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ABSTRACT Underactuated Cable-Driven Parallel Robots (CDPR) employ a number of cables smaller
than the degrees of freedom (DoFs) of the end-effector (EE) that they control. As a consequence, the
EE is underconstrained and preserves some freedoms even when all actuators are locked, which may
lead to undesirable oscillations. This paper proposes a methodology for the computation of the EE
natural oscillation frequencies, whose knowledge has proven to be convenient for control purposes.
This procedure, based on the linearization of the system internal dynamics about equilibrium
configurations, can be applied to a generic robot suspended by any number of cables comprised
between 2 and 5. The kinematics, dynamics, stability and stiffness of the robot free motion are
investigated in detail. The validity of the proposed method is demonstrated by experiments on 6-
DoF prototypes actuated by 2, 3, and 4 cables. Additionally, in order to highlight the interest in a
robotic context, this modelling strategy is applied to the trajectory planning of a 6-DoF 4-cable CDPR
by means of a frequency-based method (multi-mode input shaping), and the latter is experimentally
compared with traditional non-frequency-based motion planners.

INDEX TERMS Cable-driven parallel robots, frequency analysis, input shaping, underactuated
robots, underconstrained robots.

NOMENCLATURE
Geometric symbols
p EE position
ε EE orientation
ζ EE pose
ζ f EE free pose coordinates
ζd EE dependent pose coordinates
di cable entry point in the pulley
bi cable exit point from the pulley
ai cable attachment point on the EE
ki swivel-axis unit vector
wi unit vector normal to the pulley plane
ui wi ×ki

ti unit vector along the cable
ni ti ×wi

ρi ai −bi (cable vector)
σi swivel angle
ψi tangency angle
li cable length

Kinematic symbols
ω EE angular velocity
v EE twist
ξi 0-pitch screw directed as ti passing

through Ai

Ξ kinematic Jacobian
Ξ⊥ nullspace of the kinematic Jacobian
J analytical Jacobian
J⊥ nullspace of the analytical Jacobian
P permutation matrix
Dynamic symbols
s position of the center of mass G
IG EE inertia tensor about G
M EE Mass matrix
C EE Coriolis matrix
τ cable-tension array
φ resultant of the external forces
q application point Q of φ
µ resultant moment of the external forces

about Q
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K UACDPR Geometric Stiffness
K⊥ UACDPR Free-Motion Stiffness
f j UACDPR natural oscillation frequency

I. INTRODUCTION

CABLE-driven parallel robots (CDPRs) control the
end-effector (EE) pose by means of extendable ca-

bles. A CDPR is underactuated if the number n of actu-
ated cables is smaller than the number of the EE degrees
of freedom (DoFs). As a consequence, only a sub-set of
the EE coordinates can be directly controlled, with the
remaining ones being determined by the system mechan-
ical equilibrium. An underactuated CDPR (UACDPR in
short) is always underconstrained, thus its EE preserves
some DoFs once actuators are locked. Accordingly, in
case the EE is not in a static equilibrium configuration
when actuators cease to move, the UACDPR exhibits
(possibly dangerous) oscillatory motions. This oscillatory
behaviour is naturally expected to occur at the end-point
of a trajectory, if suitable motion-planning and control
techniques are not employed [1], or it may result from
an emergency stop or an actuator failure.

Despite these drawbacks, the use of CDPRs with a
limited number of cables may be favorable in several ap-
plications, in which a limitation of mobility is acceptable
in order to enhance workspace accessibility or decrease
mechanical complexity and robot cost [2]–[5]. Thus, the
study of UACDPRs is attracting the interest of more and
more researchers, who have dealt with their geometrico-
static problems [6], [7], equilibrium stability analysis [8],
[9], trajectory planning [1], [10]–[16], system parameter
identification [17], and control [18]–[20].

The knowledge of natural oscillation frequencies of
UACDPRs can be used in order to derive frequency-based
trajectory planners based on periodic excitation [11] or
input-shaping [12], [14]–[16]: these planners limit oscil-
lations, and are real-time capable, as opposed to rest-
to-rest trajectory planners [1], which can completely stop
a UACDPR EE after a point-to-point motion, but needs
to be computed off-line (and are not frequency-based).
Additionally, natural oscillation frequencies may also be
exploited for optimal robot design [21].

In order to compute UACDPRs natural oscillation fre-
quencies, the EE internal dynamics [1] needs to be de-
rived, and expressed in terms of a minimal set of EE resid-
ual DoFs. Natural frequencies are determined by lineariz-
ing, about an equilibrium configuration, the EE internal
dynamics with respect to (w.r.t.) the EE residual DoFs,
and by solving the resulting eigenproblem. The authors
of [11], [12] derived the single configuration-dependent
natural oscillation frequency of a planar 3-DoF 2-cable
robot, by intuitively selecting the platform orientation as
the EE residual DoF, whereas in [15] the same technique
was employed for a spatial 6-DoF 3-cable system, where
ZYX Tait-Bryan angles were chosen as residual DoFs. Due
to the specific UACDPR architectures reported in [11],

[12], [15], the translational and rotational mechanical
equilibria of the EE could be decoupled, which resulted in
a mathematically simpler internal dynamics formulation
and linearization. This was not the case, instead, for
the 6-DoF 4-cable manipulator considered in [14], where
the authors determined the system natural frequencies
with a method similar to the one developed in [12], by
approximating the 6-DoF robot with two 3-DoF planar
sub-systems and selecting the orientations of these sub-
systems’ platforms as residual DoFs. In fact, because
of the intrinsic coupling of rotational and translational
equilibria of 6-DoF UACDPRs with more than 3 cables, it
is not straightforward to select the corresponding residual
DoFs (1 DoF for 5-cable robots and 2 DoFs for 4-cable
robots), and to derive and linearize the manipulator
internal-dynamic equations: singularities may arise in
the computation, which results in the failure of natural
frequency determination.

The contributions presented in this paper are the
following.
1) A novel unified technique is proposed for the compu-
tation of the natural oscillation frequencies of UACDPRs
with a generic number n of cables (1 < n < 6), a generic
geometry, and subject to a generic external wrench.
Previous works only analyzed specific architectures, such
as 2-cable 3-DoF UACDPRs [11], [12] and 3-cable 6-
DoF UACDPRs [15], [16], or an approximation of a 4-cable
6-DoF UACDPR with two 2-cable 3-DoF UACDPRs [14].
Our approach allows an easy selection of the EE residual
DoFs and the opportunity of easily switching between a
selection and another, so that representation singularities
may always be avoided in the formulation of the internal
dynamics; the subsequent natural frequency computation
is performed with a well-known tool, namely linearizing
the internal dynamics about an equilibrium configura-
tion. Additionally, the proposed modelling method has
the merit of determining out-of-the-plane oscillation fre-
quencies of planar systems with 2 cables, which were
not previously considered [11], [12]: the determination of
these frequencies proved to be useful in [18], where the
authors determined them experimentally, and used them
in the design of a stabilizing controller for the robot EE.
2) The natural oscillation frequencies of generic medium-
scale UACDPRs with 2, 3 and 4 cables are experimentally
determined and compared with the ones computed by
means of the new technique, thus showing that the latter
is adequate for real-world applications.
3) The stiffness and equilibrium stability of UACDPR are
refined w.r.t. the state of the art [8], [9] by taking into
account swivel pulleys in the kinematic model and a
generic wrench (not necessarily a pure force) acting on
the EE.
4) The relevance of our modelling technique is demon-
strated in the context of frequency-based motion plan-
ners, by planning the point-to-point trajectory of a 4-
cable 6-DoF UACDPR by means of a Multi-Mode Input
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(a) Geometry of the cable constraint on the platform (b) Swivel pulley local view (c) Pulley plane

Figure 1: CDPR geometric model

Shaper [22]. The results are experimentally compared
with those that can be achieved by non-frequency-based
motion planners.

The structure of the paper is as follows. Section II
reports the kinematic model. Section III investigates the
behaviour of an UACDPR when it is in free motion, that
is, when cable lengths are constant. The computation
of natural oscillation frequencies is then carried out in
Section IV, while Section V experimentally verifies that
the frequencies computed by the proposed approach
closely match the ones of physical 2-, 3- and 4-cable
UACDPR prototypes. Section VI shows an application ex-
ample: the experimental comparison between an Input-
Shaped trajectory of a 4-cable UACDPR and other motion
planners. Conclusions are drawn in Section VII.

II. KINEMATIC MODEL
The kinematic model of an UACDPR is derived by con-
sidering the geometric constraints imposed by n (taut)
cables, with 1 < n < 6, on the robot 6-DoF EE, as in
[1]. The pose ζ = [pT εT ]T of the EE is described in the
inertial frame Ox y z by the position vector p of P , the EE
reference point, and a minimal set of angles ε (Fig. 1a).

Cables are assumed to be massless (which is reasonable
for small- to medium-scale CDPRs), infinitely rigid and
always subject to non-zero tensile loads. Additionally,
each cable is guided into the workspace by a swivel
pulley, which can rotate about its swivel axis. Such a
pulley has radius ri and center Ci , and is mounted on
an hinged support, whose swivel axis is tangent to the
pulley in point Di (Figs. 1b,1c). The cable enters the
pulley groove in Di , exits from it at point Bi , and it is
attached to the platform at point Ai . di and ai are the
position vectors of Di and Ai , whereas a′

i is a vector
pointing from P to Ai . All position vectors, except di , are
functions of the EE pose ζ in Ox y z.

The coordinates of position vector bi of point Bi , in
the inertial frame, depend on ζ and also on the pulley
model. ki , wi , ui , ni , and ti are additional unit vectors

associated with the pulley geometry. As shown in Figs.
1b,1c: ki is directed along the swivel axis, ui points from
Di to Ci , wi = ki ×ui is normal to the plane defined by
the swivel axis and the i-th cable, ni points from Ci to
Bi , ti = wi ×ni is directed as the i-th cable; σi and ψi are
swivel and tangency angles. All these variables depend
on the EE pose ζ and, in case ζ is known, they can be
computed in closed form, as shown in [1]. Accordingly:

bi = di + ri (ui +ni ) (1)

The constraint imposed by each cable onto the EE is:

ρT
i ρi −

[
li − ri (π−ψi )

] |2 = 0 (2)

where ρi
∆= ai − bi , and li is the total cable length,

comprising the rectilinear part ‖ρi‖ and the arc ÚBi Di

wrapped onto the pulley.

A. DIFFERENTIAL KINEMATICS
If ω is the angular velocity of the EE, the EE twist is
v = [ṗT ωT ]T and its linear relationship with ζ̇ is given
by:

v = D(ε)ζ̇, D(ε)
∆=

[
I3×3 03×3

03×3 H(ε)

]
(3)

where I3×3 ∈ R3×3 and 03×3 ∈ R3×3 are identity and null
matrices, and H(ε) depends on the parametrization used
to describe the orientation [1].

The rate of change of li , l̇i , can be computed as the
projection of the velocity of point Ai along the i-th cable
direction ti [1], [23], [24], that is:

ȧ′
i = ṗ+ω×a′

i (4)

l̇i = ti · ȧ′
i = ξi ·v, ξi

∆=
[

ti

a′
i × ti

]
(5)

where ξi is a zero-pitch screw directed as ti and passing
through Ai , and the symbols · and × denote the scalar
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and vector products, respectively. The relationship be-
tween the EE twist v and the derivatives of the system
actuated variables, l = [l1 . . . , ln]T , is thus given by:

Ξv = l̇, Ξ
∆= [ξ1 · · · ξn]T (6)

where matrix Ξ ∈ Rn×6 is the kinematic Jacobian of the
manipulator. In general, rank(Ξ) = n, but, if a direct-
kinematics singularity is encountered [25], rank(Ξ) < n.

By substituting (3) in (6), the relationship between l̇
and the derivative of the EE pose is obtained as:

ΞDζ̇= Jζ̇= l̇, J
∆=ΞD (7)

Matrix J ∈ Rn×6 is the analytic Jacobian of the manip-
ulator, thus it is a proper gradient, which may also be
obtained by differentiating (2) w.r.t. ζ for i = 1, · · · ,n [26].

III. FREE MOTION
The aim of this section is to highlight some kinematic
and dynamic properties of the UACDPR when actuators
are locked, namely l = l0, l̇ = l̈ = 0n×1, and thus the EE is
in free motion.

A. FREE-MOTION KINEMATICS
The free-motion first-order kinematics can be described
by setting l̇ = 0n×1 in (6):

Ξv = 0n×1 (8)

namely (cf. (3) and (7)):

Jζ̇= 0n×1 (9)

Once the lengths of the n cables are set and all cables
are taut, that is, all kinematic constraints are active, and
Ξ has full column rank, the EE can still move on a variety
of dimension λ= 6−n in SE(3), thus preserving λ DoFs.
Consequently, λ components of ζ are free to vary, and
are called free pose components ζ f . The remaining n
components of ζ are called dependent pose components
ζd , since they depend on the value of cable lengths l0 and
free pose components ζ f . When actuators are locked, the
free twist v of the EE can be expressed as a function of the
EE λ residual DoFs. This can be done by computing the
right nullspace Ξ⊥ of matrix Ξ. By definition, the right
nullspace of the full-rank (n ×6) matrix Ξ is spanned by
the (independent) columns of a (6×λ) matrix Ξ⊥ such
that ΞΞ⊥ = 0n×λ, so that its columns define a basis for
the free twist v:

v =Ξ⊥c for some c ∈Rλ (10)

If J⊥ is the right nullspace of matrix J, then:

v = Dζ̇= DJ⊥c′ for some c′ ∈Rλ (11)

Comparing (10) and (11) and choosing c = c′ yields:

Ξ⊥ = DJ⊥ (12)

Equation (12) has great significance in the computation
of natural oscillation frequencies of UACDPR, as Section
IV will highlight.

Since most orientation parametrizations of SO(3) allow
rank(D) ≥ 5 (even in case of representation singularities),
and 5 ≥ n for any UACDPR, one can always assume
rank(D) ≥ n. This allows us to find an expression of J⊥,
and thus of Ξ⊥, so that the parameter array c can be
chosen as a subset of ζ̇. Since Ξ has full column rank
and rank(D) ≥ n, a permutation matrix1 P ∈ R6×6 can be
determined so that:

ζ̇P
∆= Pζ̇=

[
ζ̇d

ζ̇ f

]
, ζ̇d ∈Rn , ζ̇ f ∈Rλ (13)

JP
∆= JPT =ΞDPT =Ξ[

Dd D f
]= [

Jd J f
]

(14)

Dd ∈R6×n , Jd
∆=ΞDd ∈Rn×n (15)

D f ∈R6×λ, J f
∆=ΞD f ∈Rn×λ (16)

J⊥P
∆= PJ⊥, J⊥P ,J⊥ ∈R6×λ (17)

where:
JJ⊥ = JPT PJ⊥ = JP J⊥P = 0n×λ (18)

The permutation matrix P must always be chosen so
that rank(Dd ) = n and, since rank(Ξ) = n, this also means
rank(Jd ) = n. This allows us to express ζ̇, and thus v, as
a function of ζ̇ f in free motion. Indeed, since:

Jζ̇= JP ζ̇P = Jd ζ̇d + J f ζ̇ f = 0n×1 (19)

then:
ζ̇d =−J−1

d J f ζ̇ f (20)

ζ̇P = J⊥P ζ̇ f , J⊥P =
[−J−1

d J f

Iλ×λ

]
(21)

ζ̇= PT ζ̇P = PT J⊥P ζ̇ f = J⊥ζ̇ f , J⊥ = PT J⊥P (22)

v = Dζ̇= DJ⊥ζ̇ f =Ξ⊥ζ̇ f , Ξ⊥ = DPT J⊥P = DJ⊥ (23)

Matrix J⊥P in (21) always satisfies (18). Basically, matrix
P allows us to group n dependent pose-derivative com-
ponents in ζ̇d and λ free pose-derivative components in
ζ̇ f , so that it is possible to express the free twist of the EE
as a linear combination of the columns of Ξ⊥, with the
combination coefficients c being the components ζ̇ f . The
choice of the permutation matrix P, and subsequently
of the free pose components, is not arbitrary, since it
must ensure rank(Dd ) = n. However, this choice does not
need to be unique throughout the robot workspace, but
it can be changed locally in order to avoid representation
singularities: this is always possible, because rank(D) ≥ 5.
In addition, in case a direct-kinematics singularity is
encountered in the workspace, so that rank(Ξ) = n′, with
n′ < n, the method proposed in this Section for the

1A permutation matrix is an orthogonal matrix that has exactly one
entry of 1 in each row and each column, and has 0’s elsewhere [27].
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description of the free motion may still be employed: the
DoFs preserved by the EE would be λ′ = 6−n′, and λ′
free pose coordinates and n′ dependent pose coordinates
could be chosen.

B. FREE-MOTION DYNAMICS
The non-linear dynamic model of an UACDPR emerges
from the EE mechanical equilibrium, subject to cable
constraints, inertial actions, and an external wrench [1]:

Mv̇+Cv =−ΞTτ+ f (24)

M
∆=

[
mI3×3 −ms̃′

ms̃′ IP

]
, IP

∆= IG −ms̃′s̃′

C
∆=

[
03×3 −mω̃s̃′
03×3 ω̃IP

]
, f

∆=
[

φ

q̃′φ+µ
] (25)

where m is the EE mass, IG is the EE inertia tensor
about its center of mass G expressed in the inertial frame,
the symbol ∼ over a vector denotes its skew-symmetric
representation, and τ ∈ Rn is an array containing the
cable tension magnitudes. f ∈ R6 is a generic external
wrench, resulting from a force φ applied in point Q and
a moment µ directed along φ (Fig. 1a). Vectors s′ and q′
point from P to G and Q, respectively.

Since the natural oscillation frequencies characterize
the free motion of the EE about equilibria (l = l0, l̇ = l̈ =
0n×1), it is useful to express (24) in terms of the λ DoFs
that the EE preserves and their derivatives, ζ f , ζ̇ f , ζ̈ f . This
is achieved by considering (2) for i = 1, · · · ,n and a fixed
l0, as well as (23) and its time derivative:

ζ= ζ(l0,ζ f ), v =Ξ⊥ζ̇ f , v̇ = Ξ̇⊥
ζ̇ f +Ξ⊥ζ̈ f (26)

where Ξ̇
⊥

, as any first-order time derivative, is linearly
dependent from ζ̇ f and can be symbolically computed by
differentiating the right-hand side of (23) w.r.t. time. The
free motion internal dynamics of the EE can be obtained
by substituting (26) in (24) and left-multiplying by Ξ⊥T

.
Since Ξ⊥T

ΞT = 0λ×n , then:

M⊥ (
ζ f

)
ζ̈ f +C⊥ (

ζ f , ζ̇ f
)
ζ̇ f − f⊥

(
ζ f

)= 0λ×1 (27)

where:

M⊥ ∆=Ξ⊥T
MΞ⊥, C⊥ ∆=Ξ⊥T

(
MΞ̇⊥+CΞ⊥

)
,

f⊥ ∆=Ξ⊥T
f

(28)

C. FREE MOTION STIFFNESS
An equilibrium configuration is a set (ζ, l) = (

ζ0, l0
)

such that (2), for i = 1, · · · ,n, and (27) are satisfied for
ζ̇ f = ζ̈ f = 0λ×1, and τ is element-wise stricly positive [6].

After equilibrium is altered, the restoring action that
pushes the system back towards the equilibrium is due
to the external wrench and the cable constraint forces.
These restoring actions generate the Free-Motion Stiffness

(FMS) K⊥ ∆=−∂f⊥/∂ζ f ∈Rλ×λ of the UACDPR2.

2Please refer to the Appendix for additional details about the tensor
notation used in this paper.

The FMS was implicitly formulated for UACDPRs in [8],
under the assumptions that cables exit the frame through
eyelets, and the platform is subject to the gravitational
action only, and explicitely formulated accounting for
pulley kinematics in [9]. Here, K⊥ is formulated as in
[9], but the application of a generic external wrench f on
the platform is also considered.

According to (22) (ζ̇= J⊥ζ̇ f ), one can infer:

J⊥ = ∂ζ/∂ζ f (29)

Thus, accounting for (28):

K⊥ =− ∂f⊥

∂ζ f
=−∂f⊥

∂ζ
J⊥ =−

(
∂Ξ⊥T

∂ζ
f+Ξ⊥T ∂f

∂ζ

)
J⊥ (30)

Since the restoring actions under examination are those
around equilibrium configurations, f = ΞTτ (see (24)),
and thus:

K⊥
0 =−

(
∂Ξ⊥T

∂ζ
ΞTτ+Ξ⊥T ∂f

∂ζ

)
J⊥ (31)

where the subscript 0 denotes that K⊥
0 is calculated in the

equilibrium configuration. Differentiating Ξ⊥T
ΞT = 0λ×n

and substituting in (31) yields:

K⊥
0 =Ξ⊥T

(
∂ΞT

∂ζ
τ− ∂f

∂ζ

)
J⊥ (32)

The first term in the parentheses at the right-hand side
of (32) may be calculated by considering the right-hand
side of (5):

∂ΞT

∂ζ
τ=

n∑
i=1

τi
∂ξi

∂ζ
=

n∑
i=1

τi

[ ∂ti
∂ζ

ã′
i
∂ti
∂ζ − t̃i

∂a′i
∂ζ

]
(33)

According to [1], it can be shown by computation that:

∂ti

∂ζ
= [

Ti −Ti ã′
i

]
D, Ti

∆= sinψi wi wT
i

ui · (ai −di )
+ ni nT

i

‖ρi‖
(34)

∂a′
i

∂ζ
= [

03×3 −ã′
i

]
D (35)

thus obtaining:
∂ΞT

∂ζ
τ= KD (36)

with:

K
∆=

n∑
i=1

τi

[
Ti −Ti ã′

i
ã′

i Ti −ã′
i Ti ã′

i

]
+

n∑
i=1

τi

[
03×3 03×3

03×3 t̃i ã′
i

]
(37)

In the literature, the (6×6) matrix K is referred to as
Geometric [24], Controllable [28] or Active [29] Stiffness of
the CDPR, because it is geometry dependent and, in over-
constrained CDPRs, τ can be actively controlled inde-
pendently from the EE configuration. It should be noted
that its definition is fundamentally different from the so-
called Passive Stiffness generated by cable deformations
(not considered in this paper, since cables are modelled
as rigid). However, in UACDPRs, K cannot be actively
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controlled, because τ depends on the equilibrium con-
figuration.

The second term in the parentheses at the right-hand
side of (32) is calculated from (25). Since q′ = R P q′, with
R being the rotation matrix between the moving and
the inertial frame, and P q′ being the coordinates of q′
expressed in P x ′y ′z ′, one has:

− ∂f

∂ζ
= QD−F (38)

Q
∆=

[
03×3 03×3

03×3 −φ̃i q̃′
]

, F
∆=

[ ∂φ
∂ζ

R ∂P q′
∂ζ + q̃′ ∂φ

∂ζ + ∂µ
∂ζ

]
(39)

since ∂q′/∂ζ = [03×3 − q̃′
i D+R ∂P q′

∂ζ ]. Finally, substituting
(36) and (38) in (32), yields:

K⊥
0 =Ξ⊥T

[(K+Q)D−F]J⊥ (40)

where:

K+Q =
n∑

i=1
τi

[
Ti −Ti ã′

i
ã′

i Ti −ã′
i Ti ã′

i

]
+

+
n∑

i=1
τi

[
03×3 03×3

03×3 −t̃i ã′
i

]
+

[
03×3 03×3

03×3 φ̃i q̃′
i

]
(41)

Notice that matrix K+Q is generally non-symmetric,
since, while the first summation in (41) is always sym-
metric, the other terms are not. In fact, at the static
equilibrium:

n∑
i=1

τi a′
i × ti = q′

i ×φ+µ (42)

which, in skew-symmetric representation, is equivalent
to:

n∑
i=1

τi
(
ã′

i t̃i − t̃i ã′
i

)= q̃′φ̃− φ̃q̃′+ µ̃ (43)

Equation (43) shows that the summation of the second
and third term in (41), namely,

φ̃q̃′−
n∑

i=1
τi t̃i ã′

i = q̃′φ̃−
n∑

i=1
τi ã′

i t̃i + µ̃=

=
(
φ̃q̃′−

n∑
i=1

τi t̃i ã′
i

)T

+ µ̃ (44)

is symmetric if and only if µ = 03×1. If, furthermore,
the force φ is constant, then F = 06×6 and the FMS is
symmetric for any choice of EE pose parameters (both p
and ε):

K⊥
0 =Ξ⊥T

(K+Q)Ξ⊥ (45)

IV. LINEARIZED FREE-MOTION DYNAMICS AND
NATURAL OSCILLATIONS
The UACDPR natural oscillation frequencies can be com-
puted from the eigenvalue problem arising from the
EE free-motion dynamics, after its linearization about
an equilibrium configuration. A linearized form of (27)
can be obtained by expanding it in Taylor series and

truncating the expansion at the first order (an example of
application to the linearization of the dynamic model of
fully-actuated parallel manipulators can be found in [30]).
In the following, an approach similar to [30] is followed,
but the EE coordinates are not considered independent
from each other (cf. (22)), which is a distinctive feature
of underactuated mechanisms.

If the left-hand side of (27) is denoted by h
(
ζ f , ζ̇ f , ζ̈ f

)
,

the Taylor-series expansion of (27) about an equilibrium
configuration (ζ f = ζ f 0, ζ̇ f = 0λ×1, ζ̈ f = 0λ×1) truncated
at the first order yields:

h
(
ζ f , ζ̇ f , ζ̈ f

)' h
(
ζ f 0,0,0

)+ ∂h

∂ζ̈ f

∣∣∣∣∣(
ζ f 0,0,0

) ζ̈ f +

+ ∂h

∂ζ̇ f

∣∣∣∣∣(
ζ f 0,0,0

) ζ̇ f +
∂h

∂ζ f

∣∣∣∣∣(
ζ f 0,0,0

)
(
ζ f −ζ f 0

)= 0λ×1 (46)

At equilibrium, h
(
ζ f 0,0,0

)= f⊥ = 0λ×1. The partial deriva-
tives are readily obtained as:

∂h

∂ζ̈ f

∣∣∣∣∣(
ζ f 0,0,0

) = M⊥∣∣(
ζ f 0,0,0

) = M⊥
0 (47)

∂h

∂ζ̇ f

∣∣∣∣∣(
ζ f 0,0,0

) =
(

C⊥+ ∂C⊥

∂ζ̇ f

ζ̇ f

)∣∣∣∣∣(
ζ f 0,0,0

) = 0λ×λ (48)

∂h

∂ζ f

∣∣∣∣∣(
ζ f 0,0,0

) =
(
∂M⊥

∂ζ f
ζ̈ f +

∂C⊥

∂ζ f
ζ̇ f −

∂f⊥

∂ζ f

)∣∣∣∣(
ζ f 0,0,0

) =

=− ∂f⊥

∂ζ f

∣∣∣∣∣(
ζ f 0,0,0

) = K⊥∣∣(
ζ f 0,0,0

) = K⊥
0 (49)

where many elements vanishing in (47), (48) and (49) are
linearly dependent on ζ̇ f and ζ̈ f (and thus are naught),
and matrices M⊥

0 and K⊥
0 , given in (28) and (40), are

reported below for the sake of convenience:

M⊥
0 =Ξ⊥T

MΞ⊥ (50)

K⊥
0 =Ξ⊥T

[(K+Q)D−F]J⊥ (51)

All quantities at the right-hand sides of (50) and (51) are
intended to be computed in the equilibrium configura-
tion.

Finally, (46) can be rewritten as:

M⊥
0 ζ̈ f +K⊥

0

(
ζ f −ζ f 0

)= M⊥
0 ∆ζ̈ f 0 +K⊥

0 ∆ζ f 0 = 0λ×1 (52)

where ∆ζ̈ f 0
∆= ζ̈ f −0λ×1 and ∆ζ f 0

∆= ζ f −ζ f 0.
This formulation leads to a generalized eigenvalue

problem, whose solution allows for the determination of
the system natural oscillation frequencies in the equilib-
rium configuration under investigation. By considering a
solution of (52) in the form ∆ζ f 0(t ) = γeΛt , with Λ ∈ C,
so that: (

Λ2M⊥
0 +K⊥

0

)
γ= 0λ×1 (53)
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i 1 2 3 4

di [m]


0.219

−1.316

0.527




2.295

−1.158

0.521




2.153

0.973

0.560




0.0532

0.796

0.532


ri [m] 0.025 0.025 0.025 0.025

P a′
i [m]


−0.144

−0.219

0.264




0.115

−0.233

0.270




0.142

0.220

0.266



−0.120

0.236

0.266


xi j −i −j i

yi −k −k -k -k

zi −i −j i j

Table 1: Actuators’ properties

m [Kg] P IG [Kg ·m2] P s′ [m]

8


0.1338 0.0059 0.0021

0.0059 0.1814 −0.0055

0.0021 −0.0055 0.2602




0.002

−0.002

0.200


Table 2: Platform inertial properties

the eigenvalues Λ2
1, . . . ,Λ2

λ
are found by solving the char-

acteristic equation, namely:

det
(
Λ2M⊥

0 +K⊥
0

)= 0 (54)

Based on (54), it is possible to define the stability condi-
tions of a UACDPR equilibrium configuration: if and only
if Λ2

1, . . . ,Λ2
λ

are real negative numbers, the equilibrium
configuration is stable, otherwise it is unstable [31]. When
K⊥

0 is symmetric (and only in this case), the latter asser-
tion is equivalent to requiring K⊥

0 to be positive-definite
[8]. Finally, natural oscillation frequencies are computed
(in [Hz]) as:

f j =
ℑ(
Λ j

)
2π

(55)

where ℑ (·) denotes the imaginary part of a complex
number. Additionally, eigenvectors γ j can be determined
by solving (53) for each j and normalized according to
γT

j M⊥
0 γ j = 1.

V. EXPERIMENTAL VALIDATION
In order to validate the methodology proposed in this
paper, a series of experiments were conducted on the
6-DoF UACDPR prototype of the University of Bologna
(Fig. 2). Geometrical and inertial properties of the proto-
type are deduced from the prototype CAD models, and
are summarized in Tables 1 and 2, where i = [1;0;0]T ,
j = [0;1;0]T , and k = [0;0;1]T , and the only external load
applied to the robot EE is gravity, thus q′ = s′, φ=−mg k
and µ= 03×3. The coordinates of a′

i , s′ and IG are constant

Cable 3

Swivel Pulleys

Markers
Cable 1

Cable 4
Cable 2

Figure 2: UACDPR Prototype

in the EE frame, and denoted as P a′
i , P s′ and P IG in

P x ′y ′z ′.

A. EXPERIMENTAL METHODOLOGY
The procedure described in this Section was applied
to, respectively: 30 equilibrium configurations in which
the platform was constrained by 4 cables (cables 1 to
4, Fig. 3a), 30 configurations in which only cables 1
through 3 were attached to the platform (Fig. 3b), and 30
configurations in which the platform was only suspended
by cables 1 and 3 (Fig. 3c).

Each equilibrium configuration was reached by quasi-
statically varying robot cable lengths; once the assigned
set-point was reached, actuators were controlled to hold
their angular positions so that cable lengths could not
vary any longer, and motor torques were checked to en-
sure that their values were compatible with cables being
taut. The EE was then manually slightly displaced w.r.t.
its equilibrium configuration, and swiftly released next:
this operation was equivalent to impose non-equilibrium
initial conditions to the free-motion dynamics of the plat-
form. The positions pk , k = 1, . . . ,5, of 5 optical markers
mounted on the robot platform (2 of which can be seen
in Fig. 2) were tracked by 8 cameras of a VICON Motion
Capture System (measurement accuracy was ±0.2 mm for
each marker’s Cartesian component, at a 100 Hz sampling
rate) for a total duration of 10 s for each experiment, thus
acquiring ns = 1001 samples per marker coordinate.

These coordinates were then filtered by using a zero-
phase finite-impulse response low-pass digital filter with
a stop-band frequency of 10 Hz. No natural oscillation
frequency above 4 Hz was expected from the model,
thus measurement noise and unmodelled oscillatory phe-
nomena at higher frequencies, such as cable elastic axial
vibrations, were accordingly removed.

For each experiment, the ns EE poses recorded during
oscillations were reconstructed from the position of the
5 markers, and the corresponding cable lengths were
calculated by the inverse geometric model (see (2)). The
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(a) 4-cable UACDPR

(b) 3-cable UACDPR

(c) 2-cable UACDPR

Figure 3: Layout of experimental configurations

mean value over the ns samples of each cable length
differed from its maximum and minimum value by less
than 1 mm and thus it was considered as the constant
experimental value of the variable l?0 . Alternatively, cable

lengths could be computed as the result of the inverse
model applied to the rest pose of the EE that is eventually
reached. On the other hand, the employed procedure is
considered to be more robust, because static friction may
lead the EE to stop in a configuration different from the
theoretical one.

The natural-oscillation-frequency computation method
proposed is summarized as follows:

• given the experimental value l?0 of cable lengths,
compute the corresponding EE static equilibrium
pose ζ?0 according to the direct geometric-static
model [6] (ε is expressed by x y z Tait-Bryan angles);
since the problem has possibly multiple solutions,
keep only the stable pose that is closer to the initial
one;

• once the equilibrium configuration
(
ζ?0 , l?0

)
is known,

compute M⊥
0 and K⊥

0 according to (50) and (51);
• solve the generalized eigenvalue problem in (53) and

compute the natural oscillation frequencies f j , for
j = 1, . . . ,λ, according to (55).

The experimental value f ?j of each EE natural oscilla-
tion frequency was then identified, for j = 1, . . . ,λ, from
the marker recorded positions, so that a comparison with
the corresponding modelled value f j could be performed.
The oscillation of each marker w.r.t. its equilibrium posi-
tion was experimentally computed as:

∆pk (t ) = pk (t )−pk (56)

where (·) denotes the mean value operator. The signal of
any coordinate of ∆pk (t ) contains, in general, the system
natural frequencies since, if pk is chosen as the platform
reference point, ∆pk (t ) can be modelled as:

∆pk (t ) = J⊥k ∆ζ f 0(t ) = J⊥k γeΛt =γk eΛt , γk
∆= J⊥k γ (57)

where J⊥k groups the first 3 rows of J⊥ as in the left-
hand side of (22). Then, the Fast Fourier Transformation
(FFT) of each coordinate of ∆pk (t ), for k = 1, . . . ,5, was
performed. This operation was deemed necessary since:
(i) depending to the actual value of γk , some modes
may be absent in some coordinate, (ii) depending on the
manually imposed initial condition of the EE oscillation,
some modes may have an experimentally negligible am-
plitude in the frequency spectra of a certain coordinate
FFT, and (iii) high data redundancy, which is achieved by
considering 15 signals theoretically possessing frequency
spectra peaks corresponding to the same frequency val-
ues, robustifies the experimental investigation. Figure 4
shows, as an example, the FFTs produced while ana-
lyzing experiment 77 on the 2-cable UACDPR. Several
small-amplitude peaks can be noticed surrounding high
amplitude-peaks: they are not present in the original
signals, but artificially introduced because of an FFT
resolution upscaling process. In fact, ns = 1001 samples
recorded at 100 Hz would produce an FFT with 0.1 Hz
frequency resolution. This resolution was upscaled to
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Figure 4: Example of experimental FFTs: experiment 77 on the 2-cable UACDPR

Figure 5: Modelled and experimental oscillation frequencies for UACDPRs with 2, 3 and 4 cables.

0.01 Hz in order to better isolate nearby peaks of the
signal FFTs. This operation was performed by adding, at
the end of the ns recorded samples, 9ns additional zero-
value samples, for a total of 10ns = 10001 samples.

B. DISCUSSION OF RESULTS
For each experiment, the experimental natural frequency
f ?j is determined as the weighted mean of the frequencies
f ?j ,kc corresponding to FFT peaks of a single coordinate,
with the oscillation amplitude Akc used as weight (k =
1, . . . ,5, c = x, y, z):

f ?j =
(

5∑
k=1

z∑
c=x

Akc f ?j ,kc

)/(
5∑

k=1

z∑
c=x

Akc

)
(58)

The results3 of all experiments are summarized in Fig. 5,
where each integer between 1 and 90 on the abscissa
axis represents one of the experimental configurations
portrayed in Fig. 3, with the ordinate representing the
corresponding values of f j (in black) and f ?j (in red), for
j = 1, . . . ,λ.

3Complete experimental data, and the associated descriptive statics,
can be found in [32].

In order to evaluate how different FFT peaks corre-
sponding to the same natural frequency are dispersed
w.r.t. their mean value, the percentage standard deviation
of the weighted mean was analyzed:

σ?j % = 100

√√√√(
5∑

k=1

z∑
c=x

Akc

(
f ?j ,kc − f ?j

)2
)/(

5∑
k=1

z∑
c=x

Akc

)
(59)

The smaller σ?j % is, the better the natural frequency
is experimentally identified. A descriptive statistics of
σ?j % for each mode j = 1, . . . ,λ, organized by archi-
tecture (4-, 3-, 2-cable UACDPRs), is given in Table 3.
Mean values are less than 3% across all modes and
architectures, minimum values are below 1% and the
largest value is roughly 6%: the proposed frequency-
identification method is deemed well performing, espe-
cially considering the prototype nature of the robot used
in the experiments (most structural components, except
for the winches, are made of 3D-printed plastic).

In order to asses how well the experimental natural
frequency f ?j matches the modelled one f j , the (absolute)
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j mean(σ?j %) max(σ?j %) min(σ?j %)

4-cable UACDPR

1 0.96% 3.18% (Exp. 26) 0.04% (Exp. 7)

2 1.56% 4.21% (Exp. 29) 0.26% (Exp. 9)

3-cable UACDPR

1 2.36% 6.06% (Exp. 46) 0.21% (Exp. 33)

2 1.79% 5.52% (Exp. 42) 0.19% (Exp. 56)

3 1.78% 3.50% (Exp. 35) 0.12% (Exp. 50)

2-cable UACDPR

1 0.70% 2.70% (Exp. 76) 0.09% (Exp. 65)

2 1.34% 3.94% (Exp. 63) 0.25% (Exp. 75)

3 2.28% 4.30% (Exp. 68) 0.53% (Exp. 77)

4 2.87% 4.91% (Exp. 87) 0.29% (Exp. 63)

Table 3: σ?j % descriptive statistics.

j mean(∆ f j %) max(∆ f j %) min(∆ f j %)

4-cable UACDPR

1 1.07% 2.66% (Exp. 6) 0.09% (Exp. 13)

2 0.70% 1.87% (Exp. 28) 0.04% (Exp. 21)

3-cable UACDPR

1 1.41% 4.45% (Exp. 43) 0.08% (Exp. 42)

2 1.61% 5.05% (Exp. 60) 0.06% (Exp. 49)

3 1.38% 3.10% (Exp. 52) 0.25% (Exp. 32)

2-cable UACDPR

1 1.86% 3.87% (Exp. 80) 0.05% (Exp. 65)

2 2.14% 4.92% (Exp. 73) 0.03% (Exp. 64)

3 1.06% 3.08% (Exp. 78) 0.16% (Exp. 74)

4 1.88% 5.38% (Exp. 77) 0.16% (Exp. 61)

Table 4: ∆ f j % descriptive statistics.

percentage estimation error is additionally analyzed:

∆ f j % = 100

∥∥∥∥∥ f ?j − f j

f j

∥∥∥∥∥ (60)

A descriptive statistics of ∆ f j % for each mode j = 1, . . . ,λ,
organized by architecture (4-, 3-, 2-cable UACDPRs), is
given in Table 4, where the experiment number matching
maximum and minimum statistical indicators is reported
within parentheses. Mean values are less than 2.5% across
all modes and architectures, minimum errors are be-
low 0.5% and the largest error is less than 6%: it can
be ultimately concluded that the proposed method for
natural-frequency computation is accurate, in practice.
In fact, from an engineering perspective, a mean error
of the order of 1−2% is negligible in most applications.

In addition, various error sources, such as an imperfect
knowledge of robot geometry and inertial parameters,
which were estimated from CAD drawings, could also
have had a negative impact on the evaluation of the
modelled natural frequencies f j .

It should be noted that, while experimentally study-
ing UACDPRs natural frequencies, additional FFT small-
amplitude peaks, which did not match any phenom-
ena modelled in this paper, were occasionally detected.
These additional vibratory/oscillatory phenomena were
expected, since cables may vibrate axially or flexurally, or
they may oscillate out of the pulley planes. On the other
hand, the amplitude of these phenomena (i.e. tenths of a
millimeter) is negligible w.r.t. the amplitude of natural
oscillations (up to dozens of millimeters, see Fig. 4),
for the prototype used in the experimentation. These
additional effects will be addressed in our future work
on a larger-scale prototype.

VI. APPLICATION EXAMPLE
In order to highlight the interest of the modelling strategy
proposed in this paper in a robotic context, a potential
application example is presented in the following: the
trajectory planning of a 6-DoF 4-cable UACDPR by a
frequency-based method (i.e. Multi-Mode Zero-Vibration
Input Shaping [16], [22]), experimentally compared with
traditional methods. The robot under investigation has
λ = 2 free pose components, and thus the trajectory of
4 EE dependent coordinates can be assigned for plan-
ning purposes4. The natural frequencies of the robot are
determined by taking into account the exact 4-cable 6-
DoF architecture of the robot (an approximated method is
reported in [14], which, according its authors, may have
limitations when motion is performed near workspace
edges).

Three trajectories are compared, in the form:

ζd (t ) = ζd ,s + (ζd , f −ζd ,s )u(t ) (61)

with ζd ,s and ζd , f being start and final values of depen-
dent pose coordinates respectively, and u(0) = 0, u(T ) = 1,
0 ≤ u(t ) ≤ 1 ∀t . All trajectories have equal start and final
configurations, but they differ in the choice of the motion
law u(t ), as follows:

• the first motion law, called STDT , is a standard
trapezoidal velocity profile, with total transition time
T , and αT acceleration and deceleration duration
(0 ≤α≤ 0.5):

uSTDT (t ) =


(t/T )2

2α(1−α) , t <αT
(−α+2t/T )

2(1−α) , αT ≤ t ≤ (1−α)T
−2α2+2α−1+t/T−(t/T )2

2α(1−α) , t > (1−α)T
(62)

4In the context of trajectory planning, dependent coordinates are also
called controlled coordinates, or actuated coordinates [1].
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Figure 6: Modelled oscillation frequencies along u(t ).

• the second motion law, called STDT −IS, is the con-
volution of STDT with a multi-mode zero-vibration
input shaper [22]:

uSTDT −IS(t ) = uSTDT (t )∗S(t ) (63)

S(t ) =
k∑

i=1
Aiδi (t − ti ) (64)

where ∗ denotes the convolution operation, δi (t =
ti ) = 1, δi (t 6= ti ) = 0, Ai is the impulse amplitude, ti

is the time at which the impulse occurs, and k is the
number of impulses; the convolution with an input-
shaper delays the total duration of the trajectory by
∆T = tk ;

• the last motion law, called STDT+∆T , is a standard
trapezoidal velocity profile, with total transition time
T +∆T , and α(T +∆T ) acceleration and deceleration
duration.

Once a trajectory for the dependent coordinates is
assigned, the evolution of the free coordinates when the
system is following the prescribed trajectory must be eval-
uated. Free coordinates are computed by numerically in-
tegrating the system internal dynamics, which is obtained
by pre-multiplying (24) by Ξ⊥T

and substituting the left-
hand side of (3) and (13), and their time derivatives5:

MP ζ̈P +CP ζ̇P = f⊥ (65)

MP
∆=Ξ⊥T

MDPT = [
Md M f

]
, Md ∈Rλ×n ,M f ∈Rλ×λ (66)

CP
∆=Ξ⊥T (

MḊ+CD
)

PT (67)

After algebraic manipulation, the time-derivative of vec-

tor x
∆=

[
ζT

f , ζ̇
T
f

]T
can be expressed as:

ẋ =
[

ζ̇
T
f

M−1
f

(−Md ζ̈d −CP ζ̇P + f⊥
)] (68)

5While performing a trajectory, cable lengths change and the elements
of ζP and its time derivatives are independent, as opposite to when
the EE is in free-motion and only ζ f and its time derivatives are
independent.

and (68) can be numerically integrated for assigned initial
rest condition x0 (ζ f 0 is the static equilibrium value for
an assigned ζd0 and ζ̇ f 0 = 0λ). Finally, cable lengths can
be computed according to the inverse geometric model
in (2), and fed to low-level motor drivers for manipulator
control. While servo-motor angular positions are closed-
loop controlled, there is no feedback on the platform
pose, and thus its configuration is only feed-forward
controlled.

Start and end configurations are selected near the
UACDPR static workspace edges [33], in order to stress the
importance of careful trajectory planning so as to avoid
potentially dangerous situations, such as cable loss of
tension due to platform large oscillatory motions. ε is ex-
pressed by x y z Tait-Bryan angles, since no representation
singularities are expected throughout the manipulator
static workspace:

ζs = [0.36,−0.82,−0.37,−0.35,0.51,0.12]T [m,rad]

ζe = [1.82,0.55,−0.37,0.38,−0.25,0]T [m,rad]

Natural oscillation frequencies along the path defined by
ζs and ζe vary in the range [1.19,2.21] Hz (see Fig. 6) and
can be computed by the method described in Sections III
and IV. Since the ratio between the maximum and min-
imum frequency is almost 2, a convoluted multi-mode
zero-vibration Input Shaper with 3 modes is designed:
the 4 pairs (Ai , ti ), i = 1, . . . ,4 are determined by setting
to zero both summations inside the parentheses of the
residual-amplitude equation [16], [22]:

A%( f ) =
√√√√(

k∑
i=1

Ai cos(2π f ti )

)2

+
(

k∑
i=1

Ai sin(2π f ti )

)2

(69)

for f = 1.19, 1.7, 2.21 Hz (the minimum, mean and max-
imum frequencies in the range), by considering t1 = 0 s,
and imposing

∑k
i=1 Ai = 1; this procedure results in:

I S :
A1 = A4 = 0.1575, A2 = A3 = 0.3425

t1 = 0s, t1 = 0.294s, t3 = 0.588s, t4 = 0.882s
(70)

with ∆T = t4. Trapezoidal motion law parameters are
selected as α = 0.2 and T = 1.5 s. Finally, dependent
components are selected as p and ε3. While the choice
of p as part of the dependent coordinates is natural if
a positioning task has to be performed, no particular
strategy is readily available for the choice of orientation
parameters as dependent coordinates. For our demon-
strative purpose, any choice is suitable: ε3 is chosen
due to its limited variation between the start and final
configurations.

Complete experiments can be visualized in the media
material attached to this paper, and free components ε1

and ε2 time evolution during experiment is shown in
Fig. 7 as recorded by the Vicon Camera system described
in Sec. V. When comparing trajectories with the same
total duration, namely STDT − IS and STDT+∆T , it is
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(a) ε1 time evolution (b) ε2 time evolution

Figure 7: Free components of the 4-cable UACDPR prototype

evident that the former allows for smaller amplitude os-
cillations, which are rapidly damped by unmodelled fric-
tional effects, once the target destination is reached. On
the other hand, when comparing unshaped and shaped
trajectories, namely STDT and STDT − IS, the advantage
in employing the latter is even more evident, since the
former results in large platform oscillations not only at
the final destination, but also during the transition: this
fact could easily lead to platform instability and cable
loss of tension, thus ultimately robot loss of control. In
the attached video material, it can be easily appreciated
a complete loss of tension in cable number 2 during
the STDT trajectory, as well as an overall better tracking
performance of the STDT − IS trajectory.

VII. CONCLUSIONS
This paper presented a methodology for the computation
of the natural oscillation frequencies of underactuated
cable-driven parallel robots. The approach was experi-
mentally validated on 2-,3-, and 4-cable prototypes. Ac-
cording to the experimental data, the method was shown
to be effective, because recorded oscillation frequencies
deviated from the model less than 6%. As a possible ap-
plication example, the proposed approach was employed
for comparing standard trajectory-planning methods and
a frequency-based input-shaping planning of a 4-cable
UACDPR, resulting in remarkably reduced EE residual
oscillations even at workspace edges. In the future, this
method will be considered for robust calibration and dy-
namic parameter identification of UACDPRs. In addition,
cable deformation and sagging will be modelled in order
to account for vibrational effects, which may play a role in
large-scale UACDPRs. Finally, another line of investigation
will be the use of different techniques to approximate
non-linear systems compared to linearization, such as
the method of multiple scales [34]: these techniques

may better describe the system behaviour over large
oscillations.

APPENDIX: TENSOR NOTATION
Let:

A
∆= [

a1 · · · ah
] ∈Rk×h , ai

∆=

a1i
...

aki

 ∈Rk×1 (71)

b
∆=

b1
...

bh

 ∈Rh×1, c
∆=

c1
...

cl

 ∈Rl×1 (72)

The derivative of a scalar w.r.t. a vector is:

∂bi

∂c
∆=

[
∂bi
∂c1

· · · ∂bi
∂cl

]
∈R1×l (73)

and the derivative of a vector w.r.t. a vector is:

∂ai

∂c
∆=


∂a1i
∂c1

· · · ∂a1i
∂cl

...
. . .

...
∂aki
∂c1

· · · ∂aki
∂cl

 ∈Rk×l (74)

The derivative of a matrix w.r.t. a vector can be obtained
as follows. Let:

Ab = [
a1 · · · ah

]b1
...

bh

=
h∑

i=1
ai bi ∈Rk×1 (75)

Then:
∂ (Ab)

∂c
=

h∑
i=1

∂ai

∂c
bi +

h∑
i=1

ai
∂bi

∂c
(76)

Formally, (76) may also be written as:

∂ (Ab)

∂c
= ∂A

∂c
b+A

∂b

∂c
(77)
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Comparing (76) and (77) yields:

∂A

∂c
b =

h∑
i=1

∂ai

∂c
bi ∈Rk×l (78)

A
∂b

∂c
=

h∑
i=1

ai
∂bi

∂c
∈Rk×l (79)
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