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Abstract—Indoor localization can be based on a matrix
of pairwise distances between nodes to localize and ref-
erence nodes. This matrix is usually not complete, and
its completion is subject to distance estimation errors as
well as to the noise resulting from received signal strength
indicator measurements. In this paper, we propose to use
convolutional neural networks in order to denoise the
completed matrix. A trilateration process is then applied on
the recovered euclidean distance matrix (EDM) to locate
an unknown node. This proposed approach is tested on
a simulated environment, using a real propagation model
based on measurements, and compared with the classi-
cal matrix completion approach, based on the adaptive
moment estimation method, combined with trilateration.
The simulation results show that our system outperforms
the classical schemes in terms of EDM recovery and
localization accuracy.

Index Terms—Convolutional Neural Networks (CNN);
Indoor localization; Matrix completion; Received Signal
Strength Indicator (RSSI); Trilateration.

I. INTRODUCTION

Technological advances provide several location based
services (LBS) applications. More recently and with the
appearance of connected objects, the location informa-
tion has aroused more interest in order to allow optimal
use of the environmental measurements, reported by var-
ious deployed objects. Therefore, localization techniques
will have an important role in such applications and can
be integrated into the infrastructure or the object itself
[1].

The common approaches of obtaining localization
information are based on global navigation satellite sys-
tems (GNSSs), especially the global positioning system
(GPS). However, these solutions are not appropriate for
indoor environments, where obstacles such as walls and
ceilings block the satellites signals. Alternatively, the
propagation parameters associated with wireless com-
munication systems can be exploited. Namely, the angle
of arrival (AoA) [2], time of arrival (ToA) [3], time
difference of arrival (TDoA) [4], channel state infor-
mation (CSI) [5] and received signal strength indicator
(RSSI) [6]. Due to its simplicity, RSSI is the most
commonly used parameter in indoor localization, as it
does not require additional hardware for time or phase
synchronization and can be easily acquired. The existing
methods based on RSSI can be classified into two

categories; solutions based on fingerprinting [7], [8] and
others based on trilateration [9].

In trilateration, a node can localize itself relying on
the signals detected from three reference nodes (RNs)
at least. The measured RSSI value are converted to
pairwise distances using the propagation models between
the nodes. For multiple-node localization, the Euclidean
distance matrix (EDM) is constructed from the pairwise
distances between the nodes to be localized and the RNs
placed at known positions. However, because of the lim-
itation of signal range and power outage of sensor nodes,
only a small number of pairwise distances are available.
Thus, there might not be enough distance information to
accurately localize all the unknown nodes. To overcome
this problem, several matrix completion approaches have
been proposed [10] [11] in order to complete the missing
data. In our previous work [12], a matrix completion
process is formulated as an optimization problem, which
is solved by gradient descent and its variants. On the
other hand, the accuracy of the RSSI measurements are
influenced by the wireless channel conditions such as
multi-path reflections, pathloss and fading. As a result,
the known parameters of the EDM are noisy, and this
noise will be enhanced during the completion process
leading to reduced localization accuracy. To overcome
this problem, we propose performing denoising on the
completed EDM. Thus, a module ensuring correction of
the completed matrix, to be used for localization, can
be added after the traditional matrix completion module.
Once the EDM is completed and corrected, localization
takes place.

In this paper, convolutional neural networks (CNN)
based denoising approach is proposed. Thus, we apply
CNN on pairwise distance matrices determined from
multiple RSSI measurements in order to minimize both
the measurements noise and the estimation error of noisy
completed measurements for indoor localization tasks.
CNNs are a class of neural networks (NNs) that reduce
the complexity of traditional networks and the number of
parameters to learn by its weight sharing structure. It also
brings better generalization and robustness. Due to the
translational invariance of CNN, it can be used to model
temporal correlations which coincide with the temporal
dependency of RSSI fingerprints and consequently the



derived pairwise distances. An extension of this work
has been published in [13] using advanced completion
schemes.

The remainder of this paper is organized as follows:
In Section II, the algorithm is presented and each step of
the developed localization framework is explained. Sec-
tion III-A describes the background of CNN including
main concepts and different aspects. Simulation results
are presented and discussed in Section IV. Finally, the
conclusion is presented in Section V.

II. SYSTEM MODEL

We consider a set of sensor nodes including N un-
known nodes placed at unknown positions and M RNs
with known positions, as illustrated in Fig. 1. Each
sensor node collects T successive RSSI measurements
received from all other sensors (RN and the other un-
known nodes) in the considered area. Collecting multiple
RSSI measurements at each position helps to minimize
temporal RSSI fluctuations caused by the shadowing and
fading effects. All these measurements are sent to a
central unit that ensures the preprocessing of data. Then,
the central unit localizes a cloud of unknown nodes
and send them their predicted coordinates periodically
or only when requested.

A. Data preprocessing

The central unit arranges the measured RSSI mea-
surements in form of T RSSI matrices, each of size
(N +M)× (N +M). The pairwise distances between
each pair of sensor nodes are then computed using
a pathloss propagation model. Afterwards, the EDMs
containing the available observed distance information
D(t) ∈ R+(N+M)×(N+M), t = 0, · · · , T − 1 are built.
As shown in Fig. 1, the entries of D(t) are organized in
the form

D(t) =

[
D

(t)
11 D

(t)
12

D
(t)
21 D

(t)
22

]
, (1)

where D
(t)
12 = D

(t)T
21 ∈ R+M×N , D

(t)
11 ∈ R+N×N ,

and D
(t)
22 ∈ R+M×M represents the distances between

the unknown nodes and RNs, the distances between
unknown nodes, and the distances between the RNs,
receptively. Note that, D(t)

22 is exactly known, whereas
D

(t)
12 and D

(t)
11 are computed based on the RSSI values,

and thus, they include noisy and missing entries. Note
that, using the information in D

(t)
11 brings more distance

information than relying only on D
(t)
12 . Once the whole

matrix is completed, we use only the sub matrices
{D(t)

12 } for denoising and to perform localization. This is
because trilatertaion requires only the pairwise distances
between the unknown node and the RNs as well as the
coordinates of the RNs.

B. EDM completion

This step targets completing the missing elements of
D(t) from a small number of known and noisy entries.
This problem is formulated as an optimization problem
solved by the adaptative moment estimation (ADAM)
[14] advanced method. More details on the algorithms
are presented in our previous work [12]. However, even
if recovered, the EDM is still damaged by measurements
noise and prediction errors. Hence, the idea in this paper
is to integrate a denoising process to minimize the effect
of noise on the estimated EDM in order to improve
the localization accuracy. The denoising approach is
discussed in Section III.

C. Target Localization based on Trilateration

The trilateration technique [9] is based on a combina-
tion of pairwise distances between the unknown nodes
and the RNs. To perform trilateration, at least three
RNs have to be detected by the target. The distance
information are represented in the matrix D̂12, which
is obtained after the denoising. Let

d̂2m,n = D̂12[n,m] = (xm − x̂n)2 + (ym − ŷn)2

p2m = x2m + y2m,
(2)

where (x̂n, ŷn), n = 1 · · ·N and (xm, ym), m =
1 · · ·M are the estimated coordinates of the unknown
node and the RNs, respectively. The coordinates of the
n-th unknown node, ĉn = [x̂n, ŷn]

T , are estimated using

ĉn = (ETE)−1ETan. (3)

Here, an ∈ RM−1×1, E ∈ RM−1×2 defined as

an[m] =
1

2

(
p2m+1 − p21 − d̂2m+1,n + d̂21,n

)
E[m, :] = [xm+1 − x1 ym+1 − y1] .

(4)

III. PROPOSED DENOISING PROCESS AND
ESTIMATION ERROR MINIMIZATION USING CNN

In this section, we aim to exploit CNN tool to reduce
the effect of noise on the distance parameters of {D(t)

12 },
which are used in the trilatertaion step. First, given a set
of completed distance matrices considered for training,
features are extracted to build a model that predicts the
corresponding real distance based on all the others. Once
trained, we verify if the model works well or not using
validation data. Thus, we use the trained model to predict
the real distance and we compare the prediction to the
real distance.

The matrices {D(t)
12 } are reorganized in a matrix D

of size T ×MN , such that

D[t, :] = vec
{
D

(t)
12

}
, (5)

where vec {·} is the vectorization operation, and D[t, :]
is the t-th row of D. This matrix is forwarded to the
CNN column-wise, as depicted in Fig. 2. Note that each



Fig. 1: System model.

Fig. 2: Structure of CNN at the training phase for noise
minimization on distance information.

column of D represents T successive distances between
a given unknown node and a given RN.

Then, we train the CNN model in order to construct
the best architecture which allows a good denoised
distance prediction which is very close to the expected
real distance. Once trained, we give as input the com-
pleted distances corresponding to a node to localize and
we receive as output the estimated corresponding real

distance.

A. Deep CNN architecture overview

The structure of CNN designed for minimization of
error estimation on noisy distance measurements con-
sists of specialized layers ensuring different functions.
It consists of convolutional layers followed by one or
more fully-connected layers. The detailed role of each
layer of the denoising module is explained in Fig. 3.
There are two phases in the proposed CNN model:
offline training, in which the CNN model compares
the prediction and the true real distance, and online
error minimization. Distance matrices are constructed at

Fig. 3: CNN architecture.

every unknown node presenting the inputs of our CNN
network. To which, we apply filters initialized randomly



of given dimension to extract their characteristics. The
convolution operation consists of sliding filters accross
the input. Each convolutional output will be sent to the
rectified linear unit (ReLU) activation function which
replaces negative values with 0. It is given by

gReLU =

{
v if v > 0

0 otherwise
, (6)

where v denotes the outputs of the convolutional layer.
After the convolution, comes the pooling layer which
allows a spatial reduction which sub-samples the outputs
of the previous convolutional layer to reduce the size of
the data and lighten the calculation. A common pooling
operation is performed dividing the input of the layer
into regions called windows and computing the average
(average pooling) or the maximum (max pooling) of
each region values. When we work with small matrices
and want to learn all the features, the pooling layer can
be eliminated. After a feature extraction module which
can contain several layers of convolution and pooling,
comes the fully connected layers which are responsible
for determining the predicted denoised corresponding
real distance.

IV. SIMULATION RESULTS AND DISCUSSIONS

In this section, we evaluate our system and we present
different obtained simulation results.

A. Evaluation metrics

The performance of our developed system is evaluated
in terms of distance matrix reconstruction error and
localization accuracy. Thus, we define the following two
metrics.

• Distances recovery: it measures the error in estimat-
ing the distance, and it is given by

MSEdis =
E
[
‖D12 − D̂12‖2F

]
NM

, (7)

where D12 and D̂12 denote the exact and estimated
pairwise distances between the unknown nodes and
the RNs, respectively, and ‖ · ‖F refers to the
Frobenius norm.

• Localization accuracy: it measures the average error
in the coordinate estimation such that

MSEloc =
1

N

N∑
n=1

E
[
‖cn − ĉn‖22

]
, (8)

where cn and ĉn are the exact and estimate coor-
dinates at n-th node.

B. Environmental setup and hyper parameters settings

We consider a set of sensor nodes placed randomly
in the studied environment of 400 m2. These nodes
include M = 10 RNs and N nodes placed at unknown
positions as illustrated in Fig. 4. Two scenarios are
evaluated, in the first N = 25 and N = 50 in the
second scenario. The number of measurements used for
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Fig. 4: Configuration of the wireless sensor network.
Here, the first scenario, N = 25, is shown.

localization is set to T = 10 such that, T RSSI values
are collected at each position (reference positions and
unknown positions). Let Prij , i 6= j be the RSSI value
corresponding to the signal received from node j at node
i, with i, j ∈ {1, · · · ,M +N}, which is given by

Prij = Pt − PLij +Bσ [dBm]. (9)

Here, Bσ is a Gaussian random variable that represents
the shadowing effects, Pt is the transmitted power by
a sensor node and PLij

is the pathloss measurement
calculated using the following equation:

PLij
= PL0

+ 20 log10(f) + 10µ log10(
dij
d0

), (10)

where PL0 is the pathloss value at a reference distance
d0, f is the frequency, µ is the pathloss exponent and dij
is the distance between sensor node i and sensor node
j. In this paper, we use realistic propagation parameters
from measurements conducted in our laboratory, which
have been verified and validated; Pt = 20 dBm, d0 = 1
m, f = 2.4 GHz and µ = 3.23. The results are ob-
tained when working in a noisy environment considering
E [Bσ]

2
= 2.

After completing the distance matrix, we organize the
set of CNN inputs: 80% from data for training and the
remaining 20% for validation. Our experiments were
conducted on a PC with Intel(R) Core(TM) i5-2520M
CPU @2.5 GHz. MATLAB R2019b has an advanced
Neural Network Toolbox. It is a very efficient framework
for us to implement our CNN models.



The optimization of CNN parameters and the choice
of the best trained architecture are the most important
steps in CNN’s construction and deployment trying to
satisfy a good trade-off between the obtained localization
accuracy and the online computational complexity. This
choice is based on an empirical process requiring several
experiments. For both studied scenarios, we have tried
different numbers of convolutional and fully connected
layers in order to select the best architectures. In our
case, we eliminate the pooling layers because we work
with small size matrices and we want to save the whole
distance information. This choice was verified by simu-
lations. The CNN architecture chosen for both scenarios
are summarized in Table I. The terms conv(p, q) denotes
a convolutional layer presenting p filters of size (q, q)
and FC(z) referees to a fully-connected layer with z
neurons. We consider the whole training data for each
optimization step. We use 0.005 as learning rate and 250
epochs during the training process.

TABLE I: Details of the trained networks.

CNN architecture for the first scenario (N = 25)

conv(30, 3), conv(10, 2), conv(20, 2), FC(20)

CNN architecture for the second scenario (N = 50)

conv(50, 2), conv(10, 2), FC(20)

C. Distances recovery performance
As first step, we begin by investigating the perfor-

mance in terms of distance matrix recovery when only
using a completion matrix and then when adding the
proposed denoising process to completed distances. The
different results are shown in Table II. It can be noticed
that the best reconstruction accuracy is obtained when
correcting distances is based on a CNN model. Instead of
having 14.59 m or 10.09 m as matrix recovery error, the
deployment of CNN improves the precision of distances
prediction by 2.92 m and 1.84 m for the first and sec-
ond scenario, respectively. Such results demonstrate and
prove the benefits of the integration of such denoising
process in order to accurately estimate distances. As an
indication of the complexity, the CNN-based denoising
step requires only 1.67× 10−4 of the whole localization
process considering a cloud of 25 unknown sensor nodes.

TABLE II: RMSE Distance recovery [meters].

First scenario Second scenario
Without denoising 14.592 10.095

With denoising 11.678 8.256

D. Localization accuracy
In this part, we evaluate our proposed localization

scheme (denoted as method 3) and compare it with the

classical trilateration (denoted as method 1) as well as
with the classic approach of matrix completion based
localization (denoted as method 2). Thus, we compare
the localization accuracy of three possible methods,
namely

1. Classic trilateration using only the available ob-
served distances between the unknown node and
the detected RNs without any distance completion
or denoising .

2. Trilateration after matrix completion only, i.e. with-
out denoising.

3. Trilateration after matrix completion and CNN de-
noising process, which is the subject of this work.

A summary of the performance is given in Table III
for both scenarios. It is clear that relaying on available
measurements only achieves the worse localization ac-
curacy compared to the other two methods that involve
completion. In this case, the mean error is about 4.7 m
for both scenarios. When using the matrix completion,
the localization error is reduced by 25%, with 1.22 m
for the first and 1.11 m for the second scenario. More-
over, the denoising with CNN correction process further
reduces this error to 0.5 m, which is about 10% of the
error of the first method. This validates experimentally
the gain of using completion and distances correction.
On the other hand, this process gives the opportunity to
localize all unknown nodes even when less than three
RNs are detected unlike the classic trilateration.

TABLE III: Localization accuracy [meters].

First scenario Second scenario
Method 1 4.741 4.791

Method 2 1.2269 1.11

Method 3 0.555 0.537

The cumulative distribution function (CDF) of the
localization error which is given by

CDF(x) = P (errorloc ≤ x), (11)

is shown in Fig. 6 for the first scenario, whereas Fig. 5
shows the CDF corresponding to the second scenario.
Where errorloc is the localization error.

For the first scenario, our developed system based on
distance matrix completion and correction can ensure
a localization error less than 0.37 m for 50% of un-
known positions, outperforming the classical trilateration
and trilateration with matrix completion having 3.8 m
and 0.96 m, respectively. Also, we notice that 80%
of unknown positions have a localization error less
than 0.81 m, outperforming the classical trilateration
and trilateration combined with completion reaching this
error at 40% and 21% of unknown nodes, respectively.
Therefore, integrating a denoising process of completed
distances greatly improves the performance of trilatera-
tion.
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Fig. 5: The CDF corresponding to scenario 1 when using
10 RN and 25 unknown nodes with sigma shadowing
equal to 2.
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Fig. 6: The CDF corresponding to scenario 2 when using
10 RN and 50 unknown nodes with sigma shadowing
equal to 2.

V. CONCLUSION

In this paper, we have presented a distance matrix
completion combined with a minimization error process,
based on convolutional neural networks (CNN), for in-
door localization. To perform localization, we introduce
the trilateration technique exploring all completed and
corrected pairwise distances between nodes to localize
and reference nodes (RNs). To validate the proposed
system, different simulations were carried out in a noisy
environment. Obtained results indicate that trilateration
combined with distance matrix completion and correc-
tion outperforms both the classic trilateration and the
trilateration combined with traditional matrix comple-
tion, in terms of localization accuracy. We have also
shown that the combination of matrix completion and
the minimization error process improves significantly
the accuracy of distance matrix recovery compared to
the traditional matrix completion. To validate the merits

of the proposed localization scheme, we intend to do
real experiments in order to support simulation results
in future work.
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