
HAL Id: hal-03170357
https://hal.science/hal-03170357

Submitted on 17 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalization of Robot Skills with Descriptive and
Operational Models

Charles Lesire, David Doose, Christophe Grand

To cite this version:
Charles Lesire, David Doose, Christophe Grand. Formalization of Robot Skills with Descriptive and
Operational Models. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Oct 2020, Las Vegas, United States. pp.7227-7232, �10.1109/IROS45743.2020.9340698�. �hal-
03170357�

https://hal.science/hal-03170357
https://hal.archives-ouvertes.fr

Abstract— In this paper, we propose a formal language to
specify robot skills, i.e. the elementary behaviours or functions
provided by the robot platform in order to perform an
autonomous mission. The advantage of the language we propose
is that it integrates a wide range of elements that allows to
define and provide automatic translation both to operational
models, used online to control the skill execution, and descriptive
models, allowing to reason about the expected skill execution,
and then apply automated planning or model-checking taking
skill models into account.

I. INTRODUCTION

The use of intelligent and autonomous robotic systems
in real conditions will inevitably need these systems to be
programmed by an operator, to customize a service robot
depending on current exhibitions in a museum, to specify
which reaction the robot should adapt to face hazards in a
surveillance mission in a defense context or to collaborate
with other robots or humans for manufacturing tasks. Pro-
gramming robots for achieving such tasks is known as Task-
level programming [1]. It consists of assembling elementary
behaviours, or skills, to design the complete task or mission
of the robotic system. This programming approach is largely
developed in manufacturing applications [2], where skill
sequences are manually programmed or learned from gesture
recognition. When considering more complex missions, e.g.,
search and rescue or surveillance in outdoor fields, it is nec-
essary to integrate more decision-making capabilities into the
robot controllers, and use of more advanced reasoning about
these capabilities, for instance by performing some task-level
automated planning, or some verification of properties by
model-checking.

Applying such methods requires skill models in order to
reason about the capabilities of robots. Such models must
integrate different elements depending on the context on
which they are used [3]: Descriptive skill models define what
a skill is doing, i.e. predict its behaviour; such models are
generally used for automated planning or model-checking;
examples are PDDL [4] for planning, or Timed Automata,
as used in UPPAAL [5]. Operational skill models define
how a skill must be executed, e.g., defining its input/output
interface; such models are generally used online to actually
manage the execution of skills; examples are task program-
ming languages [6], [7] or execution control formalisms (e.g.,
Petri nets [8] or Behavior Trees [9]). When designing a delib-
erative architecture, that integrates both long-term planning
of robot activities, and online execution of behaviours, or
when performing verification based on model-checking, the

1Authors are with ONERA/DTIS, University of Toulouse, 31400
Toulouse, France firstname.lastname@onera.fr

consistency between descriptive and operational models is of
concern.

In this paper, we propose a formal definition of skills,
from which we can derive both descriptive and operational
models of these skills, then ensuring the consistency between
these models by the use of this common skill definition.
The models and tools we propose in this paper can typ-
ically be applied when one has developed the functional
architecture of its robot, including control algorithms, sensor
data processing, or other functions, typically in a ROS-based
architecture. The work proposed in this paper then allows to
define a general interface to the several skills implemented
by this functional layer, and to provide models of these skills
to allow automated reasoning.

After discussing some related works on skill modeling
(Sec. II), we propose the definition of a skill (Sec. III),
and we show which kind of model we can derive from
this definition, along with some tools we have defined to
automate the construction of such models (Sec. IV). We
illustrate these tools and models in a simple case study.

II. RELATED WORKS

Existing works related to skill modeling and management
can be categorized into (1) the ones that use descriptive
skill models online (for execution), (2) the ones that
define planning techniques on operational models or build
descriptive models from operational models, and (3) the
ones that model the functional layers of robots. These three
kind of contributions are discussed here-after.

In the field of robotic manufacturing, [10] use descriptive
models of skills, i.e. models that include input parameters,
preconditions, and predictive effects, to plan skills sequences.
They translate skills modelled using an OWL ontology into
PDDL files. They do not consider possible failures or side-
effects of skills (like consumption of resources). In [11], they
also define skill monitors that check online the preconditions
and effects of skills to detect failures. They do not provide
an operational model for skill, then programming manually
the interaction with the robot platform and limiting the
possibilities to combine skills and manage failures through
models. In [2], they extended the skill definition to
distinguish predictive effects used in descriptive models and
postconditions used online to determine the end of skill
execution. For the T-REX architecture [12], which uses
timeline-based descriptive models, [13] proposes a generic
executive to interface with robot skills, based on a generic
state machine, that can be seen as an operational model of
the skill. Yet the link between the state machine and the

Formalization of Robot Skills with Descriptive and Operational Models

Charles Lesire1 and David Doose1 and Christophe Grand1

timeline models of the T-REX architecture are not discussed.

A deliberative actor based on the refinement of operational
models has been proposed in [14]. It uses operational models
to describe decomposition and proposes a planner that uses
these operations as planning primitives. However, the actual
interface with robot functions are not modeled. Operational
models such as Behavior Trees have also been used as
a basic model for deliberation, using synthesis from a
LTL formulation [15], or hierarchical planning using an
HTN-like process [16]. The same LTL-based synthesis has
been applied to Finite State Machines in [17]. The vSTL
framework [18] also derives model-checking models from
a DSL describing operational robot programs. However,
the interaction with the robot functional layer is not really
formalized, and generally left to the developer to implement.
For instance, SMACH [19] or Behavior Trees [9] tools
largely used in the ROS ecosystem just define an interface
towards ROS primitives (topics, services, actions) without
formalizing the skills of the robots.

Formalization of skills has been partly addressed in some
existing works. A relational model representing the relations
between skills (or elementary behaviours) and resources and
data (provided by the robot or external) has been proposed
in [20]. This model however neither represent the behaviour
of resources, nor possible terminal modes of the skill ex-
ecutions. In [21] skills are represented with preconditions
and device resources requirements in an OWL ontology,
along with mechanisms to define synchronization of skill
execution. Again, the skill model integrates a few elements,
e.g., with no information about failure modes or rates.

Performance Level Profiles (PLP) have been proposed
in [22], as a semi-formal language (based on XML schema)
to represent modules available on a robot platform. The
module’s description is rich, including preconditions/effects,
resources, modes, and rates. Moreover, some tools are
provided to generate PDDL models or runtime monitors.
The behaviour of the modules is however not defined,
making impossible to integrate their behaviour in verification
methods or to define sound control protocols.

In this paper, we propose a rich and formal language to
represent skills, along with an internal execution model, that
tends to address all the issues discussed above. The skill
description in itself can be seen as an extension of PLP,
as it takes most of the concepts from it. However, from
this skill description, we also propose translations and tools
to derive both operational and descriptive models from this
language. In particular, we provide a direct interface towards
skill implementation, which PLP does not.

III. SKILL DEFINITION

In this section, we define the content of the Domain
Specific Language (DSL) we propose to specify robot skills.
This definition takes elements from operational models, that
describe how the execution of a skill can be controlled,

and elements from descriptive models, that describe what
the skills do. This definition takes then some inspiration
from models like PLP [22] or PDDL [4] formalisms. The
execution model corresponding to this DSL is given in the
next section. The BNF of the language is detailed on the
online documentation1.

This DSL defines at the top a SkillSet, i.e. a collection of
skills (and other related elements) declared in a common
model. A skillset is defined with a name attribute, and
contains the following elements:

1) Types: First, the types used in the model must be
declared. Each Type will be further mapped to an actual
type structure depending on the model generator used (see
Sec. IV).

2) Data: In this part of the models are defined some
Data, that can be actual data provided by the platform (robot
position, battery level), or some data internal to the model
(like a local variable). A data is defined by its name and its
type.

3) Functions: In this model, we can declare some Func-
tion. A function is only defined by a name and its parame-
ters, and will be further mapped to an implementation during
the generation process (see Sec. IV).

4) Resources: A Resource is an element managed or
provided by the robot that must be shared between skills, and
on which skill execution will depend. A resource is defined as
a state-machine, described by states and possible transitions
between these states. These transitions can be either extern,
i.e. only controlled by the functional layer of the robot, or
labeled, in which case they can be controlled by skills. Skills
will also condition their execution on the states of the several
resources.

5) Skills: A Skill is then an elementary functionality or
action provided by a robot. A skill is identified by a name,
and:

• has inputs, i.e. typed parameters needed for execution,
• uses resources; each skill can define for each resource

a required state (pre), and action taking place when the
skill starts (start), and an invariant (inv) that must hold
during execution;

• has terminal modes in which the skill can end its
execution; they are identified by a name, and can
check (post) resources states, change (effect) resources
states, or declare modifications on data (postcondition);
moreover, it is possible to define a duration, as the
nominal time taken to reach this mode;

• may have a precondition, i.e. a boolean formula based
on data/input values and possibly using functions;

• has a progress rate, indicating at which rate the
skill will send some progress feedback (in terms of
realization progress or the skill execution).

In this paper, we consider an aerial robot that must
perform, on request by an operator, go-and-track tasks
in order to go to the position of detected objects of interest,

1http://oara-architecture.gitlab.io/robot-skills/

and track these objects. To perform a go-and-track task,
the provided skills are: a takeoff skill, a goto skill, a track
skill, as well as two skills managing a safe return (gohome)
and an emergency landing (elanding).

Listing 1 presents the model of the m600 robot skillset
describing and its goto skill. The robot has a position data
representing its current position, and a time to function repre-
senting a model of the time taken to go from position a to b at
speed s. The robot has also a resource authority, with states
(1) MANUAL representing that the pilot has authority over
the robot, (2) AVAILABLE representing that the autonomous
controller has authority, and (3) USED representing that a
skill is already using the resource. The goto skill has two in-
puts, the target position and the motion speed. To execute, it
needs the resource authority to be AVAILABLE, and changes
it to USED during the skill execution. The skill has two
final modes: (1) ARRIVED, whose time to arrive is computed
from the time to function; (2) BLOCKED, occurring when
the robot encounters a problem when reaching the target
(e.g., it would have to exit the authorized flying area, which
is forbidden). This example only illustrates some of the
language elements. More complete examples are available
on the online documentation1.

Listing 1. M600 goto skill model
1 t y p e P o s i t i o n

t y p e Speed

s k i l l s e t m600 {
d a t a p o s i t i o n : P o s i t i o n

6
f u n c t i o n t i m e t o (a : P o s i t i o n , b : P o s i t i o n , s : Speed) : Number

r e s o u r c e a u t h o r i t y {
i n i t i a l AVAILABLE

11 e x t e r n AVAILABLE−> MANUAL
e x t e r n USED−> MANUAL
e x t e r n MANUAL−> AVAILABLE
t u s e : AVAILABLE−> USED
t f r e e : USED−> AVAILABLE

16 }

s k i l l go to {
p r o g r e s s =1
i n p u t {

21 t a r g e t : P o s i t i o n
speed : Speed

}
use a u t h o r i t y p r e =AVAILABLE s t a r t =USED
mode {

26 ARRIVED {
a u t h o r i t y e f f e c t =AVAILABLE
p o s t c o n d i t i o n { p o s i t i o n = t a r g e t }
d u r a t i o n = t i m e t o (p o s i t i o n , t a r g e t , speed)

}
31 BLOCKED { a u t h o r i t y e f f e c t =AVAILABLE }

}
}
}

IV. SKILL MODELS AND TOOLS

The Domain Specific Language described previously pro-
vides a means to specify the several skills of a robot, from
which we can derive several operational and descriptive
models. For operational models (Sec. IV-A), we have defined
an execution model of the skills, and we provide tools that
generate so-called skill managers, i.e., software components
responsible of activating and managing skill on the functional
layer of robots. For descriptive models (Sec. IV-B), we

provide translations from skill models to standard languages
or frameworks in order to use state-of-the-art algorithms and
tools.

A. Operational Models

The management of skill execution follows a schema,
depicted in Fig. 1, where some components are responsible
for the correct execution of skills (called Skill Managers), in
relation to resource status (managed by a so-called Resource
Manager), while other components are responsible for the
execution and control of several skills, in order to perform
a mission or implement a behavior. These controllers will
interact with skill managers through a SkillSet Interface.

Skill Manager

Skill Manager

Resource Manager

Data Manager

re
qu

es
t

re
sp

on
se

no
tif

y

SkillSet Interface
Mission

Controllers

start / interrupt

terminal state

get status

get data

Deliberative Layer Functional Layer

Fig. 1. Architecture principle using operational models

Mission Controllers (which are out of scope in this paper)
will typically use the several skill interfaces provided in the
SkillSet Interface library to select which skill to activate
depending on the mission objective, the context, events, ...

In the case of the M600 robot and its goto skill, the
resource manager would manage the authority resource,
accepting transitions from AVAILABLE to USED and
conversely from skill managers, and transitions to MANUAL
from the functional layer when the pilot takes control. The
goto skill manager would then interact with this resource
manager, and possibly the position manager giving acess to
the position data, and also manage the skill execution by
interfacing with the navigation and guidance architecture of
the M600 robot. On the controller side, a typical mission
implemented in a FSM-based controller (described further
in this paper) will use the goto interface to control the skill
execution.

1) Data Manager: a Data Manager is a component that
subscribes to the data coming from the functional layer, and
stores this data so that controllers can access it through the
skill interface library.

2) Resource Manager: the Resource Manager is the com-
ponent in the architecture that manages the state and access to
all the skillset resources. This component exposes the current
state of the resources on one hand, and on the other hand,
provides a service to change resource states by asking for
transitions of the state-machines. This service is accessed by
the skill managers (see below) to ensure the correct use of the
resources, and from the functional layer to update the state of

the resources depending on events or processing performed
by the robot.

3) Skill Managers: a Skill Manager is a component that
manages the execution of one skill (i.e., one skill model). As
one skill can be activated several times simultaneously, this
execution is described by: (1) a finite state machine (FSM)
defining the execution of one instance of the skill, and (2)
a server that manages the several execution requests of the
skill by coordinating the execution of several FSMs. The skill
instance execution FSM is depicted in Fig. 2.

Sstart

NV

CR NR

RgRI

IgT1 TN

M1 MNM1 MN
. . .

valid

¬valid

dispatch

terminate(M1)

progress

terminate(MN)interrupt

Fig. 2. FSM of a skill instance execution. Double circled states represent
terminal states. Events in bold are incoming events (from the controller).
Events in italic represent internal events of the manager generally linked to
user-specified hooks.

When starting the execution of a skill (start event), the
skill manager first validates the input parameters, by calling a
user function that typically checks state variables of the func-
tional layer. If the validation fails, the skill manager returns a
validation failure (NV state). If the validation succeeds, the
skill manager then checks the status of resources (CR state),
by requesting the resource state transition to the resource
manager. If the request fails, the skill manager returns a
resource failure (NR state). Otherwise, the skill starting is
fully validated, and the actual execution is started (dispatch
event). While the skill is running (Rg state), it periodically
reports a progress. The skill can then terminate in several
ways:

• from an interrupt request, leading to the Ig state; the
manager then waits for the completion of the interrup-
tion and then terminates (called by a user function) in
one of the skill modes;

• if the resource state is no more consistent (state invariant
evaluated to false); this situation is notified by the
resource manager, and the skill manager then terminates
with a resource interruption failure (RI);

• in a terminal mode of the skill, as defined in its skill
model; transitions to these modes are triggered by the
user-defined function, leading the skill state in one of
the Ti states, where it checks the resource postcondition

of this mode. If the postcondition holds, the final state
of the skill instance execution is Mi, otherwise the final
state is Mi.

The skill manager instantiated for the goto skill of the
M600 robot (see List. 1) has then a similar state-machine,
where the terminal states corresponding to resource failures
would mean that either the authority is not AVAILABLE
when starting the skill (leading to state NR), or that the pilot
took MANUAL control during the skill execution (leading to
state RI). Mi final states are either ARRIVED or BLOCKED.

The skill manager server then manages the incoming
execution requests and the corresponding FSM execution. If
the skill accepts several concurrent requests (depending on
its validation and resources), the server then manages the
concurrent execution of several FSMs.

To implement the skill managers, we provide tools to
generate from the skill models described earlier either a
ROS actionlib server, or a ROS2 Action server. In both
cases, the skill programmer has to fill callback functions
corresponding to the internal events of the FSM of Fig. 2
(validation, dispatch, progress, interruption) to actually
manage the execution of skills by orchestrating other
components of the robot functional layer.

4) SkillSet Interface: Mission Controllers are components
responsible for controlling the execution of skills, i.e. to
select which skill to activate, and to manage the execution
status of these skills (terminal modes) in order to perform
a mission or implement a behavior. To do so, we provide a
SkillSet Interface, implemented as a SkillSet Client Library.
Therefore, from the skill models, we provide a tool to
generate a python library giving access to the several skill, re-
source, and data managers through either direct function call,
or several common frameworks used in robotic applications
and based on discrete-event system models. In this paper,
we illustrate skill controllers integrated within the SMACH
framework.

Figure 3 shows the SMACH FSM of the general mission
controller for the go-and-track task. In this FSM, the
gray nodes are elements of the SkillSet Interface library: they
are generated from skill models as SMACH action states (i.e.,
clients of the ROS Action lib), matching the skill model
by providing as outcome all the possible terminal modes
of the skill (as defined in Fig. 2). The link between these
skill interface nodes and other internal states of the mission
controller must then be designed by the mission programmer,
by connecting outcomes of skills or internal events to other
skills or states.

The mission FSM implements the following nominal
sequence (when all skill succeed): takeoff (state TO), go to
the waypoint (GOTO), track the object until identification
(TRACK), then go home and land (GOHOME). If the authority
is taken, the pilot may either perform a manual emergency
landing, then aborting the mission; or (only if the authority
is taken during the goto skill) perform a maneuver and give

Fig. 3. SMACH FSM of the go-and-track controller

the authority back to the mission controller. If other failures
occur, the FSM goes either to the GOHOME state or the
emergency landing (EL) state depending on the mission step.

As a conclusion, we have described here the operational
models that implement the execution of robot skills, made
of a FSM-based skill managers on the functional layer, and
on skill interfaces on the deliberative layer, that allow to
integrate skill execution in the design of mission controllers.
To ease the development of these components, we provide
automated generation of resource and skill managers as ROS
nodes, and generation of skill interfaces as a client library
in several common frameworks, including SMACH.

B. Descriptive Models

From the skill models presented in Sec. III, we propose
translation to descriptive models in order to perform on one
hand automated planning, and on the other hand verification.

1) Automated Planning: Automated planning is a bunch
of methods that compute action plans in order to achieve
high-level objectives. Algorithms reasoning on state-action
models mainly use the PDDL language [4] to model actions.

We then propose an automatic translation of skill models
to PDDL domains. A PDDL domain defines some types,
predicates or functions, and actions. To be as close as
possible to the modeling level of skills, we consider a
PDDL extension with durative actions (then integrating skill
duration), and conditional effects. The translation of types
and functions is straight-forward. Predicates correspond to
an evaluation of the data of each robot as well as the state
of its resources. Each robot skill is then translated into a

durative action, integrating the management of resources in
conditions and effects. As PDDL models are generally used
to compute nominal plan, the PDDL generators accept to use
only one terminal mode of the skill as its nominal mode.
Listing 2 shows the PDDL description of the goto skill.

Listing 2. PDDL translation of the goto skill
1 (: d u r a t i v e−a c t i o n M600 goto

: p a r a m e t e r s (
? r − M600Robot
? t a r g e t − P o s i t i o n
? speed − Speed

6 ? p o s i t i o n − P o s i t i o n
)
: d u r a t i o n (= ? d u r a t i o n (t i m e t o ? r ? p o s i t i o n ? t a r g e t ? speed))
: c o n d i t i o n (and

(a t s t a r t (M 6 0 0 p o s i t i o n ? r ? p o s i t i o n))
11 (a t s t a r t (M600 authority AVAILABLE ? r))

)
: e f f e c t (and

(a t s t a r t (n o t (M600 authority AVAILABLE ? r)))
(a t s t a r t (M600 author i ty USED ? r))

16 (a t end (n o t (M600 author i ty USED ? r)))
(a t end (M600 authority AVAILABLE ? r))
(a t s t a r t (n o t (M 6 0 0 p o s i t i o n ? r ? p o s i t i o n)))
(a t end (M 6 0 0 p o s i t i o n ? r ? t a r g e t))

)
21)

The PDDL problem to solve, i.e. the specific instance,
cannot be generated from skill models, as it mainly relies on
the environment in which the skills will be executed. In this
example, such an environment model integrates the initial
position of the M600 robot, the definition of the possible
positions to reach, and the time to function associated with
them, as well as the final position to reach.

In our scenario, instead of considering that the
go-and-track task would consist in only one goto, we
have integrated automated planning in order to compute
the sequence of goto to reach the position of the object
of interest, based on a navigation graph whose edges
are weighted according to the time to function. We
have then filled the PDDL problem from this graph, and
used the Optic planner [23] to compute the sequence of goto.

2) Verification: Model-based description of skills allows
using this model to verify that some desirable properties
are satisfied by the model. From the models of robot skills,
described using the DSL presented in Sec. III, we propose
to generate state-machine models of skill execution, and
translate these models so that they can be read by the
NuSMV model-checker [24]. In order to perform some
verification on the mission model, we also need to include
in the NuSMV model: (1) a model of the mission controller,
that represents the FSM of the mission, and (2) a model of
the environment, also in the form of a FSM. In the case
of the go-and-track task, we then model the controller
FSM defined in SMACH (Fig. 3), as well as a model of
the actions of the pilot on the authority resource. We then
obtain a complete analyzable model including a detailed
formalization of skill execution directly generated from the
skill specification.

For the go-and-track task controller we have then
been able to check the following LTL/CTL formulas:

a) The final success state is reachable:

EF succeeded (1)

This property holds in the analysed model.
b) If there is no skill failure and the pilot does not take

control, then the mission succeeds:

G[¬skillfailure ∧ ¬manual] → F succeeded (2)

where skill failure is the disjunction of the failure modes
of every skill, and manual the MANUAL state of the
authority resource. This property holds.

c) If the pilot does not take control, the mission does
not fail:

G[¬manual] → F[succeeded ∨ aborted] (3)

This property does not hold, and NuSMV returns a counter-
example where the emergency landing fails, leading to a
failure of the mission. We can check that the failure of the
emergency landing is then the only case leading to failure
with the LTL formula:

(G[¬manual]∧G[¬ELfailure]) → F[succeeded∨aborted] (4)

which holds.
d) If there is no other failure than the authority taken

by the pilot, then either the pilot ends the mission, or the
mission succeeds:

G[¬skillfailure ∧ ¬skillNV] → F[succeeded ∨ abortedM] (5)

where abortedM is aborted via the MANUAL ABORT state.
This property does not hold, and the provided counter-
example consists in an infinite trace where the pilot takes
control during the goto and returns control to the mission
controller infinitely. We remove such situation with:

G[¬skillfailure ∧ ¬skillNV ∧ ¬G[Fmanual]]

→ F[succeeded ∨ abortedM]
(6)

which holds.

V. CONCLUSION

In this paper, we have proposed a formal specific language
to specify robot skills. This language integrates a wide set of
elements, that allow to derive several domain-specific models
including operational models used for online execution, and
descriptive models used for reasoning.

Regarding operational models, we have presented the
manager architecture principle we propose, and the formal
operational models built on a FSM on the manager side, and
on an interface client library on the controller side.

Regarding descriptive models, we have presented on one
hand the PDDL translation that allows to compute skill
composition using temporal planning algorithms, and the use
of skill models as NuSMV state machines in order to perform
model-checking of mission properties that integrates models
of skills and resources.

The clear advantage of the approach we have proposed is
to automatically derive, from a common and formal specifi-
cation of skills both the models used for online execution of
these skills and the models used for automated planning or

model-checking. This ensures that the descriptive models are
consistent with what is actually executed. The definition of
the language and some of the generation tools are available
on:
https://oara-architecture.gitlab.io/robot_skills

REFERENCES

[1] T. Lozano-Pérez, “Robot programming,” Proceedings of the IEEE,
vol. 71, pp. 821–841, 1983.

[2] M. R. Pedersen, L. Nalpantidis, R. S. Andersen, C. Schou, S. Bogh,
V. Krüger, and O. Madsen, “Robot skills for manufacturing: From
concept to industrial deployment,” Robotics and Computer-Integrated
Manufacturing, vol. 37, pp. 282 – 291, 2016.

[3] M. Ghallab, D. Nau, and P. Traverso, Automated Planning and Acting.
Cambridge University Press, 2016.

[4] M. Fox and D. Long, “PDDL2.1: An Extension to PDDL for Express-
ing Temporal Planning Domains,” JAIR, vol. 20, pp. 61–124, 2003.

[5] A. David, G. Behrmann, K. G. Larsen, and W. Yi, “Unification &
Sharing in Timed Automata Verification,” in SPIN, Portland, OR,
USA, 2003.

[6] V. Verma, T. Estlin, A. Jonsson, C. Pasareanu, R. Simmons, and
K. Tso, “Plan Execution Interchange Language (PLEXIL) for Ex-
ecutable Plans and Command Sequences,” in i-SAIRAS, Munich,
Germany, 2005.

[7] R. Simmons and D. Apfelbaum, “A Task Description Language for
Robot Control,” in IROS, Victoria, BC, Canada, 1998.

[8] C. Lesire and F. Pommereau, “ASPiC: An Acting System Based on
Skill Petri Net Composition,” in IROS, Madrid, Spain, 2018.

[9] A. Marzinotto, M. Colledanchise, C. Smith, and P. Ögren, “Towards
a Unified Behavior Trees Framework for Robot Control,” in ICRA,
Hong Kong, China, 2014.

[10] F. Rovida and V. Krüger, “Design and development of a software
architecture for autonomous mobile manipulators in industrial envi-
ronments,” in ICIT, Singapore, 2015.

[11] M. R. Pedersen and V. Krüger, “Automated Planning of Industrial
Logistics on a Skill-equipped Robot,” in IROS Workshop on Task Plan-
ning for Intelligent Robots in Service and Manufacturing, Hamburg,
Germany, 2015.

[12] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and
R. McEwen, “A deliberative architecture for AUV control,” in ICRA,
Pasadena, CA, USA, 2008.

[13] F. Ropero, P. Muñoz, and M. Moreno, “A Versatile Executive Based
on T-REX for Any Robotic Domain,” in SGAI, Cambridge, UK, 2018.

[14] S. Patra, M. Ghallab, D. Nau, and P. Traverso, “Acting and Planning
Using Operational Models,” in AAAI, Honolulu, HI, USA, 2019.

[15] M. Colledanchise, R. M. Murray, and P. Ögren, “Synthesis of correct-
by-construction behavior trees,” in IROS, Vancouver, Canada, 2017.

[16] F. Rovida, B. Grossmann, and V. Krüger, “Extended behavior trees
for quick definition of flexible robotic tasks,” in IROS, Vancouver,
Canada, 2017.

[17] S. Maniatopoulos, P. Schillinger, V. Pong, D. C. Conner, and H. Kress-
Gazit, “Reactive high-level behavior synthesis for an Atlas humanoid
robot,” in ICRA, Stockholm, Sweden, 2016.

[18] C. Heinzemann and R. Lange, “vTSL - A Formally Verifiable DSL
for Specifying Robot Tasks,” in IROS, Madrid, Spain, 2018.

[19] J. Bohren and S. Cousins, “The SMACH High-Level Executive,” IEEE
RA-M, vol. 17, no. 4, pp. 18–20, 2010.

[20] L. Pitonakova, R. Crowder, and S. Bullock, “Behaviour-data relations
modelling language for multi-robot control algorithms,” in IROS,
Vancouver, BC, Canada, 2017.

[21] E. A. Topp, M. Stenmark, A. Ganslandt, A. Svensson, M. Haage,
and J. Malec, “Ontology-based knowledge representation for increased
skill reusability in industrial robots,” in IROS, Madrid, Spain, 2018.

[22] R. I. Brafman, M. Bar-Sinai, and M. Ashkenazi, “Performance level
profiles: A formal language for describing the expected performance
of functional modules,” in IROS, Daejeon, South Korea, 2016.

[23] J. Benton, A. Coles, and A. Coles, “Temporal planning with prefer-
ences and time-dependent continuous costs,” in ICAPS, Atibaia, São
Paulo, Brazil, 2012.

[24] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri, “NuSMV: A
New Symbolic Model Verifier,” in CAV, Trento, Italy, 1999.

