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Abstract 

This article deals with the model order reduction by state 

residualization of power electronic converters. It presents a 

method to a priori estimate the error induced by this 

reduction. This method helps choosing the most suitable 

reduced model, the one that minimizes the error, depending 

on the simulated events. When applied to a system with 

several converters, it helps choosing which converter to 

reduce and how much, in order to simplify the models while 

keeping a sufficient accuracy. 

1 Introduction 

The development of renewable energies and High Voltage 

Direct Current (HVDC) links rapidly increase the Power 

Electronics (PE) penetration in the transmission grids. This 

makes the study of all-converter-interfaced power systems 

(see Figure 1) necessary [1]. 

 

 
Figure 1: Structure of a 100% PE power system. 

 

Because of the systems size and the converters complexity, 

numerical simulations are needed. Converters are physically 

different from synchronous generators. Therefore, commonly 

used tools, like the phasor approximation, might not be 

relevant. Usually, simulations of PE systems are based on 

detailed EMT [2] models but, in the case of large systems, the 

computation time would be large and the analysis 

complicated. 

Consequently, Model Order Reduction (MOR) methods can 

be useful [3], to simplify the models while keeping a good 

accuracy. Several methods exist [4]. Yet most of them use 

basis changes and truncations, altering the system’s structure 

and changing its state variables. This is why a MOR by state 

residualization [4] is applied in this paper to the converters, in 

order to preserve their physical structure and state variables. It 

is indeed necessary in power systems stability studies to keep 

the structure and variables, in order to know which quantities 

are critical. 

This paper presents a method to a priori estimate the error 

induced by this MOR in order to help the user choose the 

most suitable models, those that minimize this error, 

depending on the case study under consideration. 

The first part of this paper presents the structure of the studied 

converter and its MOR. The second part deals with the 

method to a priori estimate the induced error and its 

application to find the most suitable reduced models in two 

test cases: one converter connected to the infinite grid and 

two converters connected to each other, a load and the infinite 

grid. 

2 Structure-preserving model order reduction 

of a PE converter 

In this part an example of PE converter is presented and 

reduced using the developed structure-preserving MOR 

method by state residualization. The first subsection presents 

the converter’s structure and model while the second one 

introduces the MOR methodology. 

2.1 Structure of the studied converter 

Figure 2 presents the structure of the studied converter. The 

control is made of a classical cascaded loops structure with a 

current loop, a voltage loop and an external loop (here an 

active power and a reactive power droop controls). The power 

part is made of the DC/AC converter (the DC part is modelled 

with an ideal DC voltage source and the model for the 

converter is an averaged one), an RLC filter and a transformer 

modelled with an RL line. The aim of this grid forming 

converter is to generate the voltage at the PCC (Point of 

Common Coupling)	��. 
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Figure 2: Structure of the studied converter. 

 

The differential and algebraic equations describing this 

system and its control are given in Equations (1)-(31), starting 

from the external control (1)-(13), then the voltage control 

(14)-(17), the current control (18)-(21), the converter (22)-

(23), the filter (24)-(27), the transformer (28)-(29) and the 

grid (30)-(31). The state variables are in red, the algebraic 

ones in blue, the parameters in green and the inputs in purple. 

The equations and parameters of the model are taken from [5] 

and more details can be found in this paper. The variables are 

expressed in the	�� reference frame of the converter’s 

frequency. 
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This system is made of 15 differential equations/variables. It 

is thus a 15
th

 order nonlinear differential algebraic system. 

Table 1 and 2 give the values of the parameters and inputs. 

 

�� 31.4 rad/s 92 0.01 pu �
 0.0001 

��� 16.66 rad/s 82 0.2 pu ���  0.74 

�0 314 rad/s ��� 0.01 ��	 0.80 

9� 0.005 pu ����  1 ��� 1.19 

8� 0.15 pu ���	 1 ��	 1.16 

6� 0.066 pu �� 0.02   

Table 1: Parameters. 

 

|	�|)&� 1 pu �)&� 0.5 pu 	2
2  0 pu 

�)&� 1 pu 
)&� 0 pu   

�2 1 pu 	2
2  1 pu   

Table 2: Inputs. 

 

To sum up, the converter is modelled by a 15
th

 order 

nonlinear differential-algebraic model. The next subsection 
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investigates the MOR of this model, in order to facilitate the 

analysis and simulation of large transmission systems with 

several converters. 

2.2 Model order reduction of the converter 

Several MOR methods exist, like the balanced truncation [6], 

the proper orthogonal decomposition [4], the modal 

truncation [7] or Krylov methods [8]. However, these 

methods use basis changes and truncations (projections on 

subspaces), which change the physical structure of the 

system. The state variables are indeed altered by the MOR, 

which is not wanted here for analyses issues. It is indeed 

mandatory, for stability studies, to keep the variables in order 

to identify the critical ones. 

This is why a method using state residualization [4] is 

investigated here. The state residualization consists in 

freezing the dynamics of some chosen states of the system. 

These states are thus changed into algebraic variables, which 

reduces the order of the system. For example, in the studied 

converter, the residualization of the state	�? consists in 

changing Equation (32) into (33).  

	 �
�
�� ���
� � ��
�	 (32)	

	 0 � ��
� � ��
�	 (33)	
One advantage of doing state residualization is that it can 

easily be implemented in a program/language that solves 

differential-algebraic equations, like Modelica [9] (which is 

used here). This language consists in writing the differential 

and algebraic equations almost like in the natural language, 

like shows Figure 3, which is very convenient. 

 

 
Figure 3: Modelling of the RLC filter in the Modelica 

language. 

 

With the used reduction method, the variables are kept the 

same, and so is the structure of the system. To illustrate this; 

figures 4 and 5 show the evolution of the current controller 

when the MOR is applied (i.e. when the state variables of the 

PI controllers of the current control are residualized). During 

the process, Equations (18) and (19) are changed into 

Equations (34) and (35). 

	 �-
)&� � �-
 	 (34)	

	 �-
)&� � �-
 	 (35)	

It can be seen on this figures that the reduced system can still 

be represented in a physical way, which is not the case with 

methods such as the POD or the balanced truncation (they 

indeed project the state variables on a subspace, which 

changes them). 

 

 
Figure 4: Structure of the current control. 

 

 
Figure 5: Structure of the current control after the MOR. 

 

The philosophy of the method is then to find the states that 

can be residualized without too much decreasing the accuracy 

of the model. To do so, a modal approach using the 

participation factors is used. The participation factors give the 

dependencies between the states and the modes/poles of the 

linearized system. This way it is known which poles are 

discarded when some states are residualized. They are 

numbers between 0 and 1, and there is one for each state/pole 

couple. For each state, the sum of its participation factors in 

each pole is equal to 1. And for each pole, the sum of its 

participation factors in each state is equal to 1. To calculate 

the participation factors, the model first needs to be linearized 

around its operating point, which gives Equation (36) (the 

algebraic equations are injected in the differential ones), with  

@ � "��� 	��A	B�� 	B�A	BC� 	BCA	�?	DEFG 	DEFH 	I�	IA	JC�KL	M� 	MA	N?#
�
. 

 
�∆P
�� � A∆@ � B∆S (36) 

Then the participation factor of T@U in	VW, an eigenvalue of	X, 

is given by Equation (37). 

 YU,W � SU,W[U,W (37) 

In this equation [U,W is the \�] entry of the B�] normalized right 

eigenvector of X and SU,W is the \�] entry of the B�] normalized 

left eigenvector of X. Figure 6 gives an example for one 

eigenvalue. It shows that the considered eigenvalue is mainly 

linked to the dynamics of the variables	M�,	MA ,	I�,	IA  

and	JC�KL. 
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Figure 6: Participation of the states in the eigenvalue	V/ �
�1.4. 

 

This process is done for each eigenvalue. The participation 

factors are ranked from the largest to the smallest and the first 

ones are chosen to have a total participation of at least 90%. It 

leads to Table 3. Note that each eigenvalue is linked to 

several states and each state participates in several 

eigenvalues (this is a coupled system). This leads to groups of 

eigenvalues/state variables. 

 

Eigenvalues State variables 

V/_,/` � �790 a 3821B	
V/b,/c � �759.6 a 3331B	
V/d,// � �21 a 133.6B 

���, ��A , B��, B�A , 

BC�, BCA  

Ve � �31.4 �? 

Vf � �17.2 
Vg � �16.2 

DEFG,	DEFH  

V`,h � �15.5 a 28.3B	
V_ � �1.7 

Vb,c � �1.5 a 0.1B	
V/ � �1.4 

I�, IA , JC�KL ,	M�, 

MA,	N? 

Table 3: Dependencies between the eigenvalues and the state 

variables of the system. 

 

Thanks to Table 3, it is possible to know which dynamics to 

freeze in the nonlinear model in order to discard some poles 

in the linearized one while maintaining the other untouched. 

This method ensures the stability as the remaining are not 

moved (see Figure 7, where the fastest poles (i.e. the one with 

the largest negative real part) are removed for each reduced 

model. We can see that the remaining poles are really close to 

the initial ones.). 

 

 
Figure 7: Eigenvalues of the full and reduced models. 

 

The question now is how to choose which poles to delete. 

Usually, the fastest ones (with the highest real part in absolute 

value) are removed [10] as they are linked to fast transients 

that are quickly cleared and they don’t have any impact on the 

stability, which is not the case for the poles close to the 

imaginary axis. But there is no mathematical proof that this is 

the best solution in terms of accuracy. This is why the next 

section presents a method that estimates the error induced by 

the residualization and thus helps the user choose the most 

suitable reduced model for its studies (i.e. the best poles to 

keep/discard). 

3 A priori estimation of the error induced by 

the reduction 

This section presents the method to a priori estimate the error 

made by the MOR and the deduced optimization problem that 

helps minimizing it in order to have the most accurate 

reduced model. Two test cases with respectively one and two 

converters are then studied. 

3.1 Mathematical method 

To simplify, the linearized model is considered in Equation 

(38) (to simplify the writing, the	T are removed). 

 
�P
�� � A@ � BS (38) 

The residualization consists in multiplying the first term of 

this equation by a diagonal matrix	i, that has the same size 

as	X, made of 1 and 0. If	i(B, B) � 0, it means that the state @U 
is residualized, if it is equal to 1, the state dynamic is kept. 

The trace of i gives the order of the reduced model. Table 3 

gives some constraints on	i in order to keep the remaining 

poles unchanged. For example	I�,	IA,	JC�KL ,	M�,	MA  and	N? 

must be kept (or residualized) together in order to properly 

remove the poles. The reduced model is then given in 

Equation (39). 

 i �Pj
�� � A@k � BS (39) 

A Laplace transform give Equations (40) and (41). 

 l � (sI � A)n/Bo (40) 

 lk � (sE � A)n/Bo (41) 

Then a subtraction gives Equation (42). 

 l � lk � q(sI � A)n/ � (sE � A)n/rBo � so (42) 

s is the transfer function of the error induced by the MOR. It 

is a matrix of dimension t u N with t u t the size of X and 

t u N the size of	v. 

It is possible to choose the best i to minimize the maximum 

of the transfer function s(B, \) which represents the error for 

the B�] state variable when considering the \�] input. This 

optimization is summed up in Equations (43)-(44). In 

Equation 44, the constraints imposed by Table 3 are put in 

equation. 
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 minimizez{max~(s(B, \))� (43) 

�S�\��3	3�:	
i � �B��(�U), �U ∊ {0; 1�	∀B;	

i(1,1) � i(2,2) � ⋯ � i(5,5) � i(6,6);	
i(8,8) � i(9,9);	

i(10,10) � i(11,11) � ⋯ � i(14,14) � i(15,15) 

(44) 

This way it is possible to have a specific reduced model for 

each event to be simulated (each	\), depending on the state 

variable that is looked at (each	B). 
Examples to illustrate this will be shown in the two next parts. 

3.2 Application to find the best reduced model on a single 

converter test case 

The first example is the converter of Figure 2 connected to an 

infinite grid. The considered state variable is the current in the 

converter BCG (the same results apply for	BCH) and the 

considered input is the grid voltage	��G� . Table 4 gives, for 

each specified size, the dynamics to freeze/the poles to 

discard in order to have the most accurate reduced model. 

These results are obtained by solving the optimization 

problem of Equations (43)-(44) 

 

Model 

order 
Frozen dynamics Discarded poles 

15 NA NA 

14 �? Ve 

13 DEFG , DEFH  Vg, Vf 

12 DEFG ,DEFH , �? Vg, Vf, Ve 

9 
��� , ��A , B�� , B�A , 

BC� , BCA 

V/d,//, V/b,/c, 
V/_,/` 

8 
��� , ��A , B�� , B�A , 

BC� , BCA , �? 

V/d,//, V/b,/c, 
V/_,/`, Ve 

7 
��� , ��A , B�� , B�A , 

BC� , BCA , DEFG , DEFH  

V/d,//, V/b,/c, 
V/_,/`, Vg, Vf 

6 
��� , ��A , B�� , B�A , 

BC� , BCA , DEFG , DEFH , �? 

V/d,//, V/b,/c, 
V/_,/`, Vg, Vf, Ve 

Table 4: Dynamics to freeze/ poles to discard for each 

reduced model size. 

 

However, in this case, there is most of the time only one 

possible reduced model that respects Table 3 for a given size. 

This is why a more complex case with two converters is 

investigated in the next section. In this case, for each size, 

there are several possibilities for the reduced model, and the 

method helps choosing the best one. 

3.3 Application to find the best reduced model on a two-

converter test case 

The system shown in figure 8 is considered. It is made of two 

identical converters, connected to each other and to a load and 

the infinite grid. 

 
Figure 8: Considered 2-converter system. 

 

The additional parameters are given in Table 5. 

 

9��.& 0.006 pu 8��.& 0.2 pu 9���
 2 pu 

Table 5: Additional parameters. 

 

This case is more interesting than the previous one, as for 

each total size, different models are possible, as shows Table 

6. This is the reason why the developed method is interesting 

here. 

 

Total size Converter 1/Converter 2 size 

12 6/6 

13 7/6 or 6/7 

14 8/6 or 7/7 or 6/8 

15 9/6 or 8/7 or 7/8 or 6/9 

16 9/7 or 8/8 or 7/9 

17 9/8 or 8/9 

18 12/6 or 9/9 or 6/12 

19 13/6 or 12/7 or 7/12 or 6/13 

20 14/6 or 13/7 or 12/8 or 8/12 or 7/13 or 6/14 

21 
15/6 or 14/7 or 13/8 or 12/9 or 9/12 or 8/13 

or 7/14 or 6/15  

22 15/7 or 14/8 or 13/9 or 9/13 or 8/14 or 7/15  

23 15/8 or 14/9 or 9/14 or 8/15  

24 15/9 or 12/12 or 9/15 

25 13/12 or 12/13 

26 14/12 or 13/13 or 12/14 

27 15/12 or 14/13 or 13/14 or 12/15  

28 15/13 or 14/14 or 13/15  

29 15/14 or 14/15 

Table 6: Possible reduced models for each converter 

depending of the size of the whole system. 

 

As an example, the considered state variable is the current in 

the first converter BC�/ (same for	BCA/) and the considered 

input is the load	����� . For the chosen total size of 21, figure 

9 shows the estimated error for each possible combination in 

Table 6. It shows that to keep a good accuracy, converter 1 

should not be reduced while converter 2 can. 
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Figure 9: Estimated error for each combination 

 

This helps choosing which converter to reduce and how much 

depending on the event and variable under consideration. On 

Figure 10, the evolution of the current in the first converter 

BC/  when �����  goes to 0 pu at 1s (short-circuit) and the fault 

is cleared after 100ms is shown for 3 cases: two full 

converters, a 15
th

 order converter 1 and a 6
th

 order converter 

2, a 6
th

 order converter 1 and a 15
th

 order converter 2. 

 

 
Figure 10: Evolution of the current in the three cases. 

 

This figure shows that the case with a reduced first converter 

gives bad results during the short-circuit. It misses an 

overcurrent. On the other hand, it adds one that doesn’t exist 

when the fault is cleared. The case with a reduced second 

converter gives results that are very close to the case with a 

full second converter. This is what was expected because the 

fault appears far from this converter and we are looking at the 

current in the first one. The developed method proved it. 

Moreover it can be used in cases where this conclusion is not 

obvious, where there are many converters in a large network. 

4 Conclusion and perspectives 

In this paper the MOR of PE systems is investigated. To keep 

the physical structure, a method by state residualization is 

used; and to ensure the stability, a method keeping the 

remaining poles of the system unchanged has been chosen. 

The main idea of this article is the development of a method 

that a priori estimates the error made by the reduced model 

and helps choosing the optimal one for each converter of the 

system depending on the event to be simulated and the 

variable to be looked at. A case with two converters has been 

tested. The method gives the best model for each converter. 

It now needs to be tested on systems with many converters. 

However, as it needs to enumerate all the possible 

combinations before finding the best one, the process is long. 

This is why a method to find the poles to eliminate more 

quickly is investigated at the moment. 
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