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Abstract

In this paper, we attempt to reproduce the results obtained by Sovacool et al. in their recent
paper that focuses on the differences in carbon emissions reduction between countries pursuing
renewable electricity versus nuclear power. We have found several flaws in the models and the
statistical analysis performed theirein, notably the correlations performed between the fractions
of renewable power and of nuclear power and greenhouse gas emissions per capita and the lack of
consideration for natural bias between the variables examined.

1 Introduction

Lowering Greenhouse Gases (GHG) emissions, foremost amongst which are carbon dioxide emis-
sions, has been established as a priority in order to mitigate the effects of anthropogenic climate
change. While it is clear that abandoning fossil fuels is imperative, there is still some debate about
the details of the transition to decarbonized sources of energy. As it was reported in Chapter 2 of
the 2018 IPCC report [14], the role of nuclear energy increases along most pathways to decarbona-
tion, although the variance in the share of nuclear energy is quite large across the spectrum of the
different models and paths considered in the literature [11, 13]. For instance, there are scenarios of
100% renewable energy which have been considered by some authors [6, 10], although the validity of
the assumptions of these high-renewable models have been contested [5]. By contrast, there are also
examples where the role of nuclear power is greatly increased, such as in [3, 4, 9, 17].

In the context of this debate, Sovacool et al. performed a study concluding that “the implication for
electricity planning is that diverse renewables are generally proving in the real world to be significantly
more effective than nuclear power at reducing climate disruption” [16]. Fell et al. have since published
a response [7], criticizing the methodology and other aspects of their paper. This paper provides
supplementary criticism for the validity of the conclusions of [16].

Sovacool et al.’s paper relies on the statistical analysis of historical data available for different
variables across a variety of countries. In particular, it relies on establishing correlations amongst
the the share of nuclear energy (henceforth denoted N) versus renewable energy (henceforth denoted
R) as a fraction of the electrical mix and CO2eq emissions per capita, while taking Gross Domestic
Product (GDP) per capita as a confounding variable.

After attempting to reproduce the results of Sovacool et al. [16], we have found that the analysis
performed is considerably flawed both because there were mistakes in the statistical analysis, but also
because there were inconsistencies in the logic of the authors, in particular concerning

• the “crowding out” hypothesis, i.e. that renewables and nuclear power are structurally incom-
patible, so there is an anticorrelation between them;
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• the rejection of the “climate mitigation” hypothesis, which states that “the relative scale of na-
tional attachments to nuclear electricity production will vary negatively with carbon emissions,”

both which involved regressions of non-carbonated sources of electricity with GHG emissions, despite
the fact that decarbonated energy sources are not good predictors of GHG emissions. The rest of this
paper is separated as follows. First, we will give a more detailed account of each of the arguments
above. Then, we will give some complementary technical details regarding the data set and our
analysis of the complementary data provided by the authors.

2 Criticism

2.1 Fossil fuels as the real predictor and the “crowding out” hypothesis

Both renewable and nuclear energy emit little to no GHGs, but energy stemmming from fossil
fuels does. With respect to the GHG emissions per capita, the only relevant variable is the fraction of
fossil fuels in the electricity production of each country (which we will denote F ). It follows that the
fraction of nuclear energy or renewables in the electrical mix is not a good predictor of GHG emissions,
independent of statistical treatment of the data. As shown by our in depth analysis in the appendix,
the rejection of the authors of the “climate mitigation” hypothesis arises from an inadequate statistical
analysis (cf. section 2.2) and from the following fact.

The fraction of electricity produced with renewable, nuclear and fossil fuels satisfies the tautological
relation :

R+N + F = 1 . (2.1)

This relation implies that these three variables are necessarily correlated with one another. In light of
this reasoning, no matter the statistical treatment of the data the predictive power of R or N for the
GHG emissions can only stem from that of F (cf. proposition A.1 and section A.3). In particular, the
analysis of the authors of [16] on the effect of renewables and nuclear energy as well as their rejection
of the “climate mitigation” hypothesis reflects nothing other than relation 2.1.

Moreover, the reasoning behind the “crowding out” hypothesis is flawed. Indeed, the authors of [16]
motivate the proposal of the “crowding out” hypothesis as follows. Intermittent renewables require
a decentralized electrical infrastructure as soon as they occupy a significant fraction of the electricity
produced. By contrast, the optimal electrical infrastructure of non-intermittent power sources, such
as fossil fuels, hydroelectricity and nuclear power is centralized [2]. The authors then suggest that,
for these reasons, there should be an anticorrelation between R and N , which is the statement of the
so-called “crowding out” hypothesis. They back this statement by verifying that R and N are indeed
anticorrelated and use this to justify their statements.

However, this explanation is inconsistent with the data studied, since most of the electric produc-
tion considered to be “renewable” from 1990 to 2015 was hydroelectricity – with intermittent power
sources such as wind and solar contributing only negligible amounts to the statistic according to the
BP Statistical Review of World Energy (2019) [1]. Furthermore, given any three positive random
variables satisfying relation 2.1, one can always find at least two pairs of variables that are negatively
correlated (cf. proposition A.1). It is thus little to no surprise to find that R and N are negatively
correlated, but this has nothing to do with the causality relation of the “crowding out” hypothesis
suggested by Sovacool et al. It is simply the consequence of the simple mathematical relation between
the variables studied. This statement is backed by our in-depth analysis in the appendix of this paper.

2.2 Flaws in the statistical analysis and the rejection of the “climate mitigation”
hypothesis

Sovacool et al. propose two timeframes (1990-2004 and 2000-2014) along which the data is split
and averaged and justify this by claiming this is “an optimal use of the data”, because “renewable
energy figures were only recorded since the nineties.” However, from a statistical standpoint, this
treatment is incorrect and disregards any potential time series complications which may arise, such
as non-stationarity [8, 15], which we expect over this time frame. This questions the integrity of the
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averaged data used by the authors to perform their analysis, and by extension, the entire analysis
itself.

Even ignoring the time series complications which might arise from studying the complete data
set, there are also inconsistencies and flaws in the statistical analysis performed in [16]. These will be
treated in more detail in the appendix, but a non-exhaustive list includes:

• The forward selection performed is inadequate (cf. section A.3). The ultimate goal of Sovacool
et al.’s study is to assess the validity of a causal model. In this context, a more appropriate
approach would be to consider bidirectional selection, as it also excludes independent variables
which do not play a significant role in the predictive power of the model [12].

• The poor study of the data set before the start of the regression analysis (for instance, there
was no check for heteroskedascity), which inevitably led to a suboptimal model, i.e. one with
too many variables (or inappropriate ones) – some of which turn out not to be significative –
without an increase in goodness of fit, or predictive power (cf. section A.3);

• The failure to take into account concentration along the fraction of nuclear power axis of the
data set (most countries have no nuclear power, hence most of the data set lies exactly at zero
with respect to this variable, which is a huge bias of the statistics regarding this variable), which
biases the regressions performed (cf. section A.2).

3 Conclusion

The analysis of Sovacool et al. does not back their concluding statements. As demonstrated in
this paper and its appendix, all the conclusions of their paper do not follow from the data or from
proper statistical treatment of it. In particular, the failure to recognize that the predictive power
of their model came from the fraction of fossil fuels in the electrical mix, and to take into account
the basic relation between the fraction of renewables and nuclear in the electrical mix is fatal to their
conclusions. Additionally, there are many mistakes in the regression analysis performed and important
considerations were not addressed in [16], thus also undermining the validity of their results.

A Statistical analysis

A.1 Correlation of fractions of the same whole are inherently biased

Let R, N and F be positive random variables (which can be interpreted as fractions), such that
the following relation holds:

R+N + F = 1 . (A.2)

Linear regression consists in minimizing

E
[
(aN + b−R)2

]
. (A.3)

which amounts to an orthogonal projection in Rn, as a result the slope parameter of the regression is
nothing other than the projection coefficient of the vector N onto the line generated by R:

a =
Cov(N,R)

Var(N)
(A.4)

However, the relation between the three variables above immediately implies the following proposition.

Proposition A.1. Suppose thatN , R and F are three random variables on [0, 1] such thatN+R+F = 1.
Then at least two out of the three off-diagonal entries of the covariance matrix are negative, i.e. at
least two out of Cov(N,R),Cov(N,F ) and Cov(F,R) are negative. Furthermore, the condition to
have Cov(N,R) > 0 is that Var(F ) > Var(N) + Var(R).
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Proof. Suppose otherwise that Cov(N,R) > 0. Take the relation and take Cov(−,−) of both sides
thereby obtaining:

Cov(N,R) + Cov(N,F ) = −Var(N) (A.5)

Cov(R,N) + Cov(R,F ) = −Var(R) (A.6)

Cov(F,N) + Cov(F,R) = −Var(F ) (A.7)

By the positivity of the variance, as soon as one of the covariances is positive, the other two are
immediately negative. Inverting the above relation, one can write:

Cov(N,R) =
1

2
(Var(F ) − Var(N) − Var(R)) (A.8)

which is positive if the condition of the proposition is satisfied. Note also that this implies the
relationship Var(R+N) = Var(F ).

This means that, given any situation, one can expect to find negative correlation of fractions of
the same whole more than two thirds of the time.

A.2 Covariances and correlations of N , R and F

If we now let N , R and F denote the fraction of nuclear, renewable and other sources of the
electrical production, proposition A.1 applies. Taking a look at the data from the study, we find the
following distributions for each of these variables (the fractions are along the x axis and the y axis is
the count of the histogram). Note that F is dominated by fossil fuel contributions.
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Upon examining the distribution of F , one sees that it is approximately uniform, which should set
its variance to be close to 1

12 . By contrast, nuclear power tends to play a small role in the electrical
mix of most countries, which tells us that Var(N) should be negligible with respect to Var(R) and
Var(F ), as the observed values of N concentrate around 0. In particular, this immediately implies
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Timeframe 1 N R F

N 0.0252887 -0.0161068 -0.00918191
R 0.122027 -0.10592
F 0.115102

Table 1: Covariances between different variables of timeframe 1 for renewable countries (nuclear
countries included).

that Cov(R,F ) is relatively large in absolute value and negative (independent of interpretation). This
is of capital importance when we examine stepwise selection models, which will yield significance for
R, but which we will see actually stem from the greater predictive power of the variable F of GHG
emissions per capita. In particular, the conclusions of Sovacool et al. about the efficacy of renewables
to decarbonate do not follow from any statistical analysis, as this covariance is only large and negative
because Var(N) is negligible.

Finally, we must compare Var(F ) with Var(R). Here, Var(R) > Var(F ), and so we have the
negative correlation between N and R mentioned in the paper. Looking at the distributions of R and
F , one finds that this is due to the fact that most countries seem to either focus on renewables (mainly
hydroelectric power in the timeframes considered) or not have any at all, whereas the distribution of
other (fossil) sources is more or less uniform. This negative covariance between N and R is thus
explained solely by the latter and the mathematical relation linking the three variables.

The exact values of these covariances can be found in tables 1 and 2 for timeframe 1 and timeframe
2 respectively.

A.3 Stepwise selection

“Hierachical regression” is more commonly known as stepwise selection in statistics. Stepwise
selection can be done in two different directions: forwards or backwards. In forwards stepwise selection,
one starts with the null model and progressively adds variables while evaluating the significance of
each addition. And so, at step n, if the variable Xn does not yield a significant improvement in the
predictions of the model, this variable is discarded. In backwards stepwise selection, the opposite
is done. That is, we start with a family of variables, and taking out variables by examining which

Timeframe 2 N R F

N 0.0252823 -0.0128735 -0.0124088
R 0.107508 -0.0946345
F 0.107043

Table 2: Covariances between different variables of timeframe 2 for renewable countries (nuclear
countries included).
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loss gives the most statistical insignificant detereoration of the model fit. Finally, one can do both
steps simultaneously, that is, go backwards and forwards to provide an extra check that the choice of
variables is optimal .

Beyond this choice of approach, trying to maximize predictive power via improvement of the
goodness of fit (R2) while intending to study causation is wrong. Relying on R2 alone can induce into
error for two main reasons:

• R2 increases monotonously in the number of parameters added into the model.

• The data spans multiple orders of magnitude. This renders small relative variations of the points
at large scales to have a considerable effect on the significance of the increase in R2, despite there
being no real meaning behind this significance.

Adapted statistical tools should have been used, such as the adjusted R2 of the fit which takes into
account the number of parameters in the model. As for the second point it is more delicate to address
so we will do it stepwise, by attempting to reproduce and correct at each step the steps taken in [16].
The data set studied will be that of timeframe 1.

A.3.1 GDP and GHG emissions per capita

Plotting the GDP per capita and the CO2eq emissions per capita (henceforth denoted GDP and
CO2 respectively, for simplicity) for the countries considered in [16] yields the results in the figures
below.
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Following Sovacool et al. the regression model looks like:

CO2 = β0 + β1GDP (A.9)

However, after performing a regression analysis in this model, we notice that β0 is not significative (al-
though we do retrieve their result an R2 of 0.48 for this model). Applying the principles of bidirectional
selection, we exclude β0 and examine instead:

CO2 = β0GDP (A.10)

For timeframe 1, the estimates for the parameters of the model given by the regression are:

Estimate Standard Error t-Statistic P -Value

β0 0.0000931758 8.90 × 10−6 10.4719 1.99 × 10−18

and an adjusted R2 of 0.64, a result which already rivals the (non-adjusted) R2 they obtain at the end
of their forwards selection (0.66).

Remark A.1. The reported P -values are grossly underestimated, since the underlying distribution of
the residuals is not exactly normal as shown by the Kolmogorov-Smirnov test. A more reliable statistic
in this setting is the t-statistic and the standard error. We report nonetheless the P -value for the sake
of completeness.

However, this data set can spans multiple orders of magnitude and is very clearly heteroskedastic
in both timeframes, which means that the typical assumptions behind linear regression are not at all
satisfied. Failing to take this into account in a linear regression – and particularly one where the data
covers such large magnitudes – is catastrophic, as one can have significant increases in R2 without
this reflecting anything other than a couple of points with high GDP getting closer to the regression
plane.

Clearly, we should be looking at this plot in log-scale. In so doing, the simplest model we can
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postulate that GHG emissions are a power law of GDP per capita.

logCO2 = β0 + β1 log GDP (A.11)

This simple model has an adjusted R2 of rougly 0.69 and the following regression table for timeframe
1.

Estimate Standard Error t-Statistic P -Value

β0 -5.2705 0.389961 -13.5154 1.99 × 10−25

β1 0.781987 0.0493198 15.8554 1.31 × 10−30
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This shows that poor a priori inspection of the data from the part of the authors of [16] ultimately
led to a suboptimal model. In particular, we notice that this adjusted R2 is already higher than any
of the R2 values obtained by the authors at the end of their forwards selection (0.66), despite being
penalized for taking into account the number of variables in the model and only having two predictors.

Since the goal of this paper is an attempt to reproduce the results of Sovacool et al. we will keep
model of equation A.10 in what will follow, despite the fact that going forwards we should consider
accounting for the confounding variable with a power law and not just a linear model.

A.3.2 Nuclear, Renewables, GDP and CO2eq emissions
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We discard the N variable after performing bidirectional selection, as the variable doesn’t prove
to be significant or to provide considerable improvement to the adjusted R2. Other than the obvious
reason that nuclear power emits little to no GHGs, there are other explanations of why this is not a
significative explanatory variable in our model. The addition of N as a variable only affects 30 of the
data points, many of which lie close to 0% nuclear energy, which doesn’t add much information to the
model (around half of them are below the 20% mark). On timeframe 2, one can speculate that there
are two trendlines, one before the 30% mark, which is increasing, and the other afterwards, which
decreases. Of course, this may purely be an artifact of the data given the low sampling.

Still following Sovacool et al., let us now look at what happens when we add the variable R into
the model of equation A.10, which becomes:

CO2 = β0GDP + β1R (A.12)
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We can look at the regression analysis of this model:

Estimate Standard Error t-Statistic P-Value

β0 0.000414812 0.0000307419 13.4934 2.24 × 10−25

β1 0.00635995 0.00720374 0.882869 0.379165

The adjusted R2 value for this iteration of the model is 0.64, which does not improve the previous
model. Furthermore, β1 is not deemed significatively different from 0, meaning that R plays no role
in predicting the GHG emissions per capita. This is of course, obvious from the fact that renewable
energy emits little to no GHGs.

By contrast, F mostly carries information about the fraction of fossil fuels in the electrical mix,
since other sources of energy are negligible once we have excluded fossil fuels, renewables and nuclear
power. It follows that a more reasonable model is simply

CO2 = β0 + β1GDP + β2F , (A.13)

As before, the parameter β0 was found to be non-significant. Following the principles of bidirectional
selection, we exclude β0, and instead consider:

CO2 = β1GDP + β2F , (A.14)

which has the following regression table:

Estimate Standard Error t-Statistic P -Value

β1 0.000314618 0.000025023 12.5731 2.84 × 10−23

β2 0.0447815 0.00485628 9.22136 1.81 × 10−15

Both variables are significant predictors and the adjusted R2 of this model is 0.80, and the standard
error of the predictors decreased.

Finally, let us show that the predictive power of R in Sovacool et al.’s suboptimal model came
from F . To do this, we compare their model

CO2 = β0 + β1GDP + β2R , (A.15)

to the following (also suboptimal) model

CO2 = β0 + β1GDP + β2F . (A.16)

These models have the following respective regression tables
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Model A.15 Estimate Standard Error t-Statistic P -Value

β0 4.41294 0.47065 9.37627 8.47 × 10−16

β1 0.000288171 0.0000268078 10.7495 5.43 × 10−19

β2 -0.0468907 0.00785489 -5.96962 2.80 × 10−8

Model A.16 Estimate Standard Error t-Statistic P -Value

β0 -0.083787 0.546209 -0.153397 0.878359
β1 0.000316026 0.0000267566 11.8112 1.87 × 10−21

β2 0.0457721 0.00809241 5.65617 1.18 × 10−7

There a couple of things to note. First, the suboptimality of Model A.16 is reflected by the fact that
β0 is evidently not significant. More importantly, β2 is almost exactly the same in absolute value as
it was in the previous model. This, in conjunction with the large anti-correlation between F and R
allows us to conclude that the predictive power of R in Model A.15 was in fact inherited from that of
F . Of course, there is a tautological causal link behind this correlation given that F mostly consists
of the fraction of fossil fuels in the electrical mix.
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