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Abstract A major challenge in the macroscopic mod-

eling of brittle failure initiation is to reconcile stress-

driven failure in absence of stress concentration and

energy-driven failure under high stress concentration

(crack). In this paper, we perform athermal molecular

simulations to investigate the underlying physics be-

hind stress- to energy-driven failures. In the athermal

limit, the evolution of an atomic system is determinis-

tic and is obtained by energy minimization. Failure is

expected when the system suddenly bifurcates to a bro-

ken configuration which can be formally evaluated as

an atomic instability characterized by a negative eigen-

value of the Hessian matrix. We applied this methodol-

ogy to a 2D toy model and to pristine graphene. Both

stress- and energy-driven failures are triggered by an

instability at the atomic scale, but the two types of fail-
ure differ widely regarding the mechanisms of instabil-

ity (eigenvectors) and their multiplicity (degeneracy).

With respect to existing macroscopic theories of failure

initiation, these results raise some issues. In particular,
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one should distinguish the initiation mechanisms and

the physical cracking occurring after initiation, and the

spatial extent of the initiation mechanism should de-

pend on stress concentration with a minimum extent

given by the ratio between toughness and strength.

From an atomic scale perspective, a strain-based sta-

bility formulation seems the most appropriate. Finally,

we show that the degeneracy of the modes of failure

explains the size-scaling of strength and toughness at

finite temperature.

Keywords brittle failure · crack initiation · strength ·
toughness · graphene

PACS 62.20.-x

1 Introduction

The mechanical failure of brittle materials is well un-

derstood in two limit cases: the failure in absence of

stress concentration characterized by the strength σc
(criterion on stress), and the failure of cracked bodies

(high stress concentration) characterized by the tough-

ness Kc (criterion on energy release rate). However,

the failure in intermediate situations with moderate

stress concentrations, are still debated in the scientific

community. A typical example is the case of a sharp

V notch, which generates a stress singularity (infinite

stresses at the tip) but the exponent of the singular-

ity is lower than 1/2 so that the incremental energy

release rate is 0 (Williams, 1952). In other words, ir-

respective of the loading, a notched material should

always fail according to a stress criterion, and never

fail according to an energy criterion (Leguillon, 2002).

More generally, for any smooth flaw, the stress field is

no more singular (Rice, 1968) so that the incremen-

tal energy release rate always falls to 0 and the energy
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criterion is not applicable. Conversely, any sharp flaw

generates a stress singularity (Williams, 1952) and the

stress criterion is not applicable. To address this contra-

diction, many theories of brittle failure initiation have

been proposed in the literature which can predict fail-

ure for any stress concentration, while being consistent

with the two limit cases (stress criterion at small stress

concentrations, energy criterion at large stress concen-

trations). Let us mention the Cohesive Zone Models

(Dugdale, 1960), the non local theories (Novozhilov,

1969), the Finite Fracture Mechanics (FFM) (Leguil-

lon, 2002), and the Phase Field approaches (Miehe et al,

2010). Although these theories are all consistent with

the two limit cases, their predictions differ at moderate

stress concentrations, and no clear scientific consensus

has emerged so far. In this respect, investigating the ele-

mentary physics at the origin of failure initiation should

point to an appropriate macroscopic theory of brittle

failure. All the theories were elaborated from a macro-

scopic point of view without detailed description of the

irreversible processes occurring at the point of failure. A

primary requirement is to ensure a transition from en-

ergy driven failure to stress driven failure when the size

of the process zone approaches a characteristic size of

the structure. Therefore, investigating the physics be-

hind failure requires to zoom at the scale of the process

zone. For cracked bodies, the scale of the process zone is

given by the characteristic length lc =
(
Kc
σc

)2
(ratio be-

tween toughness and the strength). lc ranges from a few

centimeters to a nanometer depending on the material

(see Fig. 1). Nanometric process zones correspond to ex-

tremely brittle materials (e.g., diamond, mono-crystals

of minerals, silica glass etc.) and are small enough to

be investigated with molecular simulation techniques,

that is starting from the fundamental interactions be-

tween atoms. Therefore, extremely brittle materials are

good candidates for a systematic study of the elemen-

tary physics behind failure initiation.

In the literature, molecular simulation has been used

by many to investigate fracture propagation in brit-

tle materials. Early works date back to the 1970’s and

focused primarily on simple lattice models (Thomson

et al, 1971; Hsieh and Thomson, 1973; Thomson, 1986).

These works highlighted some peculiarities of cracking

in discrete atomic systems. In particular, crack advance

is identified as a succession of snap-back instabilities

corresponding to bond breaking, which paves the way

to a systematic investigation of cracking at the atomic

scale by looking for instabilities. Tracking instability

makes it possible to investigate more complex crack-

ing than straight propagation in a lattice model. For

instance, Kitamura et al (2004) investigate eigenmodes
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Fig. 1 Plot of strength vs toughness (adapted from Ashby
(2005)). Transition between energy- and stress-driven failure
requires to study the materials at the scale of the character-

istic length lc =
(
Kc

σc

)2
. Only very brittle materials (lc less

than a few nanometers) can be studied by molecular simula-
tion. Mono-crystal of pristine graphene is considered in this
paper.

of failure and point the importance of small changes

in crystal structures, and Li (2013) perform a similar

analysis for the study of crack kinking. Delph et al

(2009) show that a reasonable prediction of mode I

cracking can be achieved by limiting the stability anal-

ysis to a subvolume, which significanlty improves the

computational cost. Interestingly, failure initiation at

moderate stress concentrations has attracted much less

attention. In a previous work (Brochard et al, 2016),

we investigated failure initiation under moderate stress

concentrations in a 2D model of graphene. We could

estimate the failure initiation behavior and confront it

to macroscopic theories. In some configurations, mate-

rial strength was overcome, which is not expected by

many initiation theories except FFM. A specificity of

FFM theory is that failure initiation is predicted by a

dual criterion requiring a minimum energy release and a

minimum stress over a finite length (initiation length).

Situations with very high stress concentrations but lit-

tle stored mechanical energy can therefore exceed the

strength of the material, which is the case for the 2D

model of graphene when periodic cracks are about to

merge. At the heart of FFM theory is the fundamental

principle that failure initiates as the nucleation of an

initial crack over a finite length. This initiation length

strongly depends on stress concentration: it is as small

as the characteristic length lc for high stress concen-

trations (crack tips), but as large as the entire struc-

ture for small stress concentrations. The nucleation of

a crack over a finite length suggests a description of

brittle failure initiation as an unstable process, irre-

spective of the stress concentration, which is non ob-

vious from a continuum perspective. Indeed, following
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fracture mechanics, some particular configurations are

stable at failure: any situation for which the stress in-

tensity decreases with the crack length at constant load-

ing is stable (common even under force control, for in-

stance with forces applied on crack faces). Conversely,

many mechanical instabilities are not associated to fail-

ure (e.g., martensitic materials). In contrast, from an

atomistic perspective, associating failure initiation and

instability is consistent with the early works on lattice

models, for which the process zone size is typically the

size of a single bond. However, the role of stress con-

centration on this instability, the concept of initiation

length and its relation to the characteristic length lc are

still to be explored.

Characterizing crack initiation as an instability holds

at 0K (athermal limit), that is when atomic systems are

frozen in their static equilibrium. An additional diffi-

culty, though, is the effect of temperature which pro-

vides thermal agitation to atoms. Dynamics becomes

essential to the evolution of the atomic systems, in par-

ticular for crack propagation (Marder and Gross, 1994).

In a recent study by molecular simulation at finite tem-

peratures, we show that, for mono-crystals, strength

and toughness follow analogous scaling laws in temper-

ature and loading rate, but differ regarding the scaling

with system size (Brochard et al, 2018). The scaling in

temperature and loading rate (inverse of loading time)

has long been identified and is known as Zhurkov’s law

(Zhurkov, 1984), but the effect of system size has been

disregarded so far. Yet, since strength and toughness

differ only for size effects, understanding the origin of

size effects should be central for the difference between

energy- and stress-driven failures. Zhurkov’s law is ob-

tained by describing failure at finite temperature as

a thermally activated process: failure occurs when the

system reaches a transition state (saddle point of the

energy landscape). The difference between strength and

toughness is that strength scales with the number of

atoms, whereas toughness scales with the number of

cracks. A natural interpretation is that stress concen-

tration strongly reduces the number of transition states

to a few configurations in which the critical degrees of

freedom are the atoms in the vicinity of the crack tip.

This interpretation should be confirmed by investigat-

ing the degeneracy of the modes of instability in the

athermal limit.

In this paper, we use molecular simulations in the

athermal limit to investigate the occurrence of instabil-

ities at the onset of failure for two materials: a 2D toy

model and a realistic description of pristine graphene.

We investigate more particularly how the modes of in-

stability and their degeneracy depend on stress con-

centration. Part 2 is dedicated to the description of the

methods and systems studied, part 3 to the results, and

part 4 to a discussion on the implications for the macro-

scopic modeling of failure initiation.

2 Methods

In this work, the molecular simulations we refer to are

’classical’ simulations, i.e., based on classical physics,

in contrast with ’ab-initio’ simulations based on quan-

tum physics. Accordingly, the atoms are represented as

discrete particles interacting through an empirical in-

teraction potential (V ) and following Newton’s dynam-

ics. The degrees of freedom are the positions (ri) and

momenta (pi) of the particles and the energy can be

split into kinetic and potential energy: E =
∑
i

p2
i

2mi
+

V (r1, · · · , rN ), where the mi are the masses and N

refers to the number of particles. To investigate the

occurrence of instability at the atomic level, we used

athermal simulations, i.e., simulations in the limit of

0K. In this limit, a molecular system adopts a sin-

gle configuration (the ground state of minimum energy

ri = ri0) while all the momenta are null (pi = 0). Ac-

cordingly, one can limit the description of the system to

the positions and interaction energy only, and disregard

the momenta and kinetic energy.

Instability of discrete systems in the athermal limit

has been investigated by many for a variety of irre-

versible processes such as the stability of crystals (Mil-

stein and Hill, 1979), the localization of shear bands

in lattices (Triantafyllidis and Bardenhagen, 1993; Bar-

denhagen and Triantafyllidis, 1994), the martensitic trans-

formations (Elliott et al, 2006), the plasticity of amor-

phous solids (Maloney and Lemâıtre, 2006; Dailidonis

et al, 2015), or nanoindentation-induced damages (Prat-

apa and Suryanarayana, 2016). The systematic approach

consists in identifying ’soft modes’ for which one of the

eigenvalues of the Hessian matrix becomes negative. In-

deed, since each particles is in static equilibrium, the

total force exerted on it cancels: Fi = −∇riV = 0,

where ∇ri is the gradient operator with respect to the

position of particle i. As a consequence the Taylor ex-

pansion of the energy of the system around the ground

state exhibits no first order contribution:

E (r1, · · · , rN )

≈ E0 +
1

2

∑
i,j

(ri − ri0)
t · ∇ri

[
∇rj [V ]〈ε〉

]
〈ε〉
· (rj − rj0)

= E0 +
1

2
δRt ·H〈ε〉 · δR +O

(
δRt · δR

)
(1)

where E0 = E (r10, · · · , rN0) is the energy in the ground

state, the subscript t represents the matrix transpose,
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and ’·’ refers to the usual matrix multiplication. In the

above equation, the derivatives hold at constant load-

ing of the system; and, in this work, the loading is the

overall strain 〈ε〉 of the periodic cell (see details of the

atomic system hereafter). The second line is a matrix

reformulation with δR the vector of positions relative

to the ground state and H〈ε〉 the Hessian matrix of the

potential. Stability of the ground state requires that

the Hessian matrix is definite positive. Conversely, if

one of the eigenvalues of H〈ε〉 is negative, the state of

the system is unstable and there exists configurations

of lower energy by following an evolution in the direc-

tion of the associated eigenvector. Accordingly, one can

identify an instability in the athermal limit by looking

for a negative eigenvalue of the Hessian matrix, and

the corresponding eigenvector characterizes the collec-

tive movements of the particles triggered by this insta-

bility, which we refer to as mode of failure. In this work,

we simulate various molecular systems in the athermal

limit by minimization of their interaction energy. The

eigenvalues of the Hessian are evaluated while the sys-

tems are subjected to incremental mechanical loadings.

Simulation ends, when the first instability is detected,

and the corresponding eigenvector is computed. All the

simulations were performed with LAMMPS software

(http://lammps.sandia.gov) (Plimpton, 1995), comple-

mented by LAMMPS-HESSIAN package version 3 (Costa,

A. B., http://bitbucket.org/numericalsolutions/lammps-

hessian) to compute the Hessian matrix and an in-house

program for its analysis. The LAMMPS-HESSIAN pack-

age computes the Hessian by forward finite differences,

which causes a small bias detrimental for the accuracy

needed in this work. We fixed this issue by modify-

ing the package to compute the Hessian by central fi-

nite differences. We also optimized the use of memory

(sparse matrix). These modification appeared critical

for efficiency and accuracy of the calculations in this

study. The Hessian was fully eigendecomposed, in or-

der to study the statistical distribution of eigenvalues

and its evolution with loading. Note that full decompo-

sition comes with a significant computational cost, and

much improved efficiency can be achieved by limiting

the decomposition to the lowest eigenvalues (Pratapa

and Suryanarayana, 2016), which would be critical to

study larger systems than in the present study.

Two materials are studied : a toy model and pris-

tine graphene (see atomic structures in Fig. 2). Con-

fronting those two materials, one can evaluate whether

the physics of failure observed for simplistic systems

(closest-neighbor pair interactions) holds for more com-

plex realistic systems (many-body potential not lim-

ited to closest neighbors), which bring confidence to

the physical interpretations.
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Fig. 2 The two materials studied in this work. (top) Toy
model made of triangular lattice with pair interactions be-
tween closest neighbors only. A modified Morse potential is
considered that ensures continuity of the potential and its
derivatives. (bottom) Pristine graphene is modeled by the
REBO reactive potential. The tensile behavior estimated with
this potential compares well with ab-initio results (Liu et al,
2007).

The toy model was previously investigated in the

context of the scaling laws of strength and toughness

mentioned in the introduction (Brochard et al, 2018).

This fictitious material has a 2D crystalline structure

of regular triangular lattice and the inter-atomic inter-

actions are limited to pair interactions between near-

est neighbors. Although, it is not a real material, the

simplicity of this toy model makes it possible to con-

front simulations and theory which proved useful for

the interpretation of the scaling laws of strength and

toughness. In particular, the impact of stress concen-

tration on the scaling with size was precisely charac-

terized for this toy model; and we intend here to relate

it to the degeneracy of the mode of instability in the

athermal limit. Nevertheless, the pair potential we con-

sider in the present study differs from the harmonic

potential used previously (VH (r) = K
2 (r − r0)

2
). This

harmonic potential was truncated at a cutoff distance
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rHcut to enable bond breaking and failure and shifted

by Vshift = K
2

(
rHcut − r0

)2
to ensure continuity of en-

ergy. But, doing so, one generates discontinuities in the

derivatives of the potential at r = rHcut which is not suit-

able for a stability analysis since continuity of the sec-

ond order derivatives is required. To address this issue,

we considered the following modified Morse potential

instead:

VM (r) =

D
(

1− e−α(r2−r20)
)2
−D if r < r0

D

(
1− e

−α 2
π

(
(rMcut)

2−r20
)
tan

(
π
2

r2−r20
(rMcut)

2−r20

))2

−D

if r < r0 < rMcut

0 if r > rMcut

(2)

where r is the distance between the particles, r0 is the

equilibrium distance corresponding to the minimum of

energy, D is the depth of the energy well, α is a param-

eter controlling the rigidity of the interaction, and rMcut
is the cutoff distance. The potential is formulated to en-

sure continuity of the energy and its derivatives at the

cutoff distance. Consistency between the harmonic and

Morse potentials requires to consider the same equilib-

rium distance r0, a depth of the energy well equal to the

shift of the harmonic potential D = Vshift, and to set

α = 1
r0

√
K
8D to ensure the same rigidity of interaction.

The cutoff distances rMcut can be chosen arbitrarily. In

practice, all computations are performed with dimen-
sionless quantities, where the unit of length is r0 and

the unit of energy Kr20, so that the only parameters

that must be specified are the reduced cutoff distances

rHcut/r0 and rMcut/r0. Here we consider, rHcut/r0 = 1.1

(choice of the previous study) and rMcut/r0 = 1.5. The

two potentials are compared in Figure 2 (top).

The second material studied is 2D pristine graphene.

Graphene is a crystalline material made of carbon atoms

arranged in a honeycomb structure (see Fig. 2) and

well known for its exceptional electronic, optical, ther-

mal and mechanical properties (Geim and Novoselov,

2007; Novoselov, 2011). For the study of failure initia-

tion by molecular simulation, graphene is a good can-

didate because its high strength and moderate tough-

ness lead to one of the smallest characteristic length lc
(Fig. 1). Simulating graphene failure requires a poten-

tial that is able to capture the breaking and rearrange-

ment of covalent bonds. Reactive potentials are suit-

able for this and various reactive potentials have been

used in the literature to investigate failure properties of

graphene : REBO/AIREBO (e.g., strength by Lu and

Huang (2009); Zhao et al (2009), fracture by Zhang

et al (2012); Dewapriya et al (2014); Han et al (2017)),

Tersoff (e.g., strength by Rajasekaran et al (2016)), and

ReaxFF (e.g., strength by Jensen et al (2015)). All these

potentials lead to mechanical properties in reasonable

agreement with experimental or ab-initio results. In the

present study, we consider the second generation REBO

(REactive Bond Order) potential (Brenner et al, 2002)

initially proposed by Brenner (1990), which is a good

compromise between accuracy and computational cost.

The parameterization of REBO is known to yield an

excessive strength and toughness because of a spurious

bump in the aromatic carbon-carbon interaction (Shen-

derova et al, 2000; Belytschko et al, 2002). To solve this

problem, it has been proposed to modify the function

performing a smooth cutoff of the carbon-carbon inter-

action between rmin = 1.7Å and rmax = 2.0Å (Zhao

et al, 2009; Lu et al, 2011; Zhang et al, 2012; Yazdani

and Hatami, 2015). A simple modification consists in

changing the value of rmin to 2.0Å. With this modifica-

tion, one obtains mechanical properties more consistent

with experiments and ab-initio calculations (see Tab. 1

and Fig. 2 right), but the potential exhibits a discon-

tinuity of energy at r = 2.0Å. This discontinuity is of

no consequence as long as none of the aromatic bonds

reaches 2.0Å. In all the cases studied in this work, the

most stretched aromatic bonds reach 1.8Å at failure

initiation. Therefore, this modification of the REBO

potential is valid for the present study. In this study,

we limit ourself to the study graphene in 2D. Taking

into account the third dimension does affect the mech-

anism of failure as more favorable paths to failure can

be accessed in 3D (Brochard et al, 2018). Yet, the main

findings of this paper (role of stress concentration on

failure mechanisms) are quite general and are expected

to remain true in 3D.

All the systems studied are periodic and mechani-

cal loading is applied by changing the size of the peri-

odic box. When approaching failure, the typical load-

ing steps considered are strain increments of ∼ 10−5 −
10−4 (presence of flaws often requires smaller incre-

ments for satisfying accuracy). The evolution of the sys-

tem (atomic positions) is obtained by minimizing the

energy at each loading step. We investigate systems of

various sizes (102 to 104 atoms) with and without flaws

(see some examples in Figure 3). At each loading step,

the stress (virial estimate) and the Hessian matrix are

computed and the simulation is stopped when failure is

observed. For the periodic systems we considered, the

system fully separates in two parts at failure, which

makes it easy to detect (stress drop to zero). The Hes-

sian matrix systematically exhibits two null eigenval-



6 Sabri Souguir et al.

Method Reference Young’s Uniaxial strength Mode I toughness
modulus (N/m) (mN.m−1/2)
(N/m) ZZ / AC ZZ crack / AC crack

experiment (Lee et al, 2008) 340 ± 50 42 ± 4 -
(Zhang et al, 2014) - - 1.36 ± 0.20

DFT (Liu et al, 2007) 351 36.7 / 40.4 -
(Xu et al, 2012) - - 1.40 / 1.24

2nd this work 250 35.6 / 30.5 0.77 / 0.90
generation (Arroyo and Belytschko, 2004) 243 - -

REBO (Lu and Huang, 2009) 243 35.6 / 30.5 -
(Zhang et al, 2012) - - 1.02 / 1.13

Table 1 Mechanical properties of pristine graphene: experimental and ab-initio results compared to results obtained consider-
ing classical molecular modeling with the REBO potential. For REBO, we present the results of this work along with literature
results using the same modification of the potential (change of the cut-off function). The difference regarding the toughness is
to be attributed to the method of estimation. We adopt a method based on an analysis of the stress at failure of pre-cracked
systems (Brochard et al, 2018), whereas the method of Zhang et al (2012) is based on the strain field at failure. Both methods
would lead to the same results for a perfectly linear elastic material, but the significant non-linearity at the vicinity of the
crack tip explains the difference.

Fig. 3 Example of systems studied for the toy model (top)
and for pristine graphene (bottom).

ues corresponding to the rigid body translations in 2D,

which are excluded from the analysis.

3 Results

We first compare the stability analysis in the athermal

limit for intact and flawed materials. The results are

displayed in Figure 4 for the toy model and in Figure 5

for pristine graphene. These results confirm that failure

initiation corresponds to the occurrence of an instability

irrespective of the stress concentration, since the small-

est eigenvalue of the Hessian matrix systematically falls

to zero precisely at the point of failure. The modes of

failure (eigenvector) are significantly impacted by the

stress concentration. In absence of stress concentration,

one observes collective moves of the atoms throughout

the entire system, whereas stress concentration leads

to a strong localization of the mode of failure at the

point of stress concentration. For the flawless system,

the collective moves form two blocks or bands of homo-

geneous displacements in opposite directions, and the

transition between those blocks/bands is a zone of de-

formation where failure initiates. For the flawed mate-

rial, the mode of failure shows important atomic dis-

placement only near the flaw where failure is expected.

These modes of failure suggest that the mechanism of

failure initiation involves a size that strongly depends

on stress concentration: as large as the entire structure

in absence of stress concentration, and as small as a

few atoms for high stress concentrations. The concept

of initiation length in Finite Fracture Mechanics (FFM)

follows a similar evolution (from the size of the struc-

ture to the characteristic length). It is worth noting,

however, that these modes of failure (eigenvector) do

not correspond to the physical crack that emerges from

the instability. For instance, in Figure 5, the flawless

graphene is loaded in the zigzag direction, so that the

physical crack is expected around the armchair direc-

tion. Nevertheless, the mode of failure exhibits a de-

formation band in the zigzag direction. Testing many

different systems, it appears that the mode of failure

does not corresponds to the physical cracking in gen-

eral. This suggests that the description of FFM (nucle-

ation of a crack over the initiation length) is debatable.

Here, our results suggest that a failure initiation crite-

rion should involve a concept similar to the initiation

length of FFM, but which does not imply a nucleation

over the same path. The eigenvector provides only the

atomic movements at the onset of failure. Subsequent

moves involves a cascade of rearrangements that are not

predictable from the initial eigenvector.

We repeated the simulations of Figures 4 and 5 for

other system sizes (see Figure 6). The modes of fail-

ure always involve blocks or bands of collective dis-
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Fig. 4 Failure of the toy model with and without flaw un-
der a loading in the y direction in the athermal limit. (top)
The smallest eigenvalue of the Hessian matrix falls to zero
precisely when failure initiates. Failure initiation is therefore
an instability at the atomic scale irrespective of stress con-
centration. (bottom) The associated eigenvalue provides the
movements of the atoms at the onset of failure (mode of fail-
ure). The arrows provide the contribution of each atom to the
eigenvector. For sake of clarity, color is used to distinguish the
direction of the arrows and shading/darkness stands for the
magnitude. Stress concentration strongly influences the mode
of failure.

placements. Interestingly, the mode of failure of the toy

model changes from blocks to bands when the dimen-

sions of the system breaks the diagonal symmetry. The

modes with blocks for the toy model exhibits the diag-

onal symmetry, and considering systems without this

symmetry impedes the occurrence of such modes. For

graphene, no impact of the diagonal symmetry could be

identified, since the original mode has no diagonal sym-

metry. More generally, the precise nature of the mode of

failure is obviously related to the boundary conditions

of the system which constraints physicals symmetry. In

this work, we study 2D periodic systems only, which

imposes two directions of symmetry (here, vertical and

horizontal). Hence, any mode of failure that spans over
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Fig. 5 Failure of pristine graphene with and without flaw
under a loading in the zigzag direction in the athermal limit.

the entire structure has to respect these symmetries. In

the general case, the mode of failure of flawless systems

is expected to exhibit collective movements of the atoms

arranged in a field that respect the specific boundary

conditions of the problem (e.g., blocks/bands for peri-

odic systems). Note, however, that the precise nature

of the mode of failure has no effect on the strength of

the material, i.e., on the criterion of mechanical failure.

Regarding systems with flaw, one always gets localized

mode of failure near the flaw, irrespective of the system

size or periodicity.

Spectral analysis of the Hessian matrix points to

another important effect of stress concentration (Fig.

7): flawless systems exhibit clearly two populations of

modes (small and large eigenvalues separated by 2 to

3 orders of magnitudes), whereas flawed systems ex-

hibit only the population with large eigenvalues and

very few modes with small eigenvalues. This suggests

a high degeneracy of the mode of failure in absence
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 6 Modes of failure for different system dimensions: (a) and (b) toy model with diagonal symmetry, (c) and (d) toy model
without diagonal symmetry, (e) and (g) graphene with diagonal sysmetry, (f) graphene without diagonal symmetry.

of stress concentration, but little degeneracy for high

stress concentrations. Note that this is not a strict de-

generacy (eigenvalues are not equal). The high degener-

acy in absence of stress concentration is to be attributed

to the perfect physical symmetry of the mono-crystal,

whereas the presence of a flaw breaks the symmetry

and thus suppresses the degeneracy. Degeneracy quan-

tifies the number of different paths to failure. At finite

temperature, the number of transition paths to failure

has an impact on the probability of failure. The scal-

ing at finite temperature observed in Brochard et al

(2018) for the toy model loaded in y suggests that the

number of transition states is proportional to the num-

ber of atoms in absence of stress concentration, and is

proportional to the number of cracks under high stress

concentrations.

To quantify degeneracy, we estimated the number

of modes with eigenvalue below a threshold that sepa-

rates the two populations (dashed line in Fig. 7 left).

We display in Figure 7 (right) how this quantity scales

with the system size. For flawless systems, we system-

atically find a linear scaling with the number of atoms.

But the prefactor strongly depends on the loading direc-

tion and on the material. In contrast, for systems with

flaws, we find a linear scaling with the number of flaws.

This scaling is obtained by considering multiple iden-

tical periodic flaws within the same periodic box (see

case with 4 flaws in Figure 3). Doing so we increase the

number of transition paths to failure proportionally to

the number of flaws, hence the linear scaling with the

number of flaws. The scalings for the toy model are very

accurate because the two populations of modes are well

separated. In particular we find precisely one mode per

flaw. The case of graphene is more questionable because
the two populations are not so well separated. We find

about 12 modes per flaw, but this seems a lot, since one

would expected only very few transition paths to fail-

ure for each flaw. Anyway, stress concentration dramat-

ically decreases the degeneracy of the mode of failure

to a few modes per flaw.

To investigate the case of intermediate stress con-

centrations, we consider the three flaws of Figure 8:

a crack (maximum stress concentration), a half-notch

(intermediate) and a notch (smallest). In this work, it

is not possible to consider any arbitrary stress concen-

tration, because a flaw must comply with the crystal-

lography of the mono-crystal. In Figure 8, we display

the loading curves (stress and minimum eigenvalue),

mode of failure, and statistical distribution of eigenval-

ues for the three systems. The differences between the

three situations are not very pronounced. Yet, one can

make the following observations: stress concentration

enhances the variations of the minimum eigenvalue near

failure, and favors higher eigenvalues in the statistical
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distribution. The modes of failure are all very localized

and the degeneracy of the mode of failure is unaffected

(number of eigenvalues below 10−2). For the crack and

half-notch cases, the loading curves near failure exhibit

a softening branch (see small charts in Figure 8). We

verified that this softening is not the onset of failure by

performing an unloading (dotted lines) which proves

that the behavior is perfectly reversible. This softening

is due to the most stretched bonds at the tip which has

entered the softening branch of the bond force (see Fig.

2) (the most stretched bonds are highlighted in black

in Figure 8). The failure occurs after some softening

precisely when the smallest eigenvalue of the Hessian

reaches 0. The notch and half notch configurations are

typically cases where macroscopic theory faces contra-

dictions between stress and energy criteria. Here, we

confirm that instability does capture failure initiation,

even when peculiar mechanical non linearities arise such

as the softening discussed above.

4 Discussion

The results of this study identify instability as the ele-

mentary mechanism of brittle failure in the athermal

limit, irrespective of stress concentration. But stress

concentration strongly impact the mode of instability

(localized or not) and its degeneracy (highly degener-

ated or not). The mode of instability provides the direc-

tion of atomic moves at the onset of failure, but subse-

quent evolution of the system is inherently out of equi-

librium. The system can bifurcate into a wide variety

of configurations and does not follow the path of min-

imum energy in general. Thus, actual cracking cannot

be predicted from the mode of instability. For instance,

the actual cracking of graphene is displayed in Figure

9). It is obtained by low temperature molecular dy-

namics as in Brochard et al (2018). Significant kinetic

energy is released as failure proceeds, which dominates

the dynamics of cracking since this kinetic energy much

exceeds that provided by the thermostat.
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Fig. 9 Actual cracking does not follow the mode of instability at initiation. After the transition state is reached, the evolution
of the system follows a dynamics out of equilibrium, and not necessarily the path of minimum energy.
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With respect to the macroscopic description of fail-

ure initiation, this study suggests that an appropriate

description should refer to instability as a general cri-

terion for failure. And the difference between energy-

and stress-driven failures originates from the degree of

localization of the associated mode of instability:

– In absence of stress concentration, the strain and

stress fields are homogeneous and the mode of in-

stability is collective. Therefore, the instability cor-

responds to an instability with respect to the homo-

geneous strain tensor. It corresponds to a singular

stiffness tensor (det (C) = 0), and since the stiffness

tensor is a function of stress, this is a stress-driven

failure.

– Under high stress concentration, the strain and stress

fields exhibit a singularity at the point of concentra-

tion. Yet, singular fields are an idealization of real-

ity and there exists a minimum length scale below

which this idealization collapses. The characteristic

length lc = (Kc/σc)
2

is an estimate of this minimum

scale (4-5 atoms for graphene). lc is the scale of lo-

calization of the mode of instability at failure ini-

tiation. Accordingly, from a continuum perspective,

instability under high stress concentration is charac-

terized by a singular stiffness tensor over a volume of

length scale lc. Instability is therefore analogous to

a stress criterion over a length lc, which is the basis

of the non local theory (Novozhilov, 1969). Because

of the r−1/2 stress singularity at crack tips, a stress

criterion over a length lc is equivalent to a criterion

on toughness, and therefore, we recover an energy-

driven failure .

A criterion based on instability only provides the

onset of failure. A small crack nucleus appears (not the

size of the mode of instability), and subsequent evolu-

tion follows a propagation dynamics distinct from the

mode of instability. Accordingly, one should clearly dis-

tinguish between the onset of failure (failure initiation)

and the cracking (failure propagation). In this work, we

find that failure initiation is captured by instability for

a perfectly brittle material, i.e., with no irreversibili-

ties prior to failure. Irreversibilities such as damage or

plasticity introduce additional instabilities (e.g., micro-

crack nucleations, dislocation formations and moves),

and therefore macroscopic failure initiation is no more

associated to the first instability. Instead, a series of

instabilities (cascade of irreversibilities) is expected to

occur before the macroscopic failure.

Another important finding is that stress concentra-

tion impacts the degeneracy of the mode of failure. This

is of importance at finite temperature, since degener-

acy quantifies the number of transition states to failure.

The mode of failure is highly degenerated in absence of

stress concentration, but very little degenerated in pres-

ence of a crack. Of course, degeneracy is expected to be

closely related to the physical symmetries of the system,

which is broken by the presence of a flaw. As soon as a

little stress concentration is introduced, degeneracy is

immediately removed and the transition paths to fail-

ure exhibit different energies. Only the path of smallest

energy is reached in the athermal limit, but at finite

temperature, competition between the different paths

is significant if the differences between transition path

energies are of the order of the thermal agitation en-

ergy. As stress concentration is increased, the difference

of energies are exacerbated and the system is expected

to fail via the transition path of minimum energy only.

In a previous work on failure at finite temperature

(Brochard et al, 2018), we show that strength and tough-

ness of mono-crystals follow a universal scaling law in

temperature, loading rate and system size:

Kc

Kc (0K)
or

σc
σc (0K)

= f

(
T

T0
ln

(
NTS
ε̇/ε̇0

))
(3)

where T0 and ε̇0 are constants and f is a function that

depends on the material. For pristine graphene, f (x) =

1 − x, which is the well-known Zhurkov’s law, predict-

ing the strength of many brittle materials at low and

moderate temperatures (Zhurkov, 1984). Zhurkov’s law

disregards size effects, but it appears that the scalings

of strength and toughness differ precisely on this as-

pect. The dependence to system size is accounted for

through the quantity NTS which refers to the number

of transition states. In Brochard et al (2018), by an-

alyzing the scaling for the toy model loaded in y, we

infer that NTS is proportional to the number of atoms

for strength, and NTS is proportional to the number

of cracks for the toughness. The number of transition

states NTS is expected to relate directly to the degener-

acy in the athermal limit. The scaling of degeneracy in

Fig. 7 (right) proves that the scaling with size we infer

in our previous study is correct. Investigating degener-

acy shows that the prefactors of these scalings depend

on the material and loading direction. But the exponent

is systematically 1 (linear), which confirms the general

scaling found at finite temperature. It is interesting to

note that, with this determination of NTS , all the con-

stants in the scaling law (3), expect the characteristic

time scale (1/ε̇0), can be established from the athermal

limit. The values of T0 and the expression of f can be

obtained by estimating the energy barrier to transition

states (see the case of pristine graphene in Brochard

et al (2018)).

Finally, one may wonder whether existing contin-

uum theories of brittle failure initiation are consistent
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with our atomistic description. A first issue is that most

existing theories do not clearly distinguish the initia-

tion mechanism from the physical cracking. Here we

find that initiation follows a mode of instability that is

related to the physical cracking only through the crack

nucleus that form at the onset of failure. Phase Field

(PF), Cohezive Zone Model (CZM), and Finite Frac-

ture Mechanics (FFM) theories do elaborate the failure

criterion on the physical crack that is expected to form.

Non Local (NL) theory is the only theory in which the

initiation mechanism may be distinct from the subse-

quent cracking. An other important aspect is that the

volume involved in failure initiation varies widely de-

pending on stress concentration. PF, CZM and FFM

theories also involve different volumes depending on

stress concentration, but this is not the case of NL the-

ory. Accordingly, none of the existing theories is fully

consistent with the atomistic description. A require-

ment that guided the formulation of existing contin-

uum theories, is the introduction of the characteristic

length lc = (Kc/σc)
2
. Indeed, usual continuum mechan-

ics based on stress and strains does not incorporate any

internal length, so it has to be complemented to cap-

ture at the same time stress driven failure and energy

driven failure. Our results suggest that the requirement

should be to capture atomic instabilities and not just

introducing an internal length. Higher order gradient

theories have been used successfully to capture instabil-

ities and strain localization for systems without stress

concentration (Triantafyllidis and Bardenhagen, 1993;

Bardenhagen and Triantafyllidis, 1994). The challenge

is to find an enriched formulation that would capture

instabilities for any stress concentration. This is an ob-

jective for future research.

5 Conclusion

In this study, we investigated the elementary mecha-

nisms of brittle failure initiation in mono-crystals by

molecular simulation in the athermal limit. We find

that:

– Failure initiates as an instability, irrespective of the

stress concentration, which suggests that a universal

macroscopic criterion should be based on instability

analysis.

– Stress concentration has a strong impact on the

mode of failure, in particular its spatial extent (very

localized for high stress concentration, distributed

throughout the system in absence of stress concen-

tration), and its degeneracy (degeneracy related to

the number of flaws for high stress concentrations,

and related to the number of atoms in absence of

stress concentration).

– The degeneracy of the mode of failure quantifies

the number of different paths to failure, which can

be related to the scaling of strength and toughness

at finite temperature. In particular, it explains why

strength of mono-crystals scales with the number of

atoms, whereas toughness scales with the number of

cracks.

– None of the existing theories of brittle failure initi-

ation is fully consistent with the atomistic descrip-

tion (initiation not related to subsequent cracking

and volume involved varies with stress concentra-

tion). Existing formulations primarily aim at intro-

ducing the characteristic length lc = (Kc/σc)
2

in

the continuum mechanics. A fully consistent theory

should rather aim at capturing the atomic insta-

bilities. This has been done successfully in absence

of stress concentration (e.g., higher order gradient

theories), but a theory adapted to any stress con-

centration is still to be proposed.

Acknowledgements The authors are grateful to E. Can-
ces, F. Legoll, T. Lelivre, and G. Stoltz for stimulating dis-
cussions and constant encouragements. We also gratefully ac-
knowledge funding from the Labex MMCD provided by the
national program Investments for the Future of the French
National Research Agency (ANR-11-LABX-022-01)

References

Arroyo M, Belytschko T (2004) Finite

crystal elasticity of carbon nanotubes

based on the exponential Cauchy-Born

rule. Physical Review B 69(11):115,415,

DOI 10.1103/PhysRevB.69.115415, URL

https://link.aps.org/doi/10.1103/PhysRevB.69.115415

Ashby MF (2005) Materials Selection in Mechanical

Design, 3rd edn. Butterworth-Heinemann (Elsevier,

Inc.)

Bardenhagen S, Triantafyllidis N (1994) Deriva-

tion of higher order gradient continuum the-

ories in 2,3-d non-linear elasticity from pe-

riodic lattice models. Journal of the Me-

chanics and Physics of Solids 42(1):111–

139, DOI 10.1016/0022-5096(94)90051-5, URL

http://linkinghub.elsevier.com/retrieve/pii/0022509694900515

Belytschko T, Xiao SP, Schatz GC, Ruoff RS

(2002) Atomistic simulations of nanotube

fracture. Physical Review B 65(23):235,430,

DOI 10.1103/PhysRevB.65.235430, URL

http://link.aps.org/doi/10.1103/PhysRevB.65.235430



Stress concentration and instabilities in the atomistic process of brittle failure initiation 13

Brenner DW (1990) Empirical potential for

hydrocarbons for use in simulating the

chemical vapor deposition of diamond

films. Physical Review B 42(15):9458–9471,

DOI 10.1103/PhysRevB.46.1948.2, URL

http://link.aps.org/doi/10.1103/PhysRevB.42.9458

Brenner DW, Shenderova OA, Harrison JA, Stuart SJ,

Ni B, Sinnott SB (2002) A second-generation reactive

empirical bond order (REBO) potential energy ex-

pression for hydrocarbons. Journal of Physics: Con-

densed Matter 14(4):783–802, DOI 10.1088/0953-

8984/14/4/312, URL http://stacks.iop.org/0953-

8984/14/i=4/a=312?key=crossref.563ba867ec801ce55fc736b3f8968942

Brochard L, Tejada IG, Sab K (2016) From

yield to fracture, failure initiation captured

by molecular simulation. Journal of the

Mechanics and Physics of Solids 95:632–

646, DOI 10.1016/j.jmps.2016.05.005, URL

http://www.sciencedirect.com/science/article/pii/S0022509616300424

http://linkinghub.elsevier.com/retrieve/pii/S0022509616300424

Brochard L, Souguir S, Sab K (2018) Scaling

of brittle failure: strength versus toughness.

International Journal of Fracture 210(1-2):153–

166, DOI 10.1007/s10704-018-0268-9, URL

http://link.springer.com/10.1007/s10704-018-0268-9

Dailidonis V, Ilyin V, Mishra P, Procaccia I (2015)

Consequences of disorder on the stability of amor-

phous solids. Physical Review B 92(9):094,105,

DOI 10.1103/PhysRevB.92.094105, URL

https://link.aps.org/doi/10.1103/PhysRevB.92.094105,

1507.01207

Delph T, Zimmerman J, Rickman J, Kunz J (2009)

A local instability criterion for solid-state defects.

Journal of the Mechanics and Physics of Solids

57(1):67–75, DOI 10.1016/j.jmps.2008.10.005, URL

https://linkinghub.elsevier.com/retrieve/pii/S0022509608001749

Dewapriya MAN, Rajapakse RKND, Phani AS

(2014) Atomistic and continuum modelling of

temperature-dependent fracture of graphene.

International Journal of Fracture 187(2):199–

212, DOI 10.1007/s10704-014-9931-y, URL

http://link.springer.com/10.1007/s10704-014-9931-y

Dugdale D (1960) Yielding of steel sheets containing

slits. Journal of the Mechanics and Physics of Solids

8(2):100–104, DOI 10.1016/0022-5096(60)90013-2

Elliott RS, Shaw JA, Triantafyllidis N (2006)

Stability of crystalline solidsII: Application to

temperature-induced martensitic phase trans-

formations in a bi-atomic crystal. Journal of

the Mechanics and Physics of Solids 54(1):193–

232, DOI 10.1016/j.jmps.2005.07.008, URL

https://linkinghub.elsevier.com/retrieve/pii/S002250960500147X

Geim AK, Novoselov KS (2007) The rise

of graphene. Nature Materials 6(3):183–

191, DOI 10.1038/nmat1849, URL

http://www.nature.com/articles/nmat1849, 0702595

Han J, Sohn D, Woo W, Kim DK (2017) Molec-

ular dynamics study of fracture toughness and

trans-intergranular transition in bi-crystalline

graphene. Computational Materials Science 129:323–

331, DOI 10.1016/j.commatsci.2016.12.023, URL

http://dx.doi.org/10.1016/j.commatsci.2016.12.023

https://linkinghub.elsevier.com/retrieve/pii/S0927025616306462

Hsieh C, Thomson R (1973) Lattice theory of

fracture and crack creep. Journal of Applied

Physics 44(5):2051–2063, DOI 10.1063/1.1662512,

URL http://aip.scitation.org/doi/10.1063/1.1662512

Jensen BD, Wise KE, Odegard GM (2015) Sim-

ulation of the Elastic and Ultimate Tensile

Properties of Diamond, Graphene, Carbon

Nanotubes, and Amorphous Carbon Using a

Revised ReaxFF Parametrization. The Jour-

nal of Physical Chemistry A 119(37):9710–

9721, DOI 10.1021/acs.jpca.5b05889, URL

http://pubs.acs.org/doi/10.1021/acs.jpca.5b05889

Kitamura T, Umeno Y, Tsuji N (2004) Analytical

evaluation of unstable deformation criterion of

atomic structure and its application to nanostruc-

ture. Computational Materials Science 29(4):499–

510, DOI 10.1016/j.commatsci.2003.12.004, URL

https://linkinghub.elsevier.com/retrieve/pii/S0927025604000059

Lee C, Wei X, Kysar JW, Hone J (2008) Measurement

of the Elastic Properties and Intrinsic Strength

of Monolayer Graphene. Science 321(5887):385–

388, DOI 10.1126/science.1157996, URL

http://www.ncbi.nlm.nih.gov/pubmed/18635798

http://www.sciencemag.org/cgi/doi/10.1126/science.1157996,

47749150628

Leguillon D (2002) Strength or toughness? A criterion

for crack onset at a notch. European Journal of Me-

chanics, A/Solids 21(1):61–72, DOI 10.1016/S0997-

7538(01)01184-6

Li X (2013) A bifurcation study of crack initia-

tion and kinking. The European Physical Jour-

nal B 86(6):258, DOI 10.1140/epjb/e2013-40145-9,

URL http://link.springer.com/10.1140/epjb/e2013-

40145-9

Liu F, Ming P, Li J (2007) Ab initio calculation of ideal

strength and phonon instability of graphene un-

der tension. Physical Review B 76(6):064,120,

DOI 10.1103/PhysRevB.76.064120, URL

http://link.aps.org/doi/10.1103/PhysRevB.76.064120

Lu Q, Huang R (2009) Nonlinear mechanics of

single-atomic-layer graphene sheets. Interna-

tional Journal of Applied Mechanics 01(03):443–



14 Sabri Souguir et al.

467, DOI 10.1142/S1758825109000228, URL

http://www.worldscientific.com/doi/abs/10.1142/S1758825109000228

Lu Q, Gao W, Huang R (2011) Atomistic sim-

ulation and continuum modeling of graphene

nanoribbons under uniaxial tension. Mod-

elling and Simulation in Materials Science and

Engineering 19(5):054,006, DOI 10.1088/0965-

0393/19/5/054006, URL http://stacks.iop.org/0965-

0393/19/i=5/a=054006?key=crossref.f60aadba1ef1fccbb3ff4992dbe1c69b
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