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Abstract
In this paper we focus on a periodic resource allocation problem ap-

plied on a dynamical system which comes from a biological system. More
precisely, we consider a system with N resources and N activities, each
activity use the allocated resource to evolve up to a given time T > 0
where a control (represented by a given permutation) will be applied on
the system to re-allocate the resources. The goal is to find the optimal
control strategies which optimize the cost or the benefit of the system.
This problem can be illustrated by an industrial biological application,
namely the optimization of a mixing strategy to enhance the growth rate
in a microalgal raceway system. A mixing device, such as a paddle wheel,
is considered to control the rearrangement of the depth of the algae cul-
tures hence the light perceived at each lap. We prove that if the dynamics
of the system is periodic, then the period corresponds to one re-allocation
whatever the order of the involved permutation matrix is. A nonlinear op-
timization problem for one re-allocation process is then introduced. Since
N ! permutations need to be tested in the general case, it can be numeri-
cally solved only for a limited number of N . To overcome this difficulty,
we introduce a second optimization problem which provides a subopti-
mal solution of the initial problem, but whose solution can be determined
explicitly. A sufficient condition to characterize cases where the two prob-
lems have the same solution is given. Some numerical experiments are
performed to assess the benefit of optimal strategies in various settings.

Keywords: Resource Allocation, Nonlinear Problems, Periodic Control,
Dynamical System, Microalgae production, Periodic System, Impulse Control,
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Switched Systems, Permutation, Linear Approximation, Assignment Problem.

1 Introduction
Considering a fixed amount of the resources and a set of activities, we look for
a distribution strategy which optimizes a given objective function. This is the
so-called resource allocation problem [26]. Due to its simple structure, this prob-
lem is encountered in a number of applications including load scheduling [37],
manufacturing [38], portfolio selection [23] and computational biological prob-
lem [2]. Periodic versions have also been considered. The periodic scheduling
problem was first addressed in [31] the framework of operation research. Later
on, the concept of proportionate fairness constraint has been introduced [4] to
design allocation algorithms which schedule the resources in proportion to task
weight. Periodic resource allocation problems are also used in ecology, e.g.,
in [14, 33] where the authors investigate long-term behaviour of harvesting poli-
cies for a forest composed of multiple species with different maturity ages. In
such problems, the state can also be described in terms of dynamical systems.
As an example, hospital resources (hospital beds) continuous allocation is stud-
ied in [1] as a strategy to control the dengue fever, associated with a patient
recovery rate. In the same way, a population of a single species with logistic
growth in a patchy environment is considered in [32]. The problem here con-
sists of the maximization of the total population by re-distributing the limited
resources among the patches.

In general, resource allocation problems are related to the assignment of a
resource to a sequence of two or more tasks. However, we focus in this paper on
problems where N resources are assigned to N tasks. Additionally, we consider
permanent regimes which are often relevant in the case of long term processes,
as, e.g., crop harvesting, scheduling of appliances, etc. Moreover, here we also
account for the dynamical evolution of the system between two re-allocations,
further increasing the difficulty of the analysis. In this way, our work is related
to the fields of switched systems [29], impulse control [5, 24] and to periodic
control [13]. These techniques are usually used to tackle stabilization issues. In
this paper, we consider them in view of optimization issues.

In order to model the allocation process in the periodic system, we study
the following allocation problem : Consider a system with N resources and N
activities, each activity uses the allocated resource to evolve during a given time
T > 0. At time T , an extra control is applied to re-allocate the resources accord-
ing to a given permutation. It is proven that if the dynamics of the system is
periodic, then it is one period corresponding to one allocation process whatever
the order of the considered control strategy is. A nonlinear problem is then
introduced in order to find the optimal control strategies. Since N ! permuta-
tions need to be tested in the general case, it can be numerically solved only for
a limited number of N . To overcome this difficulty, we propose a second opti-
mization problem - a typical assignment problem - associated with a suboptimal
solution of the initial problem for which its optimal control can be determined
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explicitly. In addition, a sufficient condition is provided to characterize cases
when the two problems have the same solution.

For the sake of concreteness, we illustrate our theory by an industrial bio-
logical application, namely the mixing of microalgae cells in a cultivation set-
up. This emerging application has a promising potential, ranging from food to
renewable energy [36, 25, 34] and is also involved in many high added value
commercial applications such as pharmaceutical processes, cosmetics or pig-
ments [20, 35]. Outdoor algal cultivation is mainly carried out in open raceway
ponds exposed to solar radiation. This hydrodynamic system is set in motion
by a paddle wheel which homogenizes the medium for ensuring an equidistri-
bution of the nutrients and guarantees that each cell will have regularly access
to the light [12]. Microalgae then grow between two re-distributions depend-
ing on the light intensity received in their layer. Different strategies have been
proposed to optimize the production of the biomass in this algal raceway sys-
tem [18, 17, 16, 15, 3, 7]. First studies about the mixing policy have shown
that a well-chosen mixing strategy may improve the algal growth [6, 8]. These
works focus on algal production in a non-flat raceway system and assume con-
stant velocity of the fluid and periodicity of the photosynthetic activity. The
influence of the mixing strategy on the algal productivity is investigated only
numerically by identifying the paddle wheel as a mixing device and modeling
it by permutation [9]. Finally an approximation of the functional to optimize
which gives rise to an explicit solution, whereas the original problem can only
be solved at high computational cost.

In the current study, we extend these preliminary works to a general class
of resource allocation problems, identify the periodic solution of the underlying
dynamical system as an asymptotic steady state and develop a complete the-
ory of the proposed approximation. In particular, our analysis enables us to
establish a criterion to compare the solutions of the original and approximate
resource allocation problems. New numerical results complete this study.

The paper is organized as follows. We introduce our periodic resource allo-
cation problem and the related dynamical system in Section 2. More precisely,
the optimization problem together with a simplified version based on an approx-
imate functional are introduced in Subsection 2.2. Some technical lemmas are
given in Subsection 2.3 and a criterion to guarantee that the original problem
and its approximation share the same solution is given in Subsection 2.4. Some
implementation remarks conclude this section in Subsection 2.5. Section 3 is de-
voted to the application to algal production. We present the models associated
with the biological and the mixing device in a raceway pond in Subsection 3.1.
The considered parameters are given in Subsection 3.2. We illustrate the per-
formance of our control strategies by numerical experiments in Subsection 3.3.
Finally, we conclude with some perspectives of our work in Section 4.

Notation. In what follows, N denotes the set of non-negative integers.
The cardinal of a set E is denoted by #E. Given a matrix M , we denote by
ker(M) its kernel, by M> the corresponding transposed matrix and by Mi,j its
coefficient (i, j). In the same way, Wn denotes the n-th coefficient of a vector
W , whereas ‖W‖∞ denotes its infinite norm, i.e. ‖W‖∞ := maxn |Wn|. The
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scalar product in RN , is denoted by 〈·, ·〉, and we denote by IN the identity
matrix of size N .

The set of permutations ofN elements, i.e, the set of bijections of {1, · · · , N},
is denoted by SN . The set of permutation matrices of size N × N is denoted
by PN . Recall that a permutation matrix is a matrix which has exactly one
entry equal to 1 in each row and each column with the other entries being
zero. A permutation matrix P is associated to a permutation σ by the formula
Pi,j = 1 if i = σ(j) and Pi,j = 0 otherwise. As consequence, if W ∈ RN ,
(PW )n = Wσ−1(n) for all n ∈ {1, · · · , N}.

2 Description of the control problem and opti-
mization

Given a period T , an initial time T0 and a sequence (Tk)k∈N, with Tk := kT +
T0, we consider the following resource allocation process: let (rn)Nn=1 ∈ RN
representing a set of N resources which are assumed to be constant over each
time interval [Tk, Tk+1) and renewed at each time Tk. These resources can be
allocated to N activities denoted by (xn)Nn=1 where xn = xn(t) consists of a
real-valued function of time. Given a sequence of permutations (πk)k∈N, with
πk ∈ SN , suppose that on the time interval [Tk, Tk+1), the resource rπk(n) is
assigned to the activity xn, the latter evolving according to a linear dynamics

ẋn(t) = −a(rπk(n))xn(t) + b(rπk(n)), (1)

where a : R→ R+ and b : R→ R+ are given.
In this paper, we focus on an allocation strategy of the form πk = σk, where

σ ∈ SN is fixed and σk denotes the k−times repeated composition of σ with
itself. Such an assumption expresses that the same allocation device is used at
each period of time. In this setting, the resource assignment process is such that
at the end of each time period [Tk, Tk+1), the resource allocated to the activity
n is re-allocated to the activity σ(n), or equivalently, that at the end of each
time period [Tk, Tk+1), the resource n is re-allocated to the activity σ−1(n).

Because the resource (rn)Nn=1 are constant with respect to time, the solu-
tion of (1) can be computed explicitly. More precisely, denote by x(t) ∈ RN
the time dependent vector whose components are given by xn(t), i.e., x(t) :=
(x1(t), · · · , xN (t))>. The process we consider reads

x(t) =∆(t)x(Tk) + τ(t), t ∈ [Tk, Tk+1) (2)

x(Tk) =Px(T−k ), (3)

where ∆(t) is a time dependent diagonal matrix with ∆nn(t) := e−a(rσk(n)
)(t−Tk),

τ(t) is a time dependent vector with

τn(t) :=
b(rσk(n))

a(rσk(n))
(1− e−a(rσk(n)

)(t−Tk)), (4)
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and P ∈ PN the permutation matrix associated with σ. In this way, k ∈ N
represents the number of re-assignments and T−k represents the moment just
before re-assignment.

Remark 1. All the results presented in this paper also hold for non-constant
but T−periodic resources (rn(t))Nn=1 ∈ RN . In the case of non-constant re-
sources, the matrix ∆(t) and the vector b(t) cannot be expressed explicitly. Such
a technical issue can easily be handled using numerical integration and have no
consequences for the ideas involved in analysis developed in this work. Hence,
we consider constant resources for the clarity of the presentation.

2.1 Periodic control regime assumption
Define D := ∆(T ) and v := τ(T ) and consider as a control the permutation
matrix P ∈ PN involved in (3). According to (2–3), we have

x(Tk+1) = Px(T−k+1) = PDx(Tk) + Pv. (5)

In the next sections of this paper, we focus on a T -periodic solution of (2–
3). We will motivate this choice by two theorems. These require the following
preliminary result.

Lemma 1. Given k ∈ N and P ∈ PN , the matrix IN − (PD)k is invertible.

Proof. Assume IN − PD is not invertible, then there exists a non-null vector
X ∈ ker(IN − PD), which means X = PDX. Let us denote dn = Dnn,
n = 1, . . . , N . Denoting by σ the permutation associated with P , we find that
(DX)n = dnXn and Xn = (PDX)n = dσ(n)Xσ(n). In the same way, we have
Xn =

(
(PD)kX

)
n

= dσk(n) . . . dσ(n)Xσk(n). Denoting by K the order of σ, we
have

Xn =
(
(PD)KX

)
n

= dσK(n) . . . dσ(n)XσK(n) = dσK(n) . . . dσ(n)Xn.

Since, 0 < dn < 1 for n = 1, . . . , N , then 0 < dσK(n) . . . dσ(n) < 1. This
implies that Xn = 0, which contradicts our assumption. Therefore, IN −PD is
invertible. That IN − (PD)k is invertible for all k > 0 can be proved in much
the same way.

We can now state a convergence result about (x(Tk))k∈N.

Theorem 1. There exists a unique T−periodic solution xper(t) of (2–3), sat-
isfying

xper(Tk) = (IN − PD)−1Pv. (6)

Moreover, for any arbitrary initial condition x(T0), we have limk→+∞ x(Tk) =
xper(Tk).
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Proof. The existence of a constant sequence (xper(Tk))k∈N satisfying (5) follows
from Lemma 1, applied with k = 1. Solving (5) in this setting gives (6). Let us
then define the sequence (ek)k∈N by ek := x(Tk)− (IN − PD)−1Pv. Since

ek+1 = (PD)ek, (7)

we find that

‖ek+1‖∞ = ‖PDek‖∞ = ‖Dek‖∞ ≤ dmax‖ek‖∞,

where dmax := maxn=1,...,N (dn) < 1. The result follows.

This theorem shows that after a transient response, the system x(t) can be
correctly approximated by xper(t). This steady state can be obtained in another
way.

Theorem 2. We keep the notation of the previous lemma. Given k0 > 0,
assume that the state x is k0T -periodic in the sense that after k0 times of
re-assignment, the state of each activity returns to its initial state xn(Tk0) =
xn(T0). Then x = xper.

Proof. Since x is assumed to be k0T -periodic, we have e0 = ek0 = (PD)k0e0.
According to Lemma 1, IN − (PD)k0 is invertible, meaning that e0 = 0. Com-
bining this with (7), we get that ek = 0, for k ∈ N. The result follows.

A natural choice for k0 would be the order K of the permutation associated
with P , which is the smallest integer greater than one such that PK = IN .
Indeed, in this case K is the minimal number of re-assignments required to
recover the initial order of the components of x. The previous result shows that
every KT−periodic evolution will actually be T−periodic. In the next section,
we show that this property is decisive to formulate an optimization problem. In
addition, the computations to solve the optimization problem will be reduced,
since the CPU time required to assess the quality of a permutation will not
depend on its order.

2.2 Objective function
We still consider an arbitrary control P ∈ PN and the vector of activities x(t)
defined by (2–3). Assume that the mean benefit of the process on the time
period [Tk, Tk+1), i.e., after k times of re-assignment, reads

fk := 〈w, 1

T

∫ Tk+1

Tk

x(t)dt〉, (8)

where w ∈ RN is a weighting vector expressing the relative importance of each
activity.

Then the average benefit after K re-assignment operations is given by

Jav :=
1

K

K−1∑
k=0

fk. (9)
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Such a formalization has been used by Cominetti et al. in the context of forest
maintenance and exploitation [14]. In this work, an infinite sum is considered
to study the total benefit of all the re-assignment operations. Replace now x(t)
in the benefit (8), by its expression (2–3). We get

fk =
1

T
〈w, D̃x(Tk) + ṽ〉 =

1

T

(
〈D̃w, x(Tk)〉+ 〈w, ṽ〉

)
,

where D̃nn =
∫ Tk+1

Tk
∆nn(t)dt and ṽn =

∫ Tk+1

Tk
τn(t)dt. The only term which

depends on the re-assignment process is x(Tk).
From now on, we focus of on the steady state introduced in Theorem 1,

meaning that we assume that x = xper. Because of (6), one finds

〈D̃w, xper(Tk)〉 = 〈D̃w, (IN − PD)−1Pv〉,

meaning that the benefit is the same for each re-assignment process. As a
consequence, fk does not depend on k and that the average benefit Jav (see (9))
satisfies

Jav(P ) =
1

T
(J(P ) + 〈w, ṽ〉) ,

where
J(P ) := 〈u, (IN − PD)−1Pv〉, (10)

with u = D̃w. It follows that maximizing Jav with respect to P is equivalent
to maximizing J with respect to P . Since #PN = #SN = N !, an exhaustive
test of all the possible controls is out of range for large value of N . Hence,
the maximization of J cannot be tackled in realistic cases where a good nu-
merical accuracy is required. To overcome this difficulty, we propose in this
section an approximation of this problem whose optimum can be determined
explicitly, with a negligible computational cost. For this purpose, we expand
the functional (10) as follows

〈u, (IN − PD)−1Pv〉 =

+∞∑
l=0

〈u, (PD)lPv〉 = 〈u, Pv〉+

+∞∑
l=1

〈u, (PD)lPv〉,

and consider as an approximation the first term of this series, namely

Japprox(P ) := 〈u, Pv〉. (11)

Without loss of generality (see Appendix B for the details), we assume that the
entries of u are sorted in ascending order, meaning that u1 ≤ . . . ≤ uN . Note
that optimizing Japprox amounts to solving an assignment problem [11]. Indeed,
we have for example

min
P∈PN

Japprox(P ) = min
σ∈SN

N∑
n=1

unvσ(n).

The latter expression reads as an assignment problem associated with the cost
matrix[11, p.5] [uivj ](i,j=1,...,N). To make our exposition self-contained, we give
the solution of this problem in Section 2.4.
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Remark 2. A fairly common approach to deal with permutation matrices in
discrete or combinatorial optimization is to relax the problem by extending the
optimization to the set of bistochastic matrices. As an example, this technique
corresponds to the Kantorovitch relaxation considered in optimal transport [27]
(see also [10] for a more general presentation of the linear case, and [30] for a
similar strategy in the context of quantum chemistry). This approach allows the
optimization to be performed by gradient-type methods. At the theoretical level,
the goal is then to prove that the convergence takes place towards extremal points,
i.e. permutation matrices. We have tested this approach on the nonlinear prob-
lem (10). Our experiments indicate that the obtained limits are neither always
permutation matrices nor optimal, which leads us to conjecture the existence of
local (non-global) maxima for this extended form of J .

2.3 Some technical lemmas
Let us state some preliminary properties about the permutation set SN that
we will use in the next section. Given k ∈ N, and two arbitrary permutations
σ, σ̃ ∈ SN , let us define

Ek(σ, σ̃) :=
{
n = 1, . . . , N | σk(n) 6= σ̃k(n)

}
,

Gk(σ, σ̃) :={n = 1, . . . , N | ∀k′ ≤ k, σk
′
(n) = σ̃k

′
(n)},

and mk := #Ek(σ, σ̃). We have the following result.

Lemma 2. For k ∈ N, we have mk ≤ km1 and #Gk(σ, σ̃) ≥ max(N −km1, 0).

Proof. To shorten notation, we write in this proof Ek instead of Ek(σ, σ̃), Ek+1

instead of Ek+1(σ, σ̃), Gk instead of Gk(σ, σ̃), etc. From the definition of Ek,
we have:

Ek+1 = (({1, . . . , N} \ E1) ∩ Ek+1) ∪ (E1 ∩ Ek+1).

The first subset in the right-hand side satisfies

σ (({1, . . . , N} \ E1) ∩ Ek+1) = σ̃ (({1, . . . , N} \ E1) ∩ Ek+1) ⊂ Ek,

so that # (({1, . . . , N} \ E1) ∩ Ek+1) ≤ #Ek =: mk.
On the other hand, (E1 ∩ Ek+1) ⊂ E1, hence #(E1 ∩ Ek+1) ≤ m1. As a

consequence, mk+1 ≤ mk +m1. This implies mk ≤ km1.
As for Gk, we have:

Gk = (Gk+1 ∩Gk) ∪ (σ−k(E1) ∩Gk). (12)

Indeed, let n ∈ Gk, i.e, σk(n) = σ̃k(n). If σk+1(n) = σ̃k+1(n), then n ∈ Gk+1.
Otherwise, σk+1(n) 6= σ̃k+1(n), meaning that σk+1(n) 6= σ̃(σk(n)) which implies
σk(n) = σ̃k(n) ∈ E1, so that n ∈ σ−k(E1). This proves (12), and we get as a
by-product

(Gk+1 ∩Gk) ∩ (σ−k(E1) ∩Gk) = ∅.
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Moreover, since Gk+1 ⊂ Gk, we get Gk+1 ∩Gk = Gk+1. It follows that

#Gk = #Gk+1 + #{σ−k(E1) ∩Gk}.

Since #{σ−k(E1) ∩ Gk} ≤ #E1 = m1, we obtain #Gk+1 ≥ #Gk −m1. The
result follows.

In what follows, a transposition in SN between two elements i 6= j is
denoted by (i j). By abuse of notation, (n n) denotes the identity for all
n = 1, . . . , N . Given a permutation σ ∈ SN , we consider the sequence of
permutations (σn)n=0,...,N defined by

σ0 = σ

σn = (n σn−1(n)) ◦ σn−1.
(13)

For all n ≤ N , it immediately follows from this definition that

σn|{1,...,n} = Id|{1,...,n} and σN−1 = σN = Id,

where Id denote the identity permutation. Let us give two additional properties
of this sequence.

Lemma 3. Let σ ∈ SN and (σn)n=1,...,N−1 defined by (13). One has:

{i = 1, . . . , N | σ(i) = i} = {i = 1, . . . , N | ∀n = 1, . . . , N − 1, σn(i) = i} .

Proof. Given i with 1 ≤ i ≤ N , such that σ(i) = i, let us prove that σn(i) = i
by induction on n. Since σ0 = σ, the result holds for n = 0. Suppose it holds at
a rank n− 1, meaning that σn−1(i) = i. By definition of (σn)n=1,...,N , one has:

σn(i) = (n σn−1(n)) ◦ σn−1(i) = (n σn−1(n))(i).

If i = n, then (n σn−1(n))(i) = σn−1(n) = σn−1(i) = i. If i = σn−1(n), then
i = σn−1(i) = σn−1(n) and i = n, so that we conclude as in the previous case.
In the other cases, σn(i) = σn−1(i) = i. The result follows.

Lemma 4. Let i, j ∈ {1, . . . , N}, with i < j. Let σ ∈ SN , with σ = (i j) ◦ σ′,
where (i j) and σ′ ∈ SN have disjoint supports, i.e., σ′(i) = i and σ′(j) = j.
The sequence defined by (13) satisfies σj = σj−1.

Proof. From (13), one has

σj = (j σj−1(j)) ◦ σj−1.

We need to prove that σj−1(j) = j. Since σ′ and (i j) are disjoint, then for
n < i, σn = (i j)◦σ′n, where σ′n is defined by (13), with the initial term σ′0 = σ′.
In particular, σn(i) = j for n < i.

In the case n = i, one has

σi = (i σi−1(i)) ◦ σi−1 = (i j) ◦ σi−1 = (i j) ◦ (i j) ◦ σ′i−1 = σ′i−1.

9



In particular, σi(j) = j.
Finally, since σ′i−1(i) = i, we find that σ′i = σ′i−1, and it follows by induction

that for n > i, σn = σ′n, which means σn(j) = j. In particular σj−1(j) = j.
This concludes the proof.

The sequence (σn)n=0,...,N can be used to decompose J(IN ) − J(P ) for an
arbitrary P ∈ PN , as stated in the next Lemma.

Lemma 5. Let σ ∈ SN and P ∈ PN the associated permutation matrix, we
have:

〈u, (IN − P )v〉 =

N−1∑
n=1

(un − uσ−1
n−1(n)

)(vn − vσn−1(n)).

Proof. Given j ∈ {0, . . . , N}, define Sj =
∑N
n=1 unvσj(n). Since σj(n) and

σj−1(n) might only differ for n = j and n = σ−1j−1(j), we have

Sj − Sj−1 =

N∑
n=j

un(vσj(n) − vσj−1(n))

= uj(vσj(j) − vσj−1(j)) + uσ−1
j−1(j)

(vσj(σ−1
j−1(j))

− vσj−1(σ
−1
j−1(j))

)

= uj(vj − vσj−1(j)) + uσ−1
j−1(j)

(vσj−1(j) − vj)

= (uj − uσ−1
j−1(j)

)(vj − vσj−1(j)).

The result then follows from 〈u, (IN − P )v〉 = SN−1 − S0.

2.4 Solutions of the optimization problems
The previous lemma enables us to solve the problems maxP∈PN J

approx(P ) and
minP∈PN J

approx(P ). Recall that the entries of u are sorted in ascending order.

Lemma 6. Let σ+, σ− ∈ SN such that vσ+(1) ≤ vσ+(2) · · · ≤ vσ+(N) and
vσ−(N) ≤ vσ−(N−1) ≤ · · · ≤ vσ−(1) and P+, P− ∈ PN , the corresponding per-
mutation matrices. Then

P+ = argmaxP∈PNJ
approx(P ), P− = argminP∈PNJ

approx(P ).

Proof. Let P ∈ PN and σ ∈ SN the associated permutation, we have

〈u, (P+ − P )v〉 = 〈u, (IN − PP−1+ )w〉

=

N−1∑
n=1

(un − u(σ′n−1)
−1(n))(wn − wσ′n−1(n)

),
(14)

where w = (wn)Nn=1 := (vσ+(n))
N
n=1 and σ′n is the sequence defined by (13) with

σ′ := σ−1+ ◦ σ the permutation associated with PP−1+ . Since (wn)Nn=1 by its
definition is an increasing sequence, σ′n−1(n) ≥ n and (σ′n−1)−1(n) ≥ n, we
find that 〈u, (P+ − P )v〉 ≥ 0. The proof for the problem minP∈PN 〈u, Pv〉 is
similar.

10



We immediately deduce from this lemma that once u and v are given, the
matrix P+, P− of Lemma 6 can be determined explicitly. More precisely, P+

is the matrix corresponding to the permutation which associates the largest
coefficient of u with the largest coefficient of v, the second-largest coefficient with
the second-largest, and so on. In the same way, P− is the matrix corresponding
to the permutation which associates the largest coefficient of u with the smallest
coefficient of v, the second-largest coefficient with the second-smallest, and so
on.

Remark 3. The optimal matrices P+ and P− are not unique as soon as either
u or v contains at least two identical entries.

We focus now on the case where u as well as v have entries with a con-
stant sign. Since the results in this section hold both for minimization and
maximization problems, we can assume without loss of generality that u, v are
both positive. Using the properties given in the previous section, we will show
that in some cases, the problem maxP∈PN J(P ) (resp. minP∈PN J(P )) and
maxP∈PN J

approx(P ) (resp. minP∈PN J
approx(P )) have the same solution.

We keep the notation of Lemma 6. Define for n = 1, . . . , N ,

p̃n := min
i,j=1,...,N,i6=n,j 6=n

|(un − ui)(vσ+(n) − vσ+(j))|. (15)

Denote by in and jn the solutions of the previous problem. Since un, vσ+(n) are
sorted in ascending order, we find immediately that if n = 1 (resp. N), then
in = jn = 2 (resp. in = jn = N − 1). Otherwise, in = n− 1 or in = n+ 1, and
the same result holds for jn. Sort (p̃n)Nn=1 and denote by (pn)Nn=1 the resulting
sequence, i.e., p1 ≤, . . . ,≤ pN . Define then for m = 1, . . . , N

sm :=

m∑
n=1

pn, (16)

and

F−m :=

min(m,N)∑
n=1

unvσ−(N−m+n), F+
m :=

N∑
n=max(1,N−m+1)

unvσ+(n). (17)

From the definition of these sequences, we have F+
m ≥ F−m . See Appendix C for

the case where u or v negative. We are now in a position to give the main result
of this section.

Theorem 3. Assume that u and v have positive entries and define

φ(m1) :=
1

sdm1
2 e

(+∞∑
l=1

dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

)
, (18)

where m1 refers to the notation in Lemma 2, dmax := maxn=1,...,N (dn) and
dmin := minn=1,...,N (dn). Assume that:

max
m1≥2

φ(m1) ≤ 1. (19)

11



Then the problem maxP∈PN 〈u, (IN − PD)−1Pv〉 (resp. minP∈PN 〈u, (IN −
PD)−1Pv〉) and the problem maxP∈PN 〈u, Pv〉 (resp. minP∈PN 〈u, Pv〉) have
the same solution.

Proof. We keep the notation in Section 2.3 and give the proof in the case of the
maximization problem. The case of the minimization problem can be handled
in the very same way. Let P ∈ PN and σ ∈ SN the associated permutation, we
have

〈u, (IN − P+D)−1P+v〉−〈u, (IN − PD)−1Pv〉 (20)

=

+∞∑
l=0

〈u,
(
(P+D)lP+ − (PD)lP

)
v〉

= 〈u, (P+ − P )v〉+

+∞∑
l=1

〈u,
(
(P+D)lP+ − (PD)lP

)
v〉.

(21)

From the definition Ek(σ+, σ) and Gk(σ+, σ), we have E1(σ+, σ)tG1(σ+, σ) =
{1, . . . , N}. Let us denote by (wn)Nn=1 = (vσ+(n))

N
n=1 and by σ′n the sequence de-

fined by (13) with σ′0 := σ−1+ ◦σ. From the definition of E1(σ+, σ) and G1(σ+, σ),
we have σ(G1(σ+, σ)) = σ+(G1(σ+, σ)) and σ(E1(σ+, σ)) = σ+(E1(σ+, σ)),
which implies σ′0(E1(σ+, σ)) = E1(σ+, σ), and for any i ∈ G1(σ+, σ), σ′0(i) = i.
Using these properties and (14), we have

〈u, (P+ − P )v〉 =

N−1∑
n=1

(un − u(σ′n−1)
−1(n))(wn − wσ′n−1(n)

)

=
∑

n∈E1(σ+,σ)

(un − u(σ′n−1)
−1(n))(wn − wσ′n−1(n)

)

+
∑

n∈G1(σ+,σ)

(un − u(σ′n−1)
−1(n))(wn − wσ′n−1(n)

)

=
∑

n∈E1(σ+,σ)

(un − u(σ′n−1)
−1(n))(wn − wσ′n−1(n)

).

(22)

In the case where there exists a transposition (i i′) with i < i′ in σ′, Lemma 4
implies that u(σ′

i′−1
)−1(i′) = ui′ and wσ′

i′−1
(i′) = wi′ . The maximum number of

transpositions in σ′0 is m1

2 if m1 is even, m1−3
2 otherwise. Hence, the smallest

number of non-zero terms present in the last sum of (22) is given by m1− m1

2 =
m1

2 if m1 is even, m1−1
2 otherwise. In other words, there exists at least

⌈
m1

2

⌉
non-zero terms in the last sum of (22), which implies

〈u, (P+ − P )v〉 =
∑

n∈E1(σ+,σ)

(un − u(σ′n−1)
−1(n))(wn − wσ′n−1(n)

) ≥ sdm1
2 e. (23)

For n ∈ {1, . . . , N} and l ∈ N∗, let us denote by dσ,l,n := dσl(n)dσl−1(n) · · · dσ(n).
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Considering now the second term of the right-hand side of (21), we get

< u, (PD)lPv >=

N∑
n=1

undσl(n)dσl−1(n) · · · dσ(n)vσl+1(n) =

N∑
n=1

undσ,l,nvσl+1(n).

Using this notation and Lemma 2, we find

|〈u, (P+D)lP+v − (PD)lPv〉|

=

∣∣∣∣∣
N∑
n=1

un(dσ+,l,nvσl+1
+ (n) − dσ,l,nvσl+1(n))

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

n 6∈Gl+1(σ+,σ)

un(dσ+,l,nvσl+1
+ (n) − dσ,l,nvσl+1(n))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

n 6∈Gl+1(σ+,σ)

undσ+,l,nvσl+1
+ (n) −

∑
n6∈Gl+1(σ+,σ)

undσ,l,nvσl+1(n)

∣∣∣∣∣∣
≤ dlmax

∑
n 6∈Gl+1(σ+,σ)

unvσ+(n) − dlmin

∑
n 6∈Gl+1(σ+,σ)

unvσ−(n)

≤ dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

.

(24)

This result combined with (19), gives∣∣∣∣∣
+∞∑
l=1

〈u, (P+D)lP+v − (PD)lPv〉

∣∣∣∣∣ ≤
+∞∑
l=1

dlmaxF
+
(l+1)m1

− dlminF
−
(l+1)m1

≤sdm1
2 e.

Considering now (23), we obtain

|〈u, (P+ − P )v〉| ≥

∣∣∣∣∣
+∞∑
l=1

〈u, (P+D)lP+v − (PD)lPv〉

∣∣∣∣∣ .
It follows that the first term of (21) dominates the second one. As a consequence,
the former has the same sign as (20). The result follows.

2.5 Implementation remarks
In this section, we give details on the practical computation of the infinite sum
in (18). Given m1 ∈ {2, . . . , N}, define by l∗ such that

l∗ :=

⌊
N

m1

⌋
− 1.

13



We have

+∞∑
l=1

(
dlmaxF

+
(l+1)m1

− dlminF
−
(l+1)m1

)
=

l∗∑
l=1

(
dlmaxF

+
(l+1)m1

− dlminF
−
(l+1)m1

)
+

+∞∑
l=l∗+1

(
dlmaxF

+
(l+1)m1

− dlminF
−
(l+1)m1

)
=

l∗∑
l=1

(
dlmaxF

+
(l+1)m1

− dlminF
−
(l+1)m1

)
+

dl
∗+1
max

1− dmax
F+
N −

dl
∗+1
min

1− dmin
F−N .

It follows that the infinite sum involved in φ(m1) actually reduces to a finite
sum that can be computed numerically without any approximation. As for
the evaluation of sdm1

2 e, only
⌈
N
2

⌉
terms need to be computed. Examples of

behaviour of sm and F+
m , F

−
m are presented in Figure 3, whereas examples of

behaviour of the function (18) with respect to m1 are shown in Figure 4.

3 Application to algal production
Algal raceway reactors are currently the most extended technology for microal-
gae growth, more than 90% of the worldwide microalgae production is performed
by this technology. In this system, the algae are exposed to solar radiation and
advected in a laminar regime. This regime holds as long as they remain far
enough from the mixing device, that usually consists of a paddle wheel. Mean-
while, they evolve at a constant depth and one can consider that their vertical
positions only change after passing through this device [19]. Two main phenom-
ena have to be taken into account to study algal production. First, the photo-
synthetic activity of the algae close to surface may suffer from photoinhibition
by which an excess of light decreases the speed of photosynthesis. Second, the
algae at the bottom of the raceway may not receive any light since this quan-
tity exponentially decreases with respect to depth. In this framework, it has
been shown that a well-chosen mixing device can increase significantly the algal
growth by balancing the access to the light resource [9, 8]. In this section, we
analyse this result in the framework of the resource allocation process and apply
the theory developed in the previous section to an algal production case. Fi-
nally, we provide some numerical results to evaluate the efficiency of the mixing
strategies and their approximation.

3.1 Biological dynamics and raceway mixing modeling
The growth of algae results from the activity of photosynthetic cells generated
by solar radiation. This complex interaction is accurately described by the
Han model [22], which takes into account the above-mentioned phenomenon
of photoinhibition. In this model, each light harvesting unit is assumed to
have three different states: open and ready to harvest a photon (A), closed
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while processing the absorbed photon energy (B), or inhibited if several photons
have been absorbed simultaneously leading to an excess of energy (C). Their
dynamics is described by the following system

Ȧ = −σHIA+
1

τH
B,

Ḃ = σHIA−
1

τH
B + krC − kdσHIB,

Ċ = −krC + kdσHIB.

Here A,B and C are the relative frequencies of the three possible states with
A+B+C = 1, and I is a continuous time-varying signal representing the photon
flux density. The coefficient σH stands for the specific photon absorption, τH
is the turnover rate, kr represents the photosystem repair rate and kd is the
damage rate.

Since the sum of these three states is equal to one, the latter system can be
reduced to two equations by eliminating B as following:(

Ȧ

Ċ

)
=ε · (MH

(
A
C

)
+ bH), ε =

(
1 0
0 kd

)
,

MH =

(
−(σHI + 1

τH
) − 1

τH

−σHI −( krkd + σHI)

)
, bH =

(
1
τH
σHI

)
.

The dynamics of the open state A reaches its steady state following a process
whose speed is much higher than the dynamics of the photoinhibition state C.
This phenomenon is mainly due to the presence of the multiplicative parameter
kd which is on the order of 10−4 whereas the absolute value of the entries of
MH and bH are on the order of 0.1 − 6 (see Table 1, where an example of
typical values for the Han parameters is given). We can then apply a slow-fast
approximation using singular perturbation theory [28]. This approach consists
in replacing A by its pseudo steady state Asteady := 1−C

τHσHI+1 into the reduced
evolution equation of C. The Han dynamics can then be reduced to a single
evolution equation on C:

Ċ = −α(I)C + β(I), (25)

where

α(I) := kdτH
(σHI)2

τHσHI + 1
+ kr, β(I) := kdτH

(σHI)2

τHσHI + 1
.

The specific growth rate is proportional to σHIA, replacing A by its pseudo
steady state Asteady, the net specific growth rate is defined by

µ(C, I) := −γ(I)C + ζ(I), (26)

where
γ(I) :=

kHσHI

τHσHI + 1
, ζ(I) :=

kHσHI

τHσHI + 1
−R.
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Here, R denotes the respiration rate and kH is a factor which relates the pho-
tosynthetic activity to the growth rate.

We assume that the system is perfectly mixed so that the biomass concen-
tration is homogeneous. Meanwhile, we also assume that the photosynthetic
units grow slowly such that the variations of biomass concentration and back-
ground turbidity are negligible over one lap of the raceway. At this timescale,
the turbidity and biomass concentration can be supposed to be constant. In
this framework, the light intensity reads as a function of the depth z and can
be modeled by the Beer-Lambert, i.e.,

I(z) = Is exp(εz), (27)

where Is is the light intensity at the free surface and ε is the light extinction
coefficient. The average net specific growth rate over the domain is then defined
by

µ̄ :=
1

T

∫ T

0

1

h

∫ 0

−h
µ
(
C(t, z), I(z)

)
dzdt, (28)

where h is the depth of the raceway pond and T is the average duration of one
lap of the raceway pond.

Let us now see how this model can be included in the framework of Section 2.
In order to compute numerically (28), we introduce a vertical discretization of
the fluid, consisting of N layers uniformly distributed on a vertical grid. The
depth of the layer n is given by

zn := −
n− 1

2

N
h, n = 1, . . . , N. (29)

For a given initial photoinhibition state Cn(0) associated with a photosystem
located in layer n, let Cn(t) be the solution of (25) at time t. In this semi-
discrete setting, the average net specific growth rate in the raceway pond can
be defined by

µ̄N :=
1

T

∫ T

0

1

N

N∑
n=1

µ(Cn(t), In)dt, (30)

where In is the light intensity received in the layer n. The solution of (25) can
be computed explicitly to get a formula that takes the form of (2). Denoting by
C(t) the time dependent vector whose components are given by Cn(t), it follows
that µ̄N satisfies

µ̄N =
1

NT

(
〈Γ, C(0)〉+ 〈1, Z〉

)
, (31)

where 1 is a vector of size N whose coefficients are equal to 1, and Γ, Z are two
vectors such that

Γn :=
γ(In)

α(In)
(e−α(In)T − 1),

Zn :=
γ(In)β(In)

α(In)2
(1− e−α(In)T )− γ(In)β(In)

α(In)
T + ζ(In)T.
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The detail of the computations giving rise to (31) is presented in Appendix A.
Assume now that at each lap, the layers are permuted according to σ ∈ SN ,

meaning that the algae at the layer n1 are supposed to be entirely transferred
to the layer n2 = σ(n1) when passing through the mixing device, This mixing
process is depicted schematically on an example in Figure 1.

Tk T−k+1
Tk+1 T−k+2

Layer four

Layer three

Layer two

Layer one

σ z

0

−h

z1 = zσ(4)

z2 = zσ(1)

z3 = zσ(2)

z4 = zσ(3)

Figure 1: Schematic representation of the mixing process over two laps. Here,
the vertical discretization number N = 4 and the mixing device corresponds to
the cyclic permutation σ = (1 2 3 4).

The interest of such a device is to mix the algae to better balance their
exposure to light and increase the production. In this way, though the light
resource is considered to be constant, this mixing model and the constraints on
the light level received at each layer make the process equivalent to a resource
allocation problem.

At this step, we see that up to a change of notation, this model can be inter-
preted in terms of the resource allocation process described in Section 2. More
precisely, the activity xn(t) corresponds to the photoinhibition state Cn(t), the
resource rn correspond to the light intensity In and the functions a, b correspond
to α, β.

Considering now the periodic regime, we get thanks to Theorem 1 and (6)
that the steady state of this system satisfies C(0) = (IN − PD)−1PV , where
D and V are a diagonal matrix and a vector of size N ×N and N respectively,
whose components are given by

Dnn := e−α(In)T , Vn :=
β(In)

α(In)
(1− e−α(In)T ). (32)

Our goal is to find the control, i.e. a permutation σ, which maximizes the
average growth rate µ̄N . Since only C(0) in (31) depends on the control P , we
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find that the objective function µ̄N = 〈Γ, (IN − PD)−1PV 〉 has the form of
J(P ) in (10) with u = Γ, v = V and D defined in (32).

3.2 Parameter settings
Consider a raceway whose water elevation h = 0.4 m, which corresponds to
typical raceway pond setting. All the numerical parameters values considered
in this section for Han’s model are taken from [21] and recalled in Table 1.
Recall that Is is the light intensity at the free surface. In order to fix the value

Table 1: Parameter values for Han Model

kr 6.8 10−3 s−1

kd 2.99 10−4 -
τ 0.25 s
σH 0.047 m2 µmol−1

kH 8.7 10−6 -
R 1.389 10−7 s−1

of the light extinction coefficient ε in (27), we assume that only a fraction q
of Is reaches the bottom of the raceway pond, meaning that Ib = qIs, where
q ∈ [0, 1] and Ib is the light intensity at the bottom. It follows that ε can be
computed by

ε = (1/h) ln(1/q).

In practice, this quantity can be implemented in the experiments by adapting
the biomass harvesting frequency, or the dilution rate for continuous cultivation.
In what follows, the varying parameters are Is, the ratio q and T . We consider
Is ∈ [0, 2500]µmol m−2 s−1, q ∈ [0.1%, 10%] and T ∈ [1, 1000]s. The number of
layers N remains small as we need to test numerically N ! permutation matrices
for each triplet (Is, q, T ).

3.3 Numerical tests
As shown in [9, Section IV.B], Problem (10) admits non-trivial optimal per-
mutation strategies which may significantly change according to the parameter
settings. In this section, we study and compare the true and the approximated
solutions as well as their efficiency with respect to the average net specific (28).

We start by investigating some properties of the items defined in the previous
sections. Recall that the two sequences u, v used in Section 2.2 correspond in our
application to Γ, V respectively. We consider N = 20 layers and two parameters
triplets, namely (Is, q, T ) = (2000, 5%, 1000) and (800,0.5%,1). Figure 2 shows
the evolution of these two quantities as a function of I. Note that in both cases,
V is positive with sorted entries, as it can be seen in (4). On the contrary, the
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Figure 2: Γ and V with respect to the light intensity I (Blue curve). Discreti-
sation points (Red point) chosen for (Is, q, T ) = (2000, 5%, 1000) (Left) and
(800,0.5%,1) (Right).

discretized Γ is negative and not necessarily sorted. We refer to Appendix A for
more details about V and Γ.

We then study the behaviour of the sequences F+
m , F

−
m , sm and φ(m1) defined

in Section 2.4 for the same two parameters triplets. Note that since Γ is negative,
F−m and F+

m are defined as in Appendix C (and not as in (17)). We choose N = 7
and N = 20 to check the performance for two different discretisation numbers
of layers. One can see in Figure 4 that the maximal value of φ(m1) is always
obtained for m1 = 2, and that the maximal value φ(m1) appears to be an
increasing function of N . This makes the criterion given in Section 2.4 less
efficient for many layers N . Further analysis is required to obtain a criterion
that does not depend on N .

The next test is devoted to the convergence of the average growth rate µ̄N
with respect to the number of layers N . We keep the two triplets of parameters
of the previous test. Due to the limit of the computer memory, the computation
of µ̄N (Pmax) is tractable for small values of N , in our case lower than or equal to
N = 11. Such an issue does not occur in the case of µ̄N (P+). Figure 5 presents
the behaviour of µ̄N . For the parameter triplet (2000, 5%,1000), the criterion
is satisfied until N = 8 (green circle), which is confirmed in Figure 4 (Left) for
N = 7 where the maximal value of φ(m1) is already close to 1. Though the
criterion is not satisfied for N > 8, we observe that P+ = Pmax from N = 2
to N = 11. As for the triplet (800,0.5%,1), one can see that P+ = Pmax until
N = 3. Figure 6 shows the optimal control strategies for these two different
parameter triplets in the case N = 11 and N = 100. It can be observed that
for the parameter triplet (2000, 5%, 1000), the two controls P+, Pmax have the
same form for N = 11 and N = 100 (Figure 6 Top). Hence, one can expect
Pmax = P+ for larger N which is the case until N = 11 (as shown in Figure 5
black square). However, this may not be the case for (800,0.5%,1) since P+, Pmax

have already different forms for N = 11 (Figure 6 Bottom).
In the following tests, we focus only on two special cases: large lap duration

time (T = 1000 s) and small lap duration time (T = 1 s). In practice, the
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Figure 3: Example of sequences F+
m , F−m (Top) and sm (Bottom) with respect

to m for the two parameters triplets. Left: N = 7. Right: N = 20.

Figure 4: Example of behaviour of φ(m1) with respect to m1 for two parameters
triplets and two different N . Left: N = 7. Right: N = 20.
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Figure 5: Average growth rate µ̄N obtained with Pmax and P+ as a function
of N for the two parameters triplets. The green circles mark the case when
the criterion is satisfied. The black squares mark the case when Pmax = P+ is
observed.

former corresponds to typical time required to complete one lap in a raceway
pond system, whereas the latter rather corresponds to photobioreactor [28].
In the small lap duration time case, we observe the so-called flashing effect.
This phenomenon corresponds to the fact that the growth rate is an increasing
function of the light exposition frequency. It can be observed in Figure 7, where
µ̄N (Pmax) decreases with respect to T for all considered light intensities. This
phenomenon has already been reported in literature, see, e.g. [28].

The next test is dedicated to the efficiency of the criterion (19). More pre-
cisely, we evaluate the function µ̄N defined by (30) for the optimal control Pmax

which solves Problem (10) and for the control P+ which solves the approxi-
mated Problem (11). We consider two different discretisation values N = 5 and
N = 9. Figure 8 shows the results for T = 1 s and T = 1000 s. We see that for
large values of T , the optimum approximation almost always coincides to the
true optimum. Nevertheless, we observe that the criterion (19) becomes less
efficient for larger N . Note that the case corresponding to Is = 0µmol m−2 s−1

is particular since no light is available in the system, implying that Γ, V equal
to zero. In this case the value of the objective function do not depend on the
control P . Hence µ̄N (Pmax) = µ̄N (P+) when Is = 0µmol m−2 s−1.
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Figure 6: Pattern of the optimal matrix Pmax for Problem (10) and N = 11
(Left) and P+ for Problem (11) and N = 100 (Right) for the two parameters
triplets. The blue points represent non-zero entries, i.e., entries equal to 1.

Figure 7: Average specific growth rate in the case q = 0.1% and N = 7 for four
different light intensities Is.
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Figure 8: Average net specific growth rate µ̄N for T = 1 s (Top) and for T =
1000 s (Bottom). Left: N = 5. Right: N = 9. The red surface is obtained
with the control Pmax and the blue surface is obtained with the control P+.
The purple stars represent the cases where Pmax = P+ or, in case of multiple
solution, µ̄N (Pmax) = µ̄N (P+). The green circle represent the cases where the
criterion (19) is satisfied.
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We finally evaluate the efficiency of various mixing strategies. Define

r1 :=
µ̄N (Pmax)− µ̄N (IN )

µ̄N (IN )
, (33)

r2 :=
µ̄N (Pmax)− µ̄N (Pmin)

µ̄N (Pmin)
, (34)

r3 :=
µ̄N (IN )− µ̄N (Pmin)

µ̄N (IN )
, (35)

where Pmin ∈ PN is the matrix that minimizes J , (see (10)), i.e., that corre-
sponds to the worse strategy. We consider N = 9 layers. Figure 9 presents
the results for T = 1 s and T = 1000 s. Better performance is in most cases

Figure 9: Three ratios (33)- (35) for T = 1 s (Left) and for T = 1000 s (Right).
In each figure, the red surface represents r1, the blue surface represents r2 and
the green surface represents r3.

obtained for a small lap duration T = 1 s. In this way, we observe that the
relative improvement between the best and the no mixing strategy may reach
15%, whereas the relative improvement between the worst and the best strategy
may reach 30%. In both two cases, a better improvement can be obtained with
high values of Is and low values of q.

To compare the efficiency of the approximation P+ with respect the true
optimal mixing strategy Pmax, we define two extra ratios:

r̃1 :=
µ̄N (P+)− µ̄N (IN )

µ̄N (IN )
, (36)

r̃2 :=
µ̄N (P+)− µ̄N (Pmin)

µ̄N (Pmin)
. (37)

Figure 10 presents the results for T = 1 s and T = 1000 s. As already mentioned,
for a large lap duration time, the optimization problem (11) provides a good
approximation.

This can be observed with the blue and red surface in Figure 9 (Right) and
in Figure 10 (Right), both surfaces have the same behaviours. As expected,
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Figure 10: Two ratios (36)- (37) for T = 1 s (Left) and for T = 1000 s (Right).
In each figure, the red surface represents r̃1, the blue surface represents r̃2.

the approximation becomes less efficient in the case of short lap duration time.
This can be observed in Figure 9 (Left) and in Figure 10 (Left). However, the
maximal values of r1, r2 are still preserved by their approximations r̃1, r̃2.

4 Conclusion
We have studied a periodic resource allocation problem combined with a dy-
namical system. The periodicity of the problem enables us to reduce the com-
putation to one assignment process. A significant computational effort is still
required when dealing with larger number of N . We overcome this difficulty
by defining a second optimization problem which has an explicit solution that
coincide with the true solution when a given criterion is satisfied.

This developed theory is then applied to a microalgal production system with
a mixing device. Non-trivial optimal mixing strategies can be obtained and the
proposed second optimization problem provides a reliable approximation for
large time duration T . Besides, our experimental results show the significance
of the choice of the mixing strategy: the relative ratio between the best and the
worst case reaches 30% in some cases. We also observe a flashing effect meaning
that better results are obtained when T goes to zero.

Further works will be devoted to the improvement of the function φ used
in Theorem 3 in order to improve our approach for large number of N . An
approximation problem for small lap duration T can also be considered with an
appropriate criterion to evaluate this approximation.
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A Explicit Computations
In this appendix, we provide the computational details to solve (25) and (30)
for an arbitrary number n ∈ {1, . . . , N}. Given two points t1, t2 ∈ [0, T ]. Since
In is constant, Equation (1) can be integrated and becomes

Cn(t2) = eα(In)(t1−t2)Cn(t1) +
β(In)

α(In)
(1− eα(In)(t1−t2)). (38)

The time integral in (30) can be computed by∫ T

0

µ(Cn(t), In)dt =

∫ T

0

−γ(In)Cn(t) + ζ(In)dt

= −γ(In)

∫ T

0

Cn(t)dt+ ζ(In)T.

Replacing xn by Cn, t2 by t and t1 by 0 in (38) and integrating t from 0 to T
gives∫ T

0

Cn(t)dt =

∫ T

0

(
e−α(In)tCn(0) +

β(In)

α(In)
(1− e−α(In)t)

)
dt

=
Cn(0)

α(In)
(1− e−α(In)T ) +

β(In)

α(In)
T − β(In)

α2(In)
(1− e−α(In)T ).

Using notations given in Section 3.1, we have

Γ =
γ(I)

α(I)
(e−α(I)T − 1), V =

β(I)

α(I)
(1− e−α(I)T ).

From the definition of α(I), β(I), γ(I), we find

β(I)

α(I)
=

β(I)

β(I) + kr
=

kdτ(σHI)2

kdτ(σHI)2 + krτσHI + kr
,

γ(I)

α(I)
=

kHσHI

kdτ(σHI)2 + krτσHI + kr
.

Remark that Γ and V always have the opposite sign. Note also that I 7→ β(I)
α(I)

is increasing on [0,+∞), which is not the case for I 7→ γ(I)
α(I) . It follows that V

increases on R+ and Γ is not monotonic on R+ (see Figure 2).

B Optimization problem with arbitrary vectors
Let ũ, v ∈ RN two arbitrary vectors. Let Q ∈ PN such that u := Qũ has entries
sorted in ascending order. Since Q is a permutation matrix, we have QT = Q−1.
For any P ∈ PN , let us denote by P̃ := Q−1PQ, we have P̃ ∈ PN a permutation
matrix. Let us denote by ṽ := Q−1v and by D̃ = Q−1DQ. Note that D̃ is still
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a diagonal matrix with a different order of the diagonal coefficients. Using this
notation, we find for the objective function (10) satisfies

J(P ) := 〈u, (IN − PD)−1Pv〉 = 〈ũ, Q−1(IN − PD)−1QQ−1PQQ−1v〉

= 〈ũ,
(
Q−1(IN − PD)Q

)−1
P̃ ṽ〉

= 〈ũ, (Q−1Q−Q−1PQQ−1DQ)−1P̃ ṽ〉
= 〈ũ, (IN − P̃ D̃)−1P̃ ṽ〉.

For the objective function (11), we get

Japprox(P ) := 〈u, Pv〉 = 〈ũ, Q−1PQQ−1v〉 = 〈ũ, P̃ ṽ〉.

Therefore, these problems can still be treated similarly in the general case.

C Remark on F+
m , F

−
m

Let u, v ∈ RN such that the entries of u are sorted in ascending order. One
should be careful when defining the two sequences F+

m and F−m in Section 2.4,
since the sign of u and v plays an important role in the definition of these two
sequences. For instance, assume that u is now negative and v is positive. Let
ũ := −u, since u is assumed to be sorted in ascending order, ũ is positive and
sorted in descending order. Using the definition in (17), one has

F̃+
m :=

min(m,N)∑
n=1

ũnvσ̃+(n), F̃−m :=

N∑
n=max(1,N−m+1)

ũnvσ̃−(2N−m−n+1),

where vσ̃+(1) ≥ vσ̃+(2) ≥, . . . ,≥ vσ̃+(N) and vσ̃−(1) ≤ vσ̃−(2) ≤, . . . ,≤ vσ̃−(N).
Let us define by σ+ := σ̃− and σ− := σ̃+. One has

F̃+
m = −

min(m,N)∑
n=1

unvσ−(n), F̃−m = −
N∑

n=max(1,N−m+1)

unvσ+(2N−m−n+1).

Therefore, in this case we can define F+
m and F−m by

F−m :=

min(m,N)∑
n=1

unvσ−(n), F+
m :=

N∑
n=max(1,N−m+1)

unvσ+(2N−m−n+1).

The case where u is positive and v is negative, or both u, v are negative can be
treated similarly.
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