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SEMI-SUPERVISED AUDIO TAGGING
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IRIT, Université Paul Sabatier, CNRS, Toulouse, France

ABSTRACT

Recently, a number of semi-supervised learning (SSL)
methods, in the framework of deep learning (DL),
were shown to achieve state-of-the-art results on image
datasets, while using a (very) limited amount of labeled
data. To our knowledge, these approaches adapted
and applied to audio data are still sparse, in particu-
lar for audio tagging (AT). In this work, we adapted
the Deep-Co-Training algorithm (DCT) to perform AT,
and compared it to another SSL approach called Mean
Teacher (MT), that has been used by the winning partic-
ipants of the DCASE competitions these last two years.
Experiments were performed on three standard audio
datasets: Environmental Sound classification (ESC-10),
UrbanSound8K, and Google Speech Commands. We
show that both DCT and MT achieved performance
approaching that of a fully supervised training setting,
while using a fraction of the labeled data available,
and the remaining data as unlabeled data. In some
cases, DCT even reached the best accuracy, for instance,
72.6% using half of the labeled data, compared to 74.4%
using all the labeled data. DCT also consistently outper-
formed MT in almost all configurations. For instance,
the most significant relative gains brought by DCT
reached 12.2% on ESC-10, compared to 7.6% with MT.
Our code is available online1.

Index Terms— Audio tagging, semi-supervised
learning, deep co-training, mean-teacher

1. INTRODUCTION

Semi-supervised learning (SSL) approaches utilize a set
of labeled data and a larger set of unlabeled data that
are cheaper and faster to obtain. For audio event clas-
sification [1, 2] and for speech recognition [3], the most
straightforward approach is pseudo-labeling. It consists
of an iterative process that starts by training a system on
the available labeled set, and then making predictions
on the unlabeled set. Labels with the most confidence
are kept and added to the labeled set. The system is re-

1https://github.com/leocances/Deep-Co-Training.git

trained, and the whole process can be repeated for sev-
eral iterations until the gain in performance is marginal.

A number of better approaches have been proposed
since then, for instance Mean Teacher (MT) [4, 5], orig-
inally tested on image datasets. We can find audio
applications of MT in the Detection and Classification
of Acoustic Scenes and Events (DCASE) 2018 and 2019
task 4 challenges, namely the weakly supervised Sound
Event Detection task. The 2018 winners trained con-
volutional neural networks (CNN) on both a small
labeled subset and a larger unlabeled one [5]. This ap-
proach consists of training a first model (“student”) to
make predictions consistent to those of a second model
(“teacher”). This is achieved by a consistency cost com-
puted on the predictions made by the two models on
the unlabeled subset. The teacher model receives the
same input as the student model but slightly perturbed,
though, to ensure a virtuous collaboration between the
models, and to avoid collapsing the two models.

Deep-Co-Training (DCT) is a deep learning method
inspired by the reknown Co-Training framework [6]. It
has been successfully applied to image classification [7].
In standard co-training, two classifiers are trained on
two different views of the same data. In its deep learn-
ing method counterpart, since we do not necessarily
have different data views, DCT exploits adversarial ex-
amples to encourage the view difference. The networks,
thus, provide different and complementary information
about the data, and do not collapse.

In this article, we report experiments comparing
DCT and MT on three benchmark audio datasets:
Google Speech Commands v2 (GSC), UrbanSound8K
(UbS8k), and Environmental Sound Classification (ESC-
10). We varied the fraction of labeled data from 10% to
50%, to get an idea of what is the best proportion of
labeled data needed by both approaches. We will also
compare the results to the fully-supervised learning
setting, where 100% of the labeled data is used for
learning.



2. METHOD OVERVIEW

2.1. Mean Teacher

MT uses two neural networks: a “student” f and a
“teacher” g, that share the same architecture. The
weights ω of the student model are updated using
the standard gradient descent algorithm, whereas the
weights W of the teacher model are the Exponential
Moving Average (EMA) of the student weights. The
teacher weights are computed at every mini-batch iter-
ation t, as the convex combination of its weights at t 9 1
and the student weights, with a smoothing constant α:

Wt = α ·Wt91 + (1− α) ·ωt (1)

There are two loss functions applied either on the la-
beled or unlabeled data subsets. On the labeled data,
the usual cross-entropy (CE) is used between the stu-
dent model’s predictions and the ground-truth. The la-
beled data are represented by xs the ground truth by ys:

Lsup = CE
(

f (xs), ys
)

(2)

The consistency cost is computed from the student
prediction f (xu) and the teacher prediction g(x′u). We
used a Mean Square Error (MSE), xu is the non-labeled
dataset, and x′u the same set but slightly perturbed with
Gaussian noise and a 15 dB signal-to-noise ratio.

Lcc = MSE
(

f (xu), g(x′u)
)

(3)

The final loss function is the sum of the supervised
loss function and the consistency cost weighted by a fac-
tor λcc which controls its influence.

Ltotal = Lsup + λcc · Lcc (4)

2.2. Deep Co-Training

DCT has been recently proposed by Qiao and col-
leagues [7]. It is based on Co-Training (CT), the well-
known generic framework for SSL proposed by Blum
and colleagues in 1998 [6]. The main idea of Co-Training
is based on the assumption that two independent views
on a training dataset are available to train two models
separately. Ideally, the two views are conditionally in-
dependent given the class. The two models are then
used to make predictions on the non-labeled data sub-
set. The most confident predictions are selected and
added to the labeled subset. This is an iterative process.

DCT is an adaptation of CT in the context of deep
learning. Instead of relying on views of the data that
are different, DCT makes use of adversarial examples to
ensure the independence in the “view” presented to the
models. The second difference is that the whole non-
labeled dataset is used during training. Each batch is

composed of a supervised and an unsupervised part.
Thus, the non-labeled data are directly used, and the
iterative aspect of the algorithm is removed.

Let S and U be the subsets of labeled and unlabeled
data, respectively, and let f and g be the two neural net-
works that are expected to collaborate.

The DCT loss function is comprised of three terms,
as shown in Eq. 5. These terms correspond to loss func-
tions estimated either on S , U , or both. Note that during
training, a mini-batch is comprised of labeled and unla-
beled samples in a fixed proportion. Furthermore, in a
given mini-batch, the labeled examples given to each of
the two models are sampled differently.

L = Lsup + λcotLcot + λdiffLdiff (5)

The first term, Lsup, given in Eq. 6, corresponds to
the standard supervised classification loss function for
the two models f and g, estimated on examples x1 and
x2 sampled from S . In our case, we use categorical
Cross-Entropy (CE), the standard loss function used in
classification tasks with mutually exclusive classes.

Lsup = CE
(

f (x1), y1
)
+ CE

(
g(x2), y2

)
(6)

In SSL and Co-Training, the two classifiers are ex-
pected to provide consistent and similar predictions on
both the labeled and unlabeled data. To encourage this
behavior, the Jensen-Shannon (JS) divergence between
the two sets of predictions is minimized on examples
xu sampled from the unlabeled subset U only. Indeed,
there is no need to minimize this divergence also on S
since Lsup already encourages the two models to have
similar predictions on S . Eq. 7 gives the JS analytical
expression, with H denoting entropy.

Lcot = H
(1

2
(

f (xu) + g(xu)
))

− 1
2

(
H
(

f (xu)
)
+ H

(
g(xu)

))
(7)

For DCT to work, the two models need to be com-
plementary: on a subset different from S ∪U, examples
misclassified by one model should be correctly classi-
fied by the other model [8]. This can be achieved in
deep learning by generating adversarial examples with
one model and training the other model to be resistant
to these adversarial samples. To do so, the Ldiff term
(Eq. 8) is the sum of the Cross-Entropy losses between
the predictions f (x1) and g(x′1), where x1 is sampled
from S ∪U and x′1 is the adversarial example generated
with model f and x1 taken as input. The second term is
the symmetric term for model g.

Ldiff = CE
(

f (x1), g(x′1)
)
+ CE

(
g(x2), f (x′2)

)
(8)



For the adversarial generation, we use the Fast Gra-
dient Signed Method (FGSM, [9]), as in Qiao’s work.

For more in-depth details on the technical aspects of
DCT, the reader may refer to [7]. We implemented DCT
as closed as described in Qiao’s article, using PyTorch,
and made sure to accurately reproduce their results on
CIFAR-10: about 90% accuracy when using only 10% of
the training data as labeled data (5000 images).

3. EXPERIMENTS

We carried out experiments on three datasets: Envi-
ronmental Sound Classification dataset (ESC-10), and
UrbanSound8K (UbS8K) and the Google Speech Com-
mands v2 dataset (GSC). For each of them, different
fractions of the whole labeled training subset were used
to simulate different SSL settings. The labeled fraction
files are randomly sampled while preserving the orig-
inal class distributions. Each mini-batch contains both
labeled and unlabeled samples in the same proportions
as the whole training subsets. The 10% (25%, 50%) set-
ting refers to a setting where only 10% (25%, 50%) of
the labeled data is used. The supervised models are
trained using that amount of data only. The MT and
DCT models used the full 100% for training, with 10%
(25%, 50%) being labeled and the rest unlabeled.

3.1. Datasets

Google Speech Commands Dataset v2 [10] is an au-
dio dataset of spoken words designed to evaluate key-
word spotting systems. The dataset is split into 85511
training files, 10102 validation files, and 4890 testing
files. The latter is used for the evaluation of our systems.
We ran the task of classifying the 35 word categories of
this dataset. The files are zero-padded to 1 second if
needed and sampled at 16 kHz before being converted
into 32× 64 log-Mel spectrogram.

UrbanSound8k [11] is a dataset composed of 8742
files between 1 and 4 seconds long separated into 10
evenly sized categories. The dataset is provided with
ten cross-validation files of uniform size that will be
used for system evaluation. The files are zero-padded
to 4 seconds, resampled to 22 kHz, and converted to
431× 64 log-Mel spectrograms.

Environmental Sound Classification 10 Dataset [12]
is a selection of 400 5-second-long recordings of audio
events separated into 10 evenly sized categories. The
dataset is provided with five uniformly sized cross-
validation folds that will be used to perform the evalua-
tion. The files are sampled at 44 kHz and are converted
into 431× 64 log-Mel spectrograms.

The 64 Mel-coefficients were extracted using a win-
dow size of 2048 samples and a hop length of 512.

3.2. Experimental Setup

We use wideresnet28 2 [13] architecture in all our exper-
iments. It is very efficient, achieving SOTA performance
on the three datasets. Moreover, its small size allows to
experiment quickly. It consists of three groups of four
blocks of convolutions connected to a fully connected
layer. Each convolution block is composed of a convo-
lution followed by batch normalization, the ReLU acti-
vation, and max-pooling, applied after each block. It is
comprised of about 1.4 Million parameters. We used the
implementation available in PyTorch [14].

The models are trained using the ADAM optimizer.
Table 1 gives the hyperparameter values, that were
set with grid search performed on UbS8K. Those were
also used on the two other datasets. Besides these
values, the learning rates were weighted by a de-
scending cosine rule defined such as lr = 0.5(1.0 +
cos((T 9 1) × π/nb epoch)). The loss terms in MT
and DCT are weighted by the λ ratios, as given in
Eqs. 4 and 5. These ratios ramp up to their maxi-
mum value within a warm-up length wl reported in
Table 1. In MT, the maximum value for λcc is 1 and
α is set to 0.999. For DCT, the maximum values for
λcot and λdiff are 1 and 0.5. The ramp-up is defined by
λ(epoch) = λmax

(
1− e−5×(1−(epoch/wl))).

3.3. Evaluation

For Ubs8K and ESC-10, we used the official cross-
validation folds. We report averaged classification accu-
racy with standard deviation. For GSC, we report accu-
racy averaged over five runs, we do not report standard
deviation since it is almost always 0.1%. Overall, MT
and DCT achieved greater accuracy than supervised
training with DCT systematically outperforming MT.

The results for GSC are reported in Table 2. In the
10% setting, the supervised approach, MT and DCT
reached 90.38%, 91.49%, 93.82%, respectively. These
scores represent relative gains of 1.2% for MT and 3.8%
for DCT. These relative gains decrease as the number
of labeled files used increases. In the 50% setting, they
reached 0.6% for MT and 0.8% for DCT.

UrbanSound8k, whose scores are presented in Ta-
ble 3, is a smaller dataset that benefits more from the

Table 1. Training parameters used on the three datasets.
Bs: batch size, lr: learning rate, wl: warm-up length in
epoch, e: number of epochs.

bs lr wl e

Supervised 64 0.003 - 100
MT 64 0.001 50 200
DCT 100 0.0005 160 300



Table 2. Accuracy (%) on Google Speech Commands.
Labeled Supervised MT DCT
fraction

10% 90.38 91.49 93.82
25% 92.89 93.71 94.83
50% 94.17 94.72 94.89

100% 95.58 - -

semi-supervised approaches. The DCT gains varied
from 7.0% (10% setting) to 4.3% (50% setting), while for
MT, the gains varied from 4.5% to 1.6%. We can also
note that when in the 50% setting, DCT achieved better
accuracy than the purely supervised model. This, to a
lesser extent, can also be observed with MT.

Table 3. Accuracy (%) on UrbanSound8K.
Labeled Supervised MT DCT
fraction

10% 67.88 ± 4.31 67.75 ± 4.35 72.64 ± 5.24
25% 72.23 ± 4.75 75.45 ± 3.95 76.01 ± 5.40
50% 73.66 ± 5.26 74.87 ± 5.45 76.85 ± 4.85

100% 74.44 ± 4.88 - -

The ESC-10 dataset, on which the results are re-
ported in Table 4, has only 320 training files. In the 10%
setting, each class is represented by three files only. It
is also on this dataset that the most significant accuracy
gains were observed. For MT, the relative gains varied
from 7.6% to 1.6%, and for DCT, from 11.7% to 3.9%.

These results tend to show that DCT outperforms
MT, at least on the three datasets used in this work.
In [15], MT has been used on UrbanSound8K (Kaggle
variant) and GSC (v1) without the same dataset config-
urations as we did here, so that the results are not di-
rectly comparable to ours. Nevertheless, the authors re-
port further gains using audio augmentation in MT. We
plan to explore this in future work.

Figure 1 shows the training times of MT and DCT
on the two largest datasets, using an Nvidia Quadro
RTX6000 GPU. Training on ESC-10 took less than 30
minutes for DCT (longest method); therefore, we did

Table 4. Accuracy (%) on ESC-10.
Labeled Supervised MT DCT
fraction

10% 67.81 ± 4.04 72.97 ± 7.94 75.78 ± 5.30
25% 82.50 ± 5.73 85.16 ± 3.41 89.22 ± 3.96
50% 88.28 ± 2.92 89.69 ± 4.98 91.72 ± 5.14

100% 91.72 ± 1.96 - -

Fig. 1. Comparison of training times between supervised
learning, MT and DCT (w/o cross-validation).

not display the training times for ESC-10. The semi-
supervised methods’ complexity implies longer train-
ing times, up to six times longer for DCT and five times
longer for MT on GSC.

4. CONCLUSION

In this paper, we showed the effectiveness of Deep Co-
Training applied to audio tagging. Promising results
were obtained on three datasets of different sizes and
containing sounds of very different sources, namely
speech (Google Speech Command), urban noises (Ur-
banSound8k), and more general noises (ESC-10). DCT
consistently outperformed Mean Teacher, an approach
used recently by the AT community. For instance, using
a fraction of 10% of labeled data, DCT yielded a max-
imum gain of 11.7% for ESC-10, 7.0% for UbS8K, and
3.8% for GSC. With 50% of labeled data, DCT even ex-
ceeded the performance of a purely supervised model.

A number of SSL methods for image classifica-
tion task have been proposed recently, such as Mix-
Match [16] and FixMatch [17]. They both use of aug-
mentations as their core mechanism. In [15], MT has
been used in conjunction with augmentations that are
reported to bring further improvements. We plan to
add augmentations to DCT in short-term future work.
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