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December 7, 2019

Abstract

The optimization of functionals depending on shapes which have convexity, diameter
or constant width constraints poses difficulties from a numerical point of view. We show
how to use the support function in order to approximate solutions to such problems by
finite dimensional optimization problems under various constraints. After constructing the
numerical framework, we present some applications from the field of convex geometry.
We consider the optimization of various functionals depending on the volume, perimeter
and Dirichlet Laplace eigenvalues under the constraints presented earlier. In particular we
confirm numerically Meissner’s conjecture, regarding three dimensional bodies of constant
width with minimal volume, by directly solving an optimization problem.

1 Introduction

Shape optimization problems are a particular class of optimization problems where the variable
is a shape. A typical example of such a problem has the form

min
ω∈A
F(ω), (1)

where the functional F is computed in terms of the shape ω andA is a family of sets with given
properties and eventual constraints. The cost functional F can be related to geometric quanti-
ties, like the volume or the perimeter of the set, or we can have a more complex dependence,
via a partial differential equation. Classical examples in this sense are functionals depending
on the spectrum of various operators related to ω, like the Dirichlet-Laplace operator.

When dealing with constrained shape optimization problems, having volume or perimeter
constraints facilitates the study of optimizers, in particular because there exist arbitrarily small
inner and outer perturbations of the boundary which preserve the constraint. This is not the
case when working in the class of convex sets, when bounds on the diameter are considered
or when we a fixed constant width constraint is imposed. The papers [LN10],[LNP12] describe
some of the theoretical challenges when working with these constraints.

Difficulties of the same nature arise when dealing with convexity, constant width and di-
ameter constraints from a numerical point of view. Since many techniques in numerical shape
optimization rely on the existence of the shape derivative, which in turn, relies on the exis-
tence of perturbations preserving the constraint, handling these constraints numerically is not
straightforward. There are works in the literature which propose algorithms that can handle
the convexity constraint. In [LRO05] a convex hull method is proposed in which the convex
shapes are represented as intersections of half-spaces. In [MO14] the authors propose a method

∗Secção de Matemática, Departmento de Ciências e Tecnologia, Universidade Aberta, Palácio Ceia, Rua da Escola
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of projection onto the class of convex shapes. The articles [BLRO07], [LRO07], [Oud13] show
how to deal with width constraints. The paper [BW18] shows how to handle simultaneously
convexity and PDE constraints. The approach proposed considers discretized domains (typi-
cally triangulations) and imposes constraints on the deformations of the domains which pre-
serve convexity. These methods are rather complex and not straightforward to implement. The
purpose of this article is to present a more direct approach, using the properties of the support
function. Such a method was already proposed in [BH12] for the study of shapes of constant
width, but was essentially limited to the two dimensional. In particular, the three dimensional
computations presented there are in the rotationally symmetric cases, which allows the use of
two dimensional techniques. Moreover, the numerical framework in [BH12] needed special
tools regarding semi-definite programming algorithms and the functional to be optimized was
at most linear or quadratic.

The precise definition and properties of the support function are presented Section 2. Recall
just that for a convex body K ⊂ Rd the support function p is defined on the unit sphere Sd−1
and for each θ ∈ Sd−1, p(θ) measures the distance from a fixed origin, which can be chosen
inside K, to the tangent hyperplane to K orthogonal to θ in the direction given by θ. Already
from the definition it can be noted that the quantity p(θ) + p(−θ) represents the diameter or
width of the body K in the direction parallel to θ. This allows to easily transform diameter
or constant width constraints into functional inequality or equality constraints in terms of the
support function. Convexity constraints can be expressed in similar ways, with complexity
varying in terms of the dimension d. These facts are recalled in the following section.

It is possible to build finite dimensional approximations of convex bodies using a trunca-
tion of a spectral decomposition of the support function. This can be done, for example, by
using Fourier series decomposition for d = 2 and spherical harmonic decomposition for d ≥ 3.
Using these parametrizations convexity constraints turn into linear pointwise inequalities for
d = 2 or quadratic pointwise inequalities for d = 3. Moreover, the constant width constraint
can be obtained by simply imposing that the coefficients of all the even functions in the basis
decomposition are zero. Diameter constraints can also be translated into pointwise linear in-
equalities. The advantages don’t stop here: in various situations, functionals like volume and
perimeter have explicit formulas in terms of the coefficients in the above decompositions.

In [BH12] the authors study numerically optimization problems under constant width con-
straint for d = 2, with the aid of the support function and Fourier series decomposition. How-
ever, they work with a global parametrization of the convexity constraint, which requires the
use of specific semidefinite-programming techniques and software. We choose to work in a
simplified framework, inspired from [Ant16], in which the convexity constraint is imposed on
a finite, sufficiently large, number of points, giving rise to a more simple constrained optimiza-
tion problem that can be handled by standard optimization software.

The use of a truncated spectral decomposition is a natural choice of discretization, but in
the case of the support function it is not clear whether the solutions of the finite dimensional
problems obtain converge towards the solution of the original problem. These aspects are ad-
dressed in Section 3 where theoretical aspects are shown regarding the existence of solutions to
the problems considered. Moreover, the convergence of the solutions of the discrete problems
towards the solution of the continuous problem is investigated.

The paper is organized as follows. In Section 2 various properties of the support func-
tion parametrization in dimension two and three are recalled. In Section 3 theoretical aspects
regarding the existence of solutions and the convergence of the discrete solutions are investi-
gated. Section 4 deals with the parametric representation of shapes using the spectral decompo-
sition of the support function. The constraints we are interested in: convexity, constant width,
diameter and inclusion are discussed. Section 5 recalls the method of fundamental solutions
used for solving the Dirichlet-Laplace eigenvalue problems.

Section 6 contains a wide range of applications for various problems in convex geometry. A
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new confirmation of the Meissner conjecture regarding bodies of constant width with minimal
volume in dimension three is provided. The two different Meissner bodies are obtained by
directly minimizing the volume under constant width constraint starting from general random
initializations. Further applications presented in Section 6 are the minimization of eigenvalues
of the Dirichlet-Laplace operator under convexity and constant width constraints, approxima-
tion of rotors of minimal volume in dimension three, approximation of Cheeger sets and the
minimization of the area under minimal width constraint.

Originality: The goal of this paper is to present a general method for performing shape
optimization under various non-standard constraints: convexity, fixed width, diameter bounds
by transforming them into algebraic constraints in terms of a spectral decomposition of the
support function. In order to illustrate the method, various numerical results are presented,
some of which are new and are listed below:
• optimization of the Dirichlet-Laplace eigenvalues under convexity constraint: the case k = 2 in

dimension two was extensively studied (see for example [AH11], [Oud04]). The case of
k ≥ 3 in dimension two and the simulations in dimension three are new and are presented
in Section 6.1.

• numerical confirmation of Meissner’s conjecture: the proposed numerical framework allows
to obtain Meissner’s bodies when minimizing the volume under fixed width and convex-
ity constraints, starting from randomized initial spherical harmonics coefficients. This
result is presented in Section 6.2.

• minimization of the Dirichlet-Laplace eigenvalues under volume and fixed width constraint in
dimension three: in Figure 4 some cases where the ball is not optimal are presented.

• rotors of minimal volume in dimension three: the numerical framework allows to find candi-
dates for the optimal rotors in the regular tetrahedron and the regular octahedron. The
results are shown in Figure 6.

Other results, which may not be new, deal with the computation of Cheeger sets for various
two dimensional and three dimensional domains and the minimization of area of a three di-
mensional body under minimal width constraint.

2 Support function parametrization

This section recalls some of the main properties of the support function, as well as the proper-
ties which will be used in order to implement numerically the various constraints of interest in
this work. The references [Sch14], [BH12], [AG11] and [ŠGJ08] contain more details about this
subject.

Let B be a convex subset of Rd. The support function of B is defined on the unit sphere
Sd−1 by

p(θ) = sup
x∈B

θ.x,

where the dot represents the usual Euclidean dot product. Geometrically, p(θ) represents the
maximal distance from the origin to a tangent plane α to B such that α is orthogonal to θ,
taking into account the orientation given by θ. Given this interpretation, it is not hard to see
that the sum of the values of the support function for two antipodal points will give the width
or diameter of B in the direction defined by these two points. This already shows that bounds
on the width of B could be expressed by inequalities of the type

w ≤ p(θ) + p(−θ) ≤W for every θ ∈ Sd−1 (2)

and a constant width constraint can be expressed by

w = p(θ) + p(−θ) for every θ ∈ Sd−1. (3)
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As already shown in [Ant16], it is possible to impose inclusion constraints when dealing
with support functions. Consider two convex bodies B1, B2 with support functions given by
p1, p2. Then B1 is included in B2 if and only if p1(θ) ≤ p2(θ) for every θ ∈ Sd−1. In the case
whereB2 is an intersection of half-spaces the inequality p1(θ) ≤ p2(θ) needs to be imposed only
for a finite number of directions θ ∈ Sd−1, corresponding to the normals to the hyperplanes
determining the hyperspaces.

Each convex body in Rd has its own support function. It is not true, however, that every
support function p : Sd−1 generates a convex body. The necessary assumptions for a function
to be the support function of a convex body are presented below.

Given a convex set B and its support function p, a parametrization of ∂B is given by

Sd−1 3 u 7→ p(u).u+∇τp(u) ∈ Rd,

where ∇τ represents the tangential gradient with respect to the metric in Sd−1. Note that for
this parametrization the normal of the point corresponding to u ∈ Sd−1 is exactly u. The con-
vexity constraint could be expressed by the fact that the principal curvatures of the surface
are everywhere non-negative. In the following, the presentation is divided with respect to the
dimension.

2.1 Dimension 2

In R2, the unit circle S1 is identified to the interval [0, 2π], therefore the parametrization of the
boundary of the shape in terms of the support function becomes{

x(θ) = p(θ) cos θ − p′(θ) sin θ

y(θ) = p(θ) sin θ + p′(θ) cos θ.
(4)

It is immediate to see that ‖(x′(θ), y′(θ))‖ = p(θ) + p′′(θ) and, as already underlined in [BH12],
the convexity constraint in terms of the support function is p + p′′ ≥ 0 in the distributional
sense.

2.2 Dimension 3

In R3 it is classical to consider the parametrization of S2 given by

n = n(φ, ψ) 7→ (sinφ sinψ, cosφ sinψ, cosψ), φ ∈ [−π, π), ψ ∈ (0, π). (5)

As recalled in [ŠGJ08], if p = p(φ, ψ) is a C1 support function then a parametrization of the
boundary is given by

xp(φ, ψ) = p(φ, ψ)n +
pφ(φ, ψ)

sin2 ψ
nφ + pψ(φ, ψ)nψ (6)

Moreover, it is possible to write explicitly the differential dxp on the basis nφ,nψ of the tangent
space at S2:

dxp|n(nφ) =

(
p sinψ +

pφφ
sinψ

+ pψ cosψ

)
nφ

sinψ
+

(
−
pφ cosψ

sinψ
+ pψφ

)
nψ (7)

dxp|n(nψ) =

(
pφψ
sinψ

−
pφ cosψ

sin2 ψ

)
nφ

sinψ
+ (p+ pψψ)nψ. (8)

Note that {nφ/ sin(ψ),nψ} is an orthonormal basis of the tangent space. The convexity con-
straint amounts to imposing that the principal curvatures are everywhere non-negative. This
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is equivalent to the fact that the eigenvalues of the matrix with coefficients given by the differ-
ential of xh are non-negative for every φ ∈ [−π, π) and ψ ∈ [0, π). In dimension 3 it is enough
to impose a simpler condition. Indeed, if a surface has non-negative Gaussian curvature in a
neighborhood of a point, then the surface is locally convex around that point. Tietze’s theo-
rem states that if a set is locally convex around each point then it is globally convex [Val64,
p. 51-53]. Moreover, a direct reference to the fact that a closed surface in dimension 3 which
has positive Gaussian curvature everywhere bounds a convex body can be found in [Top06, p.
108]. This is also known as Hadamard’s Problem. Therefore, in dimension three, the convexity
constraint can be imposed by assuring that the Gaussian curvature is positive at every point.
Therefore the determinant of the matrix containing the coefficients of the differential written
above should be positive:(

p sinψ +
pφφ

sinψ
+ pψ cosψ

)
(p+ pψψ) +

1

sinψ

(
pφ cosψ

sinψ
− pψφ

)2

> 0 (9)

for every φ ∈ [−π, π), ∀ψ ∈ (0, π).
Note that formulas (6), (7), (8) and (9) contain sinψ in some of the denominators. In the

numerical simulations the discretization of the sphere is always chosen avoiding the north and
south poles of the sphere S2 where sinψ cancels and where singular behavior may occur.

3 Theoretical aspects

3.1 Existence of optimal shapes

When dealing with shape optimization problems, one of the first questions posed is the exis-
tence of solutions. All problems studied numerically in this article deal with convex domains
contained in a bounded set, so it is useful to define the class Kd of closed convex sets in Rd
which are contained in a closed ball B. The question of existence of solutions is greatly simpli-
fied due to the following result.

Theorem 1 (Blaschke’s selection theorem). Given a sequence {Kn} of closed convex sets contained
in a bounded set, there exists a subsequence which converges to a closed convex set K in the Hausdorff
metric.

For the sake of completeness, recall that the Hausdorff distance between two convex bodies
K1,K2 is defined by

dH(K1,K2) = max

{
sup
x∈K1

inf
y∈K2

|x− y|, sup
x∈K2

inf
y∈K1

|x− y|
}
.

A sequence of closed convex sets {Kn} converges to K in the Hausdorff metric if and only if
d(K,Kn)→ 0 as n→∞.

More details regarding this result and a proof can be found in [HP18, Chapter 2]. Existence
results for all problems found in the following come from the properties listed below. These
properties are classical, but are recalled below from the sake of completeness, with sketches of
proof when the proofs were not readily found in the literature. IfK1,K2 have support functions
pK1 and pK2 then the Hausdorff distance is simply dH(K1,K2) = ‖pK1−pK2‖∞ [Sch14, Lemma
1.8.14].

Property 1. Convexity is preserved by the Hausdorff convergence.

For a proof see [HP18, p. 35].

Property 2. If {Kn} is a sequence of non-empty closed convex sets contained in a bounded set then the
Hausdorff convergence of Kn to K is equivalent to the uniform convergence of the support functions
pKn to p on Sd−1.
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For a proof see [SW79, Theorem 6].
In the following, χK denotes the characteristic function of the set K.

Property 3. Suppose that the sequence of convex sets {Kn} converges to the convex set K in the Haus-
dorff topology and that K has non-void interior. Then χKn converges to χK in L1. As a consequence,
|Kn| → |K| andHd−1(∂Kn)→ Hd−1(K) as n→∞.

A proof of this fact can be found in [BB05, Proposition 2.4.3].
The Dirichlet-Laplace eigenvalues are solutions of The eigenvalue problem related to the

Laplace equation has the form {
−∆u = λk(ω)u in ω

u = 0 on ∂ω.
(10)

It is classical that for Lipschitz domains, the spectrum of the Dirichlet-Laplace operator consists
of a sequence of eigenvalues (counted with multiplicity)

0 < λ1(ω) ≤ λ2(ω) ≤ ...→∞.

In particular, convex sets with non-void interior enter into this framework.
The following property deals with the continuity of these eigenvalues with respect to the

Hausdorff metric.

Property 4. If Kn are convex and converge to K in the Hausdorff metric then Kn γ-converges to K
and, in particular the eigenvalues of the Dirichlet-Laplace operator are continuous: λk(Kn)→ λk(K).

For more details see [Hen06, Theorem 2.3.17].

Property 5. Inclusion is stable for the Hausdorff convergence: Kn ⊂ Ω, Kn → K implies K ⊂ Ω.

For a proof see [HP18, p. 33].

Property 6. The diameter and width constraints are continuous with respect to the Hausdorff conver-
gence of closed convex sets. In particular if the sequence of closed convex sets {Kn} converges to K in
the Hausdorff metric and each Kn is of constant width w then K is also of constant width w.

Proof: Property 2 recalled above shows that the Hausdorff convergence implies the uniform
convergence of support functions on Sd−1. Therefore, diameter and width constraints that can
be expressed in pointwise form starting from the support functions are preserved, in particular,
the constant width property. �

In the following, {φi}∞i=1 denotes a basis of L2(Sd−1) made of eigenvalues of the Laplace-
Beltrami operator on Sd−1 (the Fourier basis in 2D and the spherical harmonics in 3D). Denote
by λi ≥ 0, i ≥ 0, the corresponding eigenvalues: −∆τφi = λiφi on Sd−1. When studying rotors,
only some of the coefficients in the spectral decomposition are non-zero. Also, in numerical
approximations a truncation of the spectral decomposition is used. Therefore, it is important
to see if such a property is preserved by the Hausdorff convergence of convex sets. Let J ⊂ N
be a non-empty, possibly infinite subset and denote by

FJ = {p : p =

∞∑
i=0

αiφi, p is the support function of a convex body, αi = 0 ∀i /∈ J},

i.e. convex shapes for which the coefficients with indices that are not in the set J are zero. The
following result holds:

Property 7. For a fixed set J ⊂ N, let {Kn} be a sequence of closed convex sets contained in a bounded
set B with support functions (pKn) contained in FJ such that Kn converge to K in the Hausdorff
topology. Then the support function of K also belongs to FJ .
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Proof: From Property 2 it follows that the support functions ofKn converge uniformly to the
support function ofK, i.e. ‖pKn−pK‖∞ → 0 as n→∞. This obviously implies the convergence
in L2 of the support functions. In particular, if pK =

∑∞
i=1 αiφi and pKn =

∑∞
i=1 α

n
i φi then∫

Sd−1

(pKn − pK)φi = αni − αi.

Since the left hand side converges to zero as n → ∞ for all i, it follows that αni → αi for all i.
In particular, if i /∈ J then all αni = 0. As a consequence αi = 0 for all i /∈ J , which means that
pK ∈ FJ . �

As underlined in Section 2 it is possible to characterize constant width bodies by imposing
that certain coefficients of the support function are zero. Therefore, property 7 also implies that
if a sequence of closed convex bodies of constant width Kn converges in the Hausdorff metric
to K then K is also of constant width, as recalled in Property 6.

It is possible now to prove the existence of solutions for all problems studied numerically
in the following section. Recall that λk(Ω) denotes the k-th eigenvalue of the Dirichlet-Laplace
operator defined by (10).

Problem 1 (Minimizing Dirichlet-Laplace eigenvalues under convexity constraint.).

min{λk(Ω) : Ω ⊂ RN ,Ω convex , |Ω| = c.}

The existence of solutions for this problem is proved in [Hen06, Theorem 2.4.1]. It is a direct
consequence of Theorem 1 and Properties 3, 4 above.

Problem 2 (Minimize the eigenvalues (10) under convexity and constant-width constraints.).

min{λk(Ω) : Ω ⊂ RN ,Ω convex with fixed constant width , |Ω| = c.}

For proving the existence in this case, choose a minimizing sequence {Kn} which, by The-
orem 1, up to a subsequence, converges to K. In view of the Properties 3, 4 and 6 above K is
indeed a solution.

Problem 3 (Minimizing the volume under constant width constraint.).

min{|Ω| : Ω ⊂ RN ,Ω convex with fixed constant width }

The existence follows from Properties 3, 6 when working with a converging minimizing
sequence, which exists by Theorem 1.

The next problem considered concerns rotors of minimal volume. A rotor is a convex shape
that can be rotated inside a polygon (or polyhedron) while always touching every side (or face).
A survey on rotors in dimension two and three can be found in [Gol60]. In particular, the article
[Gol60] describes which coefficients are non-zero in the spectral decomposition of the support
function of rotors, using Fourier series in 2D or spherical harmonics in 3D. It turns out that
the earliest complete development on the subject was published in 1909 by Meissner [Mei09].
More details and proofs of the claims in the papers described above can be found in [Gro96].

In dimension two, every regular n-gon admits non-circular rotors and they are character-
ized by the fact that only the coefficients for which the index has the form nq ± 1 are non-zero,
where q is a positive integer. In dimension three, there are only three regular polyhedra which
admit rotors: the regular tetrahedron, the cube and the regular octahedron. The rotors in a cube
are bodies of constant width. For rotors in a tetrahedron the only non-zero coefficients corre-
spond to the spherical harmonics of index 0, 1, 2 and 5, while in the case of the octahedron the
non-zero coefficients are of index 0, 1 and 5. The constant term in the spectral decomposition
of the support function of a rotor corresponds to the inradius of the domain.
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Problem 4 (Rotors of minimal volume.). For P be a polygon (polyhedron) which admits rotors,
solve

min{|Ω| : Ω ⊂ P,Ω is a rotor}.

The existence of rotors of minimal volume is guaranteed by Theorem 1 and properties 5, 7.
Moreover, the fact that the Hausdorff limit of rotors is still a rotor comes from Property 2. It
is enough to choose the normal directions orthogonal to the sides of the polygon (polyhedron)
and observe the limit of the corresponding support functions evaluated at these directions.

In the following, functionals related to the volume and perimeter are considered, under
width or diameter constraints.

Problem 5. For γ > 0, minimize

Jγ(ω) = γ|ω| − Hd−1(∂ω)

for ω convex with diameter equal to 1.

This problem was presented at the workshop ”New Trends in Shape Optimization” by J.
Lamboley and the results are attributed to Henrot, Lamboley and Privat. The existence of
solutions comes from Theorem 1 and Property 3.

The following problem was considered in [Oud13] and consists in minimizing the area
under minimal width constraint.

Problem 6.

min
B∈K
H2(∂B), where K = {B ⊂ R3 : B is convex and pB(θ) + pB(−θ) ≥ 1, ∀θ ∈ S2},

where pB denotes the support function of the convex body B.

In [BB05, Proposition 2.4.3], it is proved that of two convex bodies A,B ⊂ Rd verify A ⊂ B
thenHd−1(∂A) ≤ Hd−1(∂B). Every body fromK contains three mutually orthogonal segments
of length ≥ 1. By convexity and the property above it is immediate to see that the volume of
any body in K is at least 1

8 . Using the isoperimetric inequality, it can be seen that minimizing
sequences exist and the existence of a solution comes from Theorem 1 and Property 6.

As an application for the inclusion constraint, the Cheeger set associated to some convex
domains in dimension two and three is considered.

Problem 7 (Cheeger sets.). The Cheeger set associated to a convex domain D ⊂ Rn is the solution of
the following problem

min
X⊂D

Hn−1(∂X)

|X|
,

where the minimum is taken over all convex sets X contained in D.

The Cheeger sets are extensively studied and it is not the objective to present the subject in
detail here. In dimension two there is an efficient characterization which allows the analytical
computation of Cheeger sets for a large class of domains [KLR06]. Computational approaches
based on various methods were introduced in [LRO05], [CCP09], [CFM09] and [BBF18]. Note
that in dimension two, the convexity of D implies the convexity of the optimal Cheeger set. In
dimension three this is no longer the case. However, one can prove that there exists at least
one convex optimum [LRO05]. Existence of Cheeger sets is a consequence of Theorem 1 and
Properties 3, 5.
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3.2 Convergence results

The numerical approach proposed in the following is to use a truncation of the spectral decom-
position of the support function. Therefore, as underlined in [BH12] it is important to prove
that increasing the number of non-zero coefficients N in the optimization gives a shape which
converges to the solution of the original problem.

In the following, denote by

FN = {p : p =
N∑
i=0

αiφi, p is the support function of a convex body}.

This corresponds to the notation FJ used previously, with J = {0, 1, 2, ..., N}. Denote by KdN
the class of convex sets in Rd whose support functions belong to FN . Property 7 proved in the
previous section shows that KdN is closed under the Hausdorff metric. Therefore the existence
of solutions can be shown for all problems recalled in the previous section by replacing the
class of convex sets with FN .

An important question, which is not obvious at first sight, is whether a general convex body
K can be approximated in the Hausdorff metric by convex bodies Kn with support functions
in some FNn . This is proved in [Sch14, Section 3.4]. Namely, the following property holds:

Property 8. Let K be a convex body and ε > 0. Then there exists a positive integer Nε > 0 and a
convex set Kε with support function in FNε such that dH(K,Kε) < ε.

Remark 1. Following the remarks in [Sch14, p. 185], starting from a body of constant width K, the
smoothing procedure preserves the constant width. Moreover, the approximation ofK inKdNε

is obtained
by truncating the spectral decomposition of the regularized support function. This also preserves the
constant width property, which is related to the fact that the coefficients of the even basis functions are
zero. Therefore, if K is of constant width in the previous proposition, its approximation Kε ∈ FNε can
also be chosen of the same constant width.

In practice, however, it is often necessary to impose some other constraints, like fixed vol-
ume, area, minimal width, etc. Below we give another variant of this property for constraints
of the form {C(K) ≥ c} where C is a continuous function with respect to the Hausdorff met-
ric which is homogeneous of degree α > 0: C(ηK) = ηαC(K) for η > 0. This includes many
constraints of interest, like area, perimeter, minimal width, diameter, etc.

Property 9. Let C : Kn → R+ be a continuous functional, positively homogeneous of degree α > 0.
Let K be a convex body which satisfies C(K) ≥ c, for some fixed c > 0 and ε > 0. Then there exists a
positive integer Nε > 0 and a convex set Kε with support function in FNε such that dH(K,Kε) < ε
and C(Kε) ≥ c.

Proof: By the Property 8 there exists a sequence Kn → K in the Hausdorff metric such that
Kn ∈ KdNn

for some Nn > 0. Since C is continuous it follows that C(Kn) → C(K). Define the

new sets K ′n by K ′n =
(
C(K)
C(Kn)

)1/α
Kn. Then obviously C(K ′n) ≥ c and

dH(K ′n,K) ≤ dH(Kn,K) + dH(Kn,K
′
n).

Following the relation under between the Hausdorff distance and the support functions

dH(Kn,K
′
n) = ‖pKn − pK′n‖∞ =

∣∣∣∣∣1−
(
C(K)

C(Kn)

)1/α
∣∣∣∣∣ ‖pKn‖∞ → 0 as n→∞.

Therefore it is possible to approximate K in the Hausdorff metric with the sequence K ′n which
also verifies the constraint C(K ′n) ≥ c. �

Now we are ready to prove the following approximation result.
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Theorem 2. Let G be a continuous functional defined on the class of closed convex sets. Consider a
constraint function C which is continuous for the Hausdorff metric and let c > 0. In the followingM
denotes one of the following: KN , {K ∈ Kn : C(K) ≥ c}, or the set of sets in KN of fixed constant
width w. Denote by KN a solution of

min
K∈Kd

N∩M
G(K). (11)

Then any converging subsequence of KN converges in the Hausdorff metric to a solution K of

min
K∈Kd∩M

G(K). (12)

Proof: First, let’s note that the existence of solutions to problems (11) and (12) is immediate
using Theorem 1, Property 7 the fact thatM is closed and the continuity of G.

Denote by K a solution of (12). By the results shown in Properties 8, 9 and Remark 1 there
exists a sequence of convex sets LNn ∈ KdNn

∩M such that LNn → K in the Hausdorff metric.
In the following denote by KN a solution of (11) for N ≥ 1. It is obvious that KdN1

⊂
KdN2

⊂ Kd for N1 ≤ N2. As an immediate consequence G(KN1) ≥ G(KN2) ≥ G(K) for N1 ≤
N2. Therefore, the sequence {G(KN )}N≥1 is non-increasing and bounded from below, which
implies the existence of the limit limN→∞ G(KN ) = ` ≥ G(K). By the optimality ofKN we have
G(LNn) ≥ G(KNn) and since dH(K,LKn)→ 0, by the continuity of G we obtain

G(K) = lim
n→∞

G(LNn) ≥ lim
n→∞

G(KNn) = ` ≥ G(K).

The inequality above implies that ` = G(K). Furthermore, if a subsequence of {KN}N≥1 con-
verges toK ′ in the Hausdorff metric it follows thatK ′ ∈M and G(K ′) = ` = minK∈Kd∩M G(K).
Therefore, every limit point for {KN}N≥1 in the Hausdorff metric is a minimizer of (12).

�
Theorem 2 motivates our numerical approach. In order to obtain an approximation of solu-

tions of the shape optimization problems considered, a truncation of the spectral decomposi-
tion is used. The theoretical result states that the solutions of the finite dimensional minimiza-
tion problems obtained converge to the solution of the original problem.

3.3 Shape derivatives for the Dirichlet Laplace eigenvalues

We have seen that functionals like volume or area have explicit formulas in terms of the co-
efficients in the Fourier or spherical harmonics decomposition. This gives straight forward
formulas for gradients and Hessians which can be used in optimization algorithms. When the
shape functional is more complex, direct formulas are not available. Below, we present how to
pass from the Hadamard shape derivatives to derivatives in terms of coefficients of the decom-
position into Fourier series or spherical harmonics.

The Hadamard shape derivative formula shows how a shape functional F(ω) varies when
considering some perturbation of the boundary given by a vector field V . One way to de-
fine this to consider the derivative of the functional t 7→ F((Id + tV )(ω)) at t = 0. Under
mild regularity assumptions it can be proved that the shape derivative may be written as a lin-
ear functional depending on the normal component of V . For more details one could consult
[HP18, Chapter 5]. In particular, in [HP18, Theorem 5.7.4], for the case of the eigenvalues of the
Dirichlet-Laplace operator (10) the shape derivative is

λ′k(ω)

dV
= −

∫
∂ω

(
∂uk
∂n

)2

V.ndσ,

10



as soon as eigenvalue λk(ω) is simple and the eigenfunction uk is in H2(ω). This is true in the
particular case of convex sets. In the following, we suppose that the functional F(ω) has a
Hadamard shape derivative which can be written in the form

dF(ω)

dV
=

∫
∂ω
fV.ndσ. (13)

As underlined above, the case of Dirichlet-Laplace eigenvalues for convex domains, which
interests us in the following enters in this framework.

3.3.1 Dimension 2

As already recalled in [BH12] a parametrization of the boundary of the convex width shape
defined by the support function p is given by{

x(θ) = p(θ) cos θ − p′(θ) sin θ

y(θ) = p(θ) sin θ + p′(θ) cos θ.

and a straightforward computation gives{
x′(θ) = −(p′′(θ) + p(θ)) sin θ

y′(θ) = (p′′(θ) + p(θ)) cos θ.

Therefore the norm of the velocity vector is given by ‖(x′(θ), y′(θ))‖ = p′′(θ) + p(θ), which will
help us compute the Jacobian when changing variables. Moreover, the normal to the point
corresponding to parameter θ is simply (cos θ, sin θ).

In order to compute the derivative of the functional with respect to the Fourier coefficients
of the support function it is enough to transform the perturbation of the support function into
a perturbation of the boundary and use the Hadamard formula. We summarize the derivative
formulas below

1. Derivative with respect to a0. The corresponding boundary perturbation is V = (cos θ, sin θ)
and the normal component is V.n = 1. Therefore the derivative is

∂F
∂a0

=

∫
∂ω
fdσ =

∫ 2π

0
f(p′′ + p)dσ.

2. Derivative with respect to ak. The corresponding boundary perturbation is

V = (cos(kθ) cos θ + k sin(kθ) sin θ, cos(kθ) sin θ − k sin(kθ) cos θ)

and the normal component is V.n = cos(kθ). Therefore the derivative is

∂F
∂ak

=

∫
∂ω
f cos(kθ)dσ =

∫ 2π

0
f(θ) cos(kθ)(p(θ)′′ + p(θ))dσ.

3. Derivative with respect to bk. The corresponding boundary perturbation is

V = (sin(kθ) cos θ − k cos(kθ) sin θ, sin(kθ) sin θ + k cos(kθ) cos θ)

and the normal component is V.n = sin(kθ). Therefore the derivative is

∂F
∂bk

=

∫
∂ω
f sin(kθ)dσ =

∫ 2π

0
f(θ) sin(kθ)(p(θ)′′ + p(θ))dσ.

11



3.3.2 Dimension 3

We differentiate now a functionalF(ω) for 3D shapes parametrized using the coefficients of the
spherical harmonic decomposition (17) of the support function. When considering a general
perturbation of the support function p 7→ p+Y then, having in mind the boundary parametriza-
tion (6), we find that the boundary perturbation has the form

V = Y n + P(θ, φ)nφ +Q(θ, φ)nψ.

Since the vectors n,nφ and nψ are orthogonal, we find that the normal component is simply
V.n = Y . Then, using the general Hadamard derivative formula (13) we find that the deriva-
tives with respect to the coefficients in the spherical harmonic decomposition of the support
function have the form

∂F
∂al,m

=

∫
∂ω
fYk,mdσ =

∫ π

−π

∫ π

0
f(φ, ψ)Yl,m(φ, ψ)Jac(ψ, φ)dψdφ,

where Jac(ψ, φ) is the Jacobian function given by (9). Indeed, the Jacobian for such kind of sur-
face integral is computed by Jac(φ, ψ) = ‖∂φxp×∂ψxp‖. Note that each of the vectors ∂φxp, ∂ψxp
are orthogonal to the normal to the surface, which is exactly n given by (5). Therefore the Jaco-
bian reduces to Jac(φ, ψ) = n.(∂φx× ∂ψx) and by the expressions of the differentials of x in the
tangent plane given by (8) we can conclude that Jac(φ, ψ) is indeed given by (9).

4 Numerical framework

When performing numerical simulations for shape optimization problems we need to express
shapes using a finite number of parameters. Since, in our case, shapes will be parametrized
using the support function, we would like to work with a sufficiently rich class of support
functions which can be represented in a finite dimensional framework. The approach taken
in our computations is to approximate one dimensional functions using a truncated Fourier
series and two dimensional functions using a truncated expansion using spherical harmonics.
Theoretical results shown in Section 3 further motivate this choice, as solutions obtained when
working with truncated spectral decompositions converge to the solutions of the original prob-
lem as the number of non-zero coefficients considered goes to +∞. This type of methods was
already used in other contexts like [AF12], [Ost10], [AF16], [Ant16], [BH12]. Using such sys-
tems of orthogonal or orthonormal basis representations has further advantages which will be
underlined below. Again, for the clarity of exposition, we divide the presentation following the
dimension.

4.1 Dimension 2

We approximate the support function by a truncated Fourier series

p(θ) = a0 +

N∑
k=1

(ak cos kθ + bk sin kθ) (14)

As stated in Section 2, in order for p to be the support function of a convex set in R2 we need to
have p′′(θ) +p(θ) ≥ 0 for every θ ∈ [0, 2π). In [BH12] the authors provide an exact characteriza-
tion of this condition in terms of the Fourier coefficients, involving concepts from semidefinite
programming. In [Ant16] the author provides a discrete alternative of the convexity inequal-
ity which has the advantage of being linear in terms of the Fourier coefficients. We choose
θm = 2πm/M, m = 1, 2, ...,M for some positive integer M and we impose the inequalities

12



p(θm) + p′′(θm) ≥ 0 for m = 1, ...,M . As already shown in [Ant16] we obtain the following
system of linear inequalities

1 α1,2 · · · α1,N β1,2 · · · β1,N
...

...
. . .

...
...

. . .
...

1 αM,2 · · · αM,N βM,2 · · · βM,N





a0
a2
...
aN
b2
...
bN


≥

0
...
0

 (15)

where αm,n = (1− n2) cos(nθm) and βm,n = (1− n2) sin(nθm).
Next we turn to the constant width condition p(θ) + p(θ + π) = w for every θ ∈ [0, 2π). It

is not difficult to see that this is equivalent to a0 = w/2 and the coefficients of even index are
zero: a2k = b2k = 0, k = 1, ..., N . This was already noted in [BH12].

An upper bound W on diameter can be introduced as a constraint for the support function
as follows

p(θ) + p(θ + π) ≤W, θ ∈ [0, 2π).

In the computations we consider a discrete version of the above inequality. Pick θm = 2πm/Md,
m = 1, 2, ...,Md for some positive integer Md and impose the following linear inequalities

p(θm) + p(θm + π) ≤W, m = 1, ...,Md. (16)

It is not difficult to see that (16) can be generalized to the case where W also varies with θ. In
order to impose a lower bound on the diameter it is enough to pick one direction θ and use the
constraint

p(θ) + p(θ + π) ≥ w.
It is also possible to consider variable lower and upper bounds on the width of the body which
depend on θ.

Let us now recall the formulas for the area and perimeter of a two dimensional shape in
terms of the Fourier coefficients of the support function. The perimeter is simply equal to
P (p) = 2πa0, which is linear in terms of the Fourier coefficients. As already stated in [BH12]
the area of a convex shape having support function p with the Fourier decomposition (14) is
given by

A(p) = πa20 + π/2
N∑
i=1

(1− k2)(a2k + b2k).

Note that a1 and b1 do not contribute to the area computations as modifying a1, b1 only leads
to translations of the shape defined by p.

4.2 Dimension 3

In [AF16] the authors parametrized three dimensional domains by their radial function using
spherical harmonics. In our case we consider support function parametrized by a finite number
of spherical harmonics

p(φ, ψ) =

N∑
l=0

l∑
m=−l

al,mY
m
l (ψ, φ) (17)

for a given positive integer N . The spherical harmonics are defined by

Y m
l (ψ, φ) =


√

2Cml cos(mφ)Pml (cosψ) if m > 0

C0
l P

0
l (cosψ) if m = 0√

2Cml sin(−mφ)P−ml (cosψ) if m < 0,
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where Pml are the associated Legendre polynomials and

Cml =

√
(2l + 1)(l − |m|)!

4π(l + |m|)!

are normalization constants.
The convexity constraint is imposed by considering a discrete version of (9). Indeed, we

construct a family of Md evenly distributed points on the unit sphere, for example like de-
scribed in [Ant11, Section 3]. We denote by (φi, ψi) i = 1, ...,Md the corresponding angles
given by the parametrization (5). We impose that the convexity condition (9) is satisfied at
points given by (φi, ψi), i = 1, ...,Md. As in the two dimensional case, width inequality con-
straints can be handled in a similar way, by imposing inequalities of the type

wi ≤ p(ui) + p(−ui) ≤Wi

at points ui = (φi, ψi) (see (5)).
The constant width condition is p(u) + p(−u) = w. This simply means that in the decompo-

sition (17) we only have odd spherical harmonics, except the constant term. This corresponds
to considering only spherical harmonics for which the index l is odd. In the following, we
note with h the part of the support function containing the non-constant terms. Equivalently
h = p− 1

4π

∫
S2 pdσ.

The area and volume of a convex body of constant width w in dimension three can be com-
puted explicitly in terms of the spherical harmonics coefficients. Indeed, in [AG11, Theorem 2],
the following formulas are provided:

V =
π

6
w3 − w

2
E(h) (18)

A = πw2 − E(h). (19)

where E(h) =

∫
S2

(
1

2
|∇τh|2 − h2

)
dA. The formulas in [AG11] are for a body of constant width

2w, which we transformed so that they correspond to a body of width w. Using the fact that the
spherical harmonics Y m

l are chosen to be an orthonormal family we can see that, in fact E(p) can
be computed explicitly in terms of the coefficients al,m and the eigenvalues λl,m corresponding
to the spherical harmonics Yl,m:

E(h) =
N∑
l=1

l∑
m=−l

(
λl,m

2
− 1

)
a2l,m. (20)

Therefore, when dealing with bodies of constant width, the volume and the area have explicit
formulas in terms of the coefficients al,m of the decomposition (17).

We note that it is also possible to compute explicitly the area of a general convex body, using
the coefficients of the support functions. Indeed, Lemma 1 from [AG11, Section 5] is valid for
general support functions h, not only those corresponding to a constant width body. Therefore
the area of a convex body B is also given by (19), where w = 2a0,0Y

0
0 . Also following the

results stated in [AG11] it should also be possible to compute the volume explicitly using the
Gaunt coefficients involving integrals on the sphere of products of three spherical harmonics.
In our computations, for general bodies parametrized using their support function, we used an
alternative way to compute the volume. Using the divergence theorem, we can compute the
volume of a convex body ω as the integral on ∂ω of a vector field V with divergence equal to
one. For simplicity we choose V = 1

3x = 1
3(x, y, z) and we integrate V.n on ∂ω. One may note

that since we are working with bodies parametrized by their support function, the quantity V.n
computed at x0 ∈ ∂ω is the value of the support function at x0: x.n(x0) = p(x0).
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4.3 Visualization of results

It may be useful to underline how the results are visualized. Following the aspects presented
in previous sections, we use a family of coefficients which parametrize a spectral decomposi-
tion of the support function. The variables in the optimization algorithm, and therefore, the
output obtained will contain such coefficients. Given a family of Fourier coefficients (spherical
harmonics coefficients) it is possible to evaluate the support function and its derivatives at any
point in the unit circle (unit sphere in dimension three).

Once the values of the support function and its derivatives are known at a family of dis-
cretization points it is possible to use the formula (4) in dimension two (formula (6) in dimen-
sion three) in order to find the associated points on the boundary of the domain. When such a
family of points is known a simple contour plot is made in dimension two. In dimension three,
the Matlab command convhull is used to generate a triangulation of the surface bounding
the convex body. Then the command patch allows us to plot the surface.

5 Computation of the Dirichlet-Laplace eigenvalues

The Dirichlet-Laplace eigenvalue problem (10) is solved using the Method of Fundamental So-
lutions (MFS) [Kar01, AA13]. We consider a fundamental solution of the Helmholtz equation,

Φλ(x) =
i

4
H

(1)
0 (
√
λ |x|) (21)

and

Φλ(x) =
ei
√
λ|x|

4π |x|
, (22)

respectively for 2D and 3D cases, where H(1)
0 denotes the first Hankel function. For a fixed

value of λ, the MFS approximation is a linear combination
m∑
j=1

αjΦλ(· − yj), (23)

where the source points yj are placed on an admissible source set, for instance the boundary of
a bounded open set ω̂ ⊃ ω̄, with ∂ω̂ surrounding ∂ω. By construction, the MFS approximation
satisfies the PDE of the eigenvalue problem (10) and we can just focus on the approximation of
the boundary conditions, which can be justified by density results (e.g. [AA13]).

Next, we give a brief description of the numerical procedure for calculating the Dirichlet-
Laplace eigenvalues. We define two sets of pointsW = {wi, i = 1, ..., n} andX = {xi, i = 1, ...,m},
almost uniformly distributed on the boundary ∂ω, with n < m and the set of source points,
Y = {wi + αni, , i = 1, ..., n} where α is a positive parameter and ni is the unitary outward
normal vector at the point wi. We consider also some interior points zi, i = 1, ..., p with (p < m)
randomly chosen in ω and used the Betcke-Trefethen subspace angle [BT05]. After defining the
matrices

M1(λ) = [Φλ(xi − yj)]m×n , (24)

M2(λ) = [Φλ(zi − yj)]p×n (25)

and A(λ) =

[
M1(λ)
M2(λ)

]
we compute the QR factorization

A(λ) =

[
Q1(λ)
Q2(λ)

]
R

and calculate the smallest singular value of the block Q1(λ), which will be denoted by σ1(λ).
The approximations for the Dirichlet-Laplace eigenvalues are the local minima λ, for which
σ1(λ) ≈ 0.
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6 Applications

This section shows how the proposed numerical framework applies to the various problems
presented in Section 3. In all the simulations with 2D domains, we considered N = 300 for
defining the support function in (14) and M2 = 2000 directions to impose the convexity con-
traint, while the numerical results with 3D geometries were obtained with N ≤ 28 in (17) and
M3 = 5000. In general, the number of discretization points where we consider the convexity
constraints should be chosen such that the highest order modes considered in the decomposi-
tion of the support function cannot oscillate much between two neighboring points.

The Matlab fmincon function is used in each of the various problems shown below with
the interior-point algorithm. As shown in previous sections, all constraints on the shapes
are transformed into algebraic constraints on the coefficients of a spectral decomposition. The
full functionality of fmincon is used in order to handle: linear equality/inequality constraints
and non-linear constraints. The gradient of the functional and the constraints is computed and
is always used in the algorithm. When possible, the Hessian matrix is also computed, and in
all the other computations a LBFGS approximation is used.

6.1 Convexity constraint – the Dirichlet-Laplace eigenvalues

We illustrate the behavior of our numerical framework by studying a classical shape optimiza-
tion problem related to the eigenvalues of the Dirichlet-Laplace operator under convexity con-
straints defined in Problem 1. Two basic properties of these eigenvalues are the monotonicity
with respect to inclusion and the scaling property:

ω1 ⊂ ω2 ⇒ λk(ω1) ≥ λk(ω2) and λk(tω) =
1

t2
λk(ω)

The theoretical and numerical study of minimization problems of the form

min
ω∈A

λk(ω)

gained a lot of interest in the recent years. Various problems were considered, like the optimiza-
tion of eigenvalues under volume constraint [Buc12], [MP13], the optimization under perime-
ter constraint [DPV14] and recently, the minimization under diamenter constraint [BHL17]. For
many of the problems considered, explicit solutions are not known, therefore various works,
like [Oud04], [AF12], [AF16] deal with the optimization of the eigenvalues for volume and
perimeter constraints. Such constraints can be naturally incorporated in the functional, in view
of the behaviour of the eigenvalue with respect to scaling, and therefore unconstrained opti-
mization algorithms based on information given by the shape derivative are successfully used
in practice.

The optimization of eigenvalues under convexity constraints poses additional difficulties.
These are underlined in the study of the second eigenvalue

min
|ω|=1, ω convex

λ2(ω). (26)

This problem is studied in [HO03] and the authors show that the optimizer is not the convex-
hull of two tangent disks, as conjectured before. Moreover, the authors of [HO03] show that the
boundary of the optimal set cannot contain arcs of circles. In the same publication the authors
propose an algorithm for finding numerically the minimizer of (26), by using a penalization
of the difference between the volume of the shape and the volume of its convex hull. A more
precise, parametric search for the minimum was done in [AH11], giving an optimal numerical
value of λ2(ω) = 37.987.
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λ2 = 38.00 λ4 = 65.28 λ5 = 79.70

λ6 = 88.54 λ7 = 109.44 λ8 = 120.58

λ9 = 137.38 λ10 = 143.15

Figure 1: Minimization of the eigenvalues of the Dirichlet-Laplace operator under convexity
and volume constraints in dimension two. The numerical minimizer of the third eigenvalue is
the disk, even without imposing the convexity constraint.

In the following we show results obtained using the numerical framework proposed in
previous section, in order to deal with the convexity constraint with the aid of a Fourier se-
ries decomposition of the support function. This requires no additional work regarding the
functional we want to optimize. For the optimization we use Matlab’s fmincon routine, with
linear inequality constraints given by the discrete convexity constraint equations shown in (15).
Results are summarized in Figure 1. Our numerical results support the well known conjecture
(see for example [Oud04],[AF12]) that the disk shall be the minimizer of the third eigenvalue,
even without imposing convexity constraint. Note that the values presented in Figure 1 were
obtained rounding up the optimal values obtained with our numerical algorithm and are thus
upper bounds for the optimal values.

We compute the eigenvalues and corresponding eigenfunctions using the method of fun-
damental solution recalled in Section 5. The derivative with respect to every Fourier coefficient
in the parametrization is computed using results shown in Section 3.3.

The numerical discretization we consider in Section 4.2 allows us to perform the same com-
putation in dimension 3, with no additional difficulty. We present these results in Figure 2 for
k ∈ {2, 3, 5, 6, 7, 8, 10}. For k ∈ {4, 9}we obtain balls as minimizers, which is natural, as numer-
ical results show that considering a volume constraint alone we find that the ball minimizes λ4
and λ9 in 3D. One may notice that as in the two dimensional case, studied in [HO03], there are
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λ2 = 43.07 λ3 = 49.37 λ5 = 73.81 λ6 = 75.64

λ7 = 80.74 λ8 = 85.29 λ10 = 93.22

Figure 2: Optimization of eigenvalues under fixed volume and convexity constraint in 3D. For
k ∈ {4, 9} the ball is a numerical minimizer for λk at fixed volume even without imposing the
convexity constraint.

parts of the numerical optimizers which seem to have at least one of the principal curvatures
which vanish. This behavior could be a consequence of the following facts:

? minimizers of the eigenvalues with volume constraint tend to be non-convex, in general
? the eigenvalues are decreasing with respect to the inclusion of domains, so the eigenval-

ues of the convex hull are always lower than the eigenvalues of the actual shapes

6.2 Constant width constraint

We use the parametrizations presented in Section 4 in order to numerically solve shape op-
timization problems in the class of shapes of constant width. We show how our algorithm
behaves for Problem 3, when minimizing the area in dimension two obtaining the Reuleaux
triangle and the volume in dimension three, confirming the Meissner conjecture. We also show
how the Dirichlet-Laplace eigenvalues behave under diameter constraint in dimension three
(Problem 2).

As already underlined in Section 4, the parametrization of shapes using the Fourier or
spherical harmonics coefficients has multiple advantages in this context. In order to impose
the constant width constraint, it is enough to fix the first coefficient and make all other even-
index coefficients equal to zero. This corresponds to an optimization problem in terms of the
odd-index coefficients. It is also necessary to impose the convexity constraint, which we do
in the discrete sense, by adding a set of linear inequality constraints (15). Another advantage
is the fact that the area (volume) has an explicit quadratic expression in terms of the Fourier
(spherical harmonics) coefficients corresponding to the support function. Therefore, in this case
we may compute the functional, its gradient and the corresponding Hessian matrix explicitly,
leading to quickly converging numerical algorithms.

Concerning Problem 3, we start by showing the behavior of the algorithm when optimiz-
ing the area under constant width in dimension two. Given the Fourier decomposition of the
support function (14) the area is equal to

A(p) = πa20 + π/2
N∑
i=1

(1− k2)(a2k + b2k).
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Figure 3: Minimization of area and volume under constant width constraint.

The constraints imposed on the Fourier coefficients are the following:

• a0 = w/2, where w is the desired constant width
• a2k = b2k = 0 for k ≥ 1.
• the Fourier coefficients verify the discrete convexity constraint (15)

Therefore, we obtain the following constrained quadratic problem which approximates the
shape minimizing the area under constant width constraint:

min

πw2

4
+
π

2

N/2∑
k=0

(1− (2k + 1)2)(a22k+1 + b22k+1)

 (27)

under the linear discrete convexity constraint (15). We solve (27) using fmincon in Matlab.
The optimization algorithm is interior-point with an explicit gradient and Hessian com-
putation. The result is given in Figure 3. The minimal value for the area obtained with our
algorithm, for N = 250, corresponding to 501 Fourier coefficients and width w = 2 was 2.8196
which is slightly larger than but very close to the explicit area of the Reuleaux triangle of width
2 which is equal to 2(π −

√
3) = 2.8191.

The minimization of the volume under constant width constraint in dimension three is a fa-
mous open problem. The conjectured optimizer is a Reuleaux tetrahedron with three rounded
edges. There are two configurations, with the same volume, the difference being in the position
of the rounded edges: all starting from one vertex or forming a triangle. These shapes are called
Meissner’s bodies. Various works deal with the analysis of 3D shapes of constant width which
minimize the volume. Among these we cite [KW11], which presents many aspects related to
the Meissner bodies and why they are conjectured to be optimal. It is mentioned that in [Mü09]
the author generates a million random three dimensional bodies of constant width, using tech-
niques from [LRO07]. Among these many bodies of constant width, none had a smaller volume
than the ones of Meissner. In [Oud13] the local optimality of the Meissner’s body was verified
using an optimization procedure for a different parametrization of constant width shapes.

The approach we present below allows us to obtain the Meissner bodies as results of a
direct optimization procedure, starting from random initializations. The formulas (18) and
(20) allow us to write the volume as a quadratic expression of the coefficients of the spherical
harmonics decomposition (17). The constant width condition is imposed by fixing the first co-
efficient and considering only odd spherical harmonics in the decomposition. The convexity
condition is achieved by using a discrete version of (9). We note that in this case the convex-
ity condition is non-linear, but it is explicit enough such that we may compute the gradient
of the constraint. In this way, the minimization of the volume under constant width condi-
tion in dimension three becomes a constrained optimization problem of a quadratic functional
with non-linear quadratic constraints. We implement this using fmincon in Matlab, using an
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λ10 = 39.41 λ46 = 88.80 λ99 = 156.14
λ10(©) = 39.48 λ46(©) = 88.83 λ99(©) = 157.92

Figure 4: Minimization of the eigenvalues λk, with k ∈ {10, 46, 99} under fixed width in 3D.

interior-point algorithm with objective gradient and Hessian activated. For unit width, in
view of [KW11], the Meissner bodies have volume equal to

VM = π

(
2

3
−
√

3

4
· arccos

1

3

)
= 0.419860

In our computation, using 402 spherical harmonics, which means using Legendre polynomials
up to degree 28, we obtain the shape represented in Figure 3, with volume 0.4224. Even if the
shape we obtain strongly resembles Meissner’s body, its volume is about 0.6% larger than VM
presented above. This may be due to the fact that singularities in the surface of the Meissner
bodies are not sufficiently well approximated using the number of spherical harmonics stated
above. Starting from different random initial coefficients we always arrive at shapes which are
close to one of the two Meissner bodies [KW11].

In order to underline the strength of our algorithm, we also study the minimization of
the Dirichlet-Laplace eigenvalues under diameter constraint in dimension 3 (Problem 2). This
shows that our algorithm is not restricted to quadratic functionals (as in [BH12]), but may well
work in more general cases. We already gave a brief definition of the eigenvalues in (10). The
two dimensional case was treated in [BHL17]. The monotonicity property of the eigenvalues
and the fact that every convex domain is contained in a constant width set with the same
diameter makes that minimizers of λk(ω) under diameter constraint must be shapes of constant
width. What makes the width constraint different from other constraints, like the perimeter or
the volume, is the fact that the disk appears more often as a local optimizer in computations
made in [BHL17]. In fact the precise list of indexes k for which the disk is a local minimizer for
λk(ω) under width constraint in dimension two was given in [BHL17].

In our computations in dimension 3, we impose the constant width and convexity con-
straints just like in the case presented above (minimization of the volume). The difference is
that the functional to be optimized is more computationally challenging. We only use gradi-
ent information in order to perform the optimization. As before, we use fmincon in Matlab
with the interior-point option. In our computations we observe a similar behavior as
in the two dimensional case. The ball appears often as a minimizer, but as observed in the
two dimensional case in [BHL17], we expect that this only happens for finitely many indexes
k. Notable exceptions are the indexes for which the corresponding eigenvalue is simple. In
Figure 4 we present the non-trivial shapes of constant width obtained with our algorithm for
k ∈ {10, 46, 99}, which are the three smallest indexes for which the corresponding eigenvalue
of the ball is simple. For a comparison we present also in Figure 4 the eigenvalue obtained for
the ball. As in the study of the two dimensional case found in [BHL17], one could investigate
the local minimality of the eigenvalues of the Dirichlet-Laplace operator on the ball in the class
of constant width bodies.
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6.3 Rotors

As underlined in Section 3, for some convex domains P there exist convex shapes ω which can
rotate inside P while touching all its sides (or faces in dimension three). Therefore, it makes
sense to consider the problem of finding such rotors of minimal volume. Theoretical aspects
are recalled in the definition of Problem 4 and numerical computations for the two dimensional
case are presented in [BH12]. In dimension three there exist rotors for the cube (constant width
bodies), the regular tetrahedron and the regular octahedron. A characterization of rotors in
terms of the coefficients of the decomposition of the support function can be found in [Gol60].
More precisely we have the following:
• In dimension two every regular polygon admits non-circular rotors. If the regular poly-

gon has n sides, n ≥ 3, then only the coefficients for which the index has the form nq ± 1
are non-zero, where q is a positive integer.
• the rotors in a cube are bodies of constant width
• rotors in a regular tetrahedron we only have non-zero coefficients for the spherical har-

monics of index 0, 1, 2 and 5
• rotors in a regular octahedron the non-zero coefficients are of index 0, 1 and 5.

The constant term in the spectral decomposition of the support function of a rotor corresponds
to the inradius of the domain.

Using the parametrization based on the support function we compute numerically rotors
of minimal area in dimension two and rotors of minimal volume in dimension three. Compu-
tations of optimal rotors in dimension two were also made in [BH12], while the computations
in dimension three are new, up to the authors’ knowledge. We note that rotors of maximal
area and volume are the inscribed disc and the inscribed ball, respectively. Some results are
depicted in Figures 5 and 6. We do not repeat the numerical framework, since we used the
same algorithm as in the case of constant-width constraint computations made in Section 6.2.
In each case we consider an optimization problem depending only on the non-zero coefficients
describing the rotors and we impose discrete convexity constraints like described in Section
6.1. The computations presented in Figure 6 are made for solids with inradius equal to 0.5,
corresponding to an inscribed ball of diameter 1. Compared to the volume of the sphere B
with unit diameter which is equal to π/6 = 0.5236 the minimal volume found numerically of
a rotor in the tetrahedron and the octahedron circumscribed to the same ball B are 0.3936 and
0.5041. Numerical minimizers for the tetrahedron and octahedron seem to be symmetric under
a rotation of angle 2π/5. This is due to the fact that the only coefficients which may change the
geometry of the rotors correspond to the spherical harmonics of order 2 or of order 5. We recall
that changing coefficients for spherical harmonics of order 1 correspond to translations. In par-
ticular, when searching for minimal rotors in the tetrahedron using only spherical harmonics of
order 1 and 2 we get a radially symmetric minimizer of volume 0.4024 which is slightly larger
than the result including spherical harmonics of order 5.

We note that when taking the midpoints of the edges of the regular tetrahedron we obtain
a regular octahedron with the same inradius. Therefore rotors in the octahedron are also rotors
for the tetrahedron which was already apparent from the characterization using the spherical
harmonic coefficients.

6.4 Diameter constraint

In this section we show how diameter inequality constraints could be handled with our numer-
ical framework. We start with a two dimensional example. As already shown in equation (16),
diameter bounds in the direction given by θ can be imposed using inequality constraints for
p(θ) + p(π+ θ) and as in the case of the convexity constraint, we choose to impose the diameter
inequality constraints on a sufficiently dense discrete family of directions. Next, we show how
the algorithm works on some concrete examples.
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Figure 5: Examples of minimal area rotors in dimension two.

Figure 6: Minimal volume rotors in the regular tetrahedron and the regular octahedron. Vol-
ume of the inscribed sphere: 0.5236. Volume of the rotors: tetrahedron 0.3936, octahedron
0.5041.

First, consider Problem 5, where the functional Jγ(ω) = γ|ω|−Hd−1(∂ω) is minimized when
ω has diameter equal to 1. It can be observed that this functional behaves differently for certain
ranges of the parameter γ.
• if γ ≤ 0.5 then the Reuleaux triangle is the optimizer
• if γ ∈ (0.5, 4√

3
) then the minimizer is a polygon

• if γ > 4√
3

then the minimizer is the segment
We show below how our algorithm behaves when searching numerically for the minimizers of
Jγ for various values of γ. Let’s notice first, that optimizing in the class of shapes of diameter
equal to 1 is the same as optimizing in the class of shapes with diameter at most 1. Indeed,
if we have a convex shape of diameter less than 1 then one can slightly elongate the shape
along a direction decreasing the area and increasing the perimeter. Therefore we consider the
minimization of Jγ for convex shapes with diameter at most 1.

We implement an algorithm minimizing Jγ in dimension two. As before, we represent the
shape ω using its support function and we decompose the support function in its Fourier series.
In this case we use 201 coefficients in the Fourier expansion. The convexity condition and the
diameter constraint inequalities are imposed using 1000 equidistant points in [0, 2π]. Since the
area and the perimeter both have explicit expressions in terms of the Fourier coefficients, we
may compute explicitly the gradient and the Hessian and use a second order optimization
algorithm. Numerical results obtained for various values of γ are shown in Figure 7. Note that
the algorithm is capable of numerically approximating optimal shape which are polygons, as
expected for γ > 0.5. Singularities are well captured when considering a large enough number
of Fourier coefficients and a dense enough family of points where we impose the convexity and
diameter constraints.

Another example, considered in [Oud13] is Problem 6 where the area of a three-dimensional
convex body is minimized under a minimal width constraint. The minimal width constraint is
expressed in terms of the support function by p(θ) + p(−θ) ≥ 1, for every θ ∈ S2.

As underlined in Section 4.2, the diameter bounds can be imposed in an approximate man-
ner at a finite family of points uniformly distributed on the sphere. This is done in the same
way as the discrete convexity condition. Therefore, these bounds on the diameter correspond
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Figure 7: Minimization of Jγ for γ ∈ {0.4, 0.6, 1}

Figure 8: Optimization under diameter bounds in dimension three. Minimization of the area
for shapes having width at least 1. The minimal area found by our algorithm is 2.9154.

to a set of linear inequality constraints. In Figure 8 we present the result given by the algorithm.
The shape resembles the optimizer given in [Oud13] and the value of the functional is slightly
improved. In the computations we used 2000 points for the discrete convexity condition and
1000 pairs of opposite diametral points for computing the discrete diameter conditions. We
used 250 spherical harmonics in the decomposition of the support function. The computation
of the area was done explicitly starting from the spherical harmonics coefficients, as shown in
Section 4.2. The minimal area obtained with our algorithm is 2.9154 which is slightly lower
than 2.9249, the value of the minimal area in the result presented by Oudet in [Oud13].

6.5 Inclusion constraint

In this subsection we show how to impose inclusion constraints for shape optimization prob-
lems. As recalled in Section 2, two convex bodiesB1, B2 in Rn, with support functions pB1 , pB2 ,
respectively satisfy the inclusion constraint B1 ⊂ B2 if and only if the support functions verify

pB1(θ) ≤ pB2(θ) for every θ ∈ Sn−1. (28)

As in the case of the convexity and diameter constraints, we impose (28) on a sufficiently dense
discrete set of Sn−1. In dimension three, when dealing with Cheeger sets for polyhedra, it is
enough to impose the inclusion constraints only for directions which are normals to the faces
of the polyhedron. This simplifies the optimization algorithm by decreasing the number of
constraints.

An example of classical context involving convexity and inclusion constraints is the case of
the Cheeger sets. The theoretical formulation is given in Problem 7. The Cheeger sets fo some
set D minimize the ratio perimeter/area for convex subsets of D. The ratio perimeter/area can
be computed and optimized using our algorithm. We consider the constraints

X convex and X ⊂ D,

which are discretized as linear inequalities regarding the coefficients of the spectral decompo-
sition of the support function of the variable set X . Some examples of computation of Cheeger

23



Figure 9: Computation of Cheeger sets by optimizing the ratio perimeter/volume under con-
vexity and inclusion constraints.

sets for the square in the plane and for the regular tetrahedron, the cube and the regular dodec-
ahedron in dimension three are shown in Figure 9.

7 Conclusions

In this work, the properties of the support function are used to deal numerically with various
non-standard and non-local constraints in shape optimization problems. The spectral decom-
position of the support function using Fourier series in dimension two and spherical harmonics
in dimension three is particularly well suited in order to discretize convexity, constant-width,
diameter and inclusion constraints. The numerical tests use standard tools readily available
in optimization software like quasi-Newton or Newton methods with linear or non-linear con-
straints and cover a wide variety of shape optimization problems with various constraints.
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[ŠGJ08] Z. Šı́r, J. Gravesen, and B. Jüttler. Curves and surfaces represented by polynomial
support functions. Theoret. Comput. Sci., 392(1-3):141–157, 2008.

[SW79] G. Salinetti and R. J.-B. Wets. On the convergence of sequences of convex sets in
finite dimensions. SIAM Rev., 21(1):18–33, 1979.

[Top06] V. A. Toponogov. Differential geometry of curves and surfaces. Birkhäuser Boston, Inc.,
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