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Abstract The classical aeroelastic scaling theory used

to design scaled models is based on the assumption that

complete flow similarity exists between the full aircraft

and the scaled model. When this condition is satis-

fied, the scaling problem of the model can be treated

as a structural design problem only, where the scaled

aerodynamic shape is preserved. If, on the other hand,

this hypothesis no longer holds—if the scaled model

is constrained to fly at low speed and low altitude,

for example—and both the aerodynamic shape and the

flexibility of the structure are exactly scaled, then the

static response exhibits significant discrepancies in the

aerodynamic loads and structural displacement. To de-

sign a flying demonstrator with scaled static response

when flow similarity cannot be fulfilled, we present a

multidisciplinary optimization based method that al-
lows some freedom in the design of the wing shape

(while keeping the scaled wingspan) to update the wing

geometry and structural properties to ensure equivalent

scaled loads and overall wing displacement. To illustrate
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SUPAERO-CNRS-INSA-Mines Albi-UPS, Toulouse, France

N. Bartoli
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this method, we apply it to a 1:5 version of the uCRM

wing at subsonic flight condition. While the errors in

air loads using the classical theory are around 16%, the

presented method achieves errors lower than 1%, with

a good agreement for the wingtip displacement.

Keywords Aeroelastic Scaling · Multidisciplinary

Design Optimization · Aircraft Design

Nomenclature

()c Relative to the cruise condition

()m Relative to the scaled model

()r Relative to the reference aircraft

()T Transpose of a matrix or vector

β Radial basis function coefficient
δua Virtual displacements on aerodynamic grid

points

δus Virtual displacements on structure nodes

δW Virtual work

γ linear polynomial coefficient

Λ Wing sweep angle

λl Global length ratio

λω Natural frequency ratio

λρ Air density ratio

λm Total mass ratio

[H] Displacement interpolation matrix

φ Radial basis function

ρ Air density

σy Yield stress

σVM von Mises stress

θr Wing mounting angle

c wing chord

CL 3D Lift coefficient

Cl 2D lift coefficient

E Elastic modulus
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f Objective function

fa Aerodynamic forces on aerodynamic grid points

fs Aerodynamic forces on the structural nodes

h Beam height

I Beam bending inertia

k Airfoil relative thickness scaling factor

L Beam length

l lift per unit span

M Mach number

m Total beam mass

S Wing surface

s Stringer cross section

t Plate thickness

TPS Thin plate spline

ua Aerodynamic grid displacements

us Structural node displacements

utip Wingtip displacement

V Airspeed

W Aircraft weight (in mass units)

w Beam width

1 Introduction

Searching for more efficient airplane designs drives

aerospace engineers to investigate innovative solutions,

such as the blended wing body, the box wing, or

the strut-braced wing aircraft configurations. Whereas

the conventional tube-and-wing configuration is well

known and studied, the in-flight behavior of these new

aircraft types often remains unknown. The develop-

ment, construction, and experimentation of unmanned

aeroelastically-scaled prototypes is a way to study the

in-flight behavior of these innovative aircraft configu-

rations. This mitigates the economical and operational

risk of building and testing a full-scale prototype. In ad-

dition, aeroelastically-scaled prototypes can be used to

show the impact of current aircraft layout modifications

(e.g., an engine upgrade) on the in-flight response.

Traditional aeroelastic scaling theory of aircraft con-

siders that the nondimensional fluid characteristics of

the full-scale aircraft are preserved, or that the effect

of their discrepancy (particularly the Mach number)

can be neglected. However, attaining the same Mach

number is sometimes impossible given the operational

boundaries of the scaled unmanned prototypes.

Bisplinghoff et al. (1996) defined the basics of clas-

sical aeroelastic scaling theory in 1955. Scruton and

Lambourne (1971) expanded the method to include

the implications of thermal transfer and compressibil-

ity. To match the static characteristics of finite-element

models intended for aeroelastic scaling, French (1990)

presented an optimization-based strategy. French and

Eastep (1996) later proposed a two-step strategy to

also include dynamic aeroelastic scaling. First, they de-

signed the structure by minimizing the discrepancies in

static displacements. Then, they determined the values

of non-structural masses through a minimization prob-

lem where the difference in mode shapes was minimized

and the reduced modal frequencies were set as equality

constraints.

Pereira et al. (2007) defined a method that opti-

mized the natural frequencies and applied it to the

design of a joined-wing wind tunnel scaled prototype

to obtain equivalent dynamic and static aeroelastic

scaling. Bond et al. (2012) proved that in addition

to matching the natural frequencies, fitting the cor-

responding vibration modes is also required. Richards

et al. (2009) established a comparison between a direct

modal one-step strategy and a two-step methodology

where the modal optimization was performed after es-

tablishing the stiffness distribution.

Like Bond et al. (2012), other authors have ac-

counted for static scaling nonlinearities, extending the

strategy outlined by French and Eastep (1996) to in-

clude geometric nonlinearities in the aeroelastic scal-

ing method. Ricciardi et al. (2012) adapted the two-

step strategy suggested by Richards et al. (2009) to in-

clude the equivalent nonlinear static deflections in the

first optimization cycle. These two approaches were de-

veloped in the context of the experimental testing of

a joined-wing SensorCraft prototype. Ricciardi et al.

(2014) later proposed to use a single-step strategy

where linear and nonlinear static responses were scaled

while satisfying the natural frequency constraints. Wan

and Cesnik (2014) provided a scaling method consider-

ing geometrical nonlinearities for very flexible airplanes,

extending the linear scaling factors and similarity rules.

Recently, Ricciardi et al. (2016) described a systematic

strategy for the definition of scaled prototypes that are

equivalent in terms of the aeroelastic properties. They

proposed an optimization formulation that sought to

match vibration and buckling modes, as well as the

linear static displacements. They also highlighted the

mode swapping and mixing phenomenon in the opti-

mization process. Mas Colomer et al. (2017) discussed

the issue of aeroelastic scaling when flow similarity is

not matched exactly. They also discussed the issue of

mode crossing through the implementation of a mode

tracking approach in the framework of classic aeroelas-

tic scaling (i.e., with presumed flow similarity). Cav-

allaro and Demasi (2016) offered a thorough literature

study on the works related to the joined-wing Sensor-

Craft prototypes for aeroelastic scaling. Additionally,

Afonso et al. (2017) assessed the state-of the-art on the

topic of nonlinear aeroelastic scaling of wings present-

ing a high aspect ratio. Spada et al. (2017) illustrated
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the implementation of the two-step technique to high

aspect ratio wings. More recently, Pontillo et al. (2018)

introduced a suite of techniques for the design of a can-

tilevered wing model that replicates the static and dy-

namic response of a conceptual prototype. Regarding

the dynamic aeroelasticity and multidisciplinary opti-

mization, Jonsson et al. (2019) analyzed how flutter

constraints can be integrated into multidisciplinary op-

timization of aircraft earlier in the design phase.

All the mentioned references assume that flow simi-

larity is ensured between the two scales, or that at least

the discrepancies in nondimensional airflow parameters

(e.g., Mach and Reynolds numbers) can be neglected.

This may not, however, be applicable to some flying

prototypes with a limited flight envelope (in terms of

altitude and speed). Consequently, it is necessary to es-

tablish a method for the design of aeroelastically scaled

models that exhibit the same scaled aeroelastic behav-

ior.

In general, classical aeroelastic scaling theory is

based on the fact that flow similarity exists between

the two scales. The existing works cited in this arti-

cle assume flow similarity or expect that the existing

differences are small enough to be neglected.

In this paper, we propose a methodology to estab-

lish the design of scaled aircraft wings in the case where

the differences in the nondimensional airflow conditions

result in substantial discrepancies in the static response

(i.e., in the total aerodynamic load and structural wing

deflection). To do so, we maximize the static aeroelas-

tic similarity of the wing as a whole—in terms of the

scaled total force and wing deflection. Once the airflow

is not similar, the local data of the flow field and the

structural response cannot be used to extrapolate the

local response of the full-size aircraft.

To address this issue, we propose a multidisciplinary

design optimization (MDO) approach to modify the ge-

ometry of the wing (while preserving the overall scaled

span) and the structural properties simultaneously to

obtain an equivalent scaled response (in terms of the

total load and overall wing deflection).

Typically, MDO in the context of aircraft design is

applied to maximize performance, such as aircraft mass

or fuel burn. For example, Kenway and Martins (2014)

apply high-fidelity aerostructural MDO to solve takeoff

mass and fuel burn minimization problems. However,

unlike typical applications, in this paper we use MDO

to minimize the differences in the aeroelastic response

between a scaled model and its full-size counterpart.

Given an MDO problem, there are many architec-

tures that can be used to solve it. The work by Martins

and Lambe (2013) presents a survey of all the available

architectures for MDO problems. As we will detail on

Section 2.3, in this paper we use the multidisciplinary

feasible (MDF) approach.

The method that we propose is intended to be used

to assess the static aeroelastic qualities of a given air-

craft configuration, by matching the overall wing load

and deflection, if flow similarity cannot be achieved.

2 Optimization Problem for Static Aeroelastic

Similarity

In this paper, we focus on the static aeroelastic scaling

in the case where flow similarity cannot be achieved.

This is motivated by the limitations in altitude and

speed of scaled flight demonstrators, which make it im-

possible to match both Mach number and Reynolds

number. As shown by Bisplinghoff et al. (1996), pre-

serving both shape and flow parameters is a require-

ment for complete aeroelastic similarity. Therefore, if

there is no flow similarity, the final deformed state can-

not be matched if the scaled structural stiffness and the

aerodynamic shape are kept constant.

The goal of this paper is to develop a method for

designing a scaled wing model whose overall deflection

is as close as possible to the scaled response of the full-

scale aircraft for the same angles of attack, even in the

presence of a non-similar flow in the scaled model. To

achieve this goal, we relax some geometrical design vari-

ables, namely the chords that define the wing planform,

as well as the sweep angle and the mounting angle of

the wing. The geometrical design variables have an im-

pact on the stiffness of the wing because they determine

the shape of the wingbox. Apart from these geometrical
variables, we also set structure-specific variables for the

wingbox properties (e.g., panel thicknesses and stringer

sections).

2.1 Effect of Flow Similarity on Static Aeroelastic

Scaling

In the case where there is flow similarity (shown in

Figure 1), no aerodynamic analysis is required to en-

sure complete aeroelastic similarity between both scales

because the load equivalence is guaranteed through a

nondimensional analysis of the aerodynamic equations.

In practice, it might not be possible to match the

Mach number due to the operational limitations in air-

speed and altitude of the scaled demonstrator. How-

ever, we can match the scaled outer mold line (OML),

angle of attack, and scaled stiffness. In that case, the

final in-flight shape of the wing of the scaled demon-

strator, as well as the load distribution, are not scaled
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versions of the ones on the reference wing at the refer-

ence conditions. This is because for a given geometry

at a certain angle of attack, the aerodynamic loads are

not equivalent unless the nondimensional parameters

are the same.

To understand the effect of Mach number, we can

use the Prandtl–Glauert (1928) correction to provide

an estimate of the aerodynamic forces at high subsonic

Mach numbers based on the forces computed in the

incompressible regime (M < 0.3). The Prandtl–Glauert

correction for the lift coefficient of a two-dimensional

airfoil is given by

Cl =
Cl0√

1−M2
, (1)

where Cl0 is the lift coefficient at incompressible con-

ditions, which in turn is given by

Cl0 =
l0

1
2ρV

2c
, (2)

where l0 is incompressible lift per unit span.

(a) (b)

Fig. 1: Reference wing deflection and load distribution

(a) and its scaled counterpart when complete aeroelas-

tic similarity exists (b).

(a) (b)

Fig. 2: Reference wing deflection and load distribution

(a) and its scaled counterpart when there is no flow sim-

ilarity (b). In that case, the wing deflection and loading

are no longer similar.

If we tried to reproduce the static aeroelastic behav-

ior of a typical airliner (M ∼ 0.85) using a model with

scaled stiffness, shape, and angle of attack flying at a

lower Mach number (e.g., M ∼ 0.3), we would find that

the aerodynamic loads, and hence the displacements,

would be noticeably lower, according to the Prandtl–

Glauert (1). This is illustrated by Figure 2 and shown

with a particular example of application on Section 5.

If we now consider the case where we attempt to

optimize the wing geometry and structural properties

at the same time to match the static aeroelastic deflec-

tions despite significant differences in the flow nondi-

mensional parameters, we cannot use the nondimen-

sional analysis of the aerodynamic equations, as in this

case the scaled OML is not preserved. In that case, we

need the in-flight deflections of the reference aircraft for

a particular angle of attack. To evaluate the fitness of a

particular design, we need to perform a complete static

aeroelastic analysis for the given design variables and

the Mach number of the scaled demonstrator. Then we

can compare the in-flight shape to the scaled version of

the reference one and evaluate the lift and stress con-

straints.

2.2 Aeroelastic Multidisciplinary Analysis

In this paper, we use Panair (Magnus and Epton, 1980),

a panel aerodynamics code implementing the Prandtl–

Glauert compressibility corrections coupled to Nas-

tran95 (MacCormick, 1972), a finite element solver. An

independent aerodynamic analysis is performed for each

deformed configuration of the wing. The XDSM (Lambe

and Martins, 2012) diagram corresponding to this MDA

is shown in Figure 3. Within each MDA cycle, the aero-

dynamic loads are computed and transferred to the

FEM model. Then, the structural displacements are

solved for and interpolated back on the aerodynamic

grid. We have two flight conditions: cruise (to ensure

steady flight), and limit load (to ensure structural in-

tegrity). Therefore, a separate MDA is solved for each

one.

2.3 Optimization Formulation

Once we have established the MDA for this problem,

we present the formulation of the optimization prob-

lem. To solve the optimization problem, we adopt the

multidisciplinary feasible (MDF) approach, which is de-

scribed by Martins and Lambe (2013). Using the MDF

approach, the complete MDA is solved completely for

each iteration of the design variables. This approach is

both easy to implement and computationally efficient.

Figure 4 shows the XDSM for the aeroelastic optimiza-

tion. Because each optimization loop includes an MDA

for each angle of attack αi, they are represented in

a stacked manner as they can be performed indepen-

dently. One of the goals of this study is to ensure that

the scaled aerodynamic loads and wing deflections of

the scaled model are equivalent to the ones of the ref-

erence aircraft for the same angles of attack. In that
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X0
a , Xs yt α, V, ρa, Sw,M,X0
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RBF
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4 : H 6 : H
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5:
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u∗a 7 : ua

6:
Displacement

Transfer

Fig. 3: XDSM diagram for the static aeroelastic MDA.

manner, the response of the scaled wing loads and dis-

placements with respect to the angle of attack is similar.

The values of αi correspond to fixed values of the an-

gle of attack for which the lift force on the reference

aircraft is known.

The goal of this optimization problem is to find the

wing design parameters that minimize the error in the

in-flight shape with respect to the scaled wingtip deflec-

tion of the reference aircraft while keeping the similarity

at certain angles of attack. For that purpose, we require

the scaled lift to be matched for two angles of attack.

By doing so, we ensure that the derivative of the aero-

dynamic load with respect to the angle of attack CLα is

preserved. If similarity of airflow, aerodynamic shape,

and wing elasticity existed between the reference air-

craft and the scaled model, the identity of CLα would

be automatically satisfied. Since in our case similarity

in airflow and external shape is no longer preserved,

we ensure the equality of CLα using optimization con-

straints.

To ensure the structural integrity for the most crit-

ical flight condition, we require the von Mises stress in

any point of the wingbox structure to be lower than the

allowable stress of the structural material for the +2.5g

maneuver condition.

The optimization problem formulation that we pro-

pose is

minimize f = ‖um
tip − λlur

tip‖22
w.r.t. x ∈ Rn

subject to:
Cm,cL − Cr,cL

Cr,cL
= 0,

Cm,2.5gL − Cr,2.5gL

Cr,2.5gL

= 0,

max(σVM )− σy
σy

≤ 0,

xm,rc
2
− λlxr,rc

2
= 0,

xm,bc
2
− λlxr,bc

2
= 0,

xm,tc
2
− λlxr,tc

2
= 0,

(3)

where um
tip is the wingtip displacement vector of the

scaled model wing during cruise flight, ur
tip is the cor-

responding quantity for the reference aircraft, and λl
is the overall geometrical scale factor (i.e., wing span

ratio). The objective is to minimize the squared norm
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Fig. 4: XDSM diagram for the static aeroelastic MDAO. The orange box represents the MDA cycle. Several MDA

cycles are stacked (one for each angle of attack) since they are performed independently one from another.

of the difference between the scaled reference displace-

ment vector of the wingtip and the one of the scaled

model. Thus, we find a wing with a similar overall flex-

ibility while ensuring that the total scale wing load is

equivalent.

The nondimensional lift is matched through the

lift coefficients, which are already nondimensional. The

cruise lift coefficient of the reference aircraft is

Cr,cL =
Wrg

1
2ρrV

2
r Sr

, (4)

where Wr is the weight (in units of mass) of the refer-

ence aircraft. For the case of the scaled model, the lift

coefficient is

Cm,cL =
Lα=αc

1
2ρmV

2
mλ

2
l Sr

. (5)

In Eq. (5), the reference surface is λ2l Sr and not

the actual wing surface of the model wing. This is be-

cause we want to match the scaled lift of the reference

aircraft (which is determined by λl) for the reference

cruise angle of attack. For the lift constraint at 2.5g,

the definition of the lift coefficient is the same except

that the apparent weight is now 2.5W , and the lift force

is computed at the angle of attack that produces that

lift on the reference aircraft (α = α2.5g).

The inequality constraint on Eq. (3) ensures that

the von Mises stress for any element on the structure

is lower than the allowable stress, at the 2.5g maneu-

ver condition, as defined by the Civil Aviation Reg-

ulations FAR-25 (2020). Since the optimizer that we

use to solve this problem does not require the deriva-

tives of the objective function and constraints, we use

the max() function applied to the von Mises stress of

all elements—whose derivatives might are continuous.

The last three equality constraints in Eq. (3) ensure

that the longitudinal positions of the mid-chord points

of the three characteristic wing sections of the scaled

model remain the same as the scaled longitudinal posi-

tions of the reference aircraft.

In the next section, we apply this optimization for-

mulation a scaled version of the undeflected Common

Research Model (uCRM) wing (Brooks et al., 2018).
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3 Methods and Tools

3.1 Method for Displacement and Load Transfer

In this section, we present the method for force and

displacement transfer between the aerodynamics and

structures disciplines, which is needed for the MDA de-

scribed in the previous section.

The aerostructural MDA involves four state vec-

tors: the displacements of the structure nodes us, the

displacements of the aerodynamic mesh ua, the forces

acting on the aerodynamic grid points fa, and the aero-

dynamic forces acting on the nodes of the structural

model fs.

Given that the grid points of the structural and

aerodynamic models do not coincide, it is necessary

to transfer the displacements on the structural nodes

us to the aerodynamic mesh to determine its displace-

ments ua. We use the displacement and load transfer

method described by Rendall and Allen (2008). This

method is based on creating a displacement field that

satisfies the interpolation condition on the structural

nodes, on which the displacements are known from the

FEM analysis. Through the use of radial basis functions

(RBF), defined by Broomhead and Lowe (1988), each

one of the three components of the displacement field

(we write the equation for the x component, but the

same holds for y and z) is written as

ux =

Ns∑
i=1

βxi φ(‖x− xi‖) + γx0 + γxxx+ γxy y + γxz z, (6)

where x is the vector of space coordinates, xi rep-

resents the nodes at the centers of the radial basis

functions, and φ(r) is the RBF. We chose to use the

thin plate spline (TPS) RBF, which can be written as

φ(r) = r2 ln r. This choice was based on the recommen-

dations given by Lombardi et al. (2013). After com-

paring many available functions, they concluded that

TPS functions yielded the best, most accurate, and

most robust results for interpolation because they do

not require any parameter tuning. The terms βxi are

the RBF coefficients and γ are the coefficients of the

linear polynomial part. The interpolated displacement

field evaluated on the aerodynamic grid points is ob-

tained through a matrix-vector product from the vec-

tor of known structural displacements us and a matrix

[H]. This matrix [H] is obtained by imposing the inter-

polation condition and by evaluating each RBF on the

aerodynamic points. The displacement transfer is then

expressed as

ua = [H]us, (7)

Y

X
Z

Fig. 5: Transfer of the displacements from the structural

grid (orange) to the aerodynamic surface mesh (green).

where [H] depends only on the positions of the struc-

tural nodes and the grid points of the aerodynamic

mesh, as well as on the RBF type (such as Gaussian or

TPS). Figure 5 illustrates how the displacement field,

known at the structure grid (in orange), is transferred

to the aerodynamic grid (in green).

Once the displacement transfer matrix is estab-

lished, Rendall and Allen (2008) determined the ma-

trix for the transfer of the aerodynamic forces from the

aerodynamic grid fa to the structural nodes fs. This

was done by using the principle of virtual work for the

conservation of the energy. The virtual work is

δW = δus
T fs = δua

T fa, (8)

where δus represent the virtual displacements of the

structural nodes used for the displacement interpola-

tion and δua are the virtual displacements of the aero-

dynamic grid points. By using the displacement matrix

[H], the virtual displacements of the aerodynamic grid

are

δua = [H]δus. (9)

After substituting Eq. (9) into Eq. (8), the aerodynamic

forces on the structural nodes are

fs = [H]T fa. (10)

The construction of the interpolation matrix for

each geometry of the aerodynamic and structural

meshes allows us to exchange displacements and forces

through a matrix-vector product.

3.2 Geometry and Mesh Generation

For the generation of the OML from the planform de-

sign variables, we use the baseline uCRM wing geom-

etry for the twist distribution and the vertical coor-

dinates of the wing sections. The airfoil shapes are

those of the original CRM wing, including the relative
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Y

X

Z

Y

X

Z

Fig. 6: The structural mesh (orange) is initially known only in its baseline configuration (left). Through the new

shape of the OML (in green), it is automatically adapted to new shape using the RBF methodology (on the right).

For illustration purposes, the sweep is increased while keeping chords and span constant.

thickness, relative camber, and spanwise position of the

wing sections. This baseline geometry defines the air-

foil shape and twist at eight sections from the root to

the wingtip. The planform design variables determine

the leading edge position and chord length. The span-

wise and vertical position of the sections, as well as

their relative thickness and camber, are kept constant.

The values for these correspond to the scaled reference

wing. From this definition of the wing through its sec-

tion properties, we define the jig OML corresponding

to each set of design variables.

The OML and a structured surface mesh for the

aerodynamics panel code are generated using the

GMSH software package, developed by Geuzaine and

Remacle (2009). For each vector of design variables,

the topology of the structured surface mesh remains

the same.

The geometric variables described above first deter-

mine the shape of the jig OML, which then determines

the new shape of the jig wingbox. To find the structural

wingbox geometry for a given OML, we use a morphing

technique based on the RBF method that we used for

the interpolation of displacements, defined by Rendall

and Allen (2008) (see Section 3.1). This is done by treat-

ing the changes in the OML as displacements, which

are interpolated to find the corresponding changes to

the wingbox geometry and mesh, as shown in Figure 6.

4 Application to the Scaled uCRM Wing

In the previous section, we defined the optimization

problem used to match the static aeroelastic behavior

of scaled demonstrators when flow similarity cannot be

achieved. In this section, we apply the aforementioned

methodology to a scaled version of the uCRM wing.

The uCRM wing, established by Brooks et al. (2018),

is based on the original CRM wing, defined by Vassberg

et al. (2008), and represents the jig shape of a wing such

that when in flight its shape matches the CRM one at

its nominal flight condition.

4.1 Definition of the Scaling Factors

In this example problem, we consider, as the refer-

ence wing, the uCRM wing flying at 35, 000 ft and

M = 0.85 with an aircraft weight of 500, 000 lbm

(∼ 226796 kg) 1 For the scaled model, whose design we

establish through optimization, we consider a reduced

model scaled by an overall factor λl = 1/5. For the

flight conditions of the model, we consider an altitude of

2, 000 m (∼ 6, 562 ft). From the Froude number match-

ing, as described by Pires (2014), the scaled airspeed is

Vm =
√
λlVr = 112.77 m/s. At the scaled model alti-

tude, and using the international standard atmosphere

model, this yields a Mach number of M = 0.34.

As described by Pires (2014), the scaling factor and

the air density ratio λρ = ρm/ρr determine the total

mass of the scaled model,

Wm = λρλ
3
lWr, (11)

which dictates the amount of lift that needs to be pro-

duced for the several flight conditions.

1 https://commonresearchmodel.larc.nasa.gov/files/

2014/02/CRM_wingboxFEM_description_1.pdf

https://commonresearchmodel.larc.nasa.gov/files/2014/02/CRM_wingboxFEM_description_1.pdf
https://commonresearchmodel.larc.nasa.gov/files/2014/02/CRM_wingboxFEM_description_1.pdf
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x

y

xLEr

cr

cb

ct

Λ

Fig. 7: Planform variables for the static optimization

problem: longitudinal position relative to the fuselage

xLEr , sweep angle Λ, root chord cr, break chord cb, and

tip chord ct.

4.2 Design Variables

The geometric design variables of this problem are the

chord lengths at three span sections (root, break, and

tip—cr, cb, and ct respectively), the sweep angle Λ, the

wing mounting angle (the angle between the root sec-

tion of the wing and the longitudinal axis of the fuse-

lage), as well as the longitudinal position of the wing

leading edge at the root. The thickness-to-chord ratio

of the sections is obtained by multiplying the baseline

distribution of relative thicknesses along the wing span

by a scaling factor k. We also set k as a design variable

to control the flexibility of the wing structure through

the height of the wingbox. For the aerodynamic anal-

ysis, we define the angle of attack as the angle of the

longitudinal axis of the fuselage with respect to the in-

coming airflow. The geometric planform variables are

illustrated in Figure 7.

The structural design variables are the plate thick-

nesses of the shell elements of the wingbox, as well as

the stringer section modeled by beam elements. For the

definition of the shell thicknesses, the wingbox is di-

vided into a total of 12 different thickness regions: 6

of them define the thickness of the upper, skins lower

skins, and ribs, at 6 wing segments along the span. The

other 6 regions define the thickness of the elements on

the front and rear spars: the two flanges and the web.

These regions of different thickness are shown in Fig-

ure 8.

Fig. 8: Thickness regions for the FEM model, which

consists of 12,475 shell elements and 10,804 nodes.

Y

Z

X

Fig. 9: Stringer property regions for static optimization.

The FEM model contains 14,134 bar elements.

For the stringer sections, there are a total of six

variables that define the cross-section values of all the

stringers in the model, which belong to six different

groups. These regions of different stringer sections are

displayed on Figure 9. With these structural design
variables, we can tailor the wingbox stiffness.

In contrast to the usual structural optimization

problems that aim to improve the performance of an

existing design, here we aim to find the whole design of

the scaled wing.

The displacement interpolation matrix [H] (defined

in Section 3.1) has to be recalculated for each opti-

mization iteration before performing the MDA. This is

because [H] depends on the coordinates of both aero-

dynamic and structural meshes, as shown in Figure 19.

4.3 Definition of the Reference Quantities

According to the optimization problem formulation (3),

we need the wingtip displacements of the in-flight ref-

erence wing. To obtain them, we perform an MDA loop

with the baseline full-scale wing geometry and struc-

ture at the nominal flight conditions. To find the cor-

rect angle of attack, we perform several iterations until



10 Joan Mas Colomer et al.

the generated lift matches the reference aircraft weight,

Wrg. To determine the angle of attack at the limit load

condition, we perform the same operation, but with a

target lift of 2.5 times the weight of the reference air-

craft. This yields a cruise angle of attack of αc = 1.34◦

and α2.5 = 9.66◦ for the limit load condition.

The reference document for the CRM finite element

model specifies the following elastic properties: Elastic

modulus E = 68900 MPa, Poisson’s ratio ν = 0.31,

and density ρs = 2795.67 kg/m3. Since the allowable

stress is required to evaluate the stress constraint and

that this value is not available in the CRM report, we

use the maximum von Mises stress computed for the

baseline wing at 2.5g. This yields a yield stress of about

600 MPa, which is representative of a 7068 aluminum

alloy.

If we used an aluminum alloy with a lower allow-

able stress than the maximum observed on the ref-

erence wing at limit load condition, the target dis-

placements could probably not be matched, since the

flexibility of the scaled wing would be limited by the

stress constraint. In that case, the optimizer would

need to increase the structural thicknesses to satisfy the

stress constraint, thus reducing the required flexibility

to match the in-flight shape.

4.4 Optimization Problem Setup

The objective function and all the constraints are eval-

uated for each optimization iteration at the end of the

MDA cycle. Figure 4 shows the XDSM diagram of the

optimization problem described in this section. A more

detailed version of this diagram is shown in the Ap-

pendix 6. The optimization problem is summarized in

Table 1, which lists the 25 design variables with the

corresponding bounds and 6 constraints. The values of

[t0] and [s0] are estimates for the structural thicknesses

and stringer cross-section variables, and are obtained in

the same manner as for the modal scaling problem, in

Section 4.5, as described by Eqs. (19) and (22). For the

values c0r, c
0
b , and c0t , they are obtained by scaling the

baseline section chords by the overall scaling factor λl.

The optimization algorithm we use is

COBYLA (Powell, 1994), a gradient-free opti-

mizer, available within the SciPy library (Jones et al.,

2001). We use this approach because neither Panair or

Nastran95 provide the derivatives of their outputs.

4.5 Establishing the starting point

For the scaling of the natural frequencies and the overall

mass, Pires (2014) detailed how to obtain the ratios λ

between the scaled quantities and the reference ones,

which are

λω =
1√
λl
, (12)

and

λm = λρλ
3
l . (13)

Given that the COBYLA optimization path de-

pends on the starting point, we developed a method

for finding a set of design variables that is close enough

to the optimum. This method is based on the Euler–

Bernoulli beam theory and the bending properties of

thin-walled structures to find an approximation for

scale-down factors of the thicknesses of the structural

panels and stringer sections. We consider a cantilever

beam of length L (corresponding to the full scale),

bending inertia I, total mass m, and Young’s modu-

lus E. We start by computing the bending inertia I ′,
whose length and height are scaled according to the

ratio λl = L′/L. The overall length ratio affects the

length, height, and width of the beam uniquely. Since

we assume that the same material is used for both

beams, E′ = E. The two beams are shown in Figure 10.

Fig. 10: Full scale and scaled cantilever beams.

By considering the equation for the natural frequen-

cies of the bending modes of a cantilever beam

ωi =
Ki

L2

√
EIL

m
, (14)

where Ki denotes the constant value that depends on

the vibration mode, we obtain the frequency ratio as

λω =
ω′i
ωi

=

Ki
L′2

√
E′I′L′

m′

Ki
L2

√
EIL
m

. (15)
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Objective Function Dimension
In-flight shape difference
minimization

f = ‖um
tip − λlur

tip‖22 1

Design Variables
Thicknesses vector t 12
Stringer section vector s 6
Root chord cr 1
Break chord cb 1
Tip chord ct 1
Sweep Λ 1
Wing mounting angle θr 1
Root leading edge xr 1
Relative thickness scaling factor k 1

Total design variables: 25
Constraints

Lift constraints
Cm,i
L −C

r,i
L

Cr,i
L

= 0 2

Stress constraint
max(σ2.5g

VM )−σy
σy

< 0 1

Longitudinal positions of the chord
centers

xm,ic

2

− λlxr,ic
2

= 0 3

Total constraints: 6

Table 1: Optimization problem statement of the uCRM wing. The baseline thickness [t0] and cross-section [s0]

vectors are the ones defined in Section 4.5, as the design variables and the scale are the same. For the baseline

chords, the values are: c0r = 2.72 m, c0b = 1.45 m, and c0t = 0.55 m.

Substituting Eqs. (12) and (13) into Eq. (15), we get

λI =
I ′

I
= λρλ

5
l . (16)

After establishing the bending inertia ratio λI , we

determine the thickness and stringer section ratios, λt
and λs, respectively. By making assuming that the

thickness of the beam flanges (t) are much smaller than

their distance from the neutral axis (h), we estimate the

contribution of a flange of width w (shown in Figure 11)

to the bending inertia of the beam I as

∆It = wth2. (17)

We determine the bending inertia ratio by applying

Eq. (17) to the geometrically scaled beam

λI =
w′t′h′2

wth2
= λ3l λt. (18)

Then, we establish the thickness ratio for the initial

design as

λt = λρλ
2
l . (19)

In a similar manner as presented above for the thick-

ness ratio, we compute the contribution of a stringer

placed at a distance h from the neutral axis with a

cross-section s (see Figure 12) as

∆Is = sh2. (20)

Then, the bending inertia ratio of the contribution of

the stringer is

λI =
s′h′2

sh2
= λ2l λs. (21)

Fig. 11: Plate thicknesses on different scaled beams.

As in the case for the plate thickness ratio, we find the

ratio of stringer cross-sections by substituting Eq. (16)

into Eq. (21), thus giving

λs = λρλ
3
l . (22)

Using this method, we obtain a first guess of thick-

nesses and cross-sections of the different components of

the structure that we aim to scale, to use it as the ini-

tial set of design variables for the optimizer. We obtain

these design variables by simply multiplying the thick-

nesses and cross-sections of the full-scale model by λt
and λs, respectively.
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Fig. 12: Stringer sections on different scaled beams.

5 Results and Discussion

As previously mentioned we used the gradient-free op-

timizer COBYLA (Powell, 1994) to solve the optimiza-

tion problem (3). The stopping criterion is based on

the absolute tolerance on the size of COBYLA’s trust

region, which we set to 10−3.

The optimization history (Figure 15) shows that the

optimum satisfies the stress constraint. The objective

function (the wingtip displacement error) converged to

1.5%. Both lift constraints—the cruise condition one

and the limit load condition—are satisfied within an er-

ror lower than 1%. The lift constraint at the cruise con-

dition has an error lower than 0.1%. The three equality

constraints—shown on Figure 16—show that the longi-

tudinal positions of all the wing sections are well pre-

served for the best design found. This can also be visu-

alized on the optimized planform (Figure 13). The opti-

mization history shows that promising values of the ob-

jective function that satisfy the stress constraint were

already found before iteration 100. However, the lift

constraints are much below zero for such cases. These

probably correspond to wing designs with a very low

flexibility that reached the desired level of wing dis-

placement, but under a wing load lower than the target

value. The in-flight shape corresponding to the opti-

mized design is shown on Figure 18.

To see the importance of performing an aerody-

namic and structural re-design when the Mach number

cannot be matched, we compute the errors in terms of

loads and displacement if the aerodynamic geometry

and scaled flexibility of the reference aircraft were left

constant. To do so, we present the results that we would

get if we used the exact scaled aerodynamic geometry

Fig. 13: To compensate for the lift loss due to lower

Mach, the optimized planform (red) has an increased

wing area compared to the scaled reference planform

(blue).

Y
584 5.91e+07 X1.18e+08 1.77e+08 2.37e+08 2.96e+08 3.55e+08 4.14e+08 4.73e+08 5.32e+08

Z

5.91e+08

von Mises Stress [Pa] Y
584 5.91e+07 X1.18e+08 1.77e+08 2.37e+08 2.96e+08 3.55e+08 4.14e+08 4.73e+08 5.32e+08

Z

5.91e+08

von Mises Stress [Pa]

Fig. 14: Stress distribution (von Mises) for the limit

load condition of the best design found. Values in Pa.

of the reference aircraft along with a structure having

the exact scaled shape and the scaled stiffness and us-

ing the flight Mach value corresponding to the scaled

demonstrator conditions. In that case, whose in-flight

shape is shown on Figure 17, the error in terms of the

air loads is 16%, while the error in wingtip displace-

ment is 17.5%. These results show that the proposed

method can be used effectively to ensure loads and dis-

placements similarity if the airflow conditions of the

scaled model are substantially different to the ones of

the reference aircraft.

After having presented the results of the last exam-

ple of application, in the following section we present

the conclusions and perspectives of this paper.
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Fig. 15: Evolution of the objective function, the maximum stress constraint, and the two lift constraints with the

number of iterations.
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Fig. 16: Evolution of the equality constraints for the longitudinal positions of the root, break, and tip sections.
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(a) (b)

(c) (d)

Fig. 17: Not using any re-design to account for difference in Mach number leads to a discrepancy between the

wingtip displacement of the reference wing under reference conditions (blue) and the same scaled wing in test

conditions (green). Front view (a), side view (b), top view (c), and detail of the wingtip (d).

(a) (b)

(c) (d)

Fig. 18: The wingtip displacement of the optimized design (red) matches the one of the target shape (blue). Front

view (a), side view (b), top view (c), and detail of the wingtip (d).
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6 Conclusion

In this paper, we maximize the similarity of the static

response of the wing as a whole (i.e., in terms of the

total air load and the overall wing deflection). This en-

ables to assess the aeroelastic qualities of a certain wing

concept, but not to extrapolate local data of the airflow

or the structural response of the full-scale aircraft.

The dominant effect of operating the scaled model

at a lower Mach number than its full scale counterpart

is the reduction in the lift forces for the same angle

of attack. With the baseline geometry and scaled stiff-

ness, the relative error in the total air load in cruise

flight is 16%, while the relative error in the wingtip dis-

placement is 17.5%. These substantial errors justify the

changes in the wing geometry and the structural prop-

erties when the airflow conditions change substantially.

With the optimized wing, we observe an increase in the

area to produce equivalent lift with the imposed angles

of attack of the reference conditions. The results show a

good in-flight shape matching, with an error of less than

1% in the lift constraints. Since the shape of the wing is

modified, which has an impact on the structural stiff-

ness, the properties of the structural components are

modified accordingly to give the wing the appropriate

stiffness in spite of the changes in geometry.

The results in this paper are obtained using the

panel method with compressibility corrections. How-

ever, more physically accurate results could be obtained

by using the same optimization formulation and simply

replacing the current aerodynamic model by a more re-

alistic CFD analysis.
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Appendix

6.1 Complete XDSM Diagram of the Static Aeroelastic Optimization Problem
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Fig. 19: XDSM diagram for the static aeroelastic MDAO. The first MDA loop determines the cruise angle of attack to evaluate the objective function as well
as the cruise lift constraint. The second MDA loop determines the angle of attack of the limit load condition to evaluate the lift constraint at the limit load
as well as the stress constraint. Both MDAs are independent from each other and can be executed in parallel.



An MDO-Based Methodology for Static Aeroelastic Scaling of Wings Under Non-Similar Flow 17

Conflict of interest

On behalf of all authors, the corresponding author

states that there is no conflict of interest.

Replication of results

The results presented in this paper can be replicated us-

ing the publicly available data of the CRM wing (Vass-

berg et al., 2008), the uCRM wing (Brooks et al.,

2018), as well as the open-source structural solver NAS-

TRAN95 (MacCormick, 1972), and the open-source

aerodynamics solver PANAIR (Magnus and Epton,

1980).

References

Afonso F, Vale J, Oliveira E, Lau F, Suleman A

(2017) A review on non-linear aeroelasticity of high

aspect-ratio wings. Progress in Aerospace Sciences

89:40–57, doi:10.1016/j.paerosci.2016.12.004, URL

http://linkinghub.elsevier.com/retrieve/

pii/S037604211630077X

Bisplinghoff RL, Ashley H, Halfman RL (1996) Aeroe-

lasticity. Courier Corporation

Bond VL, Canfield RA, Suleman A, Blair M (2012)

Aeroelastic Scaling of a Joined Wing for Nonlin-

ear Geometric Stiffness. AIAA Journal 50(3):513–

522, doi:10.2514/1.41139, URL http://arc.aiaa.

org/doi/abs/10.2514/1.41139

Brooks TR, Kenway GKW, Martins JRRA (2018)

Benchmark Aerostructural Models for the Study of

Transonic Aircraft Wings. AIAA Journal 56(7):2840–

2855, doi:10.2514/1.J056603, URL https://arc.

aiaa.org/doi/10.2514/1.J056603

Broomhead DS, Lowe D (1988) Radial basis functions,

multi-variable functional interpolation and adaptive

networks. Tech. rep., Royal Signals and Radar Estab-

lishment Malvern (United Kingdom)

Cavallaro R, Demasi L (2016) Challenges, Ideas,

and Innovations of Joined-Wing Configurations:

A Concept from the Past, an Opportunity

for the Future. Progress in Aerospace Sciences

87:1–93, doi:10.1016/j.paerosci.2016.07.002, URL

http://linkinghub.elsevier.com/retrieve/

pii/S0376042116300471

FAR-25 (2020) Federal Aviation Regulations – Part 25.

URL https://www.ecfr.gov/cgi-bin/text-idx?

SID=05234956f83336784da3123df4386d13&mc=

true&node=pt14.1.25&rgn=div5

French M (1990) An application of structural optimiza-

tion in wind tunnel model design. In: 31st Struc-

tures, Structural Dynamics and Materials Confer-

ence, American Institute of Aeronautics and Astro-

nautics, Long Beach, California, doi:10.2514/6.1990-

956, URL http://arc.aiaa.org/doi/10.2514/6.

1990-956

French M, Eastep FE (1996) Aeroelastic model design

using parameter identification. Journal of Aircraft

33(1):198–202, doi:10.2514/3.46922, URL http://

arc.aiaa.org/doi/10.2514/3.46922

Geuzaine C, Remacle JF (2009) Gmsh: A 3-d finite

element mesh generator with built-in pre-and post-

processing facilities. International journal for numer-

ical methods in engineering 79(11):1309–1331

Glauert H (1928) The effect of compressibility on the

lift of an aerofoil. Proceedings of the Royal Society

of London Series A, Containing Papers of a Mathe-

matical and Physical Character 118(779):113–119

Jones E, Oliphant T, Peterson P, et al. (2001) Scipy:

Open source scientific tools for python

Jonsson E, Riso C, Lupp CA, Cesnik CES, Mar-

tins JRRA, Epureanu BI (2019) Flutter and post-

flutter constraints in aircraft design optimiza-

tion. Progress in Aerospace Sciences 109:100537,

doi:10.1016/j.paerosci.2019.04.001

Kenway GKW, Martins JRRA (2014) Multipoint

High-Fidelity Aerostructural Optimization of a

Transport Aircraft Configuration. Journal of Air-

craft 51(1):144–160, URL http://arc.aiaa.org/

doi/abs/10.2514/1.C032150

Lambe AB, Martins JRRA (2012) Extensions to the

design structure matrix for the description of multi-

disciplinary design, analysis, and optimization pro-

cesses. Structural and Multidisciplinary Optimiza-

tion 46(2):273–284, URL http://link.springer.

com/article/10.1007/s00158-012-0763-y

Lombardi M, Parolini N, Quarteroni A (2013) Ra-

dial basis functions for inter-grid interpolation

and mesh motion in FSI problems. Computer

Methods in Applied Mechanics and Engineering

256:117–131, doi:10.1016/j.cma.2012.12.019, URL

http://linkinghub.elsevier.com/retrieve/

pii/S0045782513000029

MacCormick CW (1972) The NASTRAN User’s Man-

ual:(level 15). National Aeronautics and Space Ad-

ministration

Magnus A, Epton M (1980) A computer program for

predicting subsonic or supersonic linear potential

flows about arbitrary configurations using a higher

order panel method, vol. i. theory document (version

1.0). NASA Contractor Report 3251

Martins JRRA, Lambe AB (2013) Multidisciplinary de-

sign optimization: a survey of architectures. AIAA

journal 51(9):2049–2075

https://doi.org/10.1016/j.paerosci.2016.12.004
http://linkinghub.elsevier.com/retrieve/pii/S037604211630077X
http://linkinghub.elsevier.com/retrieve/pii/S037604211630077X
https://doi.org/10.2514/1.41139
http://arc.aiaa.org/doi/abs/10.2514/1.41139
http://arc.aiaa.org/doi/abs/10.2514/1.41139
https://doi.org/10.2514/1.J056603
https://arc.aiaa.org/doi/10.2514/1.J056603
https://arc.aiaa.org/doi/10.2514/1.J056603
https://doi.org/10.1016/j.paerosci.2016.07.002
http://linkinghub.elsevier.com/retrieve/pii/S0376042116300471
http://linkinghub.elsevier.com/retrieve/pii/S0376042116300471
https://www.ecfr.gov/cgi-bin/text-idx?SID=05234956f83336784da3123df4386d13&mc=true&node=pt14.1.25&rgn=div5
https://www.ecfr.gov/cgi-bin/text-idx?SID=05234956f83336784da3123df4386d13&mc=true&node=pt14.1.25&rgn=div5
https://www.ecfr.gov/cgi-bin/text-idx?SID=05234956f83336784da3123df4386d13&mc=true&node=pt14.1.25&rgn=div5
https://doi.org/10.2514/6.1990-956
https://doi.org/10.2514/6.1990-956
http://arc.aiaa.org/doi/10.2514/6.1990-956
http://arc.aiaa.org/doi/10.2514/6.1990-956
https://doi.org/10.2514/3.46922
http://arc.aiaa.org/doi/10.2514/3.46922
http://arc.aiaa.org/doi/10.2514/3.46922
https://doi.org/10.1016/j.paerosci.2019.04.001
http://arc.aiaa.org/doi/abs/10.2514/1.C032150
http://arc.aiaa.org/doi/abs/10.2514/1.C032150
http://link.springer.com/article/10.1007/s00158-012-0763-y
http://link.springer.com/article/10.1007/s00158-012-0763-y
https://doi.org/10.1016/j.cma.2012.12.019
http://linkinghub.elsevier.com/retrieve/pii/S0045782513000029
http://linkinghub.elsevier.com/retrieve/pii/S0045782513000029


18 Joan Mas Colomer et al.

Mas Colomer J, Bartoli N, Lefebvre T, Dubreuil S, Mar-

tins JRRA, Benard E, Morlier J (2017) Similarity

Maximization of a Scaled Aeroelastic Flight Demon-

strator via Multidisciplinary Optimization. In: 58th

AIAA/ASCE/AHS/ASC Structures, Structural Dy-

namics, and Materials Conference, American Insti-

tute of Aeronautics and Astronautics, Grapevine,

Texas, doi:10.2514/6.2017-0573, URL http://arc.

aiaa.org/doi/10.2514/6.2017-0573

Pereira P, Almeida L, Suleman A, Bond V, Can-

field R, Blair M (2007) Aeroelastic scaling and op-

timization of a joined-wing aircraft concept. In: 48th

AIAA/ASME/ASCE/AHS/ASC Structures, Struc-

tural Dynamics, and Materials Conference, American

Institute of Aeronautics and Astronautics, Honolulu,

Hawaii, doi:10.2514/1.2199

Pires T (2014) LINEAR AEROELASTIC SCALING

OF A JOINED WING AIRCRAFT URL https:

//fenix.tecnico.ulisboa.pt/downloadFile/

563345090412707/Dissertacao.pdf

Pontillo A, Hayes D, Dussart GX, Lopez Matos GE,

Carrizales MA, Yusuf SY, Lone MM (2018) Flex-

ible High Aspect Ratio Wing: Low Cost Experi-

mental Model and Computational Framework. In:

2018 AIAA Atmospheric Flight Mechanics Confer-

ence, American Institute of Aeronautics and As-

tronautics, Kissimmee, Florida, doi:10.2514/6.2018-

1014, URL https://arc.aiaa.org/doi/10.2514/

6.2018-1014

Powell MJ (1994) A direct search optimization method

that models the objective and constraint functions

by linear interpolation. In: Advances in optimization

and numerical analysis, Springer, pp 51–67

Rendall TCS, Allen CB (2008) Unified fluid–structure

interpolation and mesh motion using radial ba-

sis functions. International Journal for Numer-

ical Methods in Engineering 74(10):1519–1559,

doi:10.1002/nme.2219, URL http://doi.wiley.

com/10.1002/nme.2219

Ricciardi A, Canfield R, Patil M, Lindsley N (2012)

Nonlinear Aeroelastic Scaling of a Joined Wing Air-

craft. In: 53rd AIAA/ASME/ASCE/AHS/ASC

Structures, Structural Dynamics and Ma-

terials Conference, American Institute of

Aeronautics and Astronautics, Honolulu,

Hawaii, doi:10.2514/6.2012-1454, URL http:

//arc.aiaa.org/doi/abs/10.2514/6.2012-1454

Ricciardi AP, Eger CAG, Canfield RA, Patil MJ (2014)

Nonlinear Aeroelastic-Scaled-Model Optimization

Using Equivalent Static Loads. Journal of Air-

craft 51(6):1842–1851, doi:10.2514/1.C032539, URL

http://arc.aiaa.org/doi/10.2514/1.C032539

Ricciardi AP, Canfield RA, Patil MJ, Lindsley N (2016)

Nonlinear Aeroelastic Scaled-Model Design. Journal

of Aircraft 53(1):20–32, doi:10.2514/1.C033171, URL

http://arc.aiaa.org/doi/10.2514/1.C033171

Richards J, Suleman A, Canfield R, Blair M

(2009) Design of a scaled rpv for investigation of

gust response of joined-wing sensorcraft. In: 50th

AIAA/ASME/ASCE/AHS/ASC Structures, Struc-

tural Dynamics, and Materials Conference, Amer-

ican Institute of Aeronautics and Astronautics,

Palm Springs, California, doi:10.2514/6.2009-2218,

URL http://arc.aiaa.org/doi/pdf/10.2514/6.

2009-2218

Scruton C, Lambourne N (1971) Similar-

ity Requirements for Flutter Model Test-

ing. In: Manual on Aeroelasticity, AGARD,

vol IV, E.C. Pike, pp 1–26, Chap 6, URL

https://www.sto.nato.int/publications/

AGARD/AGARD-R-578/AGARDR57871.pdf

Spada C, Afonso F, Lau F, Suleman A (2017)

Nonlinear aeroelastic scaling of high aspect-

ratio wings. Aerospace Science and Technology

63:363–371, doi:10.1016/j.ast.2017.01.010, URL

http://linkinghub.elsevier.com/retrieve/

pii/S1270963817301074

Vassberg JC, DeHaan MA, Rivers SM, Wahls RA

(2008) Development of a common research model

for applied CFD validation studies. AIAA paper

6919:2008, URL http://arc.aiaa.org/doi/pdf/

10.2514/6.2008-6919

Wan Z, Cesnik CES (2014) Geometrically Nonlinear

Aeroelastic Scaling for Very Flexible Aircraft. AIAA

Journal 52(10):2251–2260, doi:10.2514/1.J052855,

URL http://arc.aiaa.org/doi/10.2514/1.

J052855

https://doi.org/10.2514/6.2017-0573
http://arc.aiaa.org/doi/10.2514/6.2017-0573
http://arc.aiaa.org/doi/10.2514/6.2017-0573
https://doi.org/10.2514/1.2199
https://fenix.tecnico.ulisboa.pt/downloadFile/563345090412707/Dissertacao.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/563345090412707/Dissertacao.pdf
https://fenix.tecnico.ulisboa.pt/downloadFile/563345090412707/Dissertacao.pdf
https://doi.org/10.2514/6.2018-1014
https://doi.org/10.2514/6.2018-1014
https://arc.aiaa.org/doi/10.2514/6.2018-1014
https://arc.aiaa.org/doi/10.2514/6.2018-1014
https://doi.org/10.1002/nme.2219
http://doi.wiley.com/10.1002/nme.2219
http://doi.wiley.com/10.1002/nme.2219
https://doi.org/10.2514/6.2012-1454
http://arc.aiaa.org/doi/abs/10.2514/6.2012-1454
http://arc.aiaa.org/doi/abs/10.2514/6.2012-1454
https://doi.org/10.2514/1.C032539
http://arc.aiaa.org/doi/10.2514/1.C032539
https://doi.org/10.2514/1.C033171
http://arc.aiaa.org/doi/10.2514/1.C033171
https://doi.org/10.2514/6.2009-2218
http://arc.aiaa.org/doi/pdf/10.2514/6.2009-2218
http://arc.aiaa.org/doi/pdf/10.2514/6.2009-2218
https://www.sto.nato.int/publications/AGARD/AGARD-R-578/AGARDR57871.pdf
https://www.sto.nato.int/publications/AGARD/AGARD-R-578/AGARDR57871.pdf
https://doi.org/10.1016/j.ast.2017.01.010
http://linkinghub.elsevier.com/retrieve/pii/S1270963817301074
http://linkinghub.elsevier.com/retrieve/pii/S1270963817301074
http://arc.aiaa.org/doi/pdf/10.2514/6.2008-6919
http://arc.aiaa.org/doi/pdf/10.2514/6.2008-6919
https://doi.org/10.2514/1.J052855
http://arc.aiaa.org/doi/10.2514/1.J052855
http://arc.aiaa.org/doi/10.2514/1.J052855

	Introduction
	Optimization Problem for Static Aeroelastic Similarity
	Methods and Tools
	Application to the Scaled uCRM Wing
	Results and Discussion
	Conclusion

