
HAL Id: hal-03170466
https://hal.science/hal-03170466v1

Submitted on 16 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bounding the delays of the MPPA network-on-chip with
network calculus: Models and benchmarks

Marc Boyer, Amaury Graillat, Benoît Dupont de Dinechin, Jörn Migge

To cite this version:
Marc Boyer, Amaury Graillat, Benoît Dupont de Dinechin, Jörn Migge. Bounding the delays of the
MPPA network-on-chip with network calculus: Models and benchmarks. Performance Evaluation,
2020, 143, pp.102124. �10.1016/j.peva.2020.102124�. �hal-03170466�

https://hal.science/hal-03170466v1
https://hal.archives-ouvertes.fr


Bounding the delays of the MPPA

Network-on-Chip with network calculus: models

and benchmarks

Marc Boyer 1, Amaury Graillat 2,3,
Benôıt Dupont de Dinechin 2, Jörn Migge 4

1 ONERA/DTIS, Université de Toulouse
F-31055 Toulouse – France

2 Kalray S.A
F-38330 Montbonnot Saint Martin – France

3 Université Grenoble Alpes, Verimag
38000 Grenoble – France

4RealTime-at-Work
F-54600 Villers-lès-Nancy – France

March 15, 2021

Abstract

The Kalray MPPA2-256 processor integrates 256 processing cores and
32 management cores on a chip. Theses cores are grouped into clusters
and clusters are connected by a high-performance network on chip (NoC).
This NoC provides hardware mechanisms (ingress traffic limiters) that
can be configured to offer service guarantees.

This paper introduces a network calculus formulation, designed to con-
figure the NoC traffic limiters, that also computes guarantee upper bounds
on the NoC traversal latencies. This network calculus formulation ac-
counts for the traffic shaping performed by the NoC links, and can be
solved using linear programming. This paper then shows how existing
network calculus approaches (the Separated Flow Analysis – SFA ; the
Total Flow Analysis – TFA ; the Linear Programming approach – LP)
can be adapted to analyze this NoC. The delay bounds obtained by the
four approaches are then compared on two case studies: a small config-
uration coming from a previous study, and a realistic configuration with
128 or 256 flows.

From theses cases studies, it appears that modeling the shaping intro-
duced by NoC links is of major importance to get accurate bounds. And
when all packets have the same size, modeling it reduces the bound by
20%-25% on average.

1



1 Introduction

As embedded systems require ever increasing computing performance while op-
erating at low power, multicore-based systems appear as a solution. Moreover,
in order to host time-critical functions, such platforms must provide some re-
sponse time guarantees. And as in any distributed platform, bounding the
communication delay is a key point of real-time performances.

The Kalray MPPA2 processor has been designed to offer high computing
performances and energy efficiency on time-constrained applications. In partic-
ular, its network on chip (NoC) provides hardware mechanisms (ingress traffic
limiters) that can be configured to offer service guarantees such as flow minimum
bandwidth, flow maximum delay, and congestion-free operations. But since the
computation of the exact worst latencies can be too complex, as shown in Bouil-
lard et al. (2010), one has to rely on delay bounds.

Getting the best capabilities from such a platform requires efficient meth-
ods to compute communication delay bounds. This paper presents and compare
several of them, all based on deterministic network calculus. Whereas a large lit-
erature on the computation on delay bounds for NoCs exists, not many deal with
real implemented architectures (Section 4). The MPPA NoC is an interesting
target for analysis, as its architecture is designed to minimize implementation
complexity while ensuring service guarantees.

This paper presents the Kalray MPPA NoC architecture in Section 2, whose
key elements are the ingress traffic limiters and the router switches. Section 3
provides the necessary background on deterministic network calculus. Section 4
presents the state of the art. Section 5 introduces notations commons to all
the methods presented in this article. Section 6 introduces a new “explicit lin-
ear” method for computing the delay bounds, which maps the network calculus
equations to a Mixed-Integer Linear Problem (MILP) formulation solvable in
polynomial time. Then, Section 7 shows how existing network calculus ap-
proaches for computing latencies (Total Flow Analysis – TFA, Separated Flow
Analysis – SFA) can be adapted to analyze this NoC, and how the common
case where all packets have the same size can be modeled. Finally, all these
methods are run in Section 8 on two case studies. The first has been already
presented in Dupont de Dinechin and Graillat (2017). It allows to compare the
new methods to already published results. Moreover, it is small enough to allow
an interpretation of the results. The second case study is more realistic: each
of the 16 clusters sends 4 or 8 independent data flows. Section 8.6 gives some
insight on the mathematical reasons for the observed upper bound differences.

2 Description of the NoC

The MPPA2-256 processor integrates 256 processing clustered with 16 compute
clusters and 2 I/O clusters. The clusters communicate through a NoC, with
one node per compute cluster and 8 nodes per I/O cluster. The MPPA2 NoC
is a direct network based on a 2D-torus topology extended with extra links

2



0 2 E0 W0 1 3

8 10 E2 W2 9 11

S0 S2 S1 S3

N0 N2 N1 N3

4 6 E1 W1 5 7

12 14 E3 W3 13 15

Figure 1: MPPA2 NoC topology unfolded (I/O nodes are labeled N0..N3,
E0..E3, S0..S3, W0..W3).

connected to the otherwise unused ports of the NoC nodes on the I/O clusters
(see Figure 1). More details can be found in Saidi et al. (2015).

The MPPA2 NoC implements wormhole switching with source routing and
without virtual channels. With wormhole switching, a packet is decomposed
into flits (of 32-bits on the MPPA2 NoC), which travel in a pipelined fashion
across the network elements, with buffering and flow control applied at the flit
level. The packet follows a route determined by a bit string in the header. The
packet size is between 2 and 71 flits.

Once a buffer is full, the flow control mechanism of wormhole switching re-
quires that the previous router stores flits instead of forwarding them. This back
pressure mechanism can go back up to the source, a situation called congestion.
Congestion can also lead to deadlock of a wormhole switching NoC when flows
are not routed feed-forward, as presented in Dupont de Dinechin et al. (2014).

Each MPPA2 NoC node is composed of a cluster interface and a router
(Fig. 2). They are eight traffic limiters in the cluster interface. Each one
implements a token-bucket traffic shaper with configurable burst b and rate r.
The burst parameter must be large enough to allow to send one full packet at
link speed (one flit per cycle) before being limited by the budget (as illustrated
in Figure 3 – the exact relation between r, b and the packet size will be given in
eq. (20)). Each router is connected to its four neighbors and to the local cluster
(respectively called North, West, South, West and Local). Each output port
has four (or five) queues, to store waiting flits. They are arbitrated using a per
packet round-robin algorithm.

Whereas the back pressure mechanism of the wormhole switching can lead
to complex interactions between flows, and even deadlocks, one may avoid its
activation by preventing the complete filling of queues. This can be done by:
1) defining a static set of data flows; 2) allocating to each flow a traffic limiter

3



Figure 2: Structure of a MPPA2 NoC router.

lin
k

sp
ee

d

b

r

ě lmax

Figure 3: Token-bucket traffic limiter.

and a route, with and adequate configurations of the traffic limiters. Assuming
the route of each data flow is determined (for example using the techniques in
Dupont de Dinechin et al. (2014)), a network calculus formulation can be used
to compute the configuration of each traffic limiter.

3 Deterministic Network Calculus

Deterministic network calculus is a theory designed for the performance analysis
of computer networks. Its main purpose is to compute upper bounds on delay
and buffer memory usage in networks Cruz (1991).

The following is a short summary of the deterministic network calculus the-
ory, in order to present its main results and set the notations. All results
presented in this section can be found in Chang (2000), Le Boudec and Thiran
(2001), except when a specific reference is given.

3.1 Mathematical background and notations

Let F denote the set of functions from R` to R`, and FÒ the subset of non-

decreasing functions: FÒ def
“ tf P F @t, d P R` : fpt` dq ě fptqu.

4



t

b

r

γr,b

T

R

βR,T

d

δd

D

1tąDu

t

h

νh,P

2h

P 2P

Figure 4: Common curves in network calculus.

SA D

Figure 5: A server crossed by a flow.

Since one may need to project functions in F or FÒ, let define rf s
` def
“

maxpf, 0q, fÒ : F Ñ FÒ, fÒptq
def
“ sup0ďsďt fpsq, and rf s

`

Ò

def
“ prf s

`
qÒ.

The composition operator is denoted ˝: pf ˝ gqpxq “ fpgpxqq. The ceiling is
denoted r.s and the flooring t.u: r1.5s “ 2, t1.5u “ 1.

The network calculus relies on the (min,+) dioid. On this structure, convo-
lution ˚ and deconvolution m operators are defined as:

pf ˚ gqptq
def
“ inf

0ďsďt
tfpt´ sq ` gpsqu , (1)

pf m gqptq
def
“ sup

0ďu
tfpt` uq ´ gpuqu . (2)

The point-wise minimum operator of functions is denoted ^.
Some functions, plotted in Figure 4, are commonly used: the delay function

δT ptq “ 0 if t ď T , 8 otherwise; the token-bucket function γr,bptq “ prt `

bq ^ δ0ptq; the rate-latency function βR,T ptq “ R rt´ T s
`

; the test function
1tąDuptq “ 1 if t ą D, 0 otherwise; the pure rate λR “ βR,0; and the stair-case

νh,P ptq “ h
P

t
P

T

.

3.2 Modeling systems within network calculus

In network calculus, a flow is modeled by its cumulative function, a function
A P FÒ, left-continuous1, with Ap0q “ 0. The semantics of such a function is
that Aptq represents the total amount of data sent by the flow up to time t.

A server is a relation S between two cumulative functions, such that for
any arrival A, it exists a departure D such that pA,Dq P S. Moreover, for any
pA,Dq P S, D ď A, meaning that the departure of a bit of data always occurs

after its arrival. One may also denote by A
S
ÝÑ D the relation pA,Dq P S.

1For a discussion on continuity in network calculus, see Boyer et al. (2013) or § 1.3 in
Bouillard et al. (2018).

5



A

D

t

vDevpA,D, tq

hDevpA,D, tq

Figure 6: Delay and backlog between arrival and departure flows.

When order of data within a flow is preserved, the delay at time t is defined
as hDevpA,D, tq

hDevpA,D, tq
def
“ inf

 

d P R` Aptq ď Dpt` dq
(

. (3)

The backlog at time t is vDevpA,D, tq,

vDevpA,D, tq
def
“ Aptq ´Dptq. (4)

The worst delay (resp. backlog) associated to the pair pA,Dq is the supre-
mum of the delay (resp. backlog) for all time t.

hDevpA,Dq
def
“ sup

tPR`
hDevpA,D, tq, (5)

vDevpA,Dq
def
“ sup

tPR`
vDevpA,D, tq. (6)

A n-server S is a relation that associates to each vector of arrival cumulative
functions pA1, . . . , Anq at least one vector of departure cumulative functions
pD1, . . . , Dnq such that @i P r1, ns : Di ď Ai.

Given a n-server, its aggregate server SΣ is defined by pA1, . . . , Anq
S
ÝÑ

pD1, . . . , Dnq ñ A
SΣ
ÝÝÑ D with A “

řn
i“1Ai, D “

řn
i“1Di; and for any

i P r1, ns, its residual server Si is defined by pA1, . . . , Anq
S
ÝÑ pD1, . . . , Dnq ñ

Ai
Si
ÝÑ Di.

3.3 Contracts

A cumulative function A is said to have a function α P F as maximal arrival
curve if

@t, d P R` : Apt` dq ´Aptq ď αpdq. (7)

6



A

t t` d

ď αpdq

Figure 7: Arrival curve.

This condition is equivalent to A ď A ˚ α. The adjective “maximal” is of-
ten omitted since even if it exists a notion of minimal arrival curve, it is not
commonly used, and in particular it is not used in this article.

Two contracts on the minimal capacity of a server exist: a simple minimal
service and a strict minimal service.

Given a server S, it offers a simple minimal service of curve β P F if

@A
S
ÝÑ D : D ě A ˚ β. (8)

This server offers a strict minimal service of curve β P F if

@A
S
ÝÑ D,@t, d ě 0,@x P rt, t`dq, Apxq ą Dpxq ùñ Dpt`dq´Dptq ě βpdq.

(9)

An interval rt, t`dq such that @x P rt, t`dq : Apxq ą Dpxq is called a backlogged
interval or backlogged period.

If a server offers a strict minimal service of curve β, it also offers a simple
minimal service of curve β. Servers that are work-conserving, that is, do not
idle as long as there is data to transmit, offer a strict service.

The maximal capacity of a server is also of interest: given an arrival/departure

pair A
S
ÝÑ D, the upper bounds on the delay and backlog of the flow in the server

S are influenced by the minimal performance of the server, but the shape of the
departure cumulative functions is influenced by the maximal capacity of the
server, as will be shown in Theorem 1.

Let σ P F , a server S is a σ-shaper if @A
S
ÝÑ D, D has σ as arrival curve.

3.4 Main results

If the contracts on the arrival and the server are known, one can compute upper
bounds on the delay, backlog, and also compute the contract on the departure
(its allows to propagate the computation).

Theorem 1 (Network calculus bounds). Let S be a server, and A
S
ÝÑ D two

arrival and departure cumulative functions. If S offers a minimal service of

7



curve β, and S is a σ-shaper, and A has α as arrival curve, then

hDevpA,Dq ď hDevpα, βq, vDevpA,Dq ď vDevpα, βq, (10)

and D has α1 as arrival curve, with

α1 “ pαm βq ^ σ. (11)

This theorem computes local bounds, but when considering a sequence of
servers, a tighter bound can be computed.

Theorem 2 (Pay burst only once). Let S1,S2 be two servers offering respec-
tively a minimal simple service of curve β1, β2, and consider a flow crossing both

in sequence with A,B,C the respective cumulative curves ( i.e. A
S1
ÝÑ B

S2
ÝÑ C).

Then, the sequence S1,S2 is a server offering a minimal simple service of curve
β1 ˚ β2.

This result is interesting since it gives lower bounds than the sum of local
delays2.

Theorem 3 (Blind multiplexing). Let S be a n-server such that SΣ offers a
minimal strict service of curve β. Then, if each arrival Aj has αj as arrival
curve, for any i P r1, ns, the residual server Si offers the minimal simple service
of curve

βblind
i “

«

β ´
ÿ

j‰i

αj

ff`

Ò

. (12)

The result was in (Le Boudec and Thiran, 2001, Thm. 6.2.1) without the
non-decreasing closure that has been added in Bouillard (2011). It is also known
as “arbitrary multiplexing” since it can be applied on any service policy.

When several flows share a queue with First-In First Out (FIFO) policy, one
can derive a per flow residual service.

Theorem 4 (FIFO multiplexing). Let S be a n-server such that SΣ offers a
minimal simple service of curve β. Then, if each arrival Aj has αj as arrival
curve, for any i P r1, ns, the residual server Si offers the minimal simple service
of curves

βg-FIFO
i “ δd with d “ hDev

˜

n
ÿ

j“1

αj , β

¸

, (13)

βθ´FIFO
i “

«

β ´
ÿ

j‰i

αj ˚ δθ

ff`

^ δθ,@θ P R`. (14)

In fact, they are two results for the FIFO policy. One may either compute
the delay of the aggregate server, d, or choose one θ for each flow and use

2i.e. hDevpα, β1 ˚ β2q ď hDevpα, β1q ` hDevpα1, β2q with α1 “ αm β1

8



βθ´FIFO
i . In this case, the challenge is the choice of the θ value (that will be

discussed in Sections 4 and 7.2). Proofs can be found at Theorems 7.4 and 7.5
in Bouillard et al. (2018).

Proposition 1 (Burstiness increase due to FIFO, general case). Let S be a
n-server such that SΣ offers a minimal simple service of curve βR,T . Assume
that the flow of interest Ai has arrival curve γri,bi , and that the aggregate flow
A‰i “

ř

j‰iAj has a sub-additive arrival curve α‰i, with r‰i its long term rate.
Then, if ri ` r‰i ă R, then the departure flow Di has arrival curve γri,b1i with

b1i “ bi ` ri

ˆ

T `
B

R

˙

, B “ sup
uě0

tα‰ipuq ` riu´Ruu .

The previous proposition is the re-writing of Theorem 6.4.1 from Le Boudec
and Thiran (2001).

Corollary 1 (FIFO and token-bucket arrival curves). Let S be a n-server such
that SΣ offers a minimal simple service of curve βR,T . Assume that each arrival
Aj has γrj ,bj as arrival curve, with

řn
j“1 rj ă R. Then for any i P r1, ns,

the residual server Si offers the simple minimal service of curve βRi,Ti
with

Ri “ R ´
ř

j‰i rj, Ti “ T `
ř

j‰i bj

R , and the departure Di has arrival curve
γri,b1i with b1i “ bi ` riTi.

The previous corollary is the re-writing of Cor. 6.2.3 from Le Boudec and
Thiran (2001).

Theorem 5 (Residual service of RR). Let S be a n-server shared by n flows,

denoted by pA1, . . . , Anq
S
ÝÑ pD1, . . . , Dnq, applying a round robin policy. For

any i P r1, ns, let lmax
i and lmin

i , some upper and lower packet sizes for the flow
i.

If SΣ offers a strict service of curves β, then the residual server Si offers
the residual strict service of curves

βRR
i “

´

λ1 ˚ νlmin
i ,lmin

i `Lmax
‰i

¯

˝
`

β ´ Lmax
‰i

˘

, (15)

βRR-lin
i “

lmin
i

lmin
i ` Lmax

‰i

“

β ´ Lmax
‰i

‰`
(16)

with Lmax
‰i “

ř

j‰i l
max
j . If βptq “ Rt, then βRR-lin

i “ βRRR
i ,TRR

i
with

RRR
i “ R

lmin
i

lmin
i ` Lmax

‰i

, TRR
i “

Lmax
‰i

R
. (17)

This theorem gives three expressions of residual services, but in fact there
is only one, since βRR-lin

i is just a linear lower bound of βRR
i , and βRRR

i ,TRR
i

is

the expression of βRR-lin
i when the aggregate service is a constant rate. The

curve βRR
i captures the fact that a Round-Robin offers to a flow of interest an

9



βRR
i

βRR-lin
i

TRR
i

lmin
i

Figure 8: Illustration of WRR residual service, with βptq “ Rt.

q1

q2

β123

A1 D1
A2 D2

A3 D3

q1 β1A1 D1

q1 β12
A1 D1
A2 D2

Thm. 3

Thm. 3,
Thm. 5

T
h

m
.

4
,

C
o
r.

1
bound on dpA1, D1)

T
hm

. 1

F
IF

O
T
oo

l

Figure 9: Decomposition of output port in residual servers.

alternation of waiting time (while frames of other flows are transmitted) and
service of one single frame. When the aggregate service if a constant rate R, this
is an alternation of plateaus (waiting time) and increase with slope R. Since the
service is a guaranteed one, it considers that all competing flows send frames
of maximal size, whereas the flow of interest sends frames of minimal size. The
function βRR-lin

i only considers a maximal latency, corresponding to the plateau

βRR
i and a long term ratio

lmin
i

lmin
i `Lmax

‰i
. Their relation is illustrated on Figure 8.

The proof can be found in (Bouillard et al., 2018, Thm. 8.6) or Boyer et al.
(2019).

3.5 Analysis principles

3.5.1 Single node analysis

When an output port implements a round robin policy between queues, and
each input queue is shared by several flows, there exists several ways to compute
the delay associated to each flow. Consider Figure 9, where an output port is
shared by three flows, A1, A2, A3, with A1, A2 buffered in queue q1 and flow A3

buffered in queue q2. Assume we are interested by the flow A1. From the initial

10



S1, β1 S2, β2

S3, β3 S4, β4

A1

B1
C1

A2
B2

C2

A3
B3

C3A4
B4 C4

Figure 10: Simple topology.

configuration (on the middle left), with strict service of curve β123, one may
compute a residual server, S1, with service β1, considering blind multiplexing
(cf. Theorem 3). But one also may first reduce the system to a FIFO one, S12,
with simple service β12, using either Theorem 3 or Theorem 5. Then, one may
either use a tool dedicated to FIFO network, or use Theorem 4 or Corollary 1.

Since each theorem provides a different residual curve, the choice of one or
the other may give a different bound on the delay. They all are correct, but
some are smaller.

For example, when going from S to S12, if A3 uses less than half of the
bandwidth, it may be better to use Theorem 3 on blind multiplexing. Indeed,
the round robin policy, with equal packets size, will guaranty to queue q1 half of
the bandwidth. If A3 uses only one third of the bandwidth, blind multiplexing
will guaranty queue q1 two thirds of this bandwidth

3.5.2 Feed-forward network analysis

There exist several ways to bound the end-to-end delay of a given flow, and they
may depend on the network topology and the routing of flows. Let F j denotes
the set of flows crossing a server Sj .

The simplest one, the Total Flow Analysis (TFA), initially defined in Schmitt
and Zdarsky (2006), computes one bound dj for each server (a “local” bound),
and for a given flow, does the sum of all servers its crosses dTFA

i “
ř

fiPF j dj .
It will be presented in details in Section 7.1. In the topology of Figure 10, TFA
will compute one delay di for each server Si, and the delay for the flow f4 (of
cumulative functions A4, B4, C4) will be bounded by d3 ` d4.

The most famous one, the Separated Flow Analysis (SFA) computes, for a
given flow fi, for each crossed server Sj , a residual service βji . Then, using the
Pay Burst Only Once principle (Theorem 2), one gets an end-to-end service
βSFA
i “ ˚fiPF j βji that allows to compute dSFA “ hDevpαi, β

SFA
i q a bound on

the end-to-end delay. In the topology of Figure 10, to bound the delay of f4,
SFA will compute β3

4 (resp. β4
4), a residual service for the flow f4 in the server

S3 (resp. S4), and the delay will be bounded by hDevpα4, β
3
3 ˚ β

4
3q.

In both SFA and TFA, the computation of the residual service depends on
the scheduling policy. None of the algorithm specifies how to compute the arrival
curves of the interfering flows (for the flow B4, the interfering flows are B2 and
B3). And both handle only feed-forward networks, i.e. where there is no cyclic

11



dependency between flows.
SFA is often considered as better than TFA3. But most of the studies have

considered only blind multiplexing. As will be shown in this study, when con-
sidering FIFO policy, the results can be different. The reason may be that there
is no well known strategy to get a “good” residual service for FIFO.

Several approaches has been developed to extend the TFA and SFA ideas
(cf. Section 4), most of them assuming that all arrival (resp. service) curves
are piece-wise linear concave (resp. convex). One of them, called “LP” in this
paper, encodes the network behavior as one mixed-integer linear program and is
then able to compute the exact worst case, at the expense of high computation
times.

4 State of the art

They have been several studies designed to compute upper bounds on the worst
case traversal times (WCTT) of a NoC by a set of data flows. Nevertheless,
very few address the Kalray MPPA NoC architecture.

An overview of the state of the art of NoC performance evaluation (up to
2013) can be found in Kiasari et al. (2013).

Most NoCs use a wormhole switching mechanisms: a packet is decomposed
as a sequence of flits (typically of 64 or 128 bits), and the flits are forwarded in a
cut-through way once the routing decision has been made, based on the header
of the packet. This mechanism allows a router to forward the head of a packet
before the reception of the full packet. A credit-based mechanism ensures that
no buffer overflows: if a destination buffer is full, the switch stops forwarding
flits. This can lead to a local buffer filling and then the previous switch must
also stop to send flits, and so on, up to the source. This mechanism is called
back-pressure.

In a real-time environment, the back-pressure mechanism may create large
latencies and is quite difficult to analyze. Then, in case of real-time constraints,
one often tries to avoid back-pressure activation.

4.1 Approaches without network calculus

TDMA access upon wormhole switching One solution to avoid the back-
pressure activation is to build a global time-based schedule (Time Division Mul-
tiple Access, TDMA), where times slots are reserved to data flows, in a way such
that no contention occurs in the buffers, as in Carle et al. (2014), Perret et al.
(2016a), Perret et al. (2016b).

Wormhole switching, virtual channels and static priorities The use of
virtual channels allows to reduce the number of conflicts in buffer use and so
the number of activations of the back-pressure mechanism.

3“In network calculus, the Total Flow Analysis (TFA) had been abandoned since it is
inferior to other methods.” (Bondorf and Schmitt, 2016, §7)

12



For example, an active community considers NoC with wormhole switch-
ing, in each router, preemption at the flit level and static priorities scheduling
between virtual channels. Moreover, it is often assumed that the number of
virtual channel is not less than the maximum number of contentions in each
port, as in Shi and Burns (2008), Nikolić et al. (2016), Burns et al. (2014),
Xiong et al. (2017) or Nikolić et al. (2018). Note that with such assumptions,
the back-pressure mechanisms of the wormhole switching is only due to higher
priority flows.

Wormhole with back-pressure A few papers address the problem of worm-
hole switching with back-pressure activation within the same priority level.

The recursive calculus was designed in Ferrandiz et al. (2009), Ferrandiz
et al. (2011) to compute bounds on the SpaceWire technology, a wormhole-
based technology. The recursive calculus is one of the rare methods that fully
take into account the back-pressure mechanism of the wormhole switching. It
has been adapted to the Kalray MPPA NoC in Ayed et al. (2016) and compared
with a network-calculus based approach Dupont de Dinechin et al. (2014) on an
example (a more detailed comparison can be found in Boyer et al. (2019)).This
recursive calculus approach has been enhanced in Abdallah et al. (2015) to take
into account the pipeline effect of the cut-through forwarding in the wormhole
switching, considering a NoC with input-queuing and round-robin arbitration.

The Compositional Performance Analysis (CPA, Henia et al. (2005)) is a
theory that, like network calculus, uses functions to bounds the flow shape, but,
unlike network calculus, uses a busy-period based analysis to compute the per
node delay. In Tobuschat and Ernst (2017), the authors develop a CPA-based
method to compute the delay bounds on a wormhole NoC, with back-pressure
activation and taking into account the input flow shapes.

The trajectory approach, originally developed for Ethernet networks in Mar-
tin and Minet (2004) and corrected in Li et al. (2014), has been adapted to NoC,
considering a system with input queuing, FIFO arbitration and back-pressure
activation in Papastefanakis et al. (2015).

Last, two studies take into account the back-pressure within network calculus
framework, and they are presented in the next section.

4.2 Network calculus based approaches

Since the back-pressure is activated once a buffer is full, one way to avoid its
activation consists in statically ensuring that it will never occur, by adequate
configuration of the traffic limiters. To do so, one may use the network calculus
theory that is devoted to the computation on upper bounds on buffer occupancy
and delay.

From the network calculus point of view, when the back-pressure mecha-
nism is not activated, the MPPA NoC simply appears as a network using a
round robin arbiter and cut-through forwarding. The SFA and TFA principles
presented in Section 3.5 are some basic principles to analyze a full network,
independently of the scheduling policy, but they have been refined and some of

13



these enhancements will also be presented. Thereafter, we are going to present
first pure network-calculus studies on Weighted Round Robin (WRR), on FIFO
policy and thereafter their application to NoCs.

Feed-forward network analysis The SFA and TFA principles, presented
in Section 4.2, have been defined in Schmitt and Zdarsky (2006). The Pay
Burst Only Once principle, presented in Theorem 2, models the fact that the
burst of the flow of interest influences the worst delay in only one server on the
flow path. A similar phenomenon exists with the cross-traffic: the multiplexing
between the flow of interest and each interfering flow occurs only once, and
this phenomenon is called Pay Multiplexing Only Once (PMOO) Schmitt et al.
(2008b). The analytical expression of this phenomenon is not based on the min-
plus operators Bouillard et al. (2008), and computable expressions have been
given only for systems with token-bucket arrival curves and rate-latency service
curves and blind multiplexing Schmitt et al. (2008b,a). The performances of
the different strategies may depend on the network characteristics Bondorf and
Schmitt (2016), and it may even be the case that adding pessimism to the
network of interest can lead to better (i.e. smaller) upper bounds Bisti et al.
(2008); Bondorf (2017). A detailed list of the causes of the over-approximations
of these approaches can be found in Bondorf et al. (2017). This article also
shows that applying all possible strategies to a given network will lead to an
intractable problem (almost 1020 equations for a network with 32 routers and
100 flows). Nevertheless, a set of generic strategies can be found in Bondorf
and Schmitt (2015); Bondorf et al. (2017). More recently, machine learning has
been used to guide the network analysis Geyer and Bondorf (2019).

All previously presented approaches are called “algebraic approaches”, since
they mainly stay in the algebraic framework of network calculus presented in
Section 3: computing residual service curves, arrival curves and using horizontal
deviation to get delay bounds.

A different approach has been developed in Bouillard et al. (2010): consider-
ing blind multiplexing, instead of locally computing a residual service, the main
equations of network calculus are instantiated on a set of well chosen instants. If
arrival curves (resp. service curves) are piece-wise linear concave (resp. convex),
this set of equations can be encoded as a Mixed-Integer Linear Problem (MILP).
The maximal solution of this problem is then the exact worst-case delay. But
solving the problem can be very costly,

Weighted round robin A network-calculus model of the WRR policy has
been presented in Georges et al. (2011), Georges et al. (2005), without any proof
and implicitly considering that all packets have the same size. It gives, for each
class, a residual service. The same assumptions are done in Long et al. (2014),
where a residual service is also given. Theses works have been generalized in
(Bouillard et al., 2018, Thm. 8.6) considering an upper and lower bound on
packet size for each flow. This last result is the one presented as Theorem 5 in
Section 3.

14



One may also analyze a WRR arbiter using the “blind multiplexing” (cf.
Theorem 3), since a WRR arbiter is also a work-conserving arbiter. One dif-
ference between both is that the WRR residual service offered to one queue
depends only on the weights and the packet sizes, but is independent from the
traffic of the flows using the others queues, whereas the blind multiplexing re-
sult does not consider the weights, only the maximal packet size and the flow
traffics.

FIFO Both theorems on WRR transform the network into another one using
only FIFO policy. They have been several works done on FIFO policy in the
network calculus domain. The simplest approach, used for example in Frances
et al. (2006),Boyer et al. (2011a), computes the end-to-end delay of a flow by
doing the sum of the local delays. But, as recalled in Theorem 2, network
calculus allows to compute smaller end-to-end bounds, using the Pay burst only
once principle. Nevertheless, in the case of the FIFO policy, the application of
this principle requires the choice of some real parameter θ ě 0 (cf. Theorem 4)
per crossed server. In case of token-bucket arrival curves and rate-latency service
curves, an explicit value of this parameter is given in Fidler (2003), based on
the latency of the server, the burst of the interfering flows and the rates of the
servers shared by the flow of interest and the interfering flows. The same
problem has been addressed in Lenzini et al. (2004) and refined in Lenzini et al.
(2005), Lenzini et al. (2007), leading to the DEBORAH tool, handling tandem
networks, presented in Bisti et al. (2010), and downloadable at Bisti et al.
(2011). Since these works only considers token-bucket flows and latency-rate
servers, some others works have been done on more general classes of curves in
Cholvi et al. (2002), Boyer and Fraboul (2008). Surprisingly, all these works
but Fidler (2003) compute either optimal delay or arrival curve, without any
explicit expression of the θ parameters.

The solution based on MILP developed for blind multiplexing has been
adapted to FIFO multiplexing, in Bouillard and Stea (2014) and since the com-
putation complexity was high, is has been enhanced to compute a simplified
problem, that computes only an upper bound on delay. A free implementation
for tandem networks, NetCalBound, is provided at Bouillard (2017), and exper-
imental comparisons with DEBORAH are can be found in Bouillard and Stea
(2012), Bouillard and Stea (2014). Following Bondorf et al. (2017), comput-
ing worst bounds with this method will be called “LP” and computing upper
bounds will be called “ULP”.

Network on Chip Considering the studies on NoC using network calculus,
one may first cite Qian et al. (2009a), where the authors assume a NoC with
FIFO policy and infinite buffers. The paper is mainly an adaption of Lenzini
et al. (2005) to the NoC context.

The same authors address a realistic configuration in Qian et al. (2009b):
each router has only one queue per input port (input queuing), the switching
fabric uses a per-flit weighted round-robin to serve this input queues, and

15



wormhole switching is used to avoid buffer overflow. The network-calculus model
takes into account the limited sizes of the queues and the use of the back-pressure
mechanism. The back-pressure mechanism is also modeled in Zhan et al. (2013),
but the authors seem not aware of the previous work of Qian et al. (2009b) and
the equation (5) in Zhan et al. (2013) are different than the equations (4.1) and
(4.2) in Qian et al. (2009b).

The back-pressure mechanism is also modeled in Giroudot and Mifdaoui
(2020). It first computes the latency introduced by wormhole back-pressure
(called “blocking latency”), and then build a service curve βR,T where the T is
the back-pressure latency.

Weighted round-robin policy is also assumed in Jafari et al. (2010). It con-
siders a NoC where in each port, the number of virtual channels is not less than
the number of flows, and that VCs are served with a per-packet round-robin pol-
icy. It also assumes that the flows are regulated at the source by a token-bucket
shaper. Then, it optimizes the token-bucket parameters in order to minimize
the buffer use while “satisfying acceptable communication performances”.

This model (round-robin arbitration and token-bucket shaping at the source)
is quite close to the MPPA NoC architecture, but the MPPA NoC applies round-
robin arbitration per queue, not per flow.

The Kalray MPPA is explicitly targeted in Giannopoulou et al. (2016), avoid-
ing back-pressure by adequate traffic limiter configuration, but per flow round-
robin is assumed.

In Dupont de Dinechin et al. (2014), a first network calculus model of the
Kalray MPPA model was presented, assuming constant packet size.

Last, computing routing and resource allocation under delay constraint have
been also studied in Frangioni et al. (2014), Frangioni et al. (2017)

5 Notations on topology

Before presenting the different methods used in this study to compute upper
bounds for flows on the MPPA NoC, let us introduce some notations shared by
all these methods.

These notations will be illustrated on a small example. In Figure 11, a flow
f1 goes from N1 to N3, crossing routers R1, R2, R3; another flow f2 goes from
N2 to N3, crossing routers R2, R3. In router R1, the flow f1 is set in the queue
“From Local” of the output port “To West”. In router R2, it is set into the
queue “From East” of the output port “To West”. And in router R3, it uses
the queue “From East” of the output port “To Local”.

A hierarchical model would define routers, with ports and queues as at-
tributes of a router. Our network calculus model considers a flat set of all ports
in the NoC,

 

p1, . . . , pnp
(

, and also a flat set of all queues
 

q1, . . . , qnq
(

. Fig-
ure 12 reports a subset of the queues involved in example of Figure 11: only
queues “From Local” and “From West” have been drawn, and only the used
ports. For example, the output port “To East” of the router R1 is p1, and its
queue “From Local” is q1.

16



 

q1, . . . , qnq
(

set of queues
 

p1, . . . , pnp
(

set of ports
ppqiq “ pk qi is an input queue of pj

 

f1, . . . , fnf

(

set of flows
lmin
i , lmax

i minimal and maximal packet size of fi

qj
fi
ÝÑ qk f i goes from qj to qk

Qi route of flow fi, as a sequence of queues
F j set of flows crossing qj

Aji cumulative function of fi entering qj

Dj
i cumulative function of fi leaving ppqjq

αji arrival curve of Aji
9αji arrival curve of Dj

i

Table 1: Notations related to topology.

The relation between queues and ports is done by a function p such that
ppqiq “ pk if qi is an input queue of the port pj . In the example, ppq1q “

ppq2q “ p1, ppq3q “ ppq4q “ p2, etc.
The set of flow is

 

f1, . . . , fnf

(

. A flow has a determined path between
one source and one destination4, lmin

i (resp. lmax
i ) denotes the minimal (resp.

maximal) size of a packet of flow fi. The route of a flow is denoted queue per

queue: qj
fi
ÝÑ qk if the flow f i goes from the queue qj to the queue qk.

For a flow fi, Qi is the (ordered) sequence of queues it crosses, i.e. since the

flow f1 follows the path q1 f1
ÝÑ q4 f1

ÝÑ q6, then Q1 “ q1q4q6.
For a queue qj , F j denotes the set of flows crossing this queue. Of course,

if a queue qj is in the path of flow fi, then fi is in the set of flows crossing
this queue, i.e. qj P Qi ðñ fi P F

j . In the example, F 1 “ F 4 “ tf1u,
F 2 “ F 5 “ H, F 3 “ tf2u, and F 6 “ tf1, f2u.

The cumulative function of the flow fi entering the queue qj is denoted Aji .

The cumulative function leaving the output port ppqjq is denoted Dj
i .

For a given method5, αji (resp. 9αji ) denotes the arrival curve of the cu-

mulative function Aji (resp. Dj
i ). Of course, qj

fi
ÝÑ qk implies Dj

i “ Aki and

9αji “ αki .

6 Explicit linear method for the MPPA NoC

The delay experienced by a flow crossing a NoC depends on the capacity of
network elements, on the route from the source to the destination, and on the
characteristics of the flows sharing some buffer or links along this route. We
assume that each flow has been assigned a path and a maximum rate that

4The MPPA NoC has multicast capabilities, not considered here to keep notations simple.
5Different methods may compute different arrival curve for the same cumulative function.

17



Figure 11: Network elements and flows example to illustrate notations.

q1

q2
p1

q3

q4
p2

q5

q6
p3

f1
f2

A3
2

D3
2 “ A6

2

D6
2

Figure 12: Partial translation of example of Figure 11.

ensures no link capacity is exceeded. This global network optimization problem
can be solved using the max-min fairness criterion, for instance by using one of
the methods described in Dupont de Dinechin et al. (2014).

Once flow paths and their maximum rate is known, the problem of ensuring
that no back-pressure mechanism is active and expressing bounds on the flow
end-to-end delay can be formulated as a Mixed-Integer Linear Problem (MILP).
Indeed, by assuming that the flow rates are constant (set in previous step) it
is possible to express the backlogs as variables of a linear problem. A solver
is then used to maximize the flows bursts while keeping backlog in each queue
not greater that the queue size.6. Since backlog and delays are closely related,
solving this problem also computes upper bounds on delays.

This section will present only the part related to delays, and the reader may
refer to Dupont de Dinechin and Graillat (2017) for details on backlog, routing
and fairness.

This method is called “explicit” since the network calculus results presented
in Section 3, involving specific operators (deviations, convolutions, etc.) are
particularized in the specific case of affine arrival and service curves, and explicit
analytic expressions are derived.

In this linear formulation, the arrival curve associated to each flow fi at
the input of a queue qj P Qi is a token-bucket αji “ γri,bji

, where ri is its rate

(constant along the path) and bji its burstiness in front of queue qj .

6The use of MILP in this explicit linear formulation must not be confused with the use
of MILP in LP method. In the explicit linear formulation, the variables of the mixed-integer
linear problem are the burst sizes of the arrival curves at queue input, and routing-related
values, as presented in Dupont de Dinechin and Graillat (2017), whereas the LP approach
assumes that the flow parameters are fixed and the MILP variables are specific instants and
the values of the cumulative functions at these instants, cf. Bouillard and Stea (2014).

18



M

p

b

r

M´b
r´p

Mr´pb
r´p

Figure 13: T-SPEC flow character-
istic curve.

bj r

rj

T j

Rjdj

Figure 14: Delay between shaped
token-bucket and rate-latency ser-
vice: dj “ hDevpλr^γrj ,bj , βRj ,T j q.

6.1 Arrival curve at queue input, and shaping of incoming
link

Queue qj receives the aggregates of flows F j passing through it, so its arrival
curve is of leaky-bucket type γrj ,bj with

rj “
ÿ

fiPF j

ri, bj “
ÿ

fiPF j

bji . (18)

But this aggregate flow comes from a link of peak rate r. Then, it also has λr
as arrival curve. Combining both, it yields the arrival curve λr ^ γrj ,bj : t ÞÑ
minprt, bj ` rjtq, which is a special case of the standard T-SPEC arrival curve
αptq “ minpM ` pt, rt` bq1ttą0u used in IntServ Firoiu et al. (2002). Note the

intersection of the two lines pt`M and rt`b has coordinate pM´br´p ,
Mr´pb
r´p q and

that αptq “M ` pt if t P
´

0, M´br´p

ı

and αptq “ rt` b if t ě M´b
r´p (cf. Figure 13).

Assume that this queue qj receives from the link arbiter a rate-latency ser-
vice curve βRj ,T j (the computation of these parameters Rj , T j will be done in
Section 6.3) with Rj ď r and Rj ě rj . The bound on delay for queue qj is the
maximum horizontal deviation between the arrival curve and the service curve
dj

def
“ hDevpλr ^ γr,bj , βT j ,Rj q. As illustrated in Figure 14, application of the

T-SPEC arrival curve on such service curve yields

dj “ T j `
bjpr ´Rjq

Rjpr ´ rjq
. (19)

6.2 Flow arrival curve

At ingress, whole packets are atomically injected at rate r. Call u the date when
injection ends. We have ru “ lmax

i and lmax
i ď bi ` riu, so

@fi P F : bi ě bmin
i

def
“ lmax

i

r ´ ri
r

. (20)

19



We now express the values rji and bji for all flows fi P F
j for a queue qj . If qj

is the first queue traversed by the flow, then bji “ bi. Else, let qk be predecessor

of qj in the sequence of active queues traversed by flow fi (i.e. qk
fi
ÝÑ qj),

with βRk,Tk its (residual) service curve. When flow fi traverses queue qk, its
burstiness increases differently whether it is alone or aggregated with other flows
in qk.

If the flow is alone in queue qk, we apply the classic result of the effects of a
rate-latency service curve βR,T on a flow constrained by an affine arrival curve
γr,b. The result is another affine arrival curve γr,b`rT Le Boudec and Thiran
(2001), so

bji “ bki ` riT
k. (21)

Else, we apply Prop. 1. Let us introduce rj‰i “ rj ´ ri, b
j
‰i “ bj ´ bji , i.e.

rj‰i “
ÿ

flPF j ,l‰i

rl, bj‰i “
ÿ

flPF j ,l‰i

bjl . (22)

The competing flows have arrival curve α‰iptq “ minprt, rj‰it`b
j
‰iq1ttą0u (the rt

term comes from link shaping at qk ingress). Since this function is sub-additive
and ri ` r‰i “

ř

lPF i rl ă R, the proposition can be applied.
The α‰i function is a T-SPEC function, which is equal to the first term if

u ď b‰i

r´rj
‰i

and to the second otherwise. Then

sup
uě0

α2puq ` riu´R
j (23)

“

¨

˚

˚

˝

sup
0ďuď

b‰i

r´r
j
‰i

pr ` ri ´R
jqu

˛

‹

‹

‚

_

¨

˚

˚

˝

sup
uě

b‰i

r´r
j
‰i

prj‰i ` ri ´Rqu` b‰i

˛

‹

‹

‚

(24)

“ b‰i
r ` ri ´R

j

r ´ rj‰i
. (25)

Application of Prop. 1 leads to

bji “ bki ` ri

˜

T j `
bj‰ipr ` ri ´R

jq

Rjpr ´ rj‰iq

¸

. (26)

Note that the use of Cor. 1 would lead to bki ` ri

ˆ

T j `
bj
‰i

Rj

˙

that does not

capture the benefit of the shaping r at input.

6.3 Link Arbiter Service Curves

On the MPPA2 NoC, the output link arbiters operate in round-robin per input
queues at the packet granularity, while each queue contains flows aggregated

20



in FIFO. As the packets presented to a link arbiter are not processed in FIFO
order, previous work (e.g. Bouillard and Stea (2015)) would have to assume
blind multiplexing between all flows and fail to exploit FIFO aggregation. This
is addressed in Dupont de Dinechin and Graillat (2017) by exposing the service
offered to each queue of a link arbiter: either, the rate and latency ensured
by round-robin packet scheduling; or, the residual service guaranteed by blind
multiplexing across queues when the round-robin service does not apply. Then,
each queue can be seen as a server applying a FIFO policy.

The service curve offered by a link arbiter to each of its queues is abstracted
as a rate-latency function βj “ βRj ,T j . The first approach to derive this curve
is to consider the behavior of the round-robin arbiter, assuming that each flow
fi has its packet sizes bounded by a minimum lmin

i and a maximum lmax
i . Let

lmin
F j

def
“ minfiPF j lmin

i and lmax
F j

def
“ maxfiPF j lmax

i be respectively the minimum
and maximum packet sizes for qj (with convention that maxH “ 0 to encode
the fact that a queue crossed by no flow has no influence on the round robin

arbiter). Let Q‰j
def
“

 

qk ppqkq “ ppqjq, k ‰ j
(

be the set of queues sharing the
same arbiter than qj . By application of eq. (17), the general round-robin service
curve βj “ βRj ,T j for qj is

Rj “
rlmin
F j

lmin
F j `

ř

kPQ‰j lmax
Fk

, T j “

ř

kPQ‰j lmax
Fk

r
. (27)

The second approach to derive a service curve for queue qj is to consider
that the round-robin arbiter serves packets at peak rate r according to a blind
multiplexing strategy across the queues. Application of Theorem 3 yields the
blind multiplexing service curve βj “ βRj ,T j for qj

Rj “ r ´
ÿ

kPQ‰j

rk, T j “

ř

kPQ‰j bk

r ´
ř

kPQ‰j rk
. (28)

The blind multiplexing service curve must be used whenever the sum of flow
rates inside qj exceeds Rj in Eq. (27). Else, we select the formula that evaluates
to the lowest T j .

6.4 End-to-End Latency Bound

For computing an upper bound on the end-to-end delay of any particular flow
fi, we proceed in three steps. First, compute the residual (or left-over) service
curve βji of each active queue qj traversed by fi. Second, find the equivalent
service curve β˚i offered by the NoC to flow fi through the convolution of the

left-over service curves βji . Last, find the end-to-end delay bound by computing
d˚i the delay between αi the arrival curve of flow fi and β˚i . Adding d˚i to the
constant delays of flow fi such as the traversal of non-active queues and other
logic and wiring pipeline yields the upper bound.

This approach is an application of the SFA principle (cf. Section 3.5.2).

21



For the first step, we have two cases to consider at each queue qj . Either fi
is the only flow traversing qj , and βji “ βRj ,T j from equations (27) or (28). Or,
fi is aggregated in qj with other flows in F j . Packets from the flow aggregate
F j are served in FIFO order, so we may apply Corollary 1. This yields the
left-over service curve βji “ βRj

i ,T
j
i

for an active queue qj traversed by fi:

Rji “ Rj ´ rj‰i, T ji “ T j `
bj‰i
Rj

. (29)

For the second step, we compute the convolution β˚i “ ˚qjPQi
βji of the

left-over service curves βji . Thanks to the properties of rate-latency curves Le
Boudec and Thiran (2001), β˚i is a rate-latency curve whose rate R˚i is the
minimum of the rates and the latency T˚i is the sum of the latencies of the

left-over service curves βji :

R˚i “ min
jPQi

Rji , T˚i “
ÿ

jPQi

T ji . (30)

For the last step, we compute the delay d˚i between αi the arrival curve of
flow fi at ingress and β˚i . This flow is injected at rate ri and burstiness bi,
however it is subject to link shaping at rate r as it enters the network. As a
result, αi “ minprt, bi ` ritq1tą0 and we may apply Eq. (19):

d˚i “ T˚i `
bipr ´R

˚
i q

R˚i pr ´ riq
. (31)

7 Adaptation of generic algorithms to the MPPA
NoC

Section 6 has presented a modeling of the MPPA NoC using linear constraints
for computing deadline while respecting buffer usage constraints (even if in this
article, the focus is done only on the delay evaluation).

One may wonder if other algorithms may compute better bounds.
This section presents first how the Total Flow Analysis (TFA) and Sepa-

rated Flow Analysis (SFA), initially defined for tandem topology with blind
multiplexing, can be adapted to the case of the MPPA NoC, and especially
to its hierarchical FIFO/RR scheduling (sections 7.1 and 7.2). Thereafter, is
discusses how the specific case of constant packet size can help the analysis.

7.1 Total flow analysis

This section presents how the Total Flow Analysis (TFA), introduced in Sec-
tion 3.5.2, is used and has been adapted to the specific case of the MPPA NoC.

The basic idea is of TFA is, given a queue qj , to consider Aj “
ř

fiPF j A
j
i the

total input flow, to compute αj an arrival curve for Aj , and given βj a service

22



q1

q2
p1

q3

q4
p2

q5

q6
p3

f1 f1

f2 f2f3

f3

f4

f4

Figure 15: Illustration of TFA analysis.

curve of the queue, to compute dj “ hDevpαj , βjq a delay bound of the queue.
Since the queue applies a FIFO policy between its flows, this delay bound is also
a bound for each flow, and the end-to-end delay of a flow fi can be bounded by
the sum of the dj of the crossed queues qj : dTFA

i “
ř

qjPQi
dj .

This algorithm requires computing αj and βj for each queue qj .
The computation of αj relies on the iterative transformation of arrival curve7.

Let αji be an arrival curve for the flow Aji . Then, the corresponding departure

flow Dj
i has arrival curve 9αji “

´

αji m δdj
¯

^ δ0 (cf. eq. (11) and eq. (13)).

Then, the computation of αj relies on the identification of all queues qk

sending flits to the queue qj . Let Ij
def
“

!

qk Dfi : qk
fi
ÝÑ qj

)

be this set.

Note that if a flow fi goes from a queue qk to a queue qj , then Aji “ Dk
i .

Then αj can be computed as the sum of all individual arrival curves 9αki . But
all these flows also pass through a link with peak rate r. This shaping implies
that λr is another arrival curve for Aj , leading to

αj “ λr ^
ÿ

qkPIj

ÿ

fiPFkXF j

9αki . (32)

The computation of βj can be done using either the residual service of the
round-robin policy (Theorem 5), or the blind multiplexing (Theorem 3). The
computation of the blind multiplexing requires computing the arrival curve of
the competing flows8. It can be of interest when a queue shares the output
link with lightly loaded queues. But the TFA algorithm is not forced to choose
between both, it can compute both residual services, βjBlind, βjRR and then set

dj “ hDevpαj , βjBlindq ^ hDevpαj , βjRRq.
For example, consider 4 flows f1, f2, f3, f4 as in Figure 15. The flows f1,

f2, f3 share a queue q1, are scheduled at output port p1, cross a link and enter
the next switch where f1 and f2 are forwarded to q3, whereas f3 is forwarded to
q5. Another flow f4 uses a queue q2 then is scheduled by the same output port

7A discussion on how the original input curves are computed is postponed to Section 7.3.
8This can be done using eq. (32). If Cj is the set of queues sharing the same output

port than qj , α´j “
ř

kPCj αk is an arrival curve for all the competing flows, and βj
Blind “

“

β ´ α´j
‰`

Ò
the blind residual service.

23



β

βj,Blind
i

Thm. 3

βj,RRThm. 5
βj,RR/g-FIFO

eq. (13)

β
j,RR/θ-FIFO
i

eq. (14)

β
j,RR/β-FIFO
i

Cor. 1

βj,Blind

Thm. 3 β
j,Blind/g-FIFO
ieq. (13)

β
j,Blind/θ-FIFO
i

eq. (14)

β
j,Blind/β-FIFO
i

Cor. 1

Figure 16: Different ways to compute a residual service.

p1, crosses the same link and is forwarded to q3. Assume that all flows f1, f2, f3

comes from the same upstream queue q0 and have respectively arrival curves
α1

1, α
1
2, α

1
3. Then, I1 “

 

q0
(

, I3 “
 

q1, q2
(

, I5 “
 

q1
(

, F 1 “ tf1, f2, f3u, F
2 “

tf4u, F
3 “ tf1, f2, f4u, F

5 “ tf3u. In this configuration, TFA computes α1 “

λr ^ pα
1
1 ` α

1
2 ` α

1
3q and two residual services β1

RR, which is independent of the

arrival curve of F4, α2
4, and β1

Blind “ rλ1 ´ pλ1 ^ α4qs
`

Ò . The local delay bound

is then d1 “ hDevpα1, β1
RRq ^ hDevpα1, β1

Blindq. Then, for each i P t1, 2, 3u :
9α1
i “

`

α1
i m δd1

˘

^ δ0. The same, a local delay d2 is computed for q2 and

9α2
4 “

`

α2
4 m δd2

˘

^ δ0. For the queue q3, its arrival curve is computed as α3 “

λr ^
`

p 9α1
1 ` 9α1

2q ` p 9α
2
4q
˘

since I3 “
 

q1, q2
(

, F 1 X F 3 “ tf1, f2u and F 2 X F 3 “

tf4u.

7.2 Separated flow analysis

Whereas the Separated Flow Analysis (SFA) is well defined for a tandem net-
work with blind multiplexing policy, its application to the NoC MPPA requires
several adaptations, and some trade-offs, presented in this section.

The basic idea of SFA is, given a flow fi to compute βSFA
i “ ˚qjPQi

βji , where

βji is a residual service for the flow fi in queue qj . From a single flow point of
view, the MPPA applies a hierarchical scheduling FIFO/RR: the bandwidth is
shared between the queues using a RR scheduling and this left-over service is
shared by the flows using a FIFO policy.

Then, one may consider several ways to compute the residual service βji :
either consider this hierarchical scheduling as a black box, and use the blind
multiplexing result (Theorem 3), or first consider the residual service offered to
the queue βj (using either round robin residual service or blind multiplexing, as
discussed in Section 7.1 on TFA) and secondly deduce the residual service left
by the FIFO policy (using either eq. (14) or eq. (13) or the Cor. 1). Combining
all possibilities leads to 7 different expressions, as presented in Figure 16. In
fact, not all are of interest.

Considering only blind multiplexing (βj,Blind
i ) is always worse than modeling

the RR arbiter per a blind policy and thereafter modeling the FIFO policy inside

24



the queue (residual services β
j,Blind/*-FIFO
i ). The reason is that modeling a FIFO

policy with blind multiplexing is pessimistic.
For the global delay (g-FIFO residual service), it would lead to the same

result than TFA (presented in Section 7.1), and is not considered further.
Similarly, Corollary 1 can be applied only to affine modeling, and would lead

to quite the same results than the explicit linear method (presented in Section 6)
and is not considered further.

So, either β
j,RR/θ-FIFO
i or β

j,Blind/θ-FIFO
i has to be considered.

Note that every value of θ P R` leads to a possible residual service, so each

β
j,RR/θ-FIFO
i and β

j,Blind/θ-FIFO
i represents an infinite number of service curves.

We postpone the discussion on the choice of θ and start by discussion the choice

between β
j,RR/θ-FIFO
i and β

j,Blind/θ-FIFO
i .

One may want to compute both βj,RR and βj,Blind and keep the maximum
of both service curves. But it is not correct in general: it is true that if a server
offers two minimal strict service of curves β, β1, it offers a minimal strict service
curve max tβ, β1u, but the results does not hold for minimal simple service, as
illustrated at § 5.2.3 in Bouillard et al. (2018). One also may want to compute
both for each server, and compute a residual service for all possible combination.
But, for a path of length n, it will results in 2n service curves. The strategy
used in this paper consists in computing both βj,RR and βj,Blind, and then to
choose the one with the smaller TFA delay.

Let now discuss the choice of the θ parameter. The expression of the residual
service is recalled here

βθ-FIFO
i “ rβ ´ α‰j ˚ δθs

`
^ δθ, (33)

with α‰i “
ř

j‰i αj .
The choice of θ is not straightforward. One may notice that setting θ “ 0 is

equivalent to consider a blind multiplexing, i.e. the worst possible scheduling
among all others for the flow of interest9.

The choice of the parameter is a trade-off: let θ, θ1 be two parameters, with
θ ă θ1, how to compare βθ-FIFO

i and βθ
1-FIFO
i ? The convolution by a delay is

just a time shift: for any θ P R`, pf ˚ δθqptq “ fprt´ θs
`
q. Then, on the one

hand, θ ă θ1 implies α‰j ˚ δθ ą α‰j ˚ δθ1 , i.e. a larger parameter decreases the
impact of competing flows, leading to β ´ α‰j ˚ δθ ď β ´ α‰j ˚ δθ1 . On the

other hand, θ ă θ1 ùñ δθ ą δθ1 . Then, in general, βθ-FIFO
i and βθ

1-FIFO
i are

incomparable (cf. Figure 17).
One may nevertheless restrict the range of the parameter. First, notice

that βθ-FIFO ď δθ, then any θ greater than hDevp
řn
i“1 αi, βq, will yield a

residual service βθ-FIFO smaller than the one obtained with the g-FIFO so-
lution. So any θ ą hDevp

řn
i“1 αi, βq will give a worst delay than the TFA

approach. Second, it is common to have a service curve that is equal to
zero up to some value. Let Tβ “ inf tt βptq ą 0u (for a rate-latency func-
tion βR,T , this is the latency term, i.e. TβR,T

“ T ). Then, for any θ ă Tβ ,

9To be exact, with θ “ 0, the θ-FIFO residual service can be worst than the blind multi-
plexing since there is no non-decreasing closure.

25



α‰i

θ

δθ

α‰i
˚ δθ

θ1

δθ1

α‰i
˚ δθ

1

βR
,T

θ

δθ

θ1

δθ1

β
θ-F

IF
O

β
θ
1 -F

IF
O

Figure 17: Residual FIFO service with to θ, θ1 parameters, α‰i “
ř

j‰i αj .

β ^ δθ “ β, leading to βθ-FIFO “ rβ ´ α‰j ˚ δθs
`

. So, considering θ ă θ1 ă Tβ ,

βθ-FIFO ď βθ
1-FIFO, meaning that values of θ P r0, Tβs have no interest. Then,

only values θ P rTβ , hDevp
řn
i“1 αi, βqs are of interest.

Up to our knowledge, the only work on the choice of the θ parameter can
be found in Fidler (2003). While building an end-to-end FIFO service in a
tandem network with token-bucket arrival curves and rate-latency service curves
it proposes such a value. Considering a flow of interest i and a node j, the proof
proposes, to set the parameter as the sum of the latency of the server, plus, for
each cross flow j crossing i for the first time in this server, the burst size of the
flow j divided by the minimal rate of server on their common path. Using the
notations defined in Section 5, considering that the common sub-path between
two flows i and i1 is Qi XQi1 , it gives

θji “ T j `
ÿ

i1PfirstCrosspi,jq

bji1

minqj1PQiXQi1
Rj1

(34)

firstCrosspi, jq
def
“

 

i1 P F j Qi XQi1 “ qj ¨ ¨ ¨
(

(35)

where qj ¨ ¨ ¨ is an abbreviation denoting any sub-path starting at qj , bji1 is the

burst of the flow i1 at qj input, and Rj
1

the rate of the residual service offered
to the queue qj

1

.
When modeling packets of constant size (cf. Section 7.3), we will consider

arrival curves that are no token-bucket, where there is no bij parameter, and

conversely service curves with no Rj parameter. So, we will generalize this
approach by taking bij “ limεÑ0,εą0 α

i
jp0 ´ εq the right limit at origin of the

arrival curve, and Rj “ limtÑ8
βj
ptq
t the long term rate of the function.

Last, the SFA approach does not specify how are computed the arrival curves

26



of the competing flows: in each node, for any j ‰ i, one may compute αj using
TFA, or considering a new SFA problem for this flow (up to this node), or
compute both and take the minimum, etc. As shown in Bondorf and Schmitt
(2015), computing better bounds for the cross traffic leads to better end-to-end
bounds for the flow of interest. In order to ease comparisons, the arrival curves
of the competing flows will be the one computed with the TFA approach.

7.3 Constant packet size

Both the TFA and SFA approaches, presented in the previous section, can be
seen as black boxes transforming some input arrival and service curves into delay
bounds. This section discusses these input curves.

The traffic limiters at the NoC ingress ensure that each flow respects a (con-
figurable) token-bucket shape. Considering also the limited link throughput lead
to a T-SPEC arrival curves, as presented in section 6.1 (cf. Figure 3). It belongs
to the class of concave piecewise-linear function (CPL). Conversely, the residual
service of a round robin arbiter given by eq. (17) is also a convex piecewise-linear
function (CxPL). And the residual service of a blind multiplexing is also a CxPL
function if the arrival curves are CPL and the aggregate service is CxPL. Using
such concave/convex piecewise-linear functions in network calculus is called a
linear, or affine or fluid model.

In Boyer et al. (2018), the explicit linear method and the TFA approach
with affine curves have been compared on one example.

But such model cannot capture accurately the impact of packetization. In-
deed, a flow is made of packets, and in the MPPA NoC (and in the absence
of back-pressure activation), when a packet starts is emission, it is sent up to
completion at link speed. Modeling this effect allows more accurate arrival and
service curve, leading to better (i.e. smaller) bounds. This is true at arbiter
output, and this behavior is captured by eq. (15). But this is also true at traffic
limiters output and this is captured by Theorem 6 when all packets in a flow
have the same size.

Indeed, the traffic limiter at ingress of the MPPA NoC, presented in Sec-
tion 2, ensures by design that the output flow will respect a token-bucket arrival
curve γr,b. But this limiter only injects full packets, i.e. the first flit of a packet
is sent only if there will be enough credit to send the full packet without any
interruption. When a data flow always sends packets of the same size, it means
that not all values of the arrival token-bucket arrival curves can be reached by
an actual sequence of packets.

Theorem 6. Consider a data flow A made only of packets of fixed length l, such
that when a packet starts it emission, it is emitted up to completion at a constant
rate R. Then if α is a maximal arrival curve for A, also is α1 “ l

X

α
l

\

m λR.

The cumulative function of such a flow is an alternation of flat segments (no
output of data) and segments of slope R, height l and length l

R .
Note that this result can be applied for any arrival curve, whereas in the

context of the MPPA NoC, it will be used only for functions of the form α “

27



1 2 3 4 5

1

2

3
α

α1

Figure 18: Effect of constant
packet size on arrival curve,
Thm. 6, with α “ γ1{2,1{2 ^ λ1,
l “ 1.

time

d
at

a

A

l

s t t` d v

w1 w2

A1

A2

Figure 19: Per packet cumulative func-
tion.

λR ^ γr,b (as in Figure 18).

Proof. Let t, d P R` be a time instant and a duration, and consider the amount
of data Apt` dq ´Aptq.

Let us first assume that some packet is being sent at instants t and t` d.
Let s be the begin of the sending interval containing t, and v the end of the

sending interval of t` d, as illustrated on Figure 19.
The main step of the proof consists in showing that Apt ` dq ´ Aptq ď

l
Y

αpd`wq
l

]

´Rw with w “ pt´ sq ` pv ´ pt` dqq.

Let w1 “ t´ s, w2 “ v ´ pt` dq, A1 “ Aptq ´Apsq the amount of data sent
on rs, ts, A2 “ Apvq´Apt`dq the one on rt`d, vs. Consider the decomposition
Apvq ´Apsq “ A1 `Apt` dq ´Aptq `A2.

On intervals rs, ts and rt ` d, vs, some part of a packet is sent, as constant
speed R, so A1 “ Rw1 and A2 “ Rw2, leading to Apvq ´ Apsq “ Apt ` dq ´
Aptq `Rpw1 ` w2q.

The flow admits α as arrival curve, so Apvq ´ Apsq ď αpv ´ sq. But by
construction, they are n P N full packets of size l sent on rs, vs, i.e. Apvq´Apsq “

nl, so n ď
Y

αpv´sq
l

]

and

Apt` dq ´Aptq `Rpw1 ` w2q ď l

Z

αpv ´ sq

l

^

(36)

Let w “ w1 ` w2, notice that v ´ s can be written as v ´ s “ d` w, it yields

Apt` dq ´Aptq ď l

Z

αpd´ wq

l

^

´Rw (37)

ď sup
wě0

l

Z

αpd´ wq

l

^

´ λRpwq (38)

“

´

l
Yα

l

]

m λR

¯

pdq (39)

28



Approach

Model

Fluid (unknown
packet size)

Per flow constant
packet size

Per flow and per
queue constant
packet size

End-to-End Explicit Linear, LP,
SFA/Aff

SFA/Fc SFA/FQc

Local TFA/Aff TFA/Fc TFA/FQc

Table 2: The analysis strategies.

If not packet is sent at time t, let t1 be the next instant when some packet
starts its emission (if t1 does not exist, it means that Apt ` dq “ Aptq and the
result holds). Then Aptq “ Apt1q. Conversely, if no packet is sent at t ` d,
let d1 ď d be such that t ` d1 is the previous instant when some packet ends
its emission. It holds Apt ` d1q “ Apt ` dq. Then, the previous result can
be applied: Apt ` d1q ´ Apt1q ď

`

l
X

α
l

\

m λR
˘

pd1q. By definition of t1 and d1,

Apt` dq ´Aptq “ Apt` d1q ´Apt1q and since l
X

α
l

\

m λR is non decreasing, and
d1 ď d

Apt` dq ´Aptq ď
´

l
Yα

l

]

m λR

¯

pdq. (40)

8 Comparing strategies

Several approaches and models have been presented in the previous sections.
They will be compared on two case studies, a small one, allowing a detailed
interpretation of the results, and a large one giving more realistic results.

The approaches have been partitioned in two categories: a first one comput-
ing an end-to-end delay, and a second one computing per queue delays (local)
and deriving the flow delay as the sum of local delays. Three kinds of mod-
els have been considered: either no information on the packet size is modeled
(“fluid” model), or we assume that all packets in a given flow have the same
size (“per flow constant packet sizes” model) or we also assume that all packets
in a given queue have the same size (“per flow and per queue constant packet
sizes” model).

The explicit linear method, presented in Section 6, is an end-to-end approach
with an affine model. The SFA is the most known end-to-end approach, but in
the specific case of concave/convex piecewise-linear arrival and service curves,
it is outperformed by the NetCalBounds tool, a free implementation of the LP
method developed in Bouillard and Stea (2014). This LP method gives the
exact worst delay (also known as tight), but its computation is exponential
in the length of the path. Nevertheless, since the paths on our case studies
are not so long, it was possible to use it. However, the SFA/Aff approach is

29



considered in order to compare it with the other approaches. The modeling of
per flow constant packet sizes (use of Theorem 6) lead to non concave arrival
curves, and in this case, only SFA can provide an end-to-end delay computation
(SFA/Fc). Moreover, when all packets in a queue have the same size, combining
SFA and Theorem 5 leads to SFA/FQc.

Conversely, the computation of the flow delay as the sum of the local de-
lays is done with TFA, with either an affine model (TFA/Aff), per flow con-
stant packets sizes (TFA/Fc) and per flow and per queue constant packets sizes
(TFA/FQc).

These different methods will be compared on two examples10, a small one and
a large one, with variation on the number of flows per queue and the maximal
packet size.

The small example, from Dupont de Dinechin and Graillat (2017), has 4
nodes and 4 routers. A first experiment with this example is presented in
Section 8.1 with only 4 flows in order to provide the details of the methods. A
second experiment is presented in Section 8.2 with this example, splitting the
flows, but keeping the same throughput, in order to illustrate how each method
is influenced by the number of flows. And Section 8.3 uses the same example
as in Section 8.1 but with larger packets in order to illustrate the influence of
packet sizes.

The large example uses all the 32 nodes and routers. In a first experiment,
presented in Section 8.4, each node generates 4 flows, leading to a total number
of 128 flows. In Section 8.5, the number of flow is doubled, leading to a second
experiment on the large example.

The results on the explicit linear method have been obtained using a tool
developed by Kalray, presented in Dupont de Dinechin and Graillat (2017). The
results on the LP method have been obtained using the NetCalBounds tool from
Bouillard (2017), with the same tandem topology than the SFA. The results
on the affine Total Flow Analysis have been obtained using the RTaW-Pegase
tool, from RealTime-at-Work (2019). All other results have been obtained by a
prototype plugin to the RTaW-Pegase tool.

All technological delays in routers (routing, switching, etc.) have been ne-
glected since they are constant and have no influence on the arrival curves.

8.1 An illustrative example with 4 nodes (small example,
first experiment)

This section gives details on the different methods using a small example. It
comes from Dupont de Dinechin and Graillat (2017). It has 4 nodes, generating
4 flows crossing 4 routers, with routing depicted in Figure 20. All flows have a
packet size of 17 flits (considered as typical), all flows have a long-term rate 1

3

10A third example can be found in Boyer et al. (2019), including a comparison with the
“recursive calculus” from Ayed et al. (2016).

30



Flow f1 f2 f3 f4

Rate 2
3

1
3

1
3

1
3

Max. Packet Size. 17 17 17 17
Burst 17

3
34
3

34
3

34
3

Table 3: Flow parameters, small example (topology of Figure 20), first experi-
ment (original values).

Figure 20: Case study from Dupont de Dinechin and Graillat (2017), 4 nodes.

but f1 that have r1 “
2
3 . The admissible bursts at network ingress are 34

3 but
f1 that has b1 “

17
3 (cf. Table 3).

Before presenting how the different methods handle this example, let us
come back on queue numbering. When presenting the different methods, for
sake of simplicity, we have assumed that the set of ports and the set of queues
are indexed by integers. In the small example, there are 4 routers, R0, R2, R10
and R8. Since there is only one active port per router11, their respective active
ports will be denotes p0, p2, p10, p8. Each port has at most two active queues.
For example, the port p2 has two active queues, the “From West”, used by f1,
and the “From Local” used by f2. In this Section, qa,b will denote the active
queue in router a used by flow coming from router b (or qa,a for the “From
Local” queue). Then, the two queues in R2 will be denoted q2,0 (used by the
flow f1) and q2,2 (used by the flow f2). Then, the blind residual service of the
queue q2,0 will be denoted β2,0

Blind, its total arrival curve will be denoted α2,0,
etc.

8.1.1 Details of the explicit linear method

Consider first the flow f1. It comes out from the traffic limiter with burst
b01 “

17
3 , and rate ri “

2
3 , i.e. arrival curve λ1 ^ γ 2

3 ,
17
3

(cf. Figure 14). It path

starts at the router R0, and it is the only flow using port p0. Then, p0 offers

11Except in R10, where both the “To Local” and “To West” are active, but only the “To
West” is shared and requires a name.

31



to the flow f1 its full capacity of one flit per cycle, λ1, and by application of
eq. (19), the local delay is null, d0 “ 0. The arrival curve is not modified, when
entering the router R2, b21 “

17
3 .

In R2, two flows f1 and f2 are sharing the output port p2, f1 (resp. f2) using
the queue q2,0 (resp. q2,2). Consider f1: to compute the residual service offered
by the link arbiter, one may either use the round-robin formula, eq. (27), leading
to R2 “ 1

2 (half of the bandwidth) and T 2 “ 17 (one packet from competing flow
f2), or the blind one, eq. (28), leading to R2 “ 1´ r2 “ 2

3 (since the competing

flow f2 has only a rate r2 “ 1
3 ) and T 2 “

34
3

R2 “ 17. The output burst is then
b10
1 “ 17 (cf. eq. (21)). For f2, since it is in competition with a flow of rate 2

3 ,
it is better to consider the round-robin residual service, which offers the curve
β 1

2 ,17, leading to the output burst b10
2 “ 17.

Last, in R10, f1 uses the port leading to the local cluster, and like in R0
suffers no delay. The end-to-end service offered to f1 is then β˚1 “ βR˚1 ,T

˚
1

, with

R˚1 the minimum of all residual rates along the path R˚1 “ min
 

1, 2
3 , 1

(

“ 2
3 ,

and T˚1 the sum of each residual latencies T˚1 “ 0` 17` 0 “ 17 (cf. eq. (30)).
The application of eq. (31) yields, for the flow f1, an upper bound on delay

d˚1 “
51
2 .

In R10, the flows f2 and f3 share an output port p10, in two different queues,
q10,2 and q10,10 respectively. This case being similar to the port p2, details are
not provided: f2 (resp. f3) receives a residual service β 2

3 ,17 and its output burst

is b82 “
68
3 (resp. β 2

3 ,17, b83 “ 17).

The output port p8 of the router R8 presents a more interesting situation,
since two flows, f2 and f3 share a same queue, q8,10, competing with the queue
q8,8 used by the flow f4.

For the queue q8,8 (and its only flow f4), the round-robin and blind residual
services are very different: the round-robin service offers a guaranteed rate 1

2 and
a latency of 17 corresponding to one single frame, whereas the blind multiplexing

offers only 1
3 as guaranteed rate, and a latency

b82`b
3
8

1
3

“ 119 corresponding to

the burst of the two flows f2 and f3, leading to an end-to-end-delay bound of
d˚4 “ 34.

For the queue q8,10 shared by the flows f2, f3, the best residual service is the
blind one, offering a service β 2

3 ,17. Consider now f2: it shares the service of the

queue q8,10 with f3 with a FIFO policy. By application of eq. (29), it receives the
rate-latency service of parameters R8,10

2 “ 2
3´

1
3 “

1
3 and T 8,10

2 “ 17` 17
2
3

“ 42.5.

The end-to-end service offered to f2 is then β˚2 “ βR˚2 ,T
˚
2

, with R˚2 the

minimum of all residual rates along the path R˚2 “ min
 

1
2 ,

1
2 ,

1
3 , 1

(

“ 1
3 , and T˚2

the sum of each residual latency. T˚2 “ 17 ` 17 ` 42.5 “ 76.5. This leads to a
bound on its end-to-end delay d˚2 “ 110.5.

The same way, the residual service offered to f3 is β 1
3 ,51, its end-to-end

service β 1
3 ,68, and its end-to-end delay bound d˚3 “ 102.

32



17

β 2
3
,1

7
“

“ λ1
´
α
2,

2
‰
`

Ò

α
2,2 “

λ1
^ α

2
2

34
3

17

β 2
3
,1

7

β 1
2
,17

α
2,

0 “
λ1
^
α
1
2

17
3

d2,0
68
3

9α
1
2
“

9α
1
2
m
δd2

,0

d2,0

Figure 21: Functions related to the crossing of R2 per flow f1, TFA method,

fluid modeling. d2,0 “ hDev
´

α1
2, β 2

3 ,17

¯

“ 51
2 .

8.1.2 Details of the TFA/Affine method

Consider first the router R0: it is crossed by only one flow f1, with arrival curve
α0

1 “ λ1 ^ γ 1
3 ,

17
3

. Since this is the only flow, the arrival curve of the total input

flow is α0,0 “ λ1 ^ α0
1 “ λ1 ^ γ 1

3 ,
17
3

. The port p0 offers a service of minimal

curve λ1, and d1 “ hDevpα0,0, λ1q “ 0, the local delay is null. The arrival curve
of f1 at the output is equal to the one at the input: 9α0

1 “ α0
1.

In R2, they are two actives queues, q2,0 and q2,2, used each by only one flow,
respectively f1 and f2, leading to the total arrival curves α2,0 “ λ1^α

2
1, α2,2 “

λ1 ^ α2
2. Queue q2,0 receives a residual blind service β2,0

blind “
“

λ1 ´ α
2,2

‰`

Ò
“

β 2
3 ,17 and a residual round-robin service β2,0

RR “ β 1
2 ,17 (cf. Figure 21). The

round-robin residual rate is not sufficient for the flow f1: hDevpα2,0, β2,0
RRq “

hDevpλ1^γ 2
3 ,17q “ 8, but the blind one leads to the bound hDevpα2,0, β2,0

blindq “

51
2 . The arrival curve of f1 at R2 output is 9α2

1 “

´

α2
1 m δ 51

2

¯

^ δ0 “ γ 1
3 ,

68
3

.

The situation of f2 in R2 is similar, except that in this case, the residual
round-robin service is better than the residual blind. Its input arrival curve is
α2

2 “ λ1 ^ γ 1
3 ,

34
3

, its local delay bound is 34, and its output arrival curves is

9α2
2 “ γ 1

3 ,
68
3

.
In R10, the flow f1 crosses the output port toward the local cluster: it is

the only one using this port and then has a null delay. The flows f2 and f3

are competing for the output port p10, respectively in queues q10,2 and q10,10.
For the queue q10,2 the round-robin policy offers a residual service curve β 1

2 ,17

whereas the one offered by the blind multiplexing is β 2
3 ,17. The minimal delay

bound is then 51^ 34 “ 34.
On the opposite, for the queue q10,10, the smaller delay bound is the one

computed by the round-robin residual service. Indeed, β10,10
RR “ β 1

2 ,17, whereas

the large burst of f2 leads to a residual blind service β10,10
Blind “ β 2

3 ,34. In this

33



case, both residual functions are incomparable.

34

β 2
3
,3

4

β 1
2
,1734

3

α
10
3

d10,10
68
3

9α
8
3
“ 9α

10
3
m δd

10,1
0

d10,10

Figure 22: Functions related to the crossing of R10 per flow f3, TFA method,

fluid modeling. d10,10 “ hDev
´

α10,10, β 1
2 ,17

¯

“ 34.

In R8, the output port p8 has two actives queues, q8,8 used only by flow f4

and q8,10 used by flows f2, f3. The total arrival curve of queue q8,10 is the sum
of the arrival curves of flow f2, f3, shaped by the link capacity, i.e. α8,10 “

λ1 ^
`

α8
2 ` α

8
3

˘

. The two residual services computed for q8,8 are β8,8
RR “ β 1

2 ,17

and β8,8
Blind “ β 1

3 ,170 leading to the delay bound 34. For the queue q8,10, the two

residual services are β8,10
RR “ β 1

2 ,17 β
8,10
Blind “ β 2

3 ,17 leading to delay bound 102 as
illustrated on Figure 23.

8.1.3 Details of the SFA/Affine method

The SFA method considers a flow of interest and extracts from the full topology
a sub-path, a tandem topology: the sequence of queues crossed by the flow
(and possibly other flows). In this study, for each queue, the residual service
considered is the one computed by the TFA method. For each competing flow
crossing this sub-path, the arrival curve at the entrance in the sub-path is also
the one computed by the TFA method. Since all flows in this sub-path are
served with a FIFO policy, the equations (14) and (34) will be used to extract
the residual service for the flow of interest.

The flow f1 crosses a sequence of 3 routers, R0, R2, R10, but is alone in the
output port of R0 and R10. In both, it receives the full service λ1. In R2, f1

crosses the queue q2,0, that offers the service β2,0
Blind “ β 2

3 ,17. The end-to-end

service is then βSFA
1 “ λ1 ˚ β 2

3 ,17 ˚ λ1 “ β 2
3 ,17. The end-to-end delay bound is

then hDev
´

λ1 ^ γ 2
3,

17
3
, β 2

3 ,17

¯

“ 51
2 .

The flow f3 first crosses output the east output port of the router R10, p10.
They are two active queues, one coming from router R2, q10,2, used by the flow
f2, and one coming from the local cluster, q10,10.

Considering the residual service offered to q10,10, and then to f3 the only flow
in this queue, one may either use the round-robin residual service (Thm. 5) or the
blind one (Thm. 3). The round-robin residual service is β1{2,17 corresponding to

34



17

β 2
3
,1

7 β 1
2
,17

α
8,10 “ λ1

^

`

α
8
2
` α

8
3

˘

d10,10

170

170

Figure 23: Functions related to the crossing of R8 per flows f2 and f3, TFA

method, fluid modeling. d8,10 “ hDev
´

α8,10, β 2
3 ,17

¯

“ 102.

a latency of one frame (in a round-robin cycle) and half of the bandwidth (since
they are two queues) whereas the blind one is β2{3,34 since the competing flow f2

has a rate of 1{3 but a burstiness of two frames. Note that both are incomparable
(@x ď 35, β2{3,34pxq ď β1{2,17pxq and @x ą 35, β2{3,34pxq ą β1{2,17pxq). Since
the round-robin policy gives a smaller bound on the delay, this is the one that
is kept for the SFA end-to-end service, i.e. β10

3 “ β1{2,17.
The next router on its path is R8. The flow f3 goes through the output port

going to the local cluster, called p8. It is set in the queue “from east”, q8,10,
with the flow f2. Since the queue q8,10 is competing with only another queue,
the round-robin residual service is β1{2,17, whereas the blind is β2{3,17. To derive
the residual service offered to f3 in q8,10, one have to remove the part that is
used by f2. To do so, we use eq. (14) from Thm. 4, and chose a value for the
θ parameter. The first term of eq. (34) is the latency of the service offered to
the queue, 17. The second is a sum, looping on flows interfering for the first
time. The set of interfering flow F 8,10z tf3u is simply the singleton tf2u. And
f2 is crossing f3 for the first time in this server. Then the value of θ8,10

2 is

θ8,10
2 “ T 8,10 `

b82
R8,10 “ 68 where b82 “ 34 is the burstiness of flow f2 entering

router R8, R8,10 is the rate of the residual service offered to the queue q8,10 and
T 8,10 “ 17 is its latency.

This leads to the residual service β8
3 presented in Figure 24.

The end-to-end service βSFA
3 is the convolution of the two residual services,

and is plotted in Figure 25. The end-to-end delay of the flow f3 is bounded by
the horizontal deviation hDevpα10

3 , β
SFA
3 q “ 119.

The details of the methods on flows f2 and f4 are not given.

35



17

β 2{
3,

17

α
8
2
˚ δ68

68

β
8
3
“

“

β2{3
,17
´ α

8
2
˚ δ68

‰`

170

Figure 24: Functions related to the FIFO residual service for flow f3 in router
R8, SFA method, fluid modeling. The background dotted grid has step 17.

17

β
10
3

68

β
8
3

β
SFA
3

α
10
3

dSFA
3

Figure 25: Local and end-to-end residual services functions for the flow f3, SFA
method, fluid modeling. The background dotted grid has step 17. βSFA

3 “

β10
3 ˚ β8

3 , d
SFA
3 “ hDev

`

α10
3 , β

SFA
3

˘

.

36



α
1
0

17
3

9α1
0

α
2
2

34
3

9α2
2

Figure 26: Arrival curves for flows f1 and f2: fluid and with constant packet
sizes.

α1
0: fluid arrival curve of f1 at R0 ingress,

9α1
0: arrival curve of f1 considering constant packet sizes at R0 ingress

α2
2: fluid arrival curve of f2 at R2 ingress,

9α2
2: arrival curve of f2 considering constant packet sizes at R2 ingress

8.1.4 Illustration of TFA/Fc

We are going here to present the main differences between the “fluid” modeling
(TFA/Aff), the “per flow constant packet sizes” (TFA/Fc), on some examples
with the flows f1 and f3.

To distinguish TFA/Aff and TFA/Fc related variables, a dot is added on top
of the TFA/Aff ones. Note that only the arrival curves, the blind residual curves
and the delays are modified, the round-robin residual service is not modified,
and then have no dot.

Consider f1: considering that all its packets have the same size of 17 flits
transforms (by application of Theorem 6) its fluid arrival curve α1

0 at R0 ingress
into 9α1

0, as plotted in Figure 26. It is the only flow in router R0, and like in the
fluid model (TFA/Aff), suffers no delay.

In the router R2, the flow f1, in the queue q2,0 is in competition with f2,
in the queue q2,2. Like in the TFA/Aff case, the round-robin residual service
is not sufficient (f1 has a rate of 2

3 whereas round-robin offers only 1
2 ). But

the arrival curve of the competing flow f2 is now an alternation of slopes and
plateaus, the shape of the blind residual service received by the queue q2,0,
9β2,0
Blind “

“

λ1 ´
`

λ1 ^ 9α2
2

˘‰`

Ò
, is also such an alternation, as illustrated in Fig-

ure 27, leading to a delay bound equals to 17, whereas the fluid modeling (plotted
with a dotted line) gives 21.5 as delay bound.

The delay bound computed for flow f2 in R2 is the same in the TFA/Fc and
TFA/Aff cases: even if the new arrival curve 9α2

2 is smaller than α2
2, the horizontal

distance with the residual round-robin service is the same, as illustrated in
Figure 28. Also note that the blind residual service is locally greater than the
round-robin one, but this has no influence on the delay bound.

37



9β2,0
Blind

β
2,

0

Blin
d

9α1
0

9d0,2

Figure 27: Functions related to the crossing of R2 per flow f1, TFA method,
modeling per flow constant packet size. The background dotted grid has step

17. 9α2,0 “ 9α2
0,

9d0,2 “ hDev
´

9α2
0,

9β0,2
Blind

¯

.

9α2
2

α2
2

β2,2
RR

9β2,2
Blind

9d2,2

Figure 28: Functions related to the crossing of R2 per flow f2, TFA method,
modeling per flow constant packet size. The background dotted grid has step

17. 9α2,2 “ 9α2
2,

9d2,2 “ hDev
´

9α2
2, β

2,2
RR

¯

.

38



17

9β
10
3

42.5

9β8
3

9βSFA
3

9dSFA3

Figure 29: Local and end-to-end residual services functions for the flow f3, SFA
method, modeling per flow constant packet size. The background dotted grid

has step 17. 9βSFA
3 “ 9β10

3 ˚ 9β8
3 ,

9dSFA
3 “ hDev

´

9α10
3 ,

9βSFA
3

¯

.

8.1.5 Illustration of SFA/Fc

Like TFA, the use of better arrival curves (and blind residual curves) allows SFA
to compute better bound. Considering flow f3, as plotted in Figure 29 (that
can be compared with the SFA/Aff, plotted in Figure 25), a smaller interfering
curve for f4 in R8 leads to a larger residual service, with a smaller choice of the
θ parameter, leading to 9β8

3 . The end-to-end service is then 9βSFA
3 . It yields the

delay bound 9dSFA
3 “ 102.

8.1.6 Illustration of TFA/FQc

Considering that all packets in a queue have the same size allows to compute
a better (i.e. greater) residual service for the round-robin policy. It has no
impact on the residual blind multiplexing and so provides an enhancement only
for flows using the round-robin residual service on their path. This is the case
for the flow f2 (in R2, where it competes with f1 of rate 2

3 ), and for flow f3 (in
R10, where the large burst of f2 makes the round-robin residual service better
than the blind one).

To ease comparison with the TFA/Fc case, the flow f2 is considered.
To distinguish TFA/FQc related variables, a double dot is added on top of

new residual round-robin service and on top of the associated delay.

39



9α2
2

α2
2

β2,2
RR

:β2,2
RR

:d2,2

u

Figure 30: Functions related to the crossing of R2 per flow f2, TFA method,
modeling per flow and per queue constant packet size. The background dotted

grid has step 17. 9α2,2 “ 9α2
2,

:d2,2 “ hDev
´

9α2
2,

:β2,2
RR

¯

, u “ hDev
´

α2
2,

:β2,2
RR

¯

.

The new residual round-robin service curve :β2,2
RR is plotted with the previous

one β2,2
RR on Figure 30. Since it encodes the fact that the frame is served at full

link speed once it is served, the curve is an alternation of slopes and plateaus,

with the same long term rate. It yields :d2,2 “ hDev
´

9α2
2,

:β2,2
RR

¯

“ 17, whereas

9d2,2 “ hDev
´

9α2
2, β

2,2
RR

¯

“ 34 (cf. Figure 28).

Also notice that the modeling of packet size must be done both for the arrival

curve and the service curve to get the best bound, since hDev
´

α2,2, :β2,2
RR

¯

“ 34.

8.1.7 Illustration of SFA/FQc

Like for TFA, modeling the fact that all packets in a queue have a constant size
allows to get a better round-robin residual service and then a better end-to-end
service, as illustrated in Figure 31 (to be compared with Figure 29), leading to

a delay bound :dSFA
3 “ 85.

8.1.8 Results sum up

The upper bounds on delays for this example are displayed in Figure 32. Even
this simple example shows interesting trends that will be mainly confirmed by
the other experiments.

First, the explicit linear method, which has been designed to compute also
routing and allocate burst and throughput budget, gives good results w.r.t.
other methods.

Second, the SFA method gives better results than the TFA one: it benefits
from the Pay Burst Only Once effect, whereas TFA pays the burst in each server.
Note nevertheless that the choice of the θ pays a major role in the accuracy of
the result: the same experiment has been done in a previous study Boyer et al.

40



:β10
3

42.5

:β8
3

:βSFA
3

9α10
3

:dSFA3

Figure 31: Local and end-to-end residual services functions for the flow f3, SFA
method, modeling per flow and per queue constant packet size. The background

dotted grid has step 17. :βSFA
3 “ :β10

3 ˚ :β8
3 ,

:dSFA
3 “ hDev

´

9α10
3 ,

:βSFA
3

¯

.

41



 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

f1 f2 f3 f4

Explicit Linear
LP

SFA/Aff
SFA/Fc

SFA/FQc
TFA/Aff
TFA/Fc

TFA/FQc

Figure 32: Upper bounds on delay, per flow and per method, first example
(topology from Figure 20), first experiment (original values, parameters from
Table 3).

(2019) with a different value of θ, and in this case, SFA was often worst than
TFA. Note that for f4, the TFA/Aff method gives a better bound than the
SFA/Aff. This is related to the choice of the θ value that is not the best.

The results of the LP method deserve a discussion: whereas the LP method
has been designed to compute the exact worst case, the explicit linear method
result is smaller for flow f3. The reason is that the LP method does not model
the shaping introduced by the link. Having stronger assumptions, the explicit
linear method reduces the set of admissible flows, and even if it does not com-
pute the maximum of this set, but only an upper bound, this upper bound is
smaller than the maximum of the larger set where no shaping constraint ex-
ists. The same happens when considering packets of fixed sizes in SFA: with
more assumptions, and considering non concave/convex piecewise-linear func-
tions (Figures 8, 18), the bounds are better, even if the core of the resolution
method is worse.

8.2 Small example, second experiment, splitting flows

The second experiment is a modification of the first one: each flow fi is split
into two flows fi,1, fi,2 with the same routing; a flow rate divided by two; fi,1
has maximal packet size 9; and fi,2 has maximal packet size 8. This example
has more flows, each queue is used by at least two flows, and one cannot assume
that all packets in a queue have the same size. The parameters are listed in

42



Flow f1,1 f2,1 f3,1 f4,1 f1,2 f2,2 f3,2 f4,2

Rate 1
3

1
6

1
6

1
6

1
3

1
6

1
6

1
6

Max. Packet Size. 9 9 9 9 8 8 8 8
Burst 6 7.5 7.5 7.5 16

3
20
3

20
3

20
3

Table 4: Flow parameters, small example (topology of Figure 20), second ex-
periment (splitting flows).

 0

 50

 100

 150

 200

 250

 300

f1,1 f1,2 f2,1 f2,2 f3,1 f3,2 f4,1 f4,2

Explicit Linear
LP

SFA/Aff
SFA/Fc
TFA/Aff
TFA/Fc

Figure 33: Upper bounds on delay, per flow and per method, small example
(topology from Figure 20), second experiment (splitting flows, parameters from
Table 4).

Table 4. Note that splitting a flow increases the initial burst12. This is due to
the fact that the MPPA NoC ingress traffic limiter must always allow a packet
to be fully sent at ingress: then, reducing the per-flow rate increases the burst
size w.r.t. the packet size (cf. Figure 3 and eq. (20)).

The results are reported in Figure 33. The explicit linear method does not
give the best results, but nevertheless give good bounds. The LP method is
better than the other affine methods (explicit linear, fluid TFA and fluid SFA),
and even gives the best results for the flows f2,1, f2,2. The fluid SFA gives the
worst results for f1,¨, f2,¨, f4,¨ but is better than the fluid TFA for f3,¨.

If all packets of a given flow have the same size, modeling it clearly improves
the bound.

The difference between TFA and SFA can be illustrated on the affine case for

12If rpfq (resp. lmaxpfq and bpfq) denotes the rate (resp. maximal size and burst) of the flow
f , then rpfi,1q`rpfi,2q “ rpfiq, l

maxpfi,1q` l
maxpfi,2q “ lmaxpfiq, but bpfi,1q`bpfi,2q ą bpfiq

43



α
2,

0 “
λ1
^
pα

2
1,

1
, α

2
1,

2
q

34
3

β
2,

0

Blin
d

d2,0

Figure 34: Functions related to the crossing of R2 per flow f1,1, f1,2, TFA
method, fluid modeling, small example, second experiment. The background

dotted grid has step 17. d2,0 “ hDev
´

α2,0, β2,0
Blind

¯

“ 153
4 , 34

3 “ 6` 16
3

the flow f1,1. It crosses the sequence of queues q0,0, q2,0, q10,2, and shares this

path with the flow f1,2. Let α0,0
1,1, α

2,0
1,1, α

0,0
1,2, α

2,0
1,2 denote respectively the arrival

curves of the flow f1,1 at q0,0 and q2,0 input and of the flow f1,2 at q0,0 and q2,0

input.
The per queue residual servers are β0,0 “ λ1, β2,0

Blind “ β 2
3 ,

85
4

, β10,2 “ λ1.

In the first router, R0, due to the shaping, TFA computes a null delay:
d0,0 “ hDevpα0,0, β0,0q “ hDev

`

λ1 ^ pα
0
1,1 ` α

0
1,2q, λ1

˘

“ 0. Then the arrival

curves are not modified, i.e. α2,0
1,i “ α0,0

1,i for i P t1, 2u. In the second router, R2,

d2,0 “ hDev
´

α2,0, β2,0
Blind

¯

“ 153
4 “ 38.25 as illustrated in Figure 34. Note that

the aggregate burst 34
3 is the sum of the bursts of flows f1,1 and f1,2. In the

third router, R10, like in the first one, the flows suffer no delay.

SFA computes a FIFO residual service per server, and requires a θ parameter
in each server. Let θR0, θR2 and θR10 be the respective values in routers R0,
R2, R10. In the first router R0, f1,1 is competing with flow f1,2. In this router,
the burst of f1,2 is 16

3 . Along their common path, the minimal service rate

is the one offered in R2, 2
3 . Then, eq. (34) yields θR0 “ 0 ` 16{3

2{3 “ 8 and

β0
1,1 “

“

λ1 ´ pα
0
1,2 ˚ δ8q

‰`
^ δ8 as illustrated in Figure 35. In the second router

R2, there is no new interfering flow, so θR2 “ 85
4 ` 0 and β2

1,1 “ β 1
3 ,

149
3

. The

same, in the third router R10, θR10 “ 0` 0 “ 0 and β10
1,1 “ β 2

3 ,
217
8

.

The end-to-end service computed by SFA is βSFA
1,1 , plotted in Figure 35, leads

to a delay bound dSFA
1,1 “ hDev

`

α0
1,1, β

SFA
1,1

˘

“ 723
8 “ 90.375. Notice that the

step in curve β0
1,1 is absent of the end-to-end service βSFA

1,1 .

44



8

β
0
1,

1

149
3

β
2
1,1

217
8

β
10
1,

1

579
8

β
SFA
1,1

α
0
1,1

dSFA

Figure 35: Local and end-to-end residual services functions for the flow f1,1, SFA
method, fluid modeling, small example, second experiment. The background
dotted grid has step 17. βSFA

1,1 “ β0
1,1 ˚ β

2
1,1 ˚ β

10
1,1, dSFA

1,1 “ hDev
`

α0
1,1, β

SFA
1,1

˘

.

Flow f1 f2 f3 f4

Rate 2
3

1
3

1
3

1
3

Max. Packet Size. 70 70 70 70
Burst 70

3
140
3

140
3

140
3

Table 5: Flow parameters, small example (topology of Figure 20), third exper-
iment (large packet size).

Another configuration of θ parameters has been tested: instead of consider-
ing the burst in the first router R0, let consider θR0 “ 0, θR2 “ 145

4 , θR10 “ 0.
The intuition here was to set the burst at the server with the smaller rate, to
set an initial value of the burst that aligns the step and the inflection point of
the arrival curve, and to update it by dichotomy up to a reaching the minimal
end-to-end delay bound value 611

8 “ 76.375. The service curves are plotted in
Figure 36.

8.3 Small example, third experiment, large packet size

The third experiment uses the same parameters as the initial experiment (Sec-
tion 8.1), but with large packet size (70 flits). The flow parameters are given in
Table 5, and the results are reported in Figure 37.

The results look very similar to those of the first experiment, but one has
to pay attention that the range of values is very different: whereas the range of
values was [0,180] in the first experiment (Figure 32), it is [0,700] in Figure 37.
Since the packet and burst sizes are 70

17 « 4.11 larger, the delays also are globally
four times larger.

45



8

β
0
1,

1

145
4

β
2
1,1

217
8

β
10
1,

1

575
8

β
SFA
1,1

α
0
1,1

dSFA

Figure 36: Local and end-to-end residual services functions for the flow f1,1,
SFA method with θR0 “ 0, θR2 “ 145

4 , θR10 “ 0, fluid modeling, small example,
second experiment. The background dotted grid has step 17. βSFA

1,1 “ β0
1,1 ˚

β2
1,1 ˚ β

10
1,1, dSFA

1,1 “ hDev
`

α0
1,1, β

SFA
1,1

˘

.

 0

 100

 200

 300

 400

 500

 600

 700

f1 f2 f3 f4

Explicit Linear
LP

SFA/Aff
SFA/Fc

SFA/FQc
TFA/Aff
TFA/Fc

TFA/FQc

Figure 37: Upper bounds on delay, per flow and per method, small example
(topology from Figure 20), third experiment (large packets, parameters from
Table 5).

46



Length 2 3 4 5 6 7 8
Number of flows 16 22 31 26 22 10 1
Number of LP time-out 0 0 0 2 4 8 1

Table 6: Number of flows with a given length (Mean: 4.4) and number of time-
out with method LP (with time-out at 2mn), large example, first experiment.

8.4 Large example (full MPPA NoC), first experiment:
128 flows

The large example is based on the MPPA architecture presented in Figure 1.
Each node is the source of 4 flows, with randomly chosen destination, leading to
128 flows. Each flow has a constant packet size of 17 flits, and the routing and
rate allocations have been generated using the strategies presented in Dupont de
Dinechin et al. (2014), Boyer et al. (2018). The average flow length is 4.4, and
the length distribution is listed in Table 6. The average link load is 44% (168
links are used), 4 links have a load of 100%, 7 of load in r80%, 89%s and 36 a
load in r50%, 79%s.

Furthermore, the upper bounds on delays have been computed using some
of the method presented in the previous sections. The NetCalBounds tool,
implementing the LP method from Bouillard and Stea (2014) has been limited
to 2mn of computing time for each flow13. In case of timeout, two upper bounds
have been computed: one using the NetCalBounds tool with the ULP method,
and the other with the deborah tool, and the minimum of both is used. The
bound obtained will be denoted LP|ULP|deb. The number of LP timeout is
listed Table 6. The SFA/Fc and SFA/FQc methods require the computation
of the convolution between complex service curves, and its leads to very long
computation times. Moreover, the previous experiments have shown that they
give similar results to the TFA/Fc and TFA/FQc methods. Therefor, they have
not been used in this experiment.

The bound computed for each flow with each method appears in Figure 38,
where flows have been sorted w.r.t. the bound computed by the explicit linear
method (which yields to a smooth curve for this method).

The results are quite similar to the one on the small test cases: the TFA/FQc
method (that captures both shaping and the fixed packet size nature of flows)
outperforms all other methods in most cases. The LP, ULP or deborah tools
(that does not capture the shaping neither the packet sizes) gives almost al-
ways a worse value than the explicit linear methods (that captures the shap-
ing but not accurately the packet sizes). The TFA/Aff and TFA/Fc methods
behave sometime better, sometime worse than explicit linear or LP|ULP|deb.
When considering average values (last column of Figure 39), the importance
of shaping appears clearly: the explicit linear gives bound one third less than
LP|ULP|deb. The TFA methods is quite poor with an affine model, but once

13To be exact, the NetCalBounds tool generates a MILP problem, in negligible time. The
computation time comes from the lp solve tool, that we used to solve the MILP problem.

47



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

B
o
u
n
d

 o
n
 d

e
la

y
 (

in
 c

y
cl

e
s)

Explicit Linear
LP|ULP|deb

TFA/Aff
TFA/Fc

TFA/FQc

Figure 38: Upper bounds on delay, per flow and per method, large example, first
experiment. The flows are sorted by bound value with explicit linear method.

modeling constant packet sizes, its gives the best results.
One may wonder if the path length has an influence, guessing that methods

using the PBOO principle may have better results on long paths. Then, Fig-
ure 40 plots the same bounds as Figure 38, but flows are grouped by flow length
before being sorted by bound of the explicit linear method. It appears clearly
that longer paths have larger delays, but showing the relation between methods
requires other figures. Figure 41 displays, for each flow, the ratio between ex-
plicit linear and LP|ULP|deb w.r.t TFA/FQc, using the same flow ordering as
in Figure 40. Figure 39 shows the average bound computed by each method,
depending on the flow length.

Both results confirm the relations obtained between methods, independently
of the path length. The gain obtained by the PBOO principle is mitigated by
a looser modeling of the residual service in each router.

8.5 Large experiment (full MPPA NoC), second experi-
ment: 256 flows

The second experiment on the full MPPA NoC topology considers 8 flows per
cluster. Since there are 8 traffic limiters per cluster, this is the maximum that
can be done on the MPPA processor.

The distribution of flow length is given in Table 7, and the average length
is 4.6. In this example, the average link load is 34%, and only 2 links have a
100% load, 5 are in interval r90%, 99%s and 20 in interval r50%, 89%s.

The individual bounds per flow are not displayed, since the relations between
the methods are the same as in previous experiment. Only the mean bound per

48



 0

 500

 1000

 1500

 2000

 2500

 3000

n=3 n=4 n=5 n=6 n=7 MeanM
e
a
n
 b

o
u
n
d

 o
n
 d

e
la

y
, 

p
e
r 
fl
o
w

 l
e
n
g

th
 (

in
 c

y
cl

e
s)

Explicit Linear
LP|ULP|deb

TFA/Aff
TFA/Fc

TFA/FQc

Figure 39: Mean value of bounds (in cycle), per flow length n, large example,
first experiment.

 0

 500

 1000

 1500

 2000

 2500

 3000

n=2 n=3 n=4 n=5 n=6 n=7

B
o
u
n
d

 o
n
 d

e
la

y
 (

in
 c

y
cl

e
s)

Explicit Linear
LP|ULP|deb

TFA/Aff
TFA/Fc

TFA/FQc

Figure 40: Upper bounds on delay, per flow and per method, large example,
first experiment. The flows are sorted first by flow length n then by bound
value with explicit linear method.

49



 0

 2

 4

 6

 8

 10

n=2 n=3 n=4 n=5 n=6 n=7

R
a
ti

o
 b

e
tw

e
e
n
 b

o
u
n
d

 o
n
 d

e
la

y
 

w
.r

.t
. 

E
x
p

lic
it

 l
in

e
a
r

Explicit Linear
LP|ULP|deb

TFA/FQc

Figure 41: Ratio between each method w.r.t. TFA/FQc one, large example,
first experiment, same sorting as in Figure 40.

.

Length 2 3 4 5 6 7 8
Number of flows 18 45 57 60 49 21 6
Number of LP time-out 0 0 0 12 31 21 6

Table 7: Number of flows with a given length (Mean: 4.4) and number of time-
out with method LP (with time-out at 2mn), large example, second experiment.

50



 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

n=2 n=3 n=4 n=5 n=6 n=7 n=8 MeanM
e
a
n
 b

o
u
n
d

 o
n
 d

e
la

y
, 

p
e
r 
fl
o
w

 l
e
n
g

th
 (

in
 c

y
cl

e
s)

Explicit Linear
LP|ULP|deb

TFA/Aff
TFA/Fc

TFA/FQc

Figure 42: Mean value of bounds (in cycle), per flow length n, large example,
second experiment.

flow length are given in Figure 42. Since they are more flows, they are more
conflicts per router, and the worst-case delays are increased. The mean gain
between the explicit linear and TFA/FQc methods becomes 25%, whereas it
was 20% in the previous experiment with 128 flows.

8.6 Conclusions on the case studies

Theses experiments on a realistic case study present some trends on the applica-
bility of network calculus for NoC and some insights on research opportunities.

Usability of LP Whereas the LP approach has a theoretical exponential cost,
related to the length of paths, it can in practice be used for NoC, as long as
the paths are not very long. Table 6 shows that even if it was not able to deal
with paths of size greater than 6 (in less than 2mn), it has computed bounds
for 17 out of 22 paths of length 6 (i.e. 77%) and 24 out of 26 (i.e. 92%) of
paths of length 5, and all for smaller paths. Notice also that the LP problems
has been solved using the lp solve solver Berkelaar et al. (2018). Other solvers
may have different resolution time Bondorf et al. (2017).

Influence of shaping Modeling the shaping has a major influence on the
accuracy of the results. It has been previously shown in the context of AFDX
network in Frances et al. (2006) and confirmed in Boyer and Fraboul (2008),
Scharbarg et al. (2009), Zhao et al. (2013). It is confirmed on these experiments
on the MPPA NoC. While the LP method computes the exact worst case for the

51



(a) network input, no jitter

hDevpα¨, βq

αf

αp

β

(b) with jitter

α1f
α1p
β

J

Figure 43: Gain related to modeling of packets in arrival curve.

FIFO policy (without considering shaping), it is often outperformed by methods
that model link shaping in several cases.

The shaping can be easily added in the LP method, since it only amount
to adding new linear constraints. The LP method introduces some well chosen
time instants ti and keeps only from the relation D ě A ˚ βR,T the inequality
Dptiq ě Aptjq `Rpti ´ tjq as a constraint

Dti ě Atj`Rpti´ tj´ T q (41)

where ti, tj, Dti, Atj are program variables that respectively represents the two
instants ti, tj and flow departure and arrival values Dptiq, Aptjq. Then, encoding
the fact that departure D is constrained by shaping of a link of constant capacity
C can be encoded as

Dtm` Dtn ď Cptm´ tnq. (42)

for all variables Dtm, Dtn related to the function D and the instants tm, tn in
the program. When this departure is the aggregation of several flows (D “

D1 ` ¨ ¨ ¨ `Dn), a similar expression has to be used.

Influence of packet size Modeling of packet size in data flows has also a
beneficial impact (it has been shown in the context of AFDX in Boyer et al.
(2011b),Boyer et al. (2012)), since it gives smaller arrival curves, and gives lower
burst in the network. Looking at Figure 18, it is obvious that, αp, the arrival
curve modeling constant packet size is smaller than αf , but the impact on the
delay bound is not so obvious. Figure 43 illustrates this relation between the per
packet arrival and the delay. Consider a fluid flow arrival, αf and the associated
per packet flow arrival αp; even if αf ď αp they both have the same horizontal
deviation with the service curve β. But after crossing the first node, the flow
has a new arrival curve. To ease the discussion, assume that this server creates
a jitter J , and has a shaping curve equals to the link input shaping. Then,
the respective arrival curves at the next node will be α1f and α1p. And in this
case, the delays associated with each arrival curve are different, as illustrated in
Figure 43.b.

Conversely, the modeling of packet sizes in the round robin scheduling policy
gives a bigger service curve, as illustrated in Figure 8. But the benefit in the

52



(1)

αf

αp

βf
βp

a b

c d

(2)

αf

αp

βf
βp

Figure 44: Gain related to modeling of packets in both arrival and service curves,
whether service packet size fits arrival packet size (case (1)), or not (case (2)).
a “ hDevpαp, βpq, a`b “ hDevpαp, βf q, c “ hDevpαf , βpq, c`d “ hDevpαf , βf q,

delay evaluation is related to the modeling of the packet size in the arrival
curve also. Figure 44-(1) illustrates the situation where a single flow is entering
a round-robin arbiter, and all packets in the flow have the same size. This
flow (resp. arbiter) can be modeled using either a fluid arrival curve αf or a
packetized one αp (resp. a fluid service curve βf or a packetized one βp). Then,
the burst fits exactly the height of the first step of the curve, and the delay a is
smaller than considering a fluid residual service (delay a`b), or even considering
a fluid arrival curve and a fluid residual service (delay c` d). But it might also
happen that both sizes do not fit, like in Figure 44-(2), and even if there is a
gain at modeling packet size, it may be smaller.

Nevertheless, an accurate modeling of packet sizes requires abandoning the
efficient class of piecewise-linear concave/convex functions to handle more gen-
eral classes, like the Ultimately Pseudo Periodic class defined in Bouillard and
Thierry (2008). The encoding of the constraints in an integer linear program is
not so straightforward and may moreover increase the computation time.

SFA and TFA Almost all published studies in network calculus report that
the TFA is the less effective approach, except in a few specific cases, as presented
in Bondorf and Schmitt (2016). But all these studies consider blind multiplexing,
and the residual service computed in this case with Theorem 3 is known to be
tight, whereas for the FIFO policy, SFA requires the choice of a θ parameter
in each server. In the experiments, a strategy inspired by Fidler (2003) has
been used. Depending on the case study, this lead to bounds smaller or greater
than the one of TFA. A better strategy can lead to better result: for example,
different values of θ have been used for a single flow, leading to a smaller bound
(cf. Section 8.2 and Figures 35, 36). But it does not exist, up to our knowledge,
any strategy for choosing this parameter in the general case (and in the specific
case of piecewise-linear concave/convex function, one better have to use the LP
method). In other words, SFA is certainly a good approach when a good residual
service per flow is known, which is not the case for the FIFO multiplexing policy

53



up to now.

Last, one have to pay attention to the fact that even if all methods give
similar results on average (cf. Figures 39, 42), for a given flow, the difference
may be very large (cf. Figure 41). Nevertheless, since all are valid bounds, one
may run several or all methods and take the minimum of all bounds.

9 Conclusion

The MPPA2-256 processor, presented in Saidi et al. (2015), integrates 256 pro-
cessing cores and 32 management cores on a chip, communicating through a
shared NoC. Before embedding critical real-time application on such architec-
ture, one needs some method to compute some upper bound on the communi-
cation delay introduced by the NoC resource sharing between communication
flows.

In this paper, we have presented different ways to model the MPPA NoC
using the deterministic network calculus framework: the explicit linear model,
with flow burstiness as the main variables; the general purpose LP method,
developed to get the exact worst case in case of FIFO network with piecewise-
linear arrival functions and service curves; the SFA and TFA approaches, that
have been adapted to per queue round-robin and per flow FIFO policies, and
enhanced in the specific case of flows with constant packet sizes.

They have been compared, first on a small already published example, to get
a comprehensive view on their differences, and to compare new methods with
the previous one on a known example. Thereafter, they have been compared on
a larger case study, with 128 and 256 data flows.

All experiments confirm a well known fact: when the flow burstiness is
limited by link capacity, modeling this shaping has a major impact on results.
Moreover, when all packets in a flow have the same size, modeling this also
improves the bounds, especially in the case of the round-robin policy. And
modeling these aspects of the system can outperform exact approaches that
do not. In other words, there always is a trade-off between the accuracy of
the model and the tightness of the approach. In the case of the MPPA NoC,
shaping by the link capacity and the effects of the packet sizes are major parts
that must be modeled to get good bounds.

Moreover, as claimed in Bondorf and Schmitt (2016), “there is a job for
everyone”: on the small case studies, no method always gives better results
than the others in case of packets of variables sizes (fluid modeling), but in case
of packets of constant size, the SFA and TFA algorithms with “packet-accurate”
arrival and service curves give the best results. The same results appear on the
large case studies: in case of packets of constant size, the TFA algorithms with
“packet-accurate” arrival and service curve currently gives bounds 20%-25%
smaller than any other, on average.

However, it does not mean that the TFA approach is, inherently, better
than other approaches. The TFA approach is somehow the simplest analysis,

54



and this is perhaps the reason why it was easier to model and compute shaping
and constant packet size in TFA.

Computing better bounds with the SFA approach will face two challenges.
The first is the computation of a good residual service with FIFO multiplexing,
i.e. the choice of a good θji parameter for each flow i in each crossed queue j (as
discussed in Sections 7.2 and 8.2). Some machine learning techniques may be
applied, like in Geyer and Bondorf (2019). The second one is the computation
of convolutions with non convex residual service functions, which is currently
too costly. One solution could be to compute only a finite prefix, like in Lampka
et al. (2017).

Computing better bounds with the LP method will require encoding in the
MILP the shaping introduced by the link and the non-convex curves. Since the
shaping of the link is just another linear constraint, it can we expect that it
may be added without introducing new variables, as presented in Section 8.6,
and with limited impact on resolution time. On the opposite, the encoding of
non concave/convex constraint will certainly imply the introduction of several
Boolean variables. And this will likely negatively impact the resolution time.

Also note that the fluid approaches, using only rate-latency service curves,
(Explicit Linear and TFA/Aff) may benefit from an enhancement of delay ded-
icated to the case of rate-latency service presented in Mohammadpour et al.
(2019).

References

Abdallah L, Jan M, Ermont J, Fraboul C (2015) Wormhole networks properties
and their use for optimizing worst case delay analysis of many-cores. In: Proc.
of the 10th IEEE Int. Symp. on Industrial Embedded Systems (SIES 2015),
pp 1–10, DOI 10.1109/SIES.2015.7185041

Ayed H, Ermont J, Scharbarg JL, Fraboul C (2016) Towards a unified approach
for worst-case analysis of Tilera-like and Kalray-like NoC architectures. In:
Proc. of the 12th IEEE World Conf. on Factory Communication Systems
(WFCS 2016), WiP Session, IEEE, Aveiro, Portugal, DOI 10.1109/WFCS.
2016.7496535

Berkelaar M, Eikland K, Notebaert P (2018) lp solve.
http://lpsolve.sourceforge.net/

Bisti L, Lenzini L, Mingozzi E, Stea G (2008) Estimating the worst-case de-
lay in fifo tandems using network calculus. In: Proc. of the 3rd Int. Conf.
on Performance Evaluation Methodologies and Tools, ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing), ICST, Brussels, Belgium, Belgium, ValueTools ’08, pp 1–67, DOI
10.4108/ICST.VALUETOOLS2008.4388

Bisti L, Lenzini L, Mingozzi E, Stea G (2010) DEBORAH: a tool for worst-case
analysis of FIFO tandems. In: Margaria T, Steffen B (eds) Proc. of the 4th

55



Int. Symp. On Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA 2010), Springer, LNCS, DOI 10.1007/978-3-642-16558-0
15

Bisti L, Lenzini L, Mingozzi E, Stea G (2011) Deborah home page.
http://cng1.iet.unipi.it/wiki/index.php/Deborah

Bondorf S (2017) Better bounds by worse assumptions – improving network
calculus accuracy by adding pessimism to the network model. In: Proc. of
the IEEE Int. Conference on Communications (ICC 2017), Symposium on
Communications QoS, Reliability and Modeling (CQRM), IEEE, Paris, DOI
10.1109/ICC.2017.7996996

Bondorf S, Schmitt J (2016) Improving cross-traffic bounds in feed-forward net-
works – there is a job for everyone. In: Proc. of the 18th Int. GI/ITG Conf.
on ”Measurement, Modelling and Evaluation of Computing Systems” and
”Dependability and Fault Tolerance” (MMB&DFT 2016), Deutchland, DOI
10.1007/978-3-319-31559-1 3

Bondorf S, Schmitt JB (2015) Calculating accurate end-to-end delay bounds –
you better known your cross-traffic. In: Proc. of the 9th EAI Int. Conf. on
Performance Evaluation Methodologies and Tools (ValueTools 2015), Berlin,
Germany, DOI doi.org/10.4108

Bondorf S, Nikolaus P, Schmitt JB (2017) Quality and cost of deterministic
network calculus – design and evaluation of an accurate and fast analysis. Proc
of the ACM on Measurement and Analysis of Computing Systems (POMACS)
1(1):34, DOI 10.1145/3084453

Bouillard A (2011) Composition of service curves in network calculus. In: Pro-
ceedings of the 1st International Workshop on Worst-Case Traversal Time
(WCTT’2011), WCTT ’11, pp 35–42, DOI 10.1145/2071589.2071594

Bouillard A (2017) Netcalbounds home page. URL https://github.com/

annebouillard/NetCalBounds

Bouillard A, Stea G (2012) Exact worst-case delay for FIFO-multiplexing
tandems. In: Proc. of the 6th International Conference on Performance Eval-
uation Methodologies and Tools (ValueTools 2012), Cargese, France, DOI
10.4108/valuetools.2012.250090

Bouillard A, Stea G (2014) Exact worst-case delay for FIFO-multiplexing feed-
forward networks. IEEE/ACM Transactions on Networking DOI 10.1109/
TNET.2014.233207

Bouillard A, Stea G (2015) Worst-Case Analysis of Tandem Queueing Systems
Using Network Calculus. In: Bruneo, Distefano (eds) Quantitative Assess-
ments of Distributed Systems

56

https://github.com/annebouillard/NetCalBounds
https://github.com/annebouillard/NetCalBounds


Bouillard A, Thierry E (2008) An algorithmic toolbox for network calculus.
Discrete Event Dynamic Systems 18(1):3–49, DOI 10.1007/s10626-007-0028-x

Bouillard A, Gaujal B, Lagrange S, Thierry E (2008) Optimal routing for
end-to-end guarantees using network calculus. Performance Evaluation 65(11-
12):883–906, DOI 10.1016/j.peva.2008.04.008

Bouillard A, Jouhet L, Thierry E (2010) Tight performance bounds in the
worst-case analysis of feed-forward networks. In: Proceedings of the 29th
Conference on Computer Communications (INFOCOM 2010), pp 1–9, DOI
10.1109/INFCOM.2010.5461912

Bouillard A, Boyer M, Le Corronc E (2018) Deterministic Network Calculus –
From theory to practical implementation. ISBN: 978-1-119-56341-9, Wiley

Boyer M, Fraboul C (2008) Tightening end to end delay upper bound for
AFDX network with rate latency FCFS servers using network calculus.
In: Proc. of the 7th IEEE Int. Workshop on Factory Communication Sys-
tems Communication in Automation (WFCS 2008), IEEE, pp 11–20, DOI
10.1109/WFCS.2008.4638728

Boyer M, Migge J, Fumey M (2011a) PEGASE, a robust and efficient tool
for worst case network traversal time. In: Proc. of the SAE 2011 AeroTech
Congress & Exhibition, SAE International, Toulouse, France, DOI 10.4271/
2011-01-2711

Boyer M, Migge J, Navet N (2011b) An efficient and simple class of functions
to model arrival curve of packetised flows. In: Proc. of the 1st Int. Workshop
on Worst-Case Traversal Time (WCTT’2011), ACM, New York, NY, USA,
pp 43–50, DOI 10.1145/2071589.2071595

Boyer M, Navet N, Fumey M (2012) Experimental assessment of timing ver-
ification techniques for afdx. In: Proc. of the 6th Int. Congress on Em-
bedded Real Time Software and Systems, Toulouse, France, URL https:

//hal.archives-ouvertes.fr/hal-02189869

Boyer M, Dufour G, Santinelli L (2013) Continuity for network calculus. In:
Proc of the 21th International Conference on Real-Time and Network Systems
(RTNS 2013), ACM, Sophia Antipolis, France, pp 235–244, DOI 10.1145/
2516821.2516840

Boyer M, Dupont de Dinechin B, Graillat A, Havet L (2018) Computing
routes and delay bounds for the network-on-chip of the Kalray MPPA2
processor. In: Proc. of the 9th European Congress on Embedded Real
Time Software and Systems (ERTS2 2018), Toulouse, France, URL https:

//hal.archives-ouvertes.fr/hal-01707911

Boyer M, Graillat A, Dupont De Dinechin B, Migge J (2019) Comparing strate-
gies to bound the latencies of the MPPA Network-on-Chip (Extended ver-
sion), URL https://hal.archives-ouvertes.fr/hal-02122874, working
paper

57

https://hal.archives-ouvertes.fr/hal-02189869
https://hal.archives-ouvertes.fr/hal-02189869
https://hal.archives-ouvertes.fr/hal-01707911
https://hal.archives-ouvertes.fr/hal-01707911
https://hal.archives-ouvertes.fr/hal-02122874


Burns A, Harbin J, Indrusiak L (2014) A wormhole NoC protocol for mixed
criticality systems. In: Proc. of the IEEE Real-Time Systems Symposium
(RTSS 2014), IEEE, Rome, Italy, pp 184–195, DOI 10.1109/RTSS.2014.13

Carle T, Djemal M, Potop-Butucaru D, De Simone R, Zhang Z (2014) Static
mapping of real-time applications onto massively parallel processor arrays. In:
Proc. of the 14th Int. Conf. on Application of Concurrency to System Design
(ACSD 2014), IEEE, pp 112–121, DOI 10.1109/ACSD.2014.19

Chang CS (2000) Performance Guarantees in communication networks.
Telecommunication Networks and Computer Systems, Springer

Cholvi V, Echagüe J, Le Boudec JY (2002) Worst case burstiness increase due
to FIFO multiplexing. Performance Evaluation 49(1–4):491 – 506, DOI 10.
1016/S0166-5316(02)00116-5

Cruz RL (1991) A calculus for network delay, part I: Network elements in
isolation. IEEE Transactions on information theory 37(1):114–131, DOI
10.1109/18.61109

Dupont de Dinechin B, Graillat A (2017) Network-on-chip service guarantees on
the Kalray MPPA-256 bostan processor. In: Proc. of the 2nd Inter. Workshop
on Advanced Interconnect Solutions and Technologies for Emerging Comput-
ing Systems (AISTECS’17), DOI 10.1145/3073763.3073770

Dupont de Dinechin B, Van Amstel D, Poulhiès M, Lager G (2014) Time-
critical computing on a single-chip massively parallel processor. In: Proc.
of the Design, Automation and Test in Europe Conference and Exhibition
(DATE 2014), IEEE, pp 1–6, DOI 10.7873/DATE.2014.110

Ferrandiz T, France F, Fraboul C (2009) A method of computation for worst-
case delay analysis on SpaceWire networks. In: Proc. of the IEEE Sympo-
sium on Industrial Embedded Systems (SIES’09), Ecole Polythechnique de
Lausane, Switzerland, pp 19–27, DOI 10.1109/SIES.2009.5196187

Ferrandiz T, Frances F, Fraboul C (2011) Worst-case end-to-end delays evalua-
tion for spacewire networks. Discrete Event Dynamic Systems 21(3):339–357,
DOI 10.1007/s10626-011-0103-1

Fidler M (2003) Extending the network calculus pay bursts only once principle
to aggregate scheduling. In: Proc. of the Second International Workshop on
Quality of Service in Multiservice IP Network (QoS-IP 2003), Milano, Italy,
LNCS, vol 2601, pp 19–34, DOI 10.1007/3-540-36480-3 2

Firoiu V, Le Boudec JY, Towsley JY, Zhang ZL (2002) Theories and models for
internet quality of service. Procof the IEEE 90(9):1565–1591, DOI 10.1109/
JPROC.2002.802002

58



Frances F, Fraboul C, Grieu J (2006) Using network calculus to optimize AFDX
network. In: Proc. of the 3thd European congress on Embedded Real Time
Software (ERTS06), Toulouse

Frangioni A, Galli L, Stea G (2014) Optimal joint path computation and rate
allocation for real-time traffic. The Computer Journal 58(6):1416–1430, DOI
10.1093/comjnl/bxu053

Frangioni A, Galli L, Stea G (2017) Qos routing with worst-case delay con-
straints: Models, algorithms and performance analysis. Computer Communi-
cations 103(Supplement C):104 – 115, DOI 10.1016/j.comcom.2016.09.006

Georges J, Divoux T, Rondeau E (2005) Strict priority versus weighted fair
queueing in switched ethernet networks for time critical applications. In: Proc.
of the 19th IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS 2005), Denver, CO, USA, pp 141–141, DOI 10.1109/IPDPS.
2005.413

Georges JP, Divoux T, Rondeau E (2011) Network calculus: application to
switched real-time networking. In: Proc. of the 5th Int. ICST Conf. on Per-
formance Evaluation Methodologies and Tools, ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engineering),
ICST, Brussels, Belgium, Belgium, VALUETOOLS ’11, pp 399–407, URL
http://dl.acm.org/citation.cfm?id=2151688.2151733

Geyer F, Bondorf S (2019) DeepTMA: Predicting effective contention models
for network calculus using graph neural networks. In: Proc. of the IEEE Int.
Conf. on Computer Communications (INFOCOM 2019), IEEE, Paris, France,
DOI 10.1109/INFOCOM.2019.8737496

Giannopoulou G, Stoimenov N, Huang P, Thiele L, Dupont de Dinechin B (2016)
Mixed-criticality scheduling on cluster-based manycores with shared com-
munication and storage resources. Real-Time Systems 52(4):399–449, DOI
10.1007/s11241-015-9227-y

Giroudot F, Mifdaoui A (2020) Graph-based approach for buffer-aware timing
analysis of heterogeneous wormhole nocs under bursty traffic. IEEE Access
8:32442–32463, DOI 10.1109/ACCESS.2020.2973891, URL https://oatao.

univ-toulouse.fr/25485/

Henia R, Hamann A, Jersak M, Racu R, Richter K, Ernst R (2005) System
level performance analysis - the SymTA/S approach. IEEE Proceedings on
Computers and Digital Techniques 152(2):148 – 166, DOI 10.1049/ip-cdt:
20045088

Jafari F, Lu Z, Jantsch A, Yaghmaee MH (2010) Optimal regulation of traffic
flows in networks-on-chip. In: Proc. of the Conf. on Design, Automation Test
in Europe (DATE 2010), pp 1621–1624, DOI 10.1109/DATE.2010.5457070

59

http://dl.acm.org/citation.cfm?id=2151688.2151733
https://oatao.univ-toulouse.fr/25485/
https://oatao.univ-toulouse.fr/25485/


Kiasari AE, Jantsch A, Lu Z (2013) Mathematical formalisms for performance
evaluation of networks-on-chip. ACM Computing Surveys (CSUR) 45(3):38,
DOI 10.1145/2480741.2480755

Lampka K, Bondorf S, Schmitt JB, Guan N, Yi W (2017) Generalized fini-
tary real-time calculus. In: IEEE Conference on Computer Communications
(INFOCOM 2017), pp 1–9

Lenzini L, Mingozzi E, Stea G (2004) Delay bounds for FIFO aggregates: a case
study. Computer Communications 28:287–299, DOI 10.1016/j.comcom.2004.
10.003

Lenzini L, Martorini L, Mingozzi E, Stea G (2005) Tight end-to-end per-flow de-
lay bounds in FIFO multiplexing sink-tree network. Performance Evaluations
63:956–987, DOI 10.1016/j.peva.2005.10.003

Lenzini L, Mingozzi E, Stea G (2007) End-to-end delay bounds in FIFO-
multiplexing tandems. In: Glynn P (ed) Proc. of the 2nd Int. Conf. on Per-
formance Evaluation Methodologies and Tools (ValueTool07, ICST, Nantes,
France

Li X, Cros O, George L (2014) The trajectory approach for AFDX FIFO net-
works revisited and corrected. In: Proc. of the 20th Int. Conf. on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA’2014),
Chongqing, China, DOI 10.1109/RTCSA.2014.6910523

Long Y, Lu Z, Yan X (2014) Analysis and evaluation of per-flow delay bound
for multiplexing models. In: Proc. of the Design, Automation and Test in
Europe Conference and Exhibition (DATE), 2014, IEEE, Dresden, Germany,
pp 1–4, DOI 10.7873/DATE.2014.264

Martin S, Minet P (2004) The trajectory approach for the end-to-end response
times with non-preemptive FP/EDF*. In: Proceedings of the Int. Conf. on
Software Engineering Research and Applications (SERA’04), Springer, LNCS,
vol 3647, pp 229–247, DOI 10.1007/11668855 17

Mohammadpour E, Stai E, Le Boudec JY (2019) Improved delay bound for a
service curve element with known transmission rate. IEEE Networking Let-
ters pp 1–1, DOI 10.1109/LNET.2019.2925176, URL http://infoscience.

epfl.ch/record/267840

Nikolić B, Yomsi PM, Petters SM (2016) Worst-case communication delay anal-
ysis for noc-based many-cores using a limited migrative model. Journal of
Signal Processing Systems 84(1):25–46, DOI 10.1007/s11265-015-0992-6

Nikolić B, Tobuschat S, Soares Indrusiak L, Ernst R, Burns A (2018) Real-time
analysis of priority-preemptive nocs with arbitrary buffer sizes and router
delays. Real-Time Systems DOI 10.1007/s11241-018-9312-0

60

http://infoscience.epfl.ch/record/267840
http://infoscience.epfl.ch/record/267840


Le Boudec JY, Thiran P (2001) Network Calculus, LNCS, vol 2050. Springer
Verlag, http://lrcwww.epfl.ch/PS files/NetCal.htm

Papastefanakis E, Li X, George L (2015) Deterministic scheduling in network-
on-chip using the trajectory approach. In: Proc. of the IEEE 18th Interna-
tional Symposium on Real-Time Distributed Computing (ISORC 2015), pp
60–65, DOI 10.1109/ISORC.2015.25

Perret Q, Maurère P, Noulard É, Pagetti C, Sainrat P, Triquet B (2016a) Map-
ping hard real-time applications on many-core processors. In: Proc. of the
24th Int. Conf. on Real-Time Networks and Systems (RTNS 2016), ACM, pp
235–244, DOI 10.1145/2997465.2997496

Perret Q, Maurere P, Noulard E, Pagetti C, Sainrat P, Triquet B (2016b) Tempo-
ral isolation of hard real-time applications on many-core processors. In: Real-
Time and Embedded Technology and Applications Symposium (RTAS), 2016
IEEE, IEEE, Vienna, Austria, pp 1–11, DOI 10.1109/RTAS.2016.7461363

Qian Y, Lu Z, Dou W (2009a) Analysis of communication delay bounds for
network on chips. In: Proc. of the 14th Asia and South Pacific Design Au-
tomation Conference (ASP-DAC 2009), Yokohama, Japan, pp 7–12, DOI
10.1109/ASPDAC.2009.4796433

Qian Y, Lu Z, Dou W (2009b) Analysis of worst-case delay bounds for best-
effort communication in wormhole networks on chip. In: Proc. of the 3rd
ACM/IEEE Int. Symp. on Networks-on-Chip (NoCS 2009), IEEE, San Diego,
CA, USA, DOI 10.1109/NOCS.2009.5071444

RealTime-at-Work (2019) RTaW-Pegase home page. URL https://www.

realtimeatwork.com/software/rtaw-pegase/

Saidi S, Ernst R, Uhrig S, Theiling H, Dupont de Dinechin B (2015) The shift
to multicores in real-time and safety-critical systems. In: 2015 Int. Conf.
on Hardware/Software Codesign and System Synthesis, CODES+ISSS 2015,
Amsterdam, Netherlands, DOI 10.1109/CODESISSS.2015.7331385

Scharbarg JL, Ermont J, Bauer H, Fraboul C (2009) Analyse des délais de bout
en bout pire cas dans les réseaux avioniques. Journal européen des systèmes
automatisés 43(7-8-9):953–967, URL http://citeseerx.ist.psu.edu/

viewdoc/download?doi=10.1.1.699.3977&rep=rep1&type=pdf#page=41,
numéro spécial: actes de la conférence sur la modélisation des systèmes
réactifs (MSR’09)

Schmitt J, Zdarsky F, Fidler M (2008a) Delay bounds under arbitrary multi-
plexing: When network calculus leaves you in the lurch... In: The 27th IEEE
Conference on Computer Communications (INFOCOM 2008), pp 1669 –1677,
DOI 10.1109/INFOCOM.2008.228

61

https://www.realtimeatwork.com/software/rtaw-pegase/
https://www.realtimeatwork.com/software/rtaw-pegase/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.699.3977&rep=rep1&type=pdf#page=41
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.699.3977&rep=rep1&type=pdf#page=41


Schmitt JB, Zdarsky FA (2006) The DISCO network calculator - a toolbox
for worst case analysis. In: Proc. of the First Int. Conf. on Performance
Evaluation Methodologies and Tools (VALUETOOLS’06), ACM, Pisa, Italy,
DOI 10.1145/1190095.1190105

Schmitt JB, Zdarsky FA, Martinovic I (2008b) Improving performance bounds
in feed-forward networks by paying multiplexing only once. In: Proc. of 14th
GI/ITG Conf. on Measuring, Modelling and Evaluation of Computer and
Communication Systems (MMB 2008), VDE, pp 1–15

Shi Z, Burns A (2008) Real-time communication analysis for on-chip networks
with wormhole switching. In: Proc. of the second ACM/IEEE International
Symposium on Networks-on-Chip (NoCS 2008), IEEE, Newcastle upon Tyne,
UK, pp 161–170, DOI 10.1109/NOCS.2008.4492735

Tobuschat S, Ernst R (2017) Real-time communication analysis for networks-on-
chip with backpressure. In: Proc. of the Design, Automation & Test in Europe
Conference & Exhibition (DATE 2017), IEEE, Lausanne, Switzerland, pp
590–595, DOI 10.23919/DATE.2017.7927055

Xiong Q, Wu F, Lu Z, Xie C (2017) Extending real-time analysis for wormhole
NoCs. IEEE Transactions on Computers DOI 10.1109/TC.2017.2686391

Zhan J, Stoimenov N, Ouyang J, Thiele L, Narayanan V, Xie Y (2013) Designing
energy-efficient noc for real-time embedded systems through slack optimiza-
tion. In: Proc. of the 50th ACM/EDAC/IEEE Design Automation Confer-
ence (DAC 2013), pp 1–6, URL https://ieeexplore.ieee.org/abstract/

document/6560630

Zhao L, Li Q, Xiong Y, Zheng Z, Xiong H (2013) Using multi-link grouping
technique to achieve tight latency in network calculus. In: Proc. of the 32nd
IEEE/AIAA Digital Avionics Systems Conference (DASC 2013), East Syra-
cuse, NY, USA, pp 2E3–1–2E3–10, DOI 10.1109/DASC.2013.6712551

62

https://ieeexplore.ieee.org/abstract/document/6560630
https://ieeexplore.ieee.org/abstract/document/6560630

	Introduction
	Description of the NoC
	Deterministic Network Calculus
	Mathematical background and notations
	Modeling systems within network calculus
	Contracts
	Main results
	Analysis principles
	Single node analysis
	Feed-forward network analysis


	State of the art
	Approaches without network calculus
	Network calculus based approaches

	Notations on topology
	Explicit linear method for the MPPA NoC
	Arrival curve at queue input, and shaping of incoming link
	Flow arrival curve
	Link Arbiter Service Curves
	End-to-End Latency Bound

	Adaptation of generic algorithms to the MPPA NoC
	Total flow analysis
	Separated flow analysis
	Constant packet size

	Comparing strategies
	An illustrative example with 4 nodes (small example, first experiment)
	Details of the explicit linear method
	Details of the TFA/Affine method
	Details of the SFA/Affine method
	Illustration of TFA/Fc
	Illustration of SFA/Fc
	Illustration of TFA/FQc
	Illustration of SFA/FQc
	Results sum up

	Small example, second experiment, splitting flows
	Small example, third experiment, large packet size
	Large example (full MPPA NoC), first experiment: 128 flows
	Large experiment (full MPPA NoC), second experiment: 256 flows
	Conclusions on the case studies

	Conclusion

