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Université Paris-Saclay, CEA, List, France

Guided Wave-based Structural Health Monitoring (GWs-
SHM) system aims at determining the integrity of a wide va-
riety of plate-like structures such as aircraft fuselages, pipes
and fuel tanks. It is often based on a sparse grid of piezo-
electric transducers for exciting and sensing guided waves
(GWs) that under certain conditions interact with damage
while propagating. In recent years, various defect imaging
algorithms have been proposed for processing GWs signals,
and, particularly, for computing an image representing the
integrity of the studied structure. The performance of GWs-
SHM system highly depends on a signal processing method-
ology. This paper compares defect localization accuracy of
the three state-of-art defect imaging algorithms (Delay-And-
Sum, Minimum Variance, and Excitelet) applied to an ex-
tensive simulated database of GWs propagation and GWs-
defect interaction in aluminum plate under varying temper-
ature and transducers degradation. This study is conducted
in order to provide statistical inferences, essential for SHM
system performance demonstration.

1 Introduction
One of the most important challenges for engineering

structure manufacturers, end-users, and maintenance teams
is to evaluate the integrity of in-service structures on a fre-
quent or continuous time basis. Applied physical loads,
thermo-mechanical aging, impacts and other external fac-
tors deteriorate their mechanical properties and might lead
to defects. The aerospace industry is concerned with this
problematic, as well as many other industries such as oil and
gas or nuclear. They are interested in estimating and extend-
ing the remaining useful life of structures, but a high level
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of knowledge is necessary to guarantee both their availabil-
ity and reliability. Although various Non-Destructive Tech-
niques have been developed to evaluate the integrity of struc-
tures, they are usually expensive, time-consuming and often
divert the structure from normal operation.

In light of this, Structural Health Monitoring (SHM)
can contribute significantly towards enhancing the reliabil-
ity and profitability of engineering structures [1, 2]. SHM
relies on permanently embedded transducers and knowledge-
based methods, i.e., signal processing algorithms [3,4]. Em-
bedded transducers are typically used for measuring a struc-
tural dynamic response either in a passive or active way. A
knowledge-based system then processes the collected signals
in order to evaluate the current health of the structure [5]. As
the SHM systems are integrated ones, the inspection can be
conducted anytime. They enable continuous monitoring, but,
at the same time, impose additional constraints such as opti-
mal integration and robustness against sensors aging.

Guided elastic Waves (GWs) are widely used in SHM
systems for damage detection, localization, and sizing [6–8].
They can propagate over significant distances while being
sensitive to both surface and subsurface defects. Therefore,
they require a limited number of sensors to inspect large ar-
eas. GWs can be easily actuated and sensed by a set of piezo-
electric transducers (PZTs) permanently attached to the sur-
face or embedded within the structure. It is worth noting
that GWs are multi-modal and dispersive, thus they require
advanced post-processing techniques to extract defect signa-
tures from the collected data.

One of the conventional approaches used in SHM con-
sists in comparison of the defect-free state of the structure
with the damaged one. The transducers act either as a emit-
ters or receivers of GWs. The baseline signals are recorded
from the pristine structure and subtracted from signals mea-
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sured in an unknown state [9]. If a damage occurs, the GWs
propagation is disturbed by a defect in the vicinity of the
GW path. The difference signals are often called residual
signals and contain wavepackets scattered by the defect. Re-
cently, several GWs Imaging (GWI) algorithms have been
proposed to process residual signals in order to compute sin-
gle or multi-spectral images. Compared to raw signals, such
images are easy-to-analyze and provide direct information
on both structural damage presence and location.

Among the wide variety of GWI techniques, [10–13]
three of them are studied and compared in this work: Delay-
And-Sum (DAS) [14], Minimum Variance (MV) [15], and
Excitelet (EXC) [16]. Each method processes the collected
signals in order to compute an image representing the in-
tegrity of the inspected structure. The first two algorithms,
DAS and MV, require the knowledge of the group velocity of
the inspecting guided mode in each direction of propagation.
The group velocity is computed for the central excitation fre-
quency, so these algorithms neglect the GWs dispersion. On
the other hand, Excitelet takes into account the GWs disper-
sion, but it requires a comprehensive understanding of the
GWs propagation in the structure as well as the transducers
dynamics.

The reliability of an SHM system has to be estimated
before the deployment. It involves the evaluation of several
aspects such as robustness to environmental effects, the Prob-
ability of Detection (PoD) and the Probability of False Alarm
(PoFA) of the system [8,17]. In GW-SHM, different PoD and
PoFA methods [18–22] have been proposed in the literature
to evaluate damage detection performance. The localization
performance of defect imaging algorithm constitutes an es-
sential part of the SHM process. To the knowledge of au-
thors, GWI results have been reported either experimentally
or numerically only for a limited number of specimens. Con-
sequently, limitations and performance of GWI algorithms
either in ideal or in changing environmental conditions, have
not been thoroughly studied yet.

Such limitation must be evaluated by means of statisti-
cal analysis, which requires an extensive database of GWI
specimens. However, the cost of generating an extensive ex-
perimental database is prohibitive due to the large number of
specimens required. Hence, numerical tools can be consid-
ered as a proper solution for the generation of large dataset,
but until recently, the computation cost was too high. Newly
developed finite elements tool for GWs simulation enables
the creation of massive databases at a reasonable compu-
tation cost. Note that the GWI configuration studied here
is fairly simple, and has already been presented extensively
in the literature. The objective of this work is to present a
methodology for statistical assessment of GWI algorithms so
that corresponding inferences on damage localisation perfor-
mance, computational complexity and imaging quality can
be drawn and eventually translated to the real-world applica-
tions. The authors acknowledge the simplicity of the config-
uration under study, as it has been selected for the purpose
of comparing imaging algorithms. Furthermore, the experi-
mental validity of such algorithms has been demonstrated in
the past, including in honeycomb composite structures [23].

Fig. 1: Schematic representation of the Guided waves imag-
ing methodology. Orange circles and red star define piezo-
electric transducers and damage locations respectively. Blue
arrows represent GW propagation in the structure.

In this paper, a statistical study on the defect localization
performance under varying temperature is presented for the
three GWI algorithms at the three central interrogation fre-
quencies. The paper is organized as follows. Firstly, a brief
description of the defect imaging algorithms is presented.
Secondly, the simulation method for GWs propagation is
presented. It is followed by the generation and description
of the database of GWI results for different defect sizes and
locations. Finally, the statistical analysis of the defect local-
ization accuracy is presented. This analysis is based on the
comparison of exact and estimated defect position and var-
ious statistical tools and metrics are applied to infer on the
defect localization performance.

2 Guided Waves Imaging
Guided Wave Imaging (GWI) is a fast, reliable, and cost-

efficient method for the damage detection, localization, and
characterization in plate-like structures. It can be imple-
mented using a sparse embedded array of inexpensive and
low energy consumption piezoelectric transducers. As such,
this method is a natural choice for SHM system, but the
knowledge of the undamaged state of the structure, the so-
called baseline, is often required.

Baseline approaches are based on the comparison be-
tween the reference signals and signals at the current time, in
which the state of the structure is unknown. In light of this,
various imaging algorithms have been developed to process
residual signals, which are defined as the difference between
the current and the baseline signals, and to compute an image
representing the integrity of the structure. The damage pres-
ence and location can be directly deduced from the spatial
intensity distribution of the image.

2.1 Imaging methodology
A schematic of the GWI process is shown in Figure 1.

A grid of pixels discretizes the region of interest of the stud-
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ied specimen, where each pixel of the image is mapped to
the corresponding elementary portion of the structure. In the
current study, we use three algorithms, namely DAS, MV
and Excitelet, which compute a Damage Index (DI) value at
each pixel of the image. For a single transducer pair, each
imaging algorithm maps an echo arising from the defect to
an ellipse with foci at the transducers locations. Following a
round-robin process, all signals are processed, and the defect
location is defined at the intersection of ellipses [9].

2.2 Defect imaging algorithms
In general, permanently attached transducers are excited

with a Hanning modulated tone burst in order to generate
GWs in the structure. The central excitation frequency is
usually chosen below the first cutoff frequency to reduce
the complexity of GWs signals. Received signals typically
contain multiple propagating modes, at least the A0 and S0
modes, and are additionally complicated by the GWs reflec-
tions from the edges and other structural features like flaws,
rivet etc. Collected signals of the current state are subtracted
from a baseline, when the structure is defect free, in order to
obtain the residual signals.

2.2.1 Delay-And-Sum algorithm

Michaels et al. [14] proposed the DAS imaging algorithm to
process residual signals using a single guided mode. Since
GWs are dispersive, this algorithm is rather convenient for
imaging defects that are not remote from the transducers net-
work as a temporal resolution of the GWs degrades with the
propagating distance. DAS neglects the GWs dispersion, and
is mostly relevant for narrow band excitations.
The image is computed as follows. First, the envelopes of
the analytical residual signals are calculated using the Hilbert
transform:

ri, j(t) =
√

ui, j(t)2 +H(ui, j(t))2, (1)

where ri, j(t) is an envelope of the residual signal, ui, j(t) is
a residual signal measured by the pair of piezoelectric trans-
ducers i, j and the operator H denotes the Hilbert transform.
Then, the time of flight of the GWs is computed as follows:

ti, j(x,y) =

√
(x− xi)2 +(y− yi)2

Cg
+√

(x− x j)2 +(y− y j)2

Cg
, (2)

where ti, j(x,y) is the time of flight of the GW that propa-
gates with a group velocity Cg from the transmitter i located
at (xi,yi) to the inspected point (x,y) and from the latter to
the receiver j at (x j,y j). The group velocity Cg can be de-
termined either using various simulation frameworks, such

as semi-analytical finite elements method [24], or it can be
experimentally measured. Finally, each residual signal is de-
layed by this value, so that each point of the image can be
associated with a part of the envelope, and the DI value is
computed as follows:

DIDAS(x,y) =
N−1

∑
i=1

N

∑
j=i+1

ri, j(ti, j(x,y)). (3)

2.2.2 Minimum Variance algorithm

Hall et al. [15] proposed the Minimum Variance algorithm,
which can be considered as an advanced version of DAS. It
takes into account a diffraction pattern of GWs scattered by
a defect in order to improve the resolution of the image. For
each pixel, a vector of time-delayed signals is constructed as
follows:

~r(x,y, t) =
[
| r̃1,2(t +

d1,2(x,y)
Cg

) |, ...

| r̃N−1,N(t +
dN−1,N(x,y)

Cg
) |
]T (4)

where ~r(x,y, t) is the vector of time-delayed signals,
di, j(x,y) =

√
(x− xi)2 +(y− yi)2 +

√
(x− x j)2 +(y− y j)2

denotes the Euclidian distance to the pixel (x,y) for the i, j
pair of transducers and Cg is a group velocity of the guided
mode. A correlation matrix, which is identical to the DAS
DI mapping [25], is then computed for each pixel (x,y) as
follows:

R(x,y) =
t2

∑
t=t1

~r(x,y, t)~r†(x,y, t), (5)

where † denotes the complex conjugate, t1 and t2 are the tem-
poral limits of the wave packet. A weighting vector ~W (x,y)
is constructed in order to minimize false alarm that may be
present in the original DAS map. Specifically, elements of
this vector are selected to satisfy the following optimization
problem:

~Wi, j(x,y) = argmin(~w†
i, jRi, j(x,y) ~wi, j), (6)

with

~w†
i, j~ei, j(x,y) = 1, (7)

where ~e(x,y) is an unit vector, which describes the direc-
tional relation between the GW signals and ~w represents a
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weighting vector. In order to obtain ~w, the unit vectors~e(x,y)
are computed as follows:

~ei, j(x,y) =
[ φ1,2√

d1,2(x,y)
, ...

φN−1,N√
dN−1,N(x,y)

]
(8)

where the denominators represent the product of the distance
traveled by the wavepacket while propagating from the emit-
ter at (xi,yi) to the observation point (x,y) and to the receiver
located at (x j,y j). The corresponding numerators φi, j repre-
sent the scattering coefficients that characterize the amount
of energy scattered by a defect at location (x,y) for a given
(i, j) PZT pair. The optimal values for the φi, j depend on
the shape of the defect and its orientation. Unless assump-
tions can be made regarding the type, shape and orientation
of the defect, a common practice is to assume the defect is
omnidirectional, that is φi, j = 1 for all pairs of transducers.
The next step consists in minimizing the DI value to the de-
fect free zone, while preserving DI values of the flawed zone.
Finally, the DI is computed as follows:

DIMV (x,y) = ~Wi, j(x,y)†R(x,y)~Wi, j(x,y). (9)

2.2.3 Excitelet algorithm

GWs dispersion phenomenon introduces additional com-
plexity to the defect imaging procedure [26, 27], and was
neglected in both DAS and MV algorithms. Quaegebeur
et al. [16] have proposed a correlation-based imaging algo-
rithm, named Excitelet, where the damage is modeled as a
perfect omnidirectional reflector. For each pixel (x,y), it cal-
culates a normalized coefficient of correlation between the
residual signal and the analytically propagated signal corre-
sponding to the same path. More specifically, the DI value is
computed as follows:

DIEXC(x,y) =
N−1

∑
i=1

N

∑
j=i+1

|
cov(ui, j(t),si, j(x,y, t))
σ(ui, j(t))σ(si, j(x,y, t))

|, (10)

where cov denotes covariance, σ is a standard deviation,
ui, j(t) is a residual experimental signal and si, j(x,y, t) de-
notes an analytical signal that describes the GW traveling
from the emitter to the receiver via the observation point.

The analytical signal can be expressed using the Green
function formalism in the frequency domain for a given fre-
quency range. The Fourier transform of the Green func-
tion can be expressed in terms of a real-valued spatial fre-
quency. It consists of homogeneous and inhomogeneous
components, where both parts are necessary to describe an
out-going wave satisfying causality. For isotropic plate-like

structures, it can be approximated as follows:

si, j(x,y, t) =
(∫ ∞

−∞

−2 jΓm(ω)

π

exp(− jkm(ω)r1)√
km(ω)r1

exp(− jkm(ω)r2)√
km(ω)r2

exp(− jωt)dω

)
∗ fexc(t), (11)

where Γm is the transducer frequency response, km(ω) is the
wavenumber of the guided mode under consideration, r1 and
r2 are the distances from the emitting transducer to the point
of observation and from the latter to the receiving transducer,
respectively and fexc(t) is the excitation function.

3 Database generation
The GWI algorithms are applied to an extensive

database of simulated GWs signals in order to evaluate their
localization performance under perfect and varying environ-
mental conditions. The database is generated by means of
SHM package of CIVA software to simulate the GW propa-
gation in aluminum plates with randomly distributed defect
size and location. GWs signal are then deteriorated using
linear model for GWs modification due to environmental ef-
fects.

3.1 GWs simulation framework
The GWs simulations using Finite Element (FE) meth-

ods are usually time consuming due to the small element
size and time step requirements [28]. A recent benchmark
[29] compares the efficiency of four different FE software,
namely in-house EFIT code, Abaqus, Comsol and Ansys, on
a specific use case, which represents the GWs propagation
in a carbon fiber reinforced polymer plate from a piezoelec-
tric transducer over a delaminated region.The performance
results of this benchmark are presented in terms of computa-
tional time required for this single simulation, which varies
from 20 to 90 hours, with memory usage from tens of GB to
hundreds of GB. Such performance makes the generation of
an extensive database for statistical studies impossible.

In the present work, CIVA is used to generate an exten-
sive database of GWI samples. It relies on the full three-
dimensional Spectral Finite Element (SFE) solution of the
elastodynamic equations [30]. The SFE code uses two main
concepts to speed up the simulation time. First, a high or-
der spectral finite element method is implemented to sig-
nificantly reduce the number of elements [31]. Secondly, a
macro-element pre-meshing strategy is implemented to op-
timize global mesh considering its identical regions and an
implicit element orientation. This leads to the significant
reduction of CPU usage and memory footprint. The simu-
lation configuration used in the benchmark [29] was repro-
duced with a computational time of about 10 minutes on a
regular desktop computer and a memory usage of about 100
MB for quantitatively identical results [32]. The reduction
of both memory load and computational time allows running
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multiple simulations either in parallel or sequentially and en-
able the creation of an extensive database of simulated GWI
results in a reasonable amount of time.

3.2 GWs signal degradation model
Environmental effects on GWs propagation are primar-

ily pronounced in modal amplitude modification as well as
changes in group and phase velocities. They are conditioned
by various thermal effects, including material expansion and
change in stiffness as well as change in piezoelectricity of
transducers and their bonding [33]. It has been demonstrated
that GWs signals can be numerically manipulated with re-
spect to these phenomena in order to mimic variations in
environmental effects and operational conditions as follows
[34]:

S(t)d = αS(t(1+β))+N(0,σ), (12)

where α represents amplitude variation, β GWs signal
stretching due to thermal effects and N(0,σ) represents ad-
ditive white Gaussian noise. On the basis of experimental
results, all the three degradation parameters are supposed to
vary in following ranges complying with random uniform
distributions: α⊂ [0.875,1.125], β⊂ [−0.0005,0.0005] and
σ⊂ [0,0.02].

They were selected to approximately cover a degrada-
tion range of GWI results that were observed experimen-
tally while performing defect imaging under varying temper-
ature with |dTmax| ≈ 20◦C. More details on the calibration of
the GWs degradation model can be found in the following
work [35].

3.3 Database description
The studied configuration is an aluminum plate 600 mm

x 600 mm x 3 mm, which is instrumented with eight identical
circular PZT transducers 18 mm in diameter. In this simula-
tion, it is assumed that the excitation is purely radial because
of the low-frequency range [36]. The piezoelectric load is
modeled as a axisymmetric in-plane radial force applied to
the surface of the plate on the outer perimeter of the sen-
sor [37]. The same model is used for the receivers, for which
the radial strain is integrated over the perimeter of the sen-
sors. In total, 500 simulations were run for three inspecting
frequencies.

Each simulated sample contains a through-hole of vary-
ing size and position. Holes are distributed within the circle
of 100 mm in radius with the origin at the center of the plate.
The distribution of the defects is represented by the red cir-
cles in Figure 2a. This configuration ensures that the dis-
tance between defects and PZTs of at least one wavelength
of the inspecting mode. The damage radii vary from 2.5 mm
to 7.5 mm corresponding to the typical defect size sought in
aerospace applications and comply with a random uniform
distribution.

The aluminum plate is inspected with two-cycle Han-
ning modulated bursts. Excitation central frequencies are set

to the typical frequency range of use, namely 20 kHz, 40 kHz
and 60 kHz, below the first cut-off frequency, in order to gen-
erate only two fundamental guided modes A0 and S0 and to
optimize GWs-defect interaction.

The A0 mode is selected for imaging for two main rea-
sons. Firstly, the corresponding wavelength is smaller than
that of the S0 mode, which results in enhanced GWI reso-
lution. Secondly, in the studied frequency range, the ampli-
tude of A0 mode measured by the transducer is higher than
that of S0 mode. This is shown by the excitability curves in
Figure 2b computed using the framework proposed in [37].
Because the same transducer model is used for both emit-
ters and receivers, the excitability curve is applied at both
the emission and reception stages of the guided waves by the
sensors. . The wavelengths associated with the excitation
center frequencies of the A0 mode are the following: λ

20kHz
A0

= 37.9 mm, λ
40kHz
A0

= 26.24 mm and λ
60kHz
A0

= 21.19 mm, so
that the GWs-defect interaction is optimized. Note that the
defect sizes under consideration in this paper are rather large,
which leads to satisfying detections even with low inspection
frequencies. This choice is made to ensure direct compatibil-
ity of the study in this paper with composite inspection with
large impact defects and high attenuation. Moreover, it is as-
sumed that a single defect exists within the inspection area,
and all the coupled interactions between multiple nearby de-
fects are neglected.

Each database sample is processed with the three previ-
ously described algorithms. For illustrative purposes, images
obtained with DAS, MV and Excitelet under ideal environ-
mental conditions are presented in Figure 3. Their resolu-
tion is directly related to the wavelength of the propagating
guided mode: an increase of wavelength leads to the decrease
of the resolution capability of the imaging algorithms. Intu-
itively, inspecting a structure at higher frequencies should
lead to better defect localization results. However, it is not
necessarily true, and it will be demonstrated that for a given
GWI configuration and a range of defect sizes, an optimal
inspection frequency can be identified.

4 Analysis
In this section, GWI results obtained with DAS, MV and

Excitelet algorithms are discussed. Predicted defect coordi-
nates are compared to their reference values, and localization
errors as well as corresponding probabilities are evaluated for
both cases: perfect operational conditions and the ones com-
prising environmental changes. From this analysis, the best
combination of imaging algorithm and inspection frequency
are determined.

4.1 GWI results observation
It was demonstrated that the DI spatial distribution com-

plies with a Gaussian distribution over the damage position
[38]. Considering that there is only one defect per simu-
lated dataset instance, the corresponding defect location is
obtained by searching the location of maximum in the im-
age.
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(a) GWI configuration. (b) The A0 guided mode dispersion curve and wavelengths corresponding to exci-
tation frequencies. Green and purples curves represent normalized excitability of
A0 and S0 modes, respectively.

Fig. 2: Schematic representation of simulated database configuration.

Each family of observations that corresponds to the
combination of imaging algorithm and excitation frequency
under both perfect and varying operational conditions are
shown in Figure 4. Observation are plotted against each other
and their reference values in order to estimate the defect lo-
calization accuracy.

For both perfect and varying operational conditions at
20 kHz, all the three algorithms suffer from considerable lo-
calization errors due to the large wavelength of the inspect-
ing mode (λ20kHz

A0
= 37.9 mm) with respect to the transducers

inter-distances. The largest distance between transducers ap-
proximately corresponds to four wavelengths of the inspect-
ing mode, so the wave packets corresponding to A0 and S0
modes in the residual signal are heavily overlapped. Among
the three algorithms, Excitelet (represented by green trian-
gles) demonstrates the best coherence between observed de-
fect coordinates and their true values. For this algorithm op-
erating under perfect conditions, there is a systematic local-
ization underestimation for the defects remote more than 20
mm from the center of the plate. We have not identified the
origin of this phenomenon. However, when environmental
modifications appear, a new systematic erroneous trend can
be observed, see Figure 4 (c, d). It corresponds to extreme
GWI cases where the damage is close to sensor’s circumfer-
ence and environmental variations are high.

Although the wave packets are overlapped, Excitelet is
more prone to correctly map the residual signal than DAS
and MV, under perfect operational conditions as it computes
a linear association between the residual and analytical sig-
nals. Such a linear association allows capturing differences
in phase velocities of guided modes, while DAS and MV ig-
nore them by mapping the envelope of the residual signal.
However. when operation conditions are no longer perfect,
DAS demonstrates its superiority.

As shown in Figure 4 (e - h), the inspection at 40 kHz
leads to more accurate localization results for all the three

imaging algorithms for both perfect and varying operational
conditions. Overall, Excitelet demonstrates the best statis-
tical fit and the smallest variance for both predicted coordi-
nates regarding their reference values. However, observa-
tions located beyond 80 mm from the center of the plate are
progressively underestimated by Excitelet regardless opera-
tional conditions. As in the previous case, erroneous system-
atic trend can be observed. Perhaps, it can be analytically
related to parameters of the GWs signals degradation model,
but we did not managed to identify it explicitly. It will be
demonstrated below that the probability of this event is ex-
tremely low and decreases with frequency so that it does not
disturb overall statistical performance of the GWI algorithm.

The analysis of GWI results at 60 kHz reveals that the
defect localization performance starts degrading for all the
three imaging algorithms under both perfect and varying op-
erational conditions. At this frequency, the A0 mode ex-
citability decreases in comparison with that at 20 kHz and 40
kHz, see Figure 2b. Consequently, residual signal contains
more of the S0 mode obscuring the A0 mode component that
should be mapped by defect imaging algorithms. This ad-
versely interfere in DAS and MV computations as they map
residual energy. A part of the residual signal, which cor-
responds to the defect-free location, contains wave packets
that are not taken into account by a single mode imaging
procedure. On the contrary, Excitelet is less affected by this
phenomenon as it relies on the normalized correlation coeffi-
cient computation between analytically propagated A0 mode
and experimental residual signal. Obviously, the normaliza-
tion term in Eq. (10) increases due to additional harmonics
in the residual signal resulting in the decrease of the DI value
but the rate of change is less significant in comparison with
DAS and MV. Hence, Excitelet still demonstrates the best
performance, but its variance has grown in comparison with
40 kHz. It should be mentioned that when operational con-
ditions vary, all the three GWI algorithm suffer less from the
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Fig. 3: Defect maps computed with DAS (left column), MV (middle column), and Excitelet (right column) with inspection
central frequency of 20 kHz (top line), 40 kHz (mid line) and 60kHz (bottom line) under perfect environmental conditions.

aforementioned systematic errors (further investigations are
required to understand the nature of it).

These observations, made on the fairly simple GWI con-
figuration, allows revealing inherent weaknesses of imaging
algorithms that can deteriorate imaging performance under
perfect/varying operational conditions. It is supposed that
they can be translated to realistic applications where the GWs
propagation and interaction with structural features are more
complex.

4.2 Statistical localization errors
Absolute Localization Error (ALE) is obtained by com-

puting the L1 norm between true and observed defect loca-
tions. While a single ALE does not provide sufficient in-
sight into GWI algorithm performance, its Probability Den-
sity Function (PDF) on the possible sample space can reveal
a likely outcome of the GWI process. Hence, statistical infer-
ence about ALE probability distribution regarding the defect
size can be deduced from their joint occurrence.

Therefore, ALE are collected over the whole database
of GWI results, and PDFs are computed for all families of

localization errors and frequencies using the Kernel Density
Estimate (KDE) method relying on the radial basis function
kernel as follows:

p̂n(x) =
1

nh

n

∑
i=1

K(
Xi− x

h
), (13)

where K(x) is a smooth and symmetric kernel function, h >
0 is the smoothing bandwidth, and Xi represents the data.
Basically, the KDE smooths each data point Xi into a small
density bumps and then sum all these small bumps together
in order to obtain the final density estimate. For more details
on KDE, the reader is invited to refer to [39]. This method is
chosen as it yields an empirical estimate of the PDF without
assuming any form of underlying density function.

The ALE PDF depends on the defect size as GWs-
damage interaction is conditioned by the λ/� ratio and
reaches it’s maximum when λ/2 =�. For all the three imag-
ing central frequencies, ALE bivariate PDFs under perfect
and varying operational conditions are plotted against defect
sizes, see Figure 5 and Figure 6, respectively.
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(a) X coordinate predictions at
20 kHz.

(b) Y coordinate predictions at
20 kHz.

(c) X coordinate predictions at
20 kHz.

(d) Y coordinate predictions at
20 kHz.

(e) Defect X coordinate pre-
dictions at 40 kHz.

(f) Defect Y coordinate pre-
dictions at 40 kHz.

(g) Defect X coordinate pre-
dictions at 40 kHz.

(h) Defect Y coordinate pre-
dictions at 40 kHz.

(i) Defect X coordinate predic-
tions at 60 kHz.

(j) Defect Y coordinate predic-
tions at 60 kHz.

(k) Defect X coordinate pre-
dictions at 60 kHz.

(l) Defect Y coordinate predic-
tions at 60 kHz.

Fig. 4: Defect location predictions under both perfect and varying operational conditions. The columns represent the defect
localization results without (two columns on the left) and with (two columns on the right) varying operational conditions.
Imaging results are obtained at 20 kHz, 40 kHz, and 60 kHz and are shown in this order from the top to the bottom row. The
orange crosses, blue dots and green triangles represent the results obtained by DAS, MV and Excitelet respectively, while
the yellow line denotes true values.

Under perfect conditions at 20 kHz, all the algorithms
are less accurate in locating small defects. The ALE can
reach 75 mm, 100 mm and 100 mm for DAS, MV and Ex-
citelet while the wavelength of the inspecting mode is of
about 38 mm. At 40 kHz, localization errors are less signifi-
cant. This frequency can be considered as optimal to search
for defects in a given GWI configuration. The most frequent
ALE is 7 mm, 5 mm, and 3 mm for DAS, MV, and Excitelet
algorithms, respectively. Excitelet demonstrates the most
frequent absolute localization error of about 3 mm. More-
over, the probability of ALE higher than 10 mm is extremely
small, while the defect size varies from 5 mm to 15 mm.
At the same frequency, DAS and MV demonstrate the most
probable error of about 8 mm because they do not account the
GWs dispersion phenomena. Additionally, MV occasionally
suffers from large localization errors due to the assumption

of omnidirectional defect diffraction pattern. When inspec-
tion frequency is 60 kHz the ALE PDFs increase for the three
GWI algorithms due to decrease in A0 excitability as previ-
ously discussed.

In practice, a probability of experiencing ALE larger
than maximum tolerable error is required. In the present
study, the maximum tolerable error is arbitrarily fixed at
15 mm corresponding to the largest transverse hole, and the
probability P of having ALE larger than maximum tolerable
error P(ALE > 15,mm) can be evaluated by integrating the
PDF between the corresponding bounds. Other maximum
tolerable error could be defined depending on the applica-
tion. At 20 kHz the P(ALE > 15,mm) are quite high and
equal 56.2 %, 70.2 % and 61.7 % for DAS, MV and EXC
algorithms. Consequently, GWI results obtained at this fre-
quency cannot be considered as reliable. On the contrary,
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(a) PDFs of GWI algorithms ALE versus defect size under perfect operational conditions at 20 kHz.

(b) PDFs of GWI algorithms ALE versus defect size under perfect operational conditions at 40 kHz.

(c) PDFs of GWI algorithms ALE versus defect size under perfect operational conditions at 60 kHz.

Fig. 5: Defect location predictions under perfect operational conditions. Observations and reference values of X and Y are
plotted in left and right columns respectively. The imaging results are obtained at 20 kHz, 40 kHz, and 60 kHz and are shown
in this order from the top to the bottom row. The orange crosses, blue dots and green triangles represent the results obtained
by DAS, MV and Excitelet respectively.

at 40 kHz the corresponding results are 9.9 %, 21.4 % and
0.15 %, and at 60 kHz P(ALE > 15,mm) are 44.3 %, 57.0 %
and 1.0 %, respectively. Note that a P(ALE > 15,mm) = 1%
means that the probability of an accurate localization is 99%.
It is worth noting the remarkable performance of Excitelet al-
gorithm in comparison to the two other algorithms, while the
structure is inspected at these frequencies.

Even small environmental variations significantly de-
crease performance of GWI algorithms so that PDFs become
spread, see Figure 6. Previously mentioned weaknesses are
amplified due to amplitude variation, phase/group velocities
shifts and measurement noise. The ALE can reach and over-
come 100 mm for all the three GWI algorithm at 20 kHz, and
the GWI results are generally poor: P(ALE > 15,mm) are
high and equal 80.71 %, 77.54 % and 70.09 % for DAS, MV

and EXC algorithms, respectively.
At 40 kHz, GWI results are more accurate, PDFs of

localization errors are less significant so that the P(ALE >
15,mm) is the following for all the three algorithms: 54.23
%, 46.69 % and 42.73 %. When inspection frequency is
60 kHz, GWI results start degrading as under perfect oper-
ational conditions, and ALE PDFs are spreading out so that
the P(ALE > 15,mm) are 68.22 %, 67.64 % and 46.31 % for
DAS, MV and Excitelet algorithms.

4.3 Performance metrics
General practice in model verification is to determine

the alignment of model predictions with the reference val-
ues. It typically involves computing a set of performance
metrics in order to capture all aspects of the model behavior,
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(a) PDFs of GWI algorithms ALE versus defect size under varying operational conditions at 20 kHz.

(b) PDFs of GWI algorithms ALE versus defect size under varying operational conditions at 40 kHz.

(c) PDFs of GWI algorithms ALE versus defect size under varying operational conditions at 60 kHz.

Fig. 6: Defect location predictions under perfect operational conditions. Observations and reference values of X and Y are
plotted in left and right columns respectively. The imaging results are obtained at 20 kHz, 40 kHz, and 60 kHz and are shown
in this order from the top to the bottom row. The orange crosses, blue dots and green triangles represent the results obtained
by DAS, MV and Excitelet respectively.

reflecting statistical similarities and differences between true
values and experimental observations. For more details on
the computation of the error metrics, the reader is invite to
refer to [40].

Mean Absolute Error (MAE) measures the average mag-
nitude of errors over the dataset without considering their
directions. In our case, it is computed as an average of
the absolute differences between the maxima of images and
the corresponding reference coordinates, where all individ-
ual differences have equal weight. A Root Mean Square Er-
ror (RMSE) represents a quadratic mean of model deviations
from reference values. Each RMSE component is propor-
tional to squared error which makes this metric highly sen-
sitive to the presence of significant deviations, emphasizes
the inability of the imaging algorithm to compute an image

correctly. The Standard Deviation (STD) is a statistic that
evaluates a dataset dispersion. STD of model errors pro-
vides insights on the incertitude experienced by the imag-
ing algorithm. For example, the spread of the predictions
at 20 kHz, shown in Figure 4, generally happens when de-
fect imaging algorithms fail to reconstruct images. Finally, a
product-momentum Coefficient of Correlation (CoC) is used
to determine the strength of the linear statistical relationship
between observations and their reference values, where the
perfect alignment of both leads to CoC = 1 and the absence
of linear relationship results in CoC = 0.

The performance metrics of all the three defect imag-
ing algorithms are collected under perfect and varying op-
erational conditions and summarized in Table (1) in order to
estimate a degree of correspondence between the imaging al-
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Table 1: Performance metrics summery for Excitelet, DAS and MV defect imaging algorithms under perfect operational
conditions (POC) and varying operational conditions (VOC). Results for 20 kHz, 40 kHz and 60 kHz are grouped central
inspection frequency.

20 kHz 40 kHz 60 kHz

Algorithm DAS MV EXC DAS MV EXC DAS MV EXC

POC

STD, mm 28.05 29.39 23.53 5.91 8.14 2.86 11.14 13.67 3.38

RMSE, mm 38.93 47.09 35.05 10.14 13.04 4.68 19.09 23.73 6.36

MAE, mm 27.01 36.79 25.97 8.24 10.19 3.71 15.49 19.39 5.39

CoC 0.68 0.44 0.71 0.86 0.82 0.99 0.79 0.70 0.95

P(ALE > 15,mm) 56.2 % 70.2 % 61.7% 9.9 % 21.4 % 0.15 % 44.3 % 57.0 % 1.0 %

VOC

STD, mm 55.95 29.04 26.41 49.94 30.81 47.99 41.13 30.95 40.91

RMSE, mm 88.05 51.35 42.50 62.08 37.66 55.88 59.04 45.77 49.85

MAE, mm 67.99 42.35 33.29 36.88 21.65 28.61 42.36 33.71 28.48

CoC 0.29 0.44 0.71 0.58 0.79 0.59 0.63 0.66 0.70

P(ALE > 15, mm) 80.71 77.54 70.91 54.23 46.69 42.73 68.22 67.64 46.31

gorithms outputs and the reference values. In this table, the
STD, RMSE, MAE, and CoC are grouped by excitation fre-
quencies for all the three imaging algorithms, so the merits
of competing imaging algorithms and excitation frequencies
can be determined for a given GWI configuration. From the
analysis of Table (1), it can be deduced that under perfect
operational conditions the best defect localization accuracy
is achieved when the structure is monitored at 40 kHz and
imaged with Excitelet algorithm. Such a GWs imaging con-
figuration allows obtaining a CoC40kHz

EXC ≈ 0.99 predictions,
while the RMSE and MAE are approximately equal to 4.86
mm and 3.71 mm, respectively. Such low and close by mag-
nitude RMSE and MAE errors indicate that Excitelet algo-
rithm does not fail in image reconstruction. The STD, which
indicates how the data is distributed around the mean value,
estimates model’s uncertainty with respect to the reference
data. For all the three excitation frequencies, Excitelet is the
least uncertain, and MV is the most volatile in localizing the
defects.

Excitelet shows the best performances in terms of
RMSE, MAE and MAE localization error metrics for all the
three studied frequencies and reaches its peak while monitor-
ing the structure at 40 kHz. The same conclusion holds for
the CoC while measuring linear model alignment with refer-
ence values and searching for the best prediction accuracy.

However, when GWI is performed under varying op-
eration conditions, significant decrease in algorithms per-
formance is observed. Metrics demonstrate that environ-
ment modifications impact the most higher frequency dam-
age imaging. The best GWI result at 20 kHz is achieved
by Excitelet algorithm where the STD is equal to 26.41 mm,
MAE is 33.29 mm and CoC is 70.91. When frequency in-
creases to 40 kHz, mean metrics demonstrate that the local-
ization accuracy is significantly decreased for all the three
GWI algorithms and the best result is achieved by MV al-
gorithm where STD is 30.81 mm and MAE equals to 21.65

mm. The same tendency is observed at 60 kHz, where MV
outperforms its counterparts where STD equals to 30.65 mm
and MAE is 33.71 mm. However, for all the three algorithms
CoC is always higher while GWI is performed by Excitelet
and corresponding ALE distributions are narrower, P(ALE >
15,mm) is greater than for two other algorithms meaning that
aforementioned metrics are biases by occasional high local-
ization errors where algorithms failed to compute a correct
image. Rather, a number of incoherent peaks are observed
and image is barely interpretative. Therefore, PDFs is more
suitable for inferring statistical performance of GWI algo-
rithms. For example, for all the three GWI algorithms, Ex-
citelet demonstrates the lowest P(ALE > 15,mm) which is
equal to 70.91 %, 42.73 % and 46.31 % at 20 kHz, 40 kHz
60 kHz frequencies, respectively.

5 Conclusions
This paper presents statistical studies on the localization

performance of three state-of-art defect imaging algorithms
for a GW-based SHM system under perfect and varying op-
erational conditions. The study is conducted on numerically
generated database of GWI results using GWs signals degra-
dation model. The GWI configuration is fairly simple where
the complex phenomena of GWs propagation and GWs- de-
fect and boundaries interaction are reduced as much as possi-
ble for the sake of revealing the driving parameters of locali-
sation performance inherent to defect imaging algorithms so
that corresponding inferences can be arguably translated to
more complex GWI configurations while developing GWs-
based SHM systems for realistic applications.

The statistical advantage of using the Excitelet algo-
rithm in comparison with DAS and MV is demonstrated.
Excitelet requires the comprehensive knowledge of the GWs
propagation in the structure for the analytical signal compu-
tation, it provides smaller localization errors. The lower per-
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formances of DAS and MV are due to the neglection of GWs
dispersion which has to be taken into consideration for accu-
rate localization. The three algorithms suffer from the mode
conversion phenomena, emphasizing the need to adequately
choose the inspection frequency to guarantee the best perfor-
mances. For this specific configuration, this study leads to
the conclusion that the best defect localization performance
is achieved when the structure is monitored at 40 kHz and
imaging is performed using Excitelet algorithm. One of the
main reasons that the GWI results are better at 40 kHz for
this plate is the diameter of piezoelectric transducer. This
is a driving factor influencing the modal excitability. For
this configuration, it is chosen to favor the A0 generation
so that an accurate localization of the defect is obtained for
99% of the cases. However, localization accuracy signifi-
cantly decreases when operational conditions starts to vary
and, for instance, Excitelet provides accurate defect imaging
with the probability of 53.96 % while temperature varies in
the |dTmax| ≈ 20◦C range. Such GWI conditions require ap-
plication of environmental effects compensation techniques.
Their statistical advantage will be studied in the future work.

More generally, the presented methodology can con-
tribute to the SHM system optimization and reliability evalu-
ation. It allows to quantify the performance gain, but it has to
be repeated for each constituent and configuration. The ALE
probability distributions can also contribute to the reliability
and associated risks estimation; it can be determined by a
variety of methods, including Monte Carlo simulations. For
future work, authors also plan to investigate robustness of
these algorithms while detecting structural damage in com-
posite plates for various GWI configurations and to include
it into the performance demonstration of SHM system as a
whole.
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