zero, for the medial contact point (i.e., 1rst virtual
marker in shank and thigh segments) are

U ¼ N
V1
2

2 Q2 �N
V1
3

3 Q3:

Interestingly, the slip velocity s at medial contact
and, similarly, the slip velocity at lateral contact is dir-
ectly obtained by differentiating this relation (i.e., with
N
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2

2 and N
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3

3 depending on the knee flexion angle h):
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3. Results and discussion

3.1. Prosthesis kinematics

Subject-specific knee kinematics demonstrates high
inter-subject variability, typically in internal-external
rotation and anterior-posterior displacement (Figure 1).
Patient SC presents an exaggerated internal rotation.
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Nevertheless, the prostheses generally exhibit internal
rotation and anterior displacement (of small amplitudes)
coupled with flexion.

This seems consistent with the prosthesis design
(i.e., standard congruent tibial insert and posterior
cruciate-retaining femoral component) whose motion
attempts to mimic the natural knee kinematics.

3.2. Contact velocities

For all patients, the mean slip velocities at medial and
lateral contacts are similar and present four peaks, the
two mains occurring at pre-swing and terminal swing
(Figure 2). Patient JW has a different prosthesis
design and shows higher velocities (i.e., up to

Figure 1. Estimated knee prosthesis kinematics.

Figure 2. Estimated slip velocities.
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220mm/s). These slip velocity profiles reveal a rolling
and pivoting motion with slipping in both
compartments.

In the literature, for comparable posterior cruciate-
retaining prostheses, medial and lateral slip velocities
were reported reaching 300mm/s during stance and
500mm/s during swing (Andriacchi et al. 2003). These
slip velocities were estimated from skin markers with-
out any kinematic constraints but with adjustments to
ensure contact between the CT-scan models of the
patients. The resulting prosthesis kinematics were simi-
lar to Figure 1. Using an equivalent natural knee kine-
matics and geometrical considerations (i.e., radius of
curvature), medial and lateral maximal slip velocities
during stance were estimated at 82mm/s and 45mm/s,
respectively (Nerkowski 1997). In the present study, it
is possible that the interpolation of the contact point
trajectories by polynomial functions results in
smoothed slip velocities. Moreover, for three patients,
these trajectories are obtained during lunge and may be
somewhat different during gait.

4. Conclusions

Subject-specific kinematic constraints based on con-
tact point trajectories obtained by fluoroscopy have
the potential to estimate representative knee joint
kinematics and contact velocity which are important
for patient diagnosis and follow-up, as well as for
prosthesis design and evaluation.
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