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Design and causal modelling of a piezoelectric
multi-actuator system used in forging processes

T. H. Nguyen, C. Giraud-Audine, M. Amberg, B. Lemaire-Semail, G. Abba, R. Bigot

Abstract—This paper presents the design of a mechatronic
system integrating piezoelectric multi-actuators, which is used
to generate low-frequency vibrations to assist the forging pro-
cess. With the aim of controlling the complete system, modelling
using Energetic Macroscopic Representation is performed. A
prototype with an electrical system is developed in a short term
to validate the design. Finally, the preliminary experiments are
presented with the corresponding simulation’s results.

Index Terms—Design, Modelling, Compliant mechanism, En-
ergetic Macroscopic Representation, Forging, Graphical model,
Piezoelectric actuator

I. NOMENCLATURE
wo  Lower die’s instantaneous rotation speed

[

Wy Rotation speed of lower die around Ox [rad/s]
wy  Rotation speed of lower die around Oy [rad/s]
K Compliant mechanism’s stiffness matrix ~ [N/m]
M Compliant mechanism’s inertia matrix kel

< External forces’ vector [N]
q Motional variables’ vector [m]
vo  velocity’s vector of point O [m/s]
Fo Resultant force’s vector of point O [N]
Kg Stiffness of piezoelectric actuator [N/m]
Ko  Electromechanical conversion factor [C/m]
C Piezoelectric actuator’s capacitance [F]
U, Piezoelectric actuator’s voltage [V]
ip Current entering the actuator [A]
Us;  Continuous supply voltage [V]
is Current passing through the diode [A]
Co  Inverter’s capacitance [F]
Uy Inverter’s DC bus voltage [V]

II. INTRODUCTION

The advantage of vibrations in forging process has been
reported in different studies. By using ultrasonic vibrations,
a significant reduction of force has been obtained during
forging a specimen of plasticine [1], or one of aluminium
[2]. The vibrations in low frequencies (from few Hertz to
few hundreds Hertz), generated by piezoelectric actuators
in the direction of forging motion, has been also proved
to have an important influence in the reduction of forging
force in the test with plasticine [3] or with a small metallic
specimen [4], [5]. However, the maximal force generated
by piezoelectric actuator in these studies is still limited. In
order to increase the applied force, a proposed solution is to
increase the number of piezoelectric actuators. Moreover, the
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configuration of multi-actuator system allows us to generate
more complicated vibrations than a vertical vibration in the
forging’s direction. A recent work with numerical simulation
has shown that the forging’s force can be significantly
reduced due to a movement following a progressive wave
of the lower die applied to the workpiece during forging
process [6].

The objective of this study is to design a piezoelectric
multi-actuator system in order to generate a progressive
wave in the combination with a vertical vibration to assist
forging process. This system includes a mechanism inte-
grating multi-actuators and an electrical system which is
used to generate the desired voltage’s waveform of actuators.
In the further aim of controlling this system, a model
for the complete system using the Energetic Macroscopic
Representation is performed in the second part of this paper.
The experimental results are also presented to validate the
system’s function and compared to the simulated ones.

III. MECHANICAL SYSTEM
A. Kinematics’ requirements

Consider a frame Oxyz attached to the center O of the
lower die’s surface in contact with the workpiece as in Fig.1.
A vector &} (t) is an instantaneous rotation vector of the
solid lower die around point O. The lower die’s movement
following a progressive wave is defined by a rotation of
vector Wj(t) around Oz with the frequency f.
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Fig. 1. Kinematic diagram of a progressive wave on the lower die
To obtain the desired motion, the projections of the vector
@i(t) into two axes Ox and Oy are defined by:

wz (t) = wo cos(2m ft + @)
wy(t) = wo sin(27 ft + ¢)

where ¢ is the initial angle of rotation.

In order to obtain a progressive wave’s movement of the
lower die defined in (1), the mechanism must have two
rotational degrees of freedom (d.o.f) around two axes Ox
and Oy. Moreover, it must also allow a displacement in

ey



the upsetting’s direction (direction Oz) to generate a vertical
vibration. The kinematic diagram of the desired mechanical
system is presented in Fig.2.

z

Displacement

Fig. 2. Kinematic diagram of mechanical system

A balanced configuration with three multilayer piezoelec-
tric actuators placed equidistant along a circle under the
lower die is proposed to produce two rotations combined
with a vertical movement. To avoid the mechanical com-
ponent’s tolerance, which is incompatible with the small
displacement of piezoelectric actuators (60 pm), a compliant
mechanism is considered for the guiding of the mechanical
system.

B. Compliant mechanism

This solution is largely used in the applications related
to the small displacement with high precision to eliminate
backlash, wear and allows a very high resolution [7]. In
this application, a parallel structure of three flexible beams
connected to the lower die (Fig.3) is used to have an out-of-
plan movement. A displacement along Oz and two rotations
around Ox, Oy can be achieved with the three vertical
displacements at three points 1, I2, I3.

Fig. 3. Design with compliant guiding for a 3 d.o.f movement

The compliant mechanism’s stiffness is expressed as a stiff-
ness matrix along the six possible movements of lower die
at the center O. This stiffness is approximately determined
by a sum of transformed stiffness of each flexible beam in
the local frame (R;) to the point O of the global frame
(R). The compliant mechanism’s stiffness is formulated as
follows [8]:

3
Ko => ML Ko, Tk 2)
i=1

where %iTp the screw transformation of the frame (R;) to
the frame (R) expressed in the frame (R;) and Ky, is
the stiffness matrix of single beam, expressed in the local
frame (R;) ( [9], [10]). An analytic calculation presents this

stiffness matrix in the following form :

kk 0 0 0 =k O
0 ki 0 ko O 0
0 0 ks O 0 0
0
0

R _
Ko=10 & 0 &k 0 @)

-k 0 0 0 k3
0 0 0 0 0 kg

The system must have low stiffness in the desired move-
ments’ direction but very high stiffness in the other direc-
tions. The dimensions of the flexible beams are chosen to
ensure that ks < ki and k3 < k4 and that the beam’s
deformation is still in the elastic domain with the maximal
displacement of actuators.

C. Mechanical coupling with actuators

To avoid moments or forces perpendicular to the direction
of movement of the actuator, punctual contacts are used in
this design for their robustness and simplicity. However, the
die may be separated from the contact under the effect of
inertia during vibrations. A continuous compressive force
between the contact and the lower die is thus required to
maintain a permanent contact with the lower die. A structure,
called contact carrier presented in Fig.4a, is used to maintain
these permanent contacts. It also allows a bi-directional
actuation thanks to the pre-stressed force in the actuator.
The actuators are screwed to the contact carriers, and so are
the spherical caps. The spherical caps’ radius is chosen to
reduce the contact’s deformation and improve its stiffness.
These caps are in contact with a secondary plate (Fig.4b)
fixed to the lower die in order to have a clear space above
the lower die for the forging’s operations.

o y
Contact carrier Surface fixed to the lower die

Spacer

Spherical caps

Piezoelectric
actuator

Spacer
Surfaces in contact with spherical caps

(a) Contact carrier (b) Secondary plate

Fig. 4. Components for punctual contacts

A spacer will be used to apply a pre-load on the contacts
during the assembly by thermal expansion of contact carrier.
Finally, the dimensional dispersion of actuators will be
eliminated by the use of another spacer between the actuator
and the base plate (Fig.5). The calibration by spacer also
helps reduce the possible stress, caused by the assembly, in
the deformable beam. For the objective of controlling the
lower die’s movement, three eddy current sensors are used
for the measurement of two rotation angles and one vertical
displacement.

D. Prototype

A prototype of the mechanical system in PVC material
is built in the first step to validate the functionalities of
the design. To adapt to this kind of material and simplify
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Fig. 5. Section view of the mechanical system’s design

the fabrication as well as the measurement of lower die’s
movement, some details are changed with respect to the
presented design. The punctual contact is constructed by a
steel ball attached to the actuator by a plastic screw cap as
shown in Fig.6a. Due to the small diameter of the steel ball,
the allowed force is kept below twenty Newtons to avoid
plastic deformation. To maintain a permanent contact in this
prototype, magnets are used to produce a constant pre-load
between the steel ball and the aluminium disc fixed with the
compliant mechanism.

An aluminium plate is placed at the center of the lower
die to have a rigid surface in contact with the steel balls.
The housing cover is changed to triangular form to facilitate
the fabrication and to reduce the overall dimension (Fig.6b).
The displacement sensors are built from current sensors
(Hall effect) which are fixed to the stationary part while the
magnets are fixed on the lower die in the opposite position
(see Fig.6a). The sensors measure the magnetic field of
the magnets to estimate the lower die’s displacement. The
assembled system is presented in Fig.6c.

IV. ELECTRICAL SYSTEM

To generate a progressive wave, the three piezoelectric ac-
tuators are supplied at high voltage (from -200 V to 1000 V
correspond to a maximal displacement of actuators) by a
three-phase power supply. In addition, this supply system
must be able to provide a variable frequency voltage in order
to change the vibrations’ frequency (from 5 Hz to 100 Hz).
This kind of power supply can be performed by an analog
power amplifier [11], [12] or a switching power supply.
Due to the limited efficiency of analog power amplifier,

(a) Detail view of the compliant mechanism and

Sensors mechanism

Fig. 6. Prototype

(b) Detail view of the actuators and the pre-load

the switching power supply method is more largely applied
to the piezoelectric actuators’ power supply [13]-[16]. This
method is often realised by using a transformer to increase
the output voltage. However, the design with transformer
becomes more complicated to obtain a bias of actuators’
voltage. In this paper, for the availability and portability of
actual system, an electrical system without transformer using
a commercial inverter Semikron is proposed to supply a
high voltage with variable frequency from a constant voltage
source. The power supply’s circuit diagram is presented in

the Fig.7.
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Fig. 7. Scheme for three piezoelectric actuators’ power supply

The principle is to use the inverter as a voltage booster
to obtain a high voltage output. The external power supply
is represented by the voltage source Us which provides a
constant voltage to the system through an inductor Ls and
diodes. In the charging period, the diodes are conducted
and the capacitor Cj is charged through three branches of
inverter. In the phase of vibrations’ generation, the inverter
is used to convert the bus voltage of capacitor Cy in a three-
phase variable frequency voltage using the PWM method.
The three-phase voltage is then applied to the actuators
represented by capacitors C. The inductors L, and L, are
necessary to avoid direct connections between capacitors
Cp, C and between capacitors C' and voltage source Us.
The inductor L; is chosen so that the cut-off frequency
of the filter L, — C' is quite high, 3kHz so compared to
the waveforms’ frequency (maximum 100 Hz), to enable
the generation of required waveforms to the actuator while
filtering correctly the PWM frequency from the inverter
(30 kHz). The value L, is chosen to limit the current’s
variation through the diode. The components’ parameters
are presented in table I.

TABLE 1
COMPONENTS’ PARAMETER
Ls Ly Co C
10 mH 100 mH 4mF  300nF

Magnet
Steel ball
Base plate

(c) Assembled prototype



The complete electrical system is presented in Fig.8. An
integrated DSP TMS 320F2812g is used to generate the
PWM duty cycle of three branches of inverter Semikron.

i

EZDSP TMS 320F2812g

Fig. 8. Three-phase electrical system

V. MODELLING

In order to have a model for process simulation and
the control in a later study, a modelling of the complete
system is performed by using the Energetic Macroscopic
Representation (EMR). This tool helps construct a functional
representation of systems in order to visualize the integral
causality and power transmission between system’s com-
ponents by using a limited set of symbolic representations
(see Appendix VII-A). Moreover, a control structure by the
inversion-based principle can be directly deduced from this
system’s representation [17]. The EMR of complete system
is established from the input of electrical source to the output
of the mechanical system.

A. EMR of electrical system

The EMR of electrical system is directly built from the
electrical diagram in Fig. 7. The inductors Lg, L; and the
capacitors Cy, C are modelled by energetic accumulators
while the three-phase inverter is modelled in the ideal case
by an electrical converter which is controlled by a duty
cycle m. For a connection between the components L, Ly
and C, an electrical coupling is used. The complete EMR
of electrical system is presented in Fig.9. It may be noted
that the variable’s vectors have a dimension of three, which
represents the three-phase variables.

Electrical
source

Inductor Ly, Inductor L,  Inverter Capacitor Co
i = sz (U, — Uy)dt
L,

Fig. 9. EMR of three-phase electrical system

To represent the intermittent function of electrical system
between the charging phase for the voltage of C and the
phase of vibrations’ generation, a switch function is used
to change the state of current ;. From Fig.9, the states’
interchange can be detected by the variation of voltage
U,. The phase of charging the voltage Uy happens if and
only if the voltage U, is less than to the value U, which
corresponds to the period 75 > 0.

B. EMR of mechanical system

1) EMR of mechanical coupling: Due to the small actu-
ators’ displacement, their velocities and forces are supposed
to be always in the vertical direction as presented in Fig.10,
where v; and F; are respectively the velocity and force found
at the contacts. In Fig.10a, w,ws,ws are represented for
three instantaneous rotational vectors corresponding to three
punctual contacts’ velocities v1, va, V3.

(a) Kinematic coupling

(b) Force coupling

Fig. 10. Schema for mechanical coupling’s relation (OI; = R)

The kinematic relation between the kinematic screw of

the lower die at point O ‘:_g } and the kinematic screw of
o .
each actuator at point O { e } is expressed as follows:

i

Vi/O

{if} B Z{%} - {2(%7 07} @

The relations of 2 rotations around Ox, Oy and displacement
along Oz of the lower die with the actuators’ velocities is
obtained by projecting the equation (4) in the axes Ox, Oy,
Oz.

1 R 0
U1 R R\/g Uz
v=|uw| =1 3 “5 | |w| =Avo )
V3 1 R R\/g Wy
2 2

—
Similarly, the wrench of the lower die at point O { A%% } is
o

i

related to the wrench of each actuator at point O { M—> }
i/O

by the following expression:

{%}Z{%}{zg?} ©

where ?Z is the force generated by each actuator and M is
the moment at point O by force F;. From (6), the relation
of resultant force along Oz and moments around two axes
Ox and Oy is presented by the following equation:

1 1 1
F, R R Fy
Fo=|M,|=|® —35  ~5||R|=BF O
M, RV3 RV3| |Fs
2 2

The input power P;,, = F'v is found equal to the output
power Py, = FoTvo, which demonstrates the power
conservation within this model and the EMR can be applied
to this mechanical coupling by representing it as a mono-
physic converter (see VII-A).



2) EMR of compliant mechanism: With the small size
and velocity of the designed mechanism, the effect of
gravity, centrifugal and damping forces can be negligible
in comparison with the forces generated by actuators (a few
thousands Newtons). The dynamic equations of lower die is
written in the following form:

M(q)d + K(q)q = Fe (®)
where M, K are respectively the inertia matrix
and stiffness matrix of the compliant mechanism,
q=[z y 2z ap o, aisa vector of displacement

and rotational angles along axis Ox, Oy, Oz. In the
first approach, the friction force between lower die
and workpiece is also neglected. The applied forces
on the lower die are only the forces generated by the
actuators and the forging process in the vertical direction.
The vector Fo can be expressed as follows : Fo, =
0 0 F,—Fyp My— My, My;— My, 07,
where F,,, Mypy, Myp, are the applied force and
moments of workpiece to the lower die.

From the numerical values of inertia and stiffness matrix
(see Appendix VII-B for the prototype), the displacement
modes along Ox and Oy, which are coupled with the
corresponding rotations around Oy and Ox, are found as
the non-dominant modes of movement. The system can be
reduced into a 3-degree-of-freedom system as follows:

MyCy + kpoy = My — wax
My Oy + kyoyy = My — Myp, )
m.2+kz=1F, — Fyp

The EMR for the vertical movement’s equation along the
axis Oz is presented in Fig. 11.

t

F, :szz‘dt
k

Z

t
E =F, + FmV PR f(Fm — Fyp)dt
m, z
F, w2 1/m,

—z 5 & ,
., z sz Z
Z

[ Z F,

14

Fig. 11. EMR for displacement mode along Oz

3) EMR of piezoelectric actuator: The EMR of piezoelec-
tric actuator in quasi-static mode is developed in [4] to relate
the input current %, and velocity v, with the output force F,
and voltage U,,. In this model, the parameter K. presents the
piezoelectric coefficient while K is the actuator’s stiffness.
The piezoelectric actuator’s model is connected to a contact
which is represented by a mass M. (dynamic mass of
actuator and steel ball’s mass) in series with a spring of
the stiffness K.

Contact

Piezoelectric actuator

Fig. 12.  EMR model for a piezoelectric actuator connected to a contact

The complete system’s EMR is achieved by assembling
the components’ EMR, as presented in Fig.13, by connecting
the same pairs of variables in each model.

C. Experimental results and discussion

To demonstrate the function in generating vibrations and
validate the components’ EMR of the complete system, this
part presents the experimental results and compares with
results obtained from the model.

1) Validation of electrical system’s modelling: With the
proposed mechanical configuration, the required waveforms
of actuators’ voltage for a progressive wave are a three-
phase sinusoidal voltage. This voltage is obtained by
applying a three-phase sinusoidal duty cycle 7 to the
DSP. The variation of duty cycle’s mean value is used to
trigger on and off the charging of capacitor Cj. This is
done by setting the mean values such that the minimum
voltage U, is above (phase of generating vibrations) or
below (phase of charging) Us, which is fixed to 100V in the
tests. The measured voltages of the two actuators and the
corresponding currents 7, are presented in Fig.14 in the case
of generation a three-phase sinusoidal voltage with 50 V
the amplitude. The current ¢, is greater than O every period
for which the voltages U, are lower than U, = 100 V.

250 ‘ : 0.1
- - -Current = Voltage Upl
200 — Current i —— Voltage Upz 0.08
S 0.06 2
%150 1
2 0.04 £
> S
100 10.02
oA
| W WY 0
50 : :
0 05 . 1 L5
Time (s)

Fig. 14. Measured results in the transient phase of the three-phase voltage
supply system

By applying the same duty cycle to the input of the electrical
system’s EMR, the simulated voltage U, and current 74 are
presented in Fig.15. The obtained results are qualitatively
similar to the measure results. Simulated currents in
the diodes follows the same trend as in the experiment.
However, the actuator’s average voltage increases because
the diodes’ conducting time is reduced due to the model’s
difference with the real inverter and the losses in the circuit.
Nevertheless, this result shows a coherence of the model’s
behaviour to the real one.

250
200
2 150 £
o 3
3 2
S 100 =
S — i, Z
40,02
50 ; — U ]
o =2 40
0 0,25 0,5 0,75 1 1,25 1,5
Time (s)

Fig. 15. Simulated results in the transient phase of the three-phase voltage
supply system
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Fig. 13. EMR of the complete system

2) Validation of mechanical system’s modelling: The
mechanical system is tested in two experiments to validate
its kinematics and the results are compared to one from
simulation with the EMR. The first experiment is performed
to generate a lower die’s movement following a progressive
wave. This movement results from two rotations around
two axes, as demonstrated in the section III.A. This two
rotations’ speeds are difficult to measure directly. A laser
vibrometer is then used to measure the displacement speeds
along two axes of one screw fixed in the lower die’s center
(Fig.16).

Fig. 16. Speed measurement by a laser vibrometer

In this test, a 50 Hz three-phase voltage with 100 V ampli-
tude is applied to three actuators to generate a progressive
wave in the lower die. The measured speed by vibrometer
(Fig.17) confirms the presence of two rotations with the same
amplitude and in quadrature. It also means that a progressive
wave with the frequency 50 Hz is found on the lower die.
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Fig. 17. Speed along Ox and Oy of a rod fixed in the lower die’s center

The measurement of actuators’ current is then used as the

Mechanical coupling + Compliant guiding

input 7,, for the piezoelectric actuator’s modelling in simu-
lation. The output’s rotation speed of mechanical system’s
model is used to estimate the speed of measured point
by multiplying with the distance from the measure point
(Fig.16) to the point O (about 39 mm). With the established
EMR, the simulated speed shows a good agreement with
the measured values in phase and fairly well in amplitude.
A transition phase is found in_the simulated result because
the measured input current ¢, is not equal to zero at the
beginning of simulation.

The second test is to generate a vertical triangular vi-
bration by applying three 50 Hz voltages in triangular
form presented in Fig.18. The actuators’ currents are also
measured and filtered to obtain the input as the previous
test. The measured voltage and speed after filtering with the
same filter are presented in Fig.18 in comparison with the
simulated values. The two presented results show once again
that the model gives a good approximation of the mechanical
system’s behaviour in the case of vertical movement.

b ANk kb h
SRR
AN
S
siREARAE===

Speed (mm/s)

g 1
H |
—— Simulation

— Measure

0 0.05 0.1 0.15

Time (s)

0.2

Fig. 18. Measured voltage and speed in comparison with simulated values

VI. CONCLUSION

This paper presents a complete piezoelectric multi-
actuators system to assist a forging process. A compliant
mechanism integrating three actuators is built to generate
a progressive wave in combination with a vertical dis-
placement on the lower die. A three-phase voltage supply
system without transformer is also presented to supply
frequency-variable high voltages to three actuators in order
to achieve the desired movement. A modelling using EMR



is established for both mechanical and electrical system to
visualize the power transmission from the electrical input
to the mechanical output, which gives us a global view
for the control. The movement of a progressive wave and
the vertical simulation is demonstrated by experimental
validation and also confirmed by the simulation.

VII. APPENDIX
A. EMR’s basic elements

Element Symbol Description
Variable ; Action/ reaction variable (x/y)
Source [ Energetic source
Accumulator | = Accumulator
Converters Mono-physic converter
== ' '
| Multi-physic converter
Couplings ﬂﬁ Mono-physic coupling
i& Multi-physic coupling

B. Inertia and stiffness matrix of prototype

5,14.10° 0 0 0 —7,71 0
0 5,14.10° 0 7,71 0 0
_ 103 0 0 49,77 0 0 0
K =10 0 7,71 0 0,12 0 0
—7,71 0 0 0 0,12 0
0 0 0 0 0 5,68
94 0 0 0 —0,39 0
0 94 0 0,393 0 0
-3 0 0 94 0 0 0
M =10 0 0,39 0 0,05 0 0
—0,39 0 0 0 0,05 0
0 0 0 0 0 0,09
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