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Chapter 5   

Vectorial Modeling and Control of Multiphase 
Machines with Non-salient Poles Supplied 

by an Inverter 

5.1. Introduction and presentation of the electrical machines we will study  

This chapter is devoted to the modeling and control of electrical machines with 
at least two independent statoric currents. The star-coupled three-phase machine 
without a neutral terminal and the triangle-coupled three-phase machine are the most 
basic ones. More precisely, this chapter aims to emphasize the particularities created 
by a number of independent currents greater than two with respect to the classic 
three-phase machine. 

To reach this goal, we will restrict ourselves to machines fulfilling certain 
hypotheses: 

– constant magnetic air-gap (without variable reluctance effect); 

– without magnetic saturation effect; 

– built regularly, i.e. it is impossible to discriminate against phases as all of the 
phases are characterized by the same technological realisation. 

In practice, these hypotheses allow us to deal with at least two large families of 
machines: 

– synchronous machines with surface-mounted magnets;  
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164     Control of Non-conventional Synchronous Motors 

– squirrel-cage induction machines. 

Obviously real machines do not perfectly fulfill the hypotheses, but we will 
assume that the phenomena induced by the non-fulfilling of these hypotheses 
generate second-order phenomena that can be implicitly compensated for by robust 
control. 

For control, squirrel-cage induction machines can be distinguished from 
synchronous machines with magnets, mainly because the magnetization of the 
machine is entirely controlled by the inverter supplying the stator. In fact, for 
synchronous machines with magnets, part of the magnetic field within the machine 
is not controlled by the supply. Hence, the study of the control of synchronous 
machines has more constraints than that of induction machines. For this reason, we 
will restrict the study in this chapter to that of synchronous machines with 
permanent magnets. The particularity of these machines lies in the number of phases 
and taking both space and time harmonics into account. This problem of the impact 
of harmonics on control has already been tackled in the case of three-phase 
synchronous machines with trapezoidal electromotive forces in [GRE 94] and 
[LOU 10]. In this chapter, we emphasize the originality induced by increasing the 
number of phases. 

Finally, from among the machines studied we can also distinguish between 
several subfamilies by focusing on the connections that can be observed between the 
different coils of the statoric phases: 

– machine without coupling between phases: each phase that has two connection 
terminals is generally supplied by a monophase H inverter; 

– simple star machine: n coils constituting the n phases are connected by a 
common point, the neutral terminal of the machine; 

– multi-star machine: k stars we will be connected to n/k coils by a common 
point. We will therefore have k neutral points; 

– machine with polygonal coupling: n coils constituting the n phases are 
connected in series. For the three-phase machines, we refer to this as triangle 
coupling. 

This chapter will only deal with the control of independent phase machines and 
simple star machines. The five-phase machine will be the reference example 
allowing easy generalization to n-phase machines from the vectorial formulation 
choosen. 
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5.2. Control model of synchronous machines with permanent magnets and 
supplied by an inverter 

The following hypotheses and notations will be used to model the machine: 

– the n phases are identical and shifted by an angle n/2πα = , and p is the 
number of pole pairs of the machine;�

– the machine has smooth poles and is not saturated. 

Figure 5.1 represents a two-pole n-phase machine in which variable g (a voltage, 
current, flux, etc.) is written gk with respect to phase k. 
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Figure 5.1. Symbolic representation of a synchronous two-pole n-phase machine 

5.2.1. Characteristic spaces and generalization of the notion of an equivalent two-
phase machine 

5.2.1.1. Equations in the natural basis of the stator and general vectorial expression 

A Euclidean vectorial space En of dimension n as well as an orthonormal basis
{ }n

n
nnn xxxB

GGG
,...,, 21=  is combined with the n-phase machine. This is referred to as 
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natural, since the coordinates of vector gK  in this basis are measurable variables gk of 
stator phases: 

∑=+++=
=

n

k

n
kk

n
nn

nn xgxgxgxgg
1

2211 ...
GGGGK  [5.1] 

Thus, the following vectors can be defined: 

– voltage: n
nn

nn xvxvxvv
GGGG

+++= ...2211 ; 

– current: n
nn

nn xixixii
GGGG

+++= ...2211 ; 

– linked flux: n
nn

nn xxx
GGGG

φφφφ +++= ...2211 . 

By considering the resistance Rs of a stator phase, we can determine a single 
voltage vectorial equation that gathers the scalar voltage equations of each phase: 
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From the hypothesis of non-saturation, equation [5.2] can be written as: 
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In [5.3], the term 
nB

ss

dt
d

/
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 is due to the contribution of stator currents, while 
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/
⎟
⎟
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⎛ φ
G

 is due to the contribution of the rotor (permanent magnets or inductor 

coil for a synchronous machine, and rotor coils or bars for an induction machine).  

In the case of a synchronous machine with smooth poles, equation [5.3] is more 
classically written as: 

e
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in which: 

− λ  is a linear application (or morphism) so that ( ) ssiλ φ=
GG

. This application is 

commonly written in natural basis Bn in the form of a symmetrical matrix 
( yxxy LL = ) detailed by equation [5.5]. This matrix, given the hypothesis of 
constructive regularity that leads to all phases being equivalent, is circulating, i.e. we 
get line n°2 of the matrix from line n°1 by simple shifting of one rank (L21 = L1n, L22 
= L11, L23 = L12, etc.); 

[ ] ( )
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==

nnnn

n

n

nn
s

LLL

LLL
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 [5.5] 

− 
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d
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dt
φ⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

G
G

 is the electromotive forces (emfs) vector, which is written in the 

form of a functionεG (speed-normalized emf) depending only on θ, the relative 
position of the rotor with respect to the stator coils, and on speed Ω of the rotor, 
see [5.6]: 

( )e ε θ= Ω
GG  [5.6] 

More than allowing synthetic writing, the vectorial relationships ease the 
calculations of powers and torque. The instantaneous power flowing through the 
machine is obtained by the simple scalar product of the voltage and current vectors: 

1
.

n

k k
k

p v i v i
=

= = ∑
GG  [5.7] 

By replacing expression [5.4] of the voltage vector in equation [5.7], we get: 

( ) iei
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Here, we recognize the following within the framework of the hypotheses: 

− ( )2
iRp sj

G
= , the stator Joule losses; 
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− i
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p
nB

mag

G
G

.
/

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= λ , the power linked to the magnetic energy stored; 

− iepem

GG
.= , the electromechanical power developed by the machine that lies in 

the origin of the creation of an electromagnetic torque c, expressed by: 
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Ω

=
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iep
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 [5.9] 

5.2.1.2. Determination of a decoupling basis 

If vectorial relationship )(iss

GG
λφ =  between the stator flux and stator current 

vectors remains true whichever the basis of space En choosen, it is not true when it 
comes to matricial relationships between the coordinates of these vectors. The vector 
coordinates are obtained by projecting the vectors on the generating vectors of the 
basis. We can then understand that if we project the vectors in another basis, the 
relationships between the coordinates will change. The matrix that characterizes 
morphism λ  in the natural basis is generally a full matrix. Therefore, couplings 
between the different phases that appear are not appreciated within the control 
framework. 

If there is a basis in which the matrix of morphism λ  is diagonal, we prefer to 
work in this basis when considering control. The coordinates in this basis of voltage, 
current and flux vectors are no longer measurable, but fictitious.  

In the case of morphisms characterized by a symmetrical matrix (which is the 
case of λ ), we are assured of the existence of such bases that ensure decoupling of 
the different coordinates. Furthermore, these bases are orthogonal and the 
eigenvalues are real.  

A basis can be determined by analyzing the inductance matrix n
sL⎡ ⎤⎣ ⎦ , the 

characteristic matrix of morphism λ  between the stator flux and stator current 
vectors in the natural basis. In this basis, eigenvectors are associated with the 
eigenvalues kΛ of morphism λ . We recall that eigenvalues kΛ  are the solutions to 
characteristic equation [5.10], in which [In] is the identity matrix of dimension n: 

[ ] [ ]( ) 0det =−Λ n
sn LI  [5.10] 

The detailed calculation of these eigenvalues and the associated eigenvectors can 
be found in [SEM 00], and in an analoguous form in [WHI 59].  
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In the new decoupling basis { }d
n

ddd xxxB
GGG

,...,, 21= , characteristic matrix [ ]d
sL  of 

morphism λ  is expressed: 

[ ] ( )
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Matrix [ ]d
sL  is obtained by classic basis change, as described by [5.12] with 

[ ]nnT  the matrix of basis change. We are reminded that obtaining the coefficients of 
matrix [ ]nnT  is easy since, by definition, each column of [ ]nnT consists of 
coordinates, in the natural basis, of one of the new eigenvectors that constitute the 
orthonormal decoupling basis. 

Things being as they are, in practice matrix [ ]nnT  is less useful than its inverse, 

[ ] 1−
nnT . In fact, it is relationship [5.13] that allows us to obtain the coordinates of a 

vector in the new decoupled basis as a function of coordinates in the natural basis. 

Although obtaining [ ] 1−
nnT from [ ]nnT  is rarely, it is in our case, since the inverse 

matrix is identical to the transposed matrix: [ ] [ ]1 t
nn nnT T− = . This property comes 

from the fact that matrix n
sL⎡ ⎤⎣ ⎦  is symmetrical, which implies the orthogonality 

property of matrix [ ]nnT .  

Therefore each line of [ ] 1−
nnT , presented in [5.14], is also defined by coordinates 

in the natural basis and the eigenvectors that make up the new decoupling basis. We 
clarify that in equation [5.14]: 2 nα π= ; ck = cos (kα); sk = sin (kα); if n is even, K 
= (n − 2) α/2; if n is odd, K = (n − 1) α/2 and we will omit the last line of the 
transformation matrix. 

The analysis that has just been carried out aims to emphasize the specificity of 
[ ]nnT  or [ ] 1−

nnT , whose synthesis does not come from the aim to simplify 
calculation but directly from the analysis of the inductance matrix.  

[ ] [ ] ][][ 1
nn

n
snn

d
s TLTL −=  [5.12] 
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Besides relationships [5.11] to [5.14], some properties of morphism λ  are very 
useful. Given the circularity of inductance matrix [ ]n

sL , the eigenvalues kΛ of λ  are 
generally “double”, i.e. we can associate two independent eigenvectors with them. 
Only one of the eigenvalues is “single” (i.e. associated with a single eigenvector) in 
the case of an odd number of phases n; two are “single” in the case of an even 
number of phases n. 

Thus, the latter properties allow us to justify the use of star couplings for 
machines with an odd number of phases and multi-star couplings for machines with 
an even number of phases when considering control. In fact, these couplings allow 
us to ensure that the currents associated with the single eigenvalues (also called 
homopolar currents) are rigorously kept at 0. 

Finally, it is the presence of a double eigenvalue, better known as cyclical 
inductance, that has allowed us to introduce the notion of the equivalent two-phase 
machine, which well accepted in the three-phase case. 
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5.2.1.3. Equations in the decoupling basis and independent energy fluxes 

In section 5.2.1.2 we have shown that it is possible to determine an orthonormal 
decoupling basis in which inductance matrix [ ]d

sL  is diagonal. Furthermore, we have 
assumed that the eigenvalues of this matrix were double, except for one single in the 
case odd n and two singles in the case even n. 

The initial vectorial space can therefore be broken down into a sum of vectorial 
subspaces of one or two dimensions, each combined with an eigenvalue kΛ of [ ]d

sL , 
double or single. These subspaces, also referred to as eigenspaces of morphism λ  
are orthogonal because all the eigenvectors of morphism λ  are orthogonal. A vector 
gG  belonging to vectorial space En can then be broken down into a unique sum of 
vectors of one or two dimensions, each belonging to a vectorial Eigen subspace Ese 
of one or two dimensions. The Ese vectors are obtained by orthogonal projection of 
vector gG  on each of subspaces Ese. 

Applied to the voltage equation [5.4], this break down leads to the following 
equation, in which N is the number of subspaces, Ese: 

1 1
/

. .
d

dN Nd d dm
k s m m m

m m
B

di
v v R i e

dt= =

⎛ ⎞⎛ ⎞
⎜ ⎟= = + Λ +∑ ∑ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

G
GG G G  [5.15] 

If we now look for the electromagnetic torque using a power assessment, by 
recalling that Eigen subspaces Ese are orthogonal, we can find: 

( )

( )
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1
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. . .

. . .
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= = =

=

⎛ ⎞ ⎛ ⎞= = =∑ ∑ ∑⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
⎜ ⎟= + Λ +∑ ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

G G GG G G

G
G G GG

 [5.16] 

In [5.16] a term that associates with Joule losses appears, then another term with 
the storage of magnetic energy and finally a term with the electromechanical 
conversion. By expanding this last term according to equation [5.17], it appears that 
the total mechanical energy of the machine is the sum of N mechanical energies, 
each associated with a subspace, Ese. It is therefore possible to consider that the 
torque supplied by the real machine is the sum of torques supplied by N fictitious 
machines. Each of these machines is characterized by its resistance, Rs, its 
inductance, kΛ , and its emf vector, d

me
G . According to the dimension of the 

eigenspace with which it is associated, the fictitious machine will be monophase or 
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two-phase.These machines all run at the same speed. They can therefore be 
considered mechanically coupled. 

1 1 1

.
.

d dN N Nd d dm m
m m m

m m m

e i
c c iε

= = =
= = =∑ ∑ ∑

Ω

GG GK  [5.17] 

Figure 5.2 illustrates the equivalence between an n-phase machine and a set of 
fictitious monophase and rtwo-phase machines. 

It has to be noted that if we can find an infinity of nnT  type transformations, 
there one and only one break down into fictitious machines (mathematically, 
breaking down a vector on the eigenspaces of morphism λ ). This uniqueness is a 
key point of the vectorial approach with respect to matricial approaches using 
transformations of infinite number. Naturally this break down can also be applied to 
the three-phase case: the three-phase machine is a priori equivalent to two machines 
− one monophase and the other two-phase. We will see why only the two-phase 
machine is kept when the machine is star-coupled. 

 

Figure 5.2. Equivalence between an n-phase machine and a set of fictitious one- 
and two-phase mechanically coupled machines 

5.2.1.4. Fundamental harmonic properties of fictitious machines 

The concept of fictitious machines allows us to transform the real machine, 
whose phases are magnetically coupled, into a sum of magnetically decoupled one- 
and two-phase fictitious machines. In this section, we show that the variables 

Real n-phase
machine

( )nvv …,1

Ω,c

Decoupling transformation of
dimension n

( )dd vv 21 ,

( )nvv …,1

Ω,1
dc Ω,2

dc Ω,d
Nc

( )dd vv 43 ,
d
nv

Fictitious 1- and 2-phase 
machines
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associated with a fictitious machine consist of a harmonic group of the real 
machine’s variables. This aspect is fundamental when working out the control of a 
machine or during its design phase, particularly in the case of fault-tolerant 
machines. Each fictitious machine possesses its own features that need to be known 
for proper design and control. 

5.2.1.4.1. Characteristic harmonics groups 

Let g
G

 be a vector variable associated with the real machine. We assume that 
each of the vector variable coordinates has a period p/2π , i.e. it can be broken 
down into a Fourier series. We define θ  as the mechanical angle between the rotor 
and the stator. 

∑=
=

n

k

n
kk xgg

1

GG
 [5.18] 

with: 

( )max

1

2
sin 1k h

h
g g h p k

n
πθ

∞

=

⎛ ⎞⎛ ⎞= − −∑ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 [5.19] 

We calculate the coordinates of the vector variables associated with fictitious 
machines by projecting the vector variable on the different subspaces Ese associated 
with fictitious machines. We will find the details of the calculations in [KES 03]. 
We only discuss the basic idea here. 

Assuming that a subspace associated with fictitious machine number m 
( { }1,m N∈ ) is generated by vectors { }2 1 2,d d

m mx x−
G G

 of decoupling basis Bd, defined by 

equation [5.13] and corresponding to the lines of matrix [ ] 1−
nnT given by [5.14]. 

Equation [5.20] reminds s that projection 2 1
d
mg −

G  of vector variable g
G

 is obtained by 
simple scalar products.

 
( ) ( )2 1 2 1 2 1 2 2 2 1 2 1 2 2. .d d d d d d d d d

m m m m m m m m mg g x x g x x g x g x− − − − −= + = +
G G GK K K K K K

 [5.20] 

In [KES 03] and [SEM 04a] it is shown that the coordinates of the vector 
variable written in the basis generating a subspace (or fictitious machine) consist of 
a harmonics group of the variables of the real machine. With the presence of 
harmonics families, we find a result expressed by Klingshirn [KLI 83] within the 
framework of the supply of a multiphase asynchronous machine with inverter in full 
square wave mode in steady state.  
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Equations [5.21] and [5.22] give the expression of the coordinates of 2 1
d
mg −

G  in an 
Eigen subspace. In these equations, the harmonic ranks (assumed to be positive) that 
appear for m fictitious machines are h nl mσ= + , with { }1,0, 1σ = − + and l ∈` . 

σ  allows us to take into account whether a vector is homopolar ( )0σ = , rotating in 

clockwise (direct) direction ( )1σ = +  or anticlockwise (retrograde) direction 

( )1σ = − . 

( ) mnlhwithhpgng
l

h
d
m σθ +=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑

∞

=
−

0

max
12 sin

2  [5.21]
 

( ) mnlhwithhpgng
l

h
d
m σθσ +=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= ∑

∞

=0

max
2 cos

2  [5.22] 

Table 5.1 summarizes the harmonics groups associated with three-phase, five-
phase and seven-phase machines. [SEM 03a] contains the case of the six-phase 
double-star machine, referred to as a double-star three-phase machine. The fictitious 
machine is the principal machine associated with the first harmonic. That machine 
associated with the second harmonic is secondary. The machine associated with the 
third harmonic, is the tertiary machine and that associated with harmonic n is 
homopolar. In the case of a monophase fictitious machine ( )0σ = , we will replace 

coefficient 
2
n

with n . 

 Three-phase machine Five-phase machine Seven-phase machine 

Principal 
machine 

m=1, 1σ = ±  
h=1, 2, 4, 5, 7, … 

m=1, 1σ = ±  
h=1, 4, 6, 9, 11,… 

m=1, 1σ = ±  
h=1, 6, 8, 13, 15, … 

Secondary 
machine 

Nonexistent 
m=2, 1σ = ±  
h=2, 3, 7, 8, 12, … 

m=2, 1σ = ±
 h=2, 5, 9, 12, 16, … 

Tertiary 
machine Nonexistent Nonexistent 

m=3, 1σ = ±
 h=3, 4, 10, 11, 17, … 

Homopolar 
machine 

m=2, 0σ =  
h=0, 3, 6, 9, … 

m=3, 0σ =
 h=0, 5, 10, 15, … 

m=4, 0σ =
 h=0, 7, 14, 21, … 

Table 5.1. Summary table of harmonic groups associated with three-phase, 
five-phase and seven-phase machines 
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For instance, harmonics 1 and 2 associated with a five-phase machine generate 
rotating vectors in the direct direction, 3 and 4 in the retrograde direction, 6 and 7 in 
the direct direction, etc. 

We again find the well-known results for the three-phase machine. The odd 
harmonics of electromotive force of rank 5 (retrograde) and rank 7 (direct), by 
interaction with the first current harmonic, induce (direct) torque pulsations of rank 
6. Similarly, the harmonics of rank 11 (retrograde) and 13 (direct) induce torque 
pulsations of rank 12. 

For a five-phase machine, the harmonics of rank 9 (retrograde) and 11 (direct), 
by interaction with the first current harmonics, induce torque pulsations of rank 10. 
The harmonics of rank 7 (direct) and 13 (retrograde) interact with the harmonics of 
rank 3 (retrograde) to generate torque pulsations of rank 10. 

It must be noticed that in general the harmonics of even ranks have a value of 0 
except in the case of pole asymmetry. Therefore their case has not been developed. 

5.2.1.4.2. Relationship between emf harmonics and torque generated by a fictitious 
machine 

If we apply the “real variables to decoupled variables” transformation to the 
emfs of a machine possessing n phases, we can formulate different remarks: 

– If the emfs of the real machine are sinusoidal; only the principal fictitious 
machine has an emf. In this case, according to equation [5.17], only the fictitious 
machine can generate a torque. 

– If the number of phases of the machine is odd, the emf harmonics of the real 
machine that has a rank multiple of the number of phases (h=an, a integer) cannot 
generate a constant torque. In fact, these harmonics are assigned to the monophase 
fictitious machine referred to as being homopolar. This remark partially justifies the 
quasi-systematic use of star coupling between the phases, which ensures 0 current in 
the homopolar machine. 

– If the emfs of the real machine have odd harmonics whose rank h is less than 
or equal to the number of phases n, the fictitious machines have a sinusoidal emf (or 
some are 0 if h<n). 

– If the emfs of the real machine have more harmonics than the number of 
phases, there is at least one fictitious machine possessing non-sinusoidal emf. 

We will notice that these remarks increase in importance when designing the 
control of the machine. 
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5.2.1.4.3. Inductances and electrical time constants of fictitious machines: the 
impact of harmonics 

If we can restrict ourselves to estimating (with suitable precision) the value of 
inductances of a three-phase machine with smooth poles, that is not saturated and is 
star coupled by considering that the magnetomotive forces are sinusoidal, it is 
imperative to take account  of the magnetomotive force harmonics when estimating 
the inductances of a multiphase machine. In the opposite case, there will be 
considerable error in the estimation of electrical time constants associated with 
fictitious machines, the parameters necessary for proper design of the machine’s 
supply system and in tuning the associated servo-systems. 

Equation [5.23] reminds us of the analytical expression of the inductance 
between phases j and k by considering sinusoidal magnetomotive forces [LOU 04d, 
WHI 59]: 

( ) ( )
2

02
coss s

jk jk leaks
k N DL

L l
e

μ
δ

π
= +  [5.23] 

with: 

– µ0: permeability of air; 

– ks: coil coefficient; 

– Ns: the number of turns of a coil (with p coils per phase); 

– D: the inner diameter of the stator; 

– L: the effective length of the stator; 

– e: the thickness of the magnetic air-gap (air + magnets); 

– 
( )
n

kj
jk

−
=

π
δ

2
: the angle separating phases j and k; and 

– lleaks: leakage inductances (generally considered zero-valued if kj ≠ ). 

In this case, the calculation of inductances associated with fictitious machines 
leads to the following conclusions: 

– the inductance associated with the principal fictitious machine (or cyclical 

inductance) is 1 2 leaks
n L lΛ = + , with L being the self-inductance of a phase (j=k in 

equation [5.23]); 



Vectorial Modeling and Control of Multiphase Machines     177 
 

– the inductances associated with the other fictitious machines are
, 2m leaksl mΛ = ≥ . 

Thus, we can conclude that a multiphase machine with sinusoidal 
magnetomotive forces possessing few leaks is not a “good” machine in the way we 
mean when discussing a three-phase star-coupled machine. In fact, some fictitious 
machines have very weak inductances (because they are only equal to the leakages 
inductances) and will require the machine to be supplied with inverters with a very 
high chopping frequency. If this condition is not fulfilled, we observe large 
amplitude interference currents induced by the pulse width modulation (PWM). 

Similarly, modeling a multiphase machine by assuming the systematic 
hypothesis that magnetomotive forces are sinusoidal can lead us to make quite 
significant errors in the evaluation of the inductances associated with fictitious 
machines [LOC 06, SEM 03b]. This error leads us to considerably overdimension 
the supply system and to mistune the correctors of associated currents. 

If we take the magnetomotive force harmonics into account, we need to add the 
contribution due to the harmonics to the fundamental inductance expressed by 
equation [5.23]. The magnetic system being considered linear, we can apply a 
superposition theorem. The inductances associated with the real machine are then 
expressed by the following equation in which q are the magnetomotive force 
harmonic ranks that are kept: 

( )cosq
jk jk leaks

q
L L q lδ= +∑  [5.24] 

In the particular case of concentrated coils with diametral pitch (located in only 
two notches and separated by a pole pitch), the harmonic inductance qL  is 
expressed by: 

oddq
e

DLN
q

L sq ,
21 2

0
2 π

μ
=  [5.25] 

If we consider the magnetomotive force harmonics, the expression of inductance 
associated with m fictitious machines is given by: 

∑ +=Λ
h

leakage
h

m lLn
2  

[5.26] 

According to the fictitious machine, the harmonic ranks h to consider keeping 
are recorded in Table 5.1. In equation [5.26], we are reminded that that h nl mσ= +
 with l being the integer and m the number of fictitious machines related. 
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According to equation [5.26], we conclude that the inductances associated with 
fictitious machines other than the principal fictitious machine, are not only equal to 
the leakage inductance but also to a particular group of harmonic inductances. Thus, 
the existence of magnetomotive force harmonics allows us to increase the electrical 
time constant of a fictitious machine and allows the use of a smaller chopping 
frequency when the machine is supplied by an inverter. 

It is this multiharmonics approach that fundamentally distinguishes the results 
presented in this chapter from those presented in Chapter IX of [WHI 59], for which 
only a first harmonic approach was used to model multiphase machines. This first 
harmonic approach had as a corollary in that only the two-phase machine associated 
with the first harmonic was susceptible to torque generation and that the other two-
phase and monophase machines were reduced to circuits characterized by the 
leakage inductance of the machine and the stator resistance. 

We remember with the proposed approach several fictitious machines can 
contribute to the generation of torque (average but also pulsating), but there are 
design constraints so that a multiphase machine can be supplied with inverters 
whose PWM frequency is not too high. Here, we must take into account the 
harmonics whose impact is no longer a second-order phenomenon with respect to 
supply by an inverter [SCU 09]. 

5.2.1.4. Examples 

5.2.1.4.1. Three-phase machine 

In this section, we consider a classic example of a three-phase synchronous 
machine with sinusoidal emf. It is equipped with distributed stator coils that 
generate a magnetomotive force with sinusoidal spatial distribution. 

We associate a vectorial three-dimensional space with the machine that is 
equipped with an orthonormal natural basis { }nnnn xxxB 321 ,,

GGG
= . The vectorial voltage 

equation of this machine is given by equation [5.4], where the inductance matrix, 
characteristic of linear application λ , and the emf vectors are detailed by: 

2 2
1 cos cos

3 3
2 2

cos 1 cos
3 3

2 2
cos cos 1

3 3

leaks

n leaks
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l
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l
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L
l

L

π π

π π

π π

⎛ ⎞+⎜ ⎟
⎜ ⎟
⎜ ⎟⎡ ⎤ = +⎜ ⎟⎣ ⎦
⎜ ⎟
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+⎜ ⎟
⎝ ⎠

 [5.27] 
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and: 

( )max 1 2 3
2 4

sin sin sin
3 3

n n ne p x p x p x
π πε θ θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞= Ω + − + −⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

G K K K  [5.28] 

If we apply the Concordia transformation expressed by [5.29], which is 
determined by equation [5.14] in the case where n = 3, the real machine of 
referenced variables (1,2,3) is broken down into two fictitious machines: a two-
phase machine, referred to as the principal machine, referenced (α,β); and a 
homopolar monophase machine, referenced z.  
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 [5.29] 

The expression of the vectors of the new basis is given as a function of the 
vectors of the natural basis by: 
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 [5.30] 

The vectorial voltage equations associated with the fictitious machines are given 
by:  
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Finally, their characteristic variables are given by: 

3 0 0
2
0 0

0 0
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d
s

z leaks

L l

L

l
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αβ

Λ

Λ
Λ

⎡ ⎤= +⎢ ⎥
⎢ ⎥⎡ ⎤ = ⎢ ⎥⎣ ⎦
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 [5.32] 

and: 

( ) ( )( )max
3

sin cos
2

0z z

e p x p x

e x

αβ α βε θ θ
⎧

= Ω −⎪
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⎪ =⎩
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Analysis of the characteristic variables of fictitious machines gives us 
information about their specificities. Only the principal fictitious machine can 
generate a torque, its emf being sinusoidal and non-zero. Its electrical time constant,

sleakage RlL /
2
3

⎟
⎠
⎞

⎜
⎝
⎛ + , allows us to determine the chopping frequency of the 

associated inverter. The homopolar fictitious machine does not possess an emf and 
thus cannot generate a torque. Its supply can only generate losses. If it possessed a 
non-zero emf linked to the presence of harmonics of rank 3, it could admittedly 
generate a torque of non-zero mean value [GRE 94], but due to its monophase 
feature it would have a significant pulsating component that would have to be 
compensated for by the two-phase machine. Finally, its electrical time constant, 
which would have a small value, /leaks sl R , that would demand supply from an 
inverter with a very high chopping frequency. 

These conclusions bring an additional argument for a quasi-systematic coupling 
of three-phase machines. Such coupling will ensure the non-supply of the homopolar 
machine. The main economical argument is that we use three legs instead of six. 

5.2.1.4.1. Five-phase machine 

In this section, we illustrate the notions previously introduced, by means of a 
five-phase synchronous machine with surface-mounted permanent magnets at the 
surface and concentrated coils with a diametral pitch. Figure 5.3 shows the machine 
before assembly and a diagram of a cut. 

We associate a five-dimensional vectorial space equipped with a natural 
orthonormal basis { }1 2 3 4 5, , , ,n n n n n nB x x x x x= G G G G G

 with the machine. The vectorial voltage 
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equation of this machine is given by [5.4], where the inductance matrix, 
characteristic of linear application λ , and the emf vectors are detailed by equations 
[5.34] and [5.35]. We will note that L corresponds to the self-inductance of a phase, 
M1 to the mutual inductance between two phases dephased by 2

5
π , and M2 to the 

mutual inductance between two phases dephased by 4
5

π . 
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Figure 5.3. Views of the disassembled machine and of a cut 

Finally, Table 5.2 gives the relative harmonic content of the emf of the five-
phase machine considered. 

1 2 2 1

1 1 2 2
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G K  [5.35] 

Harmonics h = 1 h = 3 h = 5 h = 7 h = 9 

Relative rate 100% 28.5% 12.4% 5.1% 1.7% 

Table 5.2. Relative harmonics content of the emf  
of the five-phase machine considered 
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By applying the Concordia transformation of the fifth dimension to the five-
phase machine, we show that the real machine is equivalent to the association of 
three fictitious machines: a two-phase fictitious machine referred to as the 
“principal”, a two-phase fictitious machine referred to as “secondary” and a 
monophase fictitious machine referred to as “homopolar”. Each of these fictitious 
machines is characterized by a harmonic group of variables associated with the real 
machine. We will find these groups with the help of Table 5.1. 

 

Figure 5.4. The emf of the real machine (top) and  
of fictitious machines (bottom) at 1,500 rpm 

We are initially interested in the partition property of emf harmonics among 
fictitious machines. Figure 5.4 shows a recording of one of the emfs of the real 
machine and emfs of the associated fictitious machines at 1,500 rpm. We check that 
the emf of fictitious machines are mainly composed of:   
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− fundamental and harmonic of rank 9 for the principal machine,  

− harmonics of ranks 3 and 7 for the secondary machine; and  

− harmonic of rank 5 for the homopolar machine.  

We then conclude that each of these machines can supply a torque. Obviously, 
for a given amplitude of current in the fictitious machines, the torque generated is 
greater for the principal machine than for the secondary and homopolar machine. 

We are now interested in the inductances associated with the fictitious machines. 
Equation [5.36] gives the inductance matrix d

sL⎡ ⎤⎣ ⎦  
of the machine in the decoupling 

basis. pΛ , sΛ and zΛ  represent the inductances associated with the principal, 
secondary and homopolar machines, respectively. 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

p

p
d
s s

s

z

L

Λ⎛ ⎞
⎜ ⎟Λ⎜ ⎟
⎜ ⎟⎡ ⎤ = Λ⎣ ⎦ ⎜ ⎟

Λ⎜ ⎟
⎜ ⎟Λ⎝ ⎠

 [5.36] 

If we only consider the fundamental component of the magnetomotive force, the 
inductances associated with the fictitious machines, whose calculations come from 
equation [5.23], are: 

2.59

0.348
0.348

p

s

z

mH

mH
mH

Λ =⎧
⎪Λ =⎨
⎪Λ =⎩

 [5.37] 

If we now take into account harmonics 1, 3 and 5 of the stator magnetomotive 
force, the inductances, stemming from the calculations from equations [5.24] and 
[5.25] become: 

2.59
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0.438

p

s

z

mH

mH
mH

Λ =⎧
⎪Λ =⎨
⎪Λ =⎩

 [5.38] 

As shown in section 5.1.4.3, the hypothesis that of only considers the 
fundamental component of the magnetomotive force leads to large errors in the 
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evaluation of inductances associated with the secondary and homopolar fictitious 
machines. When  dimensioning the chopping frequency of the inverter, these errors 
lead to unnecessary oversizing of the machine’s supply system, in particular the 
apparent power of the inverter. We will, however, notice that even by considering 
the harmonics, the ratio between the inductance of the principal machine and that of 
the secondary machine, / 4.3p sΛ Λ = , is still high in the case of this five-phase 
machine. 

From another point of view, if we imagine that the machine had been designed to 
have low magnetic leakages and a single harmonic of magnetomotive force (and 
thus emf), the determination of the frequency of the PWM from the single time 
constant of the principal machine would lead to the observation of parasitic currents 
of very high amplitude in practice. 

Finally, as long as the inductance linked to the homopolar machine is the 
smallest, the star coupling will ensure that there is no current, at least in the 
homopolar machine. It only remains to control the currents in the secondary 
machine. 

5.2.2. The inverter seen from the machine 

For the model of an n-leg inverter, this section will take up, the main results of 
Chapter 8 [KES 09a]. 

Let us remind ourselves that the function of the inverter is to apply the voltages 
calculated by the control to the electrical machine. More precisely, knowing that we 
are positioned within the framework of a PWM control, we will try to apply voltages 
whose mean values correspond to those calculated by the control. The real voltages 
will in fact consist of a “rolling mean” component and a “noise” component that will 
be filtered by the inductive circuit of the machine. We will then obtain the mean 
currents desired, which cause the mean electromagnetic torque developed by the 
machine.  

According to the control strategies close to the inverter, noise voltages can be 
significantly different, even if the mean value of the voltage is the same. These noise 
voltages will induce parasitic currents whose amplitudes will be added to the 
“effective” mean current. When the amplitude of these noise currents becomes 
important, these currents become dimensioning for the choice of inverter transistor 
rating. For machines with more than three phases, it has been seen in section 5.2.1.4 
that, contrary to the star-coupled three-phase machine without a neutral point, there 
are several inductive circuits (one per fictitious machine). The analysis of fictitious 
voltages imposed by the inverter in each fictitious machine, both for its mean 

Comment [IRL1]: Ok ? 
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component and its “noise” component, is therefore fundamental in controlling the 
mean currents and the parasitic currents of the real machine. 

At this level, two cases have to be distinguished, which have already been seen 
for the three-phase machine. In other words, depending on the way the phases of the 
machine are coupled, a fictitious machine can be dependent or not dependent on the 
inverter. For this reason we will show the case of the three-leg inverter using an 
approach that is easy to generalize to the case of a n-leg inverter supplying a n-phase 
machine.  

5.2.2.1. Three-leg inverter seen from the star-coupled three-phase machine 

Here we consider a three-phase machine assumed to be star-coupled and to fulfill 
the general hypotheses expressed at the beginning of this chapter, and particularly 
the hypothesis in section 2.1.4.1 (magnetomotive and sinusoidal emfs).  

In order to emphasize the problem of parasitic currents, we will assume that the 
neutral N' of the machine is physically linked to neutral point N of the inverter by an 
impedance of capacitor type. If we consider the capacitance to be 0, we will again 
find the ideal case and point N will not exist in reality. The capacitance will allow us 
to roughly model the impedance of the machine’s earthing circuits and the inverter. 
We use this type of modeling when we are interested, for instance, in parasitic 
currents going through the bearings of a machine [DAH 08] where one of the  
origins is linked to the homopolar components of voltages imposed by the inverter 
[LEE 01]. 

Figure 5.5 shows the classical supply topology of the three-phase machine: star-
coupled phases and supplied with a three-leg inverter. 

 

Figure 5.5. Star-coupled three-phase machine supplied with a three-leg inverter 
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The eight possible combinations of switches kij allow us to generate the eight 
inverter voltage vectors, 1 2 3k

ond n n n
AN BN CNv v x v x v x= + +
G G GK : 

0 1 2 3 1 1 2 3

2 1 2 3 3 1 2 3

4 1 2 3 5 1 2 3
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n n n n n n
N N

n n n n n n
N N

n n n n n n
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N N

E E E E E E
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G G G G G GK K
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32

n nE
x+ G

 [5.39] 

Any one of these eight vectors can be broken down by applying the Concordia 
transformation in a unique sum of a voltage vector belonging to a principal vectorial 
subspace and another homopolar vectorial subspace:  

( ) ( )z
Nk Nk Nk N N Nz zv v v v x v x v xαβ

α α β β= + = + +G G G G G G  [5.40] 

The detail of these vectors is given by: 
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and: 
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Voltages vαβ
G

 and zv applied to the principal and secondary fictitious machines 
are respectively expressed by: 

s N

di
v R i v

dt
αβ

αβ αβ αβ αβ= + Λ =
G

GG G  [5.43] 

'

3
z N N

z s z z Nz
di V

v R i v
dt

= + Λ = −  [5.44] 

The capacitor being run through by a current equal to the sum of currents in the 
phases of the machine, we have: 

'
3 z

N N
i

V dt
C

= ∫  [5.45] 

An ideal star coupling (zero capacitance, C) implies a current 1 2 3 0
3z

i i i
i

+ +
= =

 
and hence a voltage applied to the homopolar machine of 0zv = , whichever voltage 

Nzv  is imposed by the inverter. The homopolar machine is therefore never supplied 
when the real machine is star coupled and supplied by a three-leg inverter without a 
neutral point.  

When capacitance C is not null, a non-zero current zi  circulates if voltage Nzv  is 

not zero. This is always the case when we consider the eight vectors z
NkvG  that can be 

imposed by the three-leg inverter. We will understand why some inverter control 
strategies aim to choose those voltage vectors presenting the weakest homopolar 
components (excluding inverter voltage vectors 0NvG  and 7NvG ) from among the eight 
voltage vectors [LEE 01]. 

REMARK 5.1.- these results still remain true if the emfs and magnetomotive 
forces have harmonics of rank 3 because this modifies the homopolar components of 
emf as well as the homopolar inductance. Only the homopolar current will be 
modified if the capacitance is non-zero. 

REMARK 5.2.- if we consider a triangle coupling, the impact of an emf harmonic 
of rank 3 is fundamental. In fact, in the case of triangle coupling it is the homopolar 
voltage zv  of the machine that we make 0. Current zi is only 0 when the emf ze  is 
also 0. 
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By considering the ideal case of the star-coupling with no capacitance and the 
homopolar machine not being supplied, the real machine supplied by a real inverter 
is strictly equivalent to the principal fictitious machine supplied by a fictitious 
inverter. Instead of studying the supply of the real machine using one of the eight 
real vectors NkvG  given by [5.39], we prefer to study the supply of the fictitious 

machine by one of the eight principal vectors, k Nkv vαβ αβ=
G G

 , obtained by projection of 
the real vectors into the subspace associated with the principal machine (see 
equation [5.41]). These two-dimensional vectors are classically represented in a 
plane and form the centered hexagon given in Figure 5.6. Vectors 0vαβG

 and 7vαβG  
appear in this figure only via the central point of the hexagon because they possess 
no projection in the principal plane. 

 

Figure 5.6. The two-dimensional representation of voltage vectors  
supplying the principal machine 

In Figure 5.6 the grey circle of radius R1 gives the limit of mean voltage vector 
( )tvαβ

K
 

that can be imposed if we generate three mean sinusoidal voltages of 
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case, by control we ensure that the mean value on a PWM period of the homopolar 
voltage of the inverter is 0: 

( ) 1
0

MLI
Nz Nz

TMLI

v t v dt
T

= =∫  [5.46] 

We then have a mean value of: ( )' 0N Nv t = . 

The black concentric circle, of radius R2 > R1, indicates the limit of the mean 
voltage vector if we inject a homopolar component (often a harmonic of rank 3) in 
the reference voltages of the inverter. We are thus reminded that this 
overmodulation allows us to use at best, from the point of view of the DC voltage of 
the bus, the degree of freedom left by the star coupling (unsupplied homopolar with 
a harmonic multiple of 3 present in the inverter voltages). 

In summary, the star coupling without a neutral point allows us to ensure that a 
fictitious machine will have 0 current and frees a degree of freedom for control, 
allowing us to better use the DC voltage of the bus (+15.5% of excursion). 

W The reader who would like to deepen his of her knowledge of the elements 
relative to the vectorial modeling of inverters is invited to read Chapter 8 
“Multiphase voltage source inverters” of [MON 11].  

5.2.2.2. Generalization to n-leg inverters: fictitious two-phase inverters. Example of 
machine-five-leg inverter association 

The study of machines with more than three phases, supplied with inverters with 
a number of legs equal to the number of phases follows the same approach as that 
used in section 5.2.2.1.  

The star coupling without a neutral point always allows the the current in the 
homopolar fictitious machine to be 0 and frees a degree of freedom for control. In 
Table 5.3 [LEV 08], we will find that the benefit introduced by the homopolar 
weakens as the number of phases increases. We could conclude that an increase in 
the number of phases is unfavorable for good use of the DC bus. We do, however, 
need to note that the calculations leading to Table 5.3 assume the machine is 
supplied in sinusoidal regime with an injection of homopolar voltage. In the 
“fictitious machine” approach, this means that we assume that we are only supplying 
a single fictitious machine. If this approach is enough in three-phase it is no longer 
the case if the number of phases n is greater than three because the optimal use of 
the DC bus depends on all the fictitious machines being supplied. This in [RYU 05], 
we find a modulation rate of 1.23 in the case of a five-phase machine that has been 
properly designed and whose two fictitious machines are supplied. 
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Numberof 
phases n 

Level of harmonics 
injection n 

Index of 
maximum 

modulation Mi 

Percentage of 
increase in the 
fundamental 
component 

3 -1/6 of the fundamental 1.155 15.5 

5 -0.062 of the fundamental 1.052 5.2 

7 -0.032 of the fundamental 1.026 2.6 

9 -0.02 of the fundamental 1.015 1.5 

Table 5.3. Benefit introduced in the modulation index  
in the case of homopolar injection 

If we omit this aspect of homopolar injection, which only intervenes in the cases 
where we work at the limits of the voltage possibilities of the inverter, supplying a 
multiphase machine has as a sole difference with respect to the three-phase case. It 
has to consider several projections of the 2n characteristic vectors of the inverter 
(instead of 32 ) in several planes instead of a single plane. Thus, for a five-leg 
inverter we will find two planes with 30 non-zero vectors (25-2), see Figure 5.7. 
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Figure 5.7. Graphical representation of a five-phase inverter in the principal (left) 
and secondary (right) subspaces 
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At the level of the inverter control, the different steps for the determination of 
duty cycles will be the following: 

a) obtaining the voltage vectors for each fictitious machine (in three-phase we 
has only a single vector) as a function of torques required for each fictitious 
machine; 

b) vectorial summation of the different voltage vectors of these machines; 

c) possible addition of a homopolar voltage vector in order to optimize the use of 
the bus voltage; 

d) calculation of the conduction durations by assuming we are in linear regime 
(non-saturation of the inverter) according to the expressions given in [KES 09a]; 

e)  taking into account, if necessary, the saturation of the inverter by generating 
adapted references.  

The analysis of the different steps emphasizes the fact that we apply a 
superposition theorem as long as there is no saturation of the inverter. This means 
that everything is as if each fictitious machine was supplied with a fictitious inverter. 
Thus, as long as we are not interested in the nonlinear aspects of the inverter control, 
we can use very classic intersective control techniques that implicitly fulfill step d, 
knowing that step c is less important as the number of phases increases.  

5.3. Torque control of multiphase machines 

Efficient position and speed servo-controls require a torque servo-control, i.e. 
stator currents. If several sets of n stator currents can generate the same torque, we 
will try and use the degrees of freedom given by the redundancy of phases to fulfill 
some criteria. Among the most frequently used is the criterion that minimizes Joule 
losses for a given torque. This will be used in the following sections.  

5.3.1. Servo-control of currents in the natural basis 

5.3.1.1. Statement of the method 

We speak of servo-control of currents in the natural basis when the servo-
controlled currents are the real currents measured in the machine. Figure 5.8 gives 
the synoptic diagram of the torque control of a multiphase machine in natural basis. 
We will recognize :  

− c*:  the reference torque; 

− k
G

: the criterion used to elaborate the reference currents; 
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− *i
G

 and i
G

: the current references and the measured currents; 

− *vG and vG : the voltage references and the voltages applied to the machine; and 
finally  

− Vbus: the voltage of the DC bus supplying the inverter. 

 

Figure 5.8. Synoptic diagram of the torque control 
of a multiphase machine in the natural basis 

The first operation consists of elaborating the current references. Since we need 
to elaborate a vector (reference current vector) from a scalar (reference torque), it is 
necessary to introduce a criterion, and therefore a vectorial. Equation [5.47] clarifies 
the generation of current references from a reference torque: 

* *i k c=
GG  [5.47] 

We can, for instance, choose to work with a maximum torque for given statoric 
Joule losses. Given that these Joule losses are proportional to the square of the 
modulus of the current vector, this criterion is easily translated from equation [5.9] 
by the fact that the current vector has to be colinear to the emf vector. For a given 
current vector modulus, we then obtain the maximum torque. It therefore becomes: 

ℜ∈= aai ,* εG
G  [5.48] 

By reinjecting [5.48] in [5.9], we get 2*c a ε=
G , from where we get: 

*
*

2 2

c
i k

ε
ε

ε ε
= ⇒ =

GGG G
G G  [5.49] 

Equation [5.49] leads to several remarks: 

– Vectors i
G

and εG  being colinear, the generated torque induces minimum global 
Joule losses. If there are effectively several strategies available, generating a given 

k
G

*i
G*C

i
G

θ

*vG vG

busV
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torque with minimum Joule losses allows optimal use (by neglecting the ion losses) 
from a thermal point of view of the machine. 

– If the emfs only have harmonics of rank that are smaller than the number of 
phases n of the machine, term 2εG  is constant and the currents possess the same 
harmonic ranks as the emfs. If we take the classic case of a machine with sinusoidal 
emf, we again find sinusoidal currents in phase with the emf. 

– If the emfs possess a number of harmonics greater than the number of phases, 
n, term 2εG  is no longer constant and the currents possess a number of harmonics 

greater than the emfs. Finally, if it’s possible that term 2εG  cancels out for a 
particular position θ  of the rotor, there is no combination of currents that allows us 
to maintain a constant torque. 

None the cases shown previously have constant curents in steady-state regime 
and their servo-control usually requires the use of correctors with large bandwidth 
(often with hysteresis). This is prohibited in the domain of high power because of 
the rich and poorly controlled spectral content. Let us note, however, that if the 
harmonic content of current is finite, the use of multifrequential resonating 
controllers can allow the perfect tracking of references in steady state [LIM 09]. 

5.3.1.2. Example: five-phase machine with trapezoidal emf 

Here we show the results of controlling currents in the natural basis of the five-
phase machine that were presented in section 5.2.1.4.1 for a machine that is star 
coupled and supplied with a five-leg inverter [KES 09b]. Figure 5.9 is a synoptic 
diagram of the experimental system put in place for these trials. 

Torque reference *c  comes from the proportional integral (PI) controller 
ensuring the servo-control of speed Ω . This speed is estimated by filtered numerical 
differentiation from the position measured by a synchro-resolver. The “optimal” 
current references are calculated from equation [5.49], the emf (i.e. vector εG ) being 
estimated in real time from mechanical angle θ . 

The set is controlled by real-time set DSpace® 1005. The mechanical load is 
generated by a powder brake. The effective torque is measured by a torquemeter 
placed between the motor and the load.  

Figure 5.10 shows the current references obtained for a control speed of 20 rad/s 
and a resistant torque of 2 N.m. 
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Figure 5.9. Synoptic diagram of the experimental system of control 
of currents in the natural basis of a five-phase machine 

 

Figure 5.10. ”Optimal” current references of a five-phase  
machine with trapezoidal emf 
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The currents, which are servo-controlled by hysteris controllers, allow us to 
obtain a constant torque with minimal Joule losses, as shown in Figure 5.11. The 
amplitude of torque oscillations results from the bandwidth of the hysteresis 
corrector, which is itself linked to the maximum authorized chopping frequency.  

 

Figure 5.11. Experimental torque of a five-phase machine obtained 
by servo-control of currents in the natural basis 

5.3.2. Servo-control of currents in a decoupling basis 

5.3.2.1. Statement of the method 

If we apply the decoupling transformation in section 5.2.1 to the characteristic 
equations of an n-phase machine, we are no longer studying the control of the real 
machine but a sum of N fictitious one- or two-phase machines. Figure 5.12 gives a 
synoptic diagram of the torque control of the machine in a decoupling basis. The 
variables carry indices d to indicate that it is about a decoupled variable and 1 to N 
to indicate the number of the fictitious machine of interest. 

The torques reference distribution can be done in several ways according to the 
field of application. Either we use the principal machine (in which the fundamental 
component of the emf is projected) in normal running and the other fictitious 
machines are only used transiently in “transient overtorque” mode; or we make 
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demands on all the fictitious machines. In this last mode, we can again take the case 
of control with minimum global Joule losses. By projecting the reference current 
vector expressed by [5.49] in each eigenspace associated with a fictitious machine, 
we obtain the reference current for each fictitious machine: 

* *
2

d
di c

ε
ε

=
GG
G  [5.50] 

2
* * *

2. d
d d dc i c

ε
ε

ε
= =

GGG
G  [5.51] 

According to the harmonic content of the real machine, the reference torque 
imposed on each of the fictitious machines can vary, although that of the real 
machine is constant. In the latter case, other strategies will be devised.  

 

Figure 5.12. Synoptic diagram of the torque control of a five-phase machine 
in a decoupling basis 

5.3.2.1. Case of machines whose fictitious machines have sinusoidal emf 

In the case where each fictitious two-phase machine possesses sinusoidal emf, 
according to equation [5.51] and the remarks expressed in section 5.3.1.1, variables

2
dεG and 2εG  are constant. The strategy that minimizes the global Joule losses for a 

given torque leads us to impose constant torque references in each fictitious machine 
if the torque reference imposed to the real machine is constant. We then end up 
controlling each two-phase fictitious machine as we would control the equivalent 
two-phase machine in the case of a star-coupled three-phase machine (where control 
is referred to as in the Park basis). 
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Each fictitious machine is assumed to possess an emf of the type: 

( ) ( )( )_ max_ _ _sin cos
2m m m m m m
n

e h p x h p xαβ α βε θ σ θ= Ω −
G G G  [5.52] 

Here, hm corresponds to the emf harmonics of the real machine, which is 
projected in fictitious machine number m. This harmonic, assumed to be unique, 
generally corresponds to the first odd harmonics of each machine (see Table 5.1). 
We are reminded that σ  allows us to take into account whether the vector rotates in 
the direct ( )1σ = +  or the retrograde direction ( )1σ = − . 

If in each fictitious machine we have a new basis change, obtained by rotation of 
the basis ( )αβ as expressed by: 

( ) ( )
( ) ( )

_ _

_ _

cos sin
sin cos

d m mm m

q m mm m

x xh p h p
x xh p h p

α

β

θ σ θ
σ θ θ

⎛ ⎞⎛ ⎞ ⎛ ⎞
= ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟−⎝ ⎠ ⎝ ⎠⎝ ⎠

G G
G G  [5.53] 

We obtain emf, referred to as axes (dq): 

( )_ max_ _ _0. .
2dq i i d i q i
n

e x xε σ= Ω −
G G G  [5.54] 

Insofar as some harmonics generate vectors rotating in the direct direction and 
others in the retrograde direction, the rotation can be in one direction or in the other. 

The emfs of axes (dq), which are constant in steady-state regime, lead to 
“optimal” current references such as *

_ 0d ii =  and * *
_ .q i di k c= . These justify the use 

of current PI-type controllers and a control strategy in PWM with constant 
frequency of the inverter. The parameters of current controllers can be determined 
using classic methods (compensation of dominant compensation pole method, 
symmetrical optimum method, etc.) insofar as the fictitious machines are modeled 
by a first-order circuit made of the resistance of the stator phase, the inductance and 
the emf of the fictitious machine considered. 

Figure 5.13 shows the synoptic diagram of current control of an n-phase machine 
in an extensive Park basis. If we wish to obtain better dynamic performances, we 
add the emf compensations (constant in a steady-state regime given the hypotheses 
taken in this section) to the PI controllers ensuring the control of currents. 
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Figure 5.13. Synoptic diagram of the current control of a multiphase machine 
in the generalized Park basis 

5.3.2.2. Case of machines whose fictitious machines are not sinusoidal emf 

In the case of non-sinusoidal fictitious machines, there are two alternatives. 

The first imposes minimum global Joule losses for a given torque. In this case, 
the torque references of fictitious machines are not constant when the real machine 
is constant, and the choice of current correctors then arises. This approach, which 
has little advantage with respect to control in the natural basis detailed in section 
5.3.1, will not be developed further. 

The second alternative uses the approach developed in section 5.3.2.1. We then 
make a basis change in each fictitious machine by rotation of the basis associated 
with the being machine considered. We chose a rotation angle mh pθ  so that the 
mean value of the emf of axis q is as high as possible. In this case, imposing 
constant currents dq in a steady-state regime does not allow us to generate a constant 
electromagnetic torque but does however possess a mean value for minimum Joule 
losses.  

Besides generating torque undulations, the emf harmonics of ranks different 
from hm generate harmonic currents that are responsible for additional losses and 
torque ripples. The solution here lies compensating for these harmonics by injecting 
them in the reference voltages. The synoptic diagram in Figure 5.13 remains valid, 
although the terms corresponding to the compensation of emf are not only necessary 
for obtaining good dynamic performance, but for cancelling out harmonics current 
that are harmful in steady state. 
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5.3.2.3. Example: five-phase machine with trapezoidal emf 

Here we give the results of current control in the extensive Park basis of the five-
phase machine, described in section 5.2.1.4.1, that is star coupled and supplied with 
a five-leg inverter. Figure 5.14 shows a synoptic diagram of the current control 
system put in place for these trials. 

We are reminded that the five-phase star-coupled machine is equivalent to the 
association of two two-phase fictitious machines: a principal machine, indexed p, in 
which we have harmonics 1 and 9 of the magnetomotive forces and emfs of the real 
machine; and a secondary machine, indexed s, in which we mainly find harmonics 3 
and 7 of the same variables. 

 

Figure 5.14. Synoptic diagram of the current control of a five-phase machine 
 in generalized Park basis 

The emf of fictitious machines indexed d or q in the new basis are obtained by 
rotation of variables of the principal machine of angle pθ  and variables of the 
secondary machine of angle 3pθ , see Figure 5.15. These emfs are not constant 
because they are not made of a single harmonic, the real machine possessing quasi-
trapezoidal emfs. In the emfs of fictitious machines we again find a constant value 
that is predominantly associated with a harmonic of rank 10, which comes from the 
rotation of harmonic 9 byθ in the principal machine and harmonic 7 by 3θ  in the 
secondary machine. 

For all the trials that have been carried out, the inverter is controlled in 
intersective PWM centered at a chopping frequency of 5 kHz. This frequency has 
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been determined from the smallest time constant of the system corresponding to the 

electrical time constant of the secondary machine, 114
2

s
s

s

R
f Hz

π
= =

Λ
.  

The current references are constant and the currents are controlled via PI-type 
controllers. Inputs, allowing the emf to be compensated, are added to the output of 
current correctors. 

 

Figure 5.15. The emfs of principal and secondary machines before (eαβ) and after rotation 
(edq) compared to the emf of phase 1 (e1) 

5.3.2.3.1. Current control without compensation of emfs 

In the trials presented in this section, we impose the following current references: 

− * 0pdi A=  and * 7pqi A= −  for the principal machine; 

− * 0sdi =  and * 0sqi A=  for the secondary machine. 
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The emfs are not compensated. 

Figure 5.16 shows the current in one phase. We observe a strong harmonic 7 due 
to the corresponding component of the emf. The PI current controller as it is set is 
not capable of rejecting this perturbation at the speed considered. This current 
harmonic is responsible for additional losses as well as torque ripples. We realize 
these harmonic currents by checking in Figure 5.17 that, although the current 
references of the secondary machine are set to 0, strong harmonic currents (of rank 
10) exist. 

 

Figure 5.16. Current in a phase and associated frequential spectrum 
when the emfs are not compensated for 

 

Figure 5.17. The dq currents in the principal and secondary machines 
when the emfs are not compensated for 
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5.3.2.3.2. Current control with compensation of emfs 

In the trials in Figures 5.18 and 5.19, the only compensation is for emf harmonic 
7. The current in a phase is quasi-sinusoidal and the currents in the fictitious 
machines being properly controlled. 

 

Figure 5.18. Current in a phase and associated frequential spectrum 
when the emf harmonic 7 is compensated 

 

Figure 5.19. The dq currents in the principal and secondary machines 
when emf harmonic 7 is compensated 

The fictitious machines now being considered properly controlled, we decide to 
generate a torque with each of the machines. 
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The secondary machine possesses a first emf harmonic (harmonic 3 of the real 
machine) equal to 30% of the first harmonic of the principal machine. The 
distribution of torque references in each of the fictitious machines, coming from 

equation [5.51], then fulfill ratio 
2

* *
2

0.3
1s pc c= . Finally, if we assume that the 

electromagnetic torque generated by the machine is proportional to current of axis q, 
the references of currents of axis q then fulfill the ratio: * *0.3sq pqi i= . 

We keep the same current references for the principal machine ( * 0pdi A=  and
* 7pqi A= − ), the references associated with the secondary machine becoming * 0sdi =  

and * 2.1sqi A= . Figures 5.20 and 5.21 show the currents in one phase of the real 
machine and in the associated fictitious machines. 

 

Figure 5.20. Current in a phase and associated frequential spectrum 
when the two fictitious machines generate a torque 

The injection of current of harmonic 3 allows an increase in electromagnetic 
torque of almost 9% (30% of current of rank 3 and 30% of emf of rank 3) which 
leads to an increase in Joule losses of 9%. An increase of 9% in torque using only 
the principal machine would require an increase in Joule losses of almost 19% (1.09 
times the current of the principal machine). 

The use of fictitious machines to generate of the total torque thus allows optimal 
use of the multiphase machine. Control in the extensive Park basis allows the use of 
PI controllers associated with an inverter controlled in PWM. 
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Figure 5.21. The dq currents in the principal and secondary machines 
when emf harmonic 7 is compensated for 

Finally, Figure 5.22 shows the results of the speed control of this machine by 
using the torque distribution * 2 *0.3s pc c= . The speed references are bursts of plus or 
minus 10 rad/s. 

 

Figure 5.22. The dq currents in the principal and secondary machines and speed response 
in the case of a servo-controlled system 
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5.4. Modeling and torque control of multiphase machines in degraded supply 
mode  

The modeling and torque control of multiphase machines in degraded supply 
mode is a broad topic that cannot be developed in detail in this chapter. However, 
the techniques shown previously are, with some modifications, applicable to torque 
control in degraded supply mode.  

5.4.1. Modeling of a machine with a supply defect 

A first method models a machine with n symmetrical phases whose m phases 
would no longer be supplied as a machine with n−m asymmetrical phases. By using 
a change of basis, such as the extensive Park transform, we control the system by 
controlling the constant current references [RYU 06]. This method has the major 
drawback of having to develop as many transforms (of models) as there are default 
cases. We can easily apply this method to machines with a small number of phases, 
but it is increasingly limited as the number of phases increase. 

Another method models degradation and adds it to the initial model of the 
machine [CRE 10]. In this case the complete model is unique and therefore 
generally applicable to any number of phases. The use of particular controllers is 
necessary, however, to obtain satisfactory performance. 

5.4.2. Torque control of a faulty machine 

As for machines in normal functioning mode, control of the machine in degraded 
supply mode can be done in the natural basis and in a decoupling basis. 

If we control the machine in the natural basis, we again have to calculate the 
current references allowing us to obtain a constant torque. Several authors propose 
calculations using optimization methods that cannot be used in real time (off-line 
method: [FU 94, PAR 07]). The method shown in section 5.3.1, however, can be 
applied in real time provided that we modify the emf vector according to the non-
supplied phases [KES 09b]. 

If we control the machine in a decoupling basis, two cases arise. The first 
consists of designing a new model of the machine for each default case. In this case, 
the current references remain constant [RYU 06]. If we keep the same model of the 
machine and add a degradation model to it, we will either have to calculate new 
current references and check that the controllers are able to track them, or keep the 
same current references as in normal mode (constant) but adapt the number of 
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degrees of freedom of control according to the number of non-supplied phases [KES 
10, LOC 08] and to adapt the bandwidth of the current controllers. 
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