Maarten Jongeneel

Alexandre Bernardino

Nathan Van De Wouw

Alessandro Saccon

Model-Based 6D Visual Object Tracking with Impact Collision Models

Keywords: Visual 3D Object Tracking, Nonlinear Dynamics, Particle Filter, Nonsmooth Mechanics

Object tracking is an essential technique in computer vision and has many fields of application. In this study, the focus lies on tracking objects impacting the environment. We show that state-of-the-art methods lose track of objects in this context and we investigate how to overcome this problem by adding prior information regarding the object and surface where collision is expected to occur. For illustration purposes and application relevance, we focus on the case of a box impacting a surface, which is, e.g., encountered in robot tossing in logistics applications. We model the effects of impacts and friction in a motion model, and consider the state of the box to evolve in a Lie group. We present an object tracking algorithm, based on an Unscented Particle Filter, for systems whose state lives in a Lie group and incorporate this motion model. The observations are taken from a single RGB camera and make use of the known 3D model of the object and color characteristics to predict its appearance in the 2D image. We quantitatively evaluate the effectiveness of our proposed methods by means of simulations on synthetic images.

I. INTRODUCTION

Estimating the position and orientation of objects in a 3D space from RGB images is an important problem in robotic applications. In robotic manipulation, for example, accurate pose estimation is advantageous for executing advanced grasping tasks. In this paper, we focus on tracking rigid objects that collide with the environment. This can be of particular interest in real-world applications such as robot batting [START_REF] Jia | Batting an in-flight object to the target[END_REF] or robot soccer [START_REF] Olufs | Towards Probabilistic Shape Vision in RoboCup: A Practical Approach[END_REF]. For sake of brevity, we focus specifically on box-shaped objects as this is also relevant for logistics applications, e.g., for robot tossing 5 . Our approach, however, can be extended to objects with other geometries.

To the best of the authors knowledge, there is no specific work in literature focusing on 3D object tracking in the presence of collisions. A substantial body of work has been recently published on 6D object pose estimation from single-shot, potentially multi-view, RGB(D) camera images. Relevant examples include [START_REF] Labbe | Consistent multi-view multi-object 6D pose estimation[END_REF], [START_REF] Sundermeyer | Implicit 3D Orientation Learning for 6D Object Detection from RGB Images[END_REF], [START_REF] Zeng | Multi-view Self-supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge[END_REF], [START_REF] Sucar | NodeSLAM: Neural Object Descriptors for Multi-View Shape Reconstruction[END_REF] and references therein. Making use of latent pose or shape representations provided by variational autoencoders, these methods allow to obtain quite robust pose estimates, also in the presence of partial occlusions, for known objects [START_REF] Labbe | Consistent multi-view multi-object 6D pose estimation[END_REF], [START_REF] Sundermeyer | Implicit 3D Orientation Learning for 6D Object Detection from RGB Images[END_REF], [START_REF] Zeng | Multi-view Self-supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge[END_REF] or objects within a known class [START_REF] Sucar | NodeSLAM: Neural Object Descriptors for Multi-View Shape Reconstruction[END_REF]. These single-shot pose estimation techniques or more traditional methods such as RAPiD-like approaches [START_REF] Lepetit | Monocular Model-based 3D Tracking of Rigid Objects[END_REF], [START_REF] Harris | Tracking with Rigid Objects[END_REF], can then be used as measurement in feature-based or model-based tracking algorithms as shown in [START_REF] Choi | Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features[END_REF], [START_REF] Lepetit | Monocular Model-based 3D Tracking of Rigid Objects[END_REF], [START_REF] Deng | PoseRBPF: A Rao-Blackwellized Particle Filter for 6-D Object Pose Tracking[END_REF]. Instead of just employing an instantaneous 6D pose measurement at each instant of time, these tracking algorithms make use of both current and past observations y 1:t [START_REF] Lepetit | Monocular Model-based 3D Tracking of Rigid Objects[END_REF], thereby improving tracking performance even further. In these cases, the problem of object tracking becomes the problem of estimating the filtering density, denoted as p(x t |y 1:t) [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF], recursively in time. In addition to orientation and position parameters, the object state x t then also includes linear and angular velocity parameters.

Often, the filtering density is unknown, and there are numerous approximation methods, with the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and the Particle Filter (PF) as the most prominent ones. The EKF and UKF are only valid if the posterior distribution can be closely approximated by a Gaussian distribution and remains unimodal. On the contrary, the PF maintains several hypotheses over time, which allows to approximate the full posterior distribution of systems with non-linear dynamics and non-Gaussian state distributions [START_REF] Cappe | An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo[END_REF], [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF], as is the case for our specific case of tossing a box impacting a surface. Impacts, in particular, lead to nonsmooth behavior, a rather extreme case of nonlinearity with sudden state jumps. We therefore base our approach on the PF.

In a PF, a set of particles {x

(i) t } N i=1 are sampled from a proposal distribution, q(x (i)
t |y 1:t), to approximate the filtering density. The quality of this approximation is reflected by so-called unnormalized importance weights w(i) t , which are given as the ratio between the true filtering density and the proposal distribution. Ideally, the proposal distribution is as close as possible to the true filtering density [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF] meaning that the choice of proposal distribution is of high importance for the approximation of the filtering density.

Within the context of visual object tracking with Particle Filters, we consider two distinct open problems. First, in literature (see, e.g., [START_REF] Taiana | Tracking Objects with Generic Calibrated Sensors: An Algorithm Based on Color and 3D Shape Features[END_REF], [START_REF] Okuma | A Boosted Particle Filter: Multitarget Detection and Tracking[END_REF]), the choice is often made to use the prior distribution p(x t |x t-1) as a proposal, such that the particles from the previous state x t-1 are directly propagated to the next time step through a motion model, without the use of the available observation y t . Consequently, it may happen that the complete set of particles moves away from the area with high likelihood, resulting in degeneracy of the particle set [START_REF] Van Der Merwe | The Unscented Particle Filter[END_REF]. Second, in literature of visual object tracking, the adopted motion model is typically a constant velocity model [START_REF] Choi | Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features[END_REF], [START_REF] Kwon | Monocular SLAM with Locally Planar Landmarks via Geometric Rao-Blackwellized Particle Filtering on Lie Groups[END_REF], [START_REF] Baik | Geometric particle swarm optimization for robust visual ego-motion estimation via particle filtering[END_REF]. To the best of the authors' knowledge, there does not exist literature on object tracking algorithms exploring the possibility of incorporating prior information regarding the object and surface that are expected to get in contact, potentially undergoing impacts (nonsmooth behavior).

To tackle the first problem, we propose to use the Unscented Particle Filter (UPF) [START_REF] Van Der Merwe | The Unscented Particle Filter[END_REF], which uses a UKF that takes the current observation into account to create a proposal distribution. As the 6D pose of an object in 3D space does not evolve in a vector space, but rather on a Lie group, we propose a version of the UPF for a system whose state lives in a Lie group. Although literature exists for particle filters on Lie groups [START_REF] Choi | Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features[END_REF], [START_REF] Marjanovic | An engineer's guide to particle filtering on matrix Lie groups[END_REF] or Unscented Kalman filters on Lie Groups [START_REF] Brossard | Unscented Kalman filtering on Lie groups[END_REF], to the best of the authors knowledge, there does not exist literature on the UPF on Lie Groups. We name this new variant of the filter the Geometric Unscented Particle Filter (GUPF), which can be seen as the first contribution of this paper.

For dealing with the second problem (nonsmooth behavior), we investigate the consequences of incorporating impact and friction on a nonsmooth dynamical motion model in the GUPF that more accurately describes the nonsmooth dynamics of the object. In a numerical study, we will show that, given the shape of the box, the post-impact velocity is highly sensitive to the pre-impact velocity and pose, and tracking algorithms based on constant velocity models typically fail to track the object accurately beyond the impact. Integrating a nonsmooth model in an object tracking strategy is our second contribution.

The paper has the following structure. In Section II, we introduce notation and review stochastic uncertainty models on Lie groups. In Section III, we detail the Geometric Unscented Particle Filter. In Section IV, we apply the proposed GUPF on box tossing, explicitly providing the motion model and the observation likelihood function. In Section V, we verify our proposed methods by means of simulations, while Section VI concludes with a summary.

II. MATHEMATICAL PRELIMINARIES

We assume the reader is familiar with Unscented Kalman Filters [START_REF] Van Der Merwe | The Unscented Particle Filter[END_REF], Particle Filters [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF], and matrix Lie groups [START_REF] Varadarajan | Lie Groups, Lie Algebras, and Their Representations[END_REF], [START_REF] Marjanovic | An engineer's guide to particle filtering on matrix Lie groups[END_REF]. We will use calligraphic letters to denote a Lie group G, and fraktur letters to denote its corresponding Lie algebra g. Since G is not a vector space, we cannot apply the usual approach of additive noise. We follow the approach of [START_REF] Barfoot | Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems[END_REF], [START_REF] Chirikjian | Stochastic Models, Information Theory, and Lie Groups[END_REF] and define the wrapped Gaussian probability distribution g ∼ N L (ḡ, Σ) for the random variable g ∈ G as

g := ḡ Exp(ξ), ξ ∼ N (0, Σ) , (1)
with ḡ ∈ G, ξ ∈ g, Σ ∈ g ⊗ g, and where N denotes the ordinary Normal distribution in Euclidean space and ⊗ the tensor product. The sample mean ḡ and covariance Σ can be obtained from a sample set {g i } N i=1 ∈ G as detailed in [START_REF] Zeestraten | Programming by Demonstration on Riemannian Manifolds[END_REF], [START_REF] Dubbelman | Intrinsic statistical techniques for robust pose estimation[END_REF]. This procedure is shown in Algorithm 1 and will be Algorithm 1 Weighted mean ḡ and covariance Σ computation on the Lie group G

Input: ḡ, {g i } N i=1 , {W (m) i } N i=1 , {W (c)
i } N i=1 , θ 1: Compute the mean: 2: repeat 3:

ξ i ← Log ḡ-1 g i , i = 1, . . . , N 4: ξ ← N i=1 W (m) i ξ i 5:
ḡ ← ḡ Exp(ξ) 6: until ξ < θ 7: Compute the covariance: used in Section III. Note that in Algorithm 1, θ is a threshold value and an initial guess for ḡ should be given.

8: ξ i = Log ḡ-1 g i , i = 1, . . . , N 9: Σ = N i=1 W (c) i ξ i ξ T i Output: ḡ, Σ
The state (pose-velocity pair) of a rigid body will be denoted by x t := (A R(t) B , A o(t) B , B v(t) A,B , B ω(t) A,B) ∈ S, where we define the state-group as S := SO(3

) × R 3 × R 3 × R 3
× , with R 3 × denoting the cross product Lie algebra, equivalent to so(3). Note that with A R(t) B we denote the coordinate transformation from frame B to frame A and with A o(t) B we express the coordinates of the origin of frame B w.r.t. frame A. For further details about this notation, see [START_REF] Traversaro | Multibody dynamics notation (version 2)[END_REF]. We define the pose-group as P := SO(3) × R 3 , and denote the Lie algebras corresponding to S and P as s and p, respectively. See also Fig. 1 for a schematic overview of the problem, where frame C defines the contact surface, frame B the body-fixed frame of the box located at its center, frame A the inertial frame, p i the contact points of the box, and g Ni the gap functions, as we will describe in Section IV. We write all positions and velocities of the box frame B with respect to the inertial frame A, such that we omit the suband superscripts of A and B for the sake of brevity, that is, e.g., we will write v for B v A,B .

III. THE GEOMETRIC UNSCENTED PARTICLE FILTER

This section will describe the newly proposed Geometric Unscented Particle Filter (GUPF). We closely follow the procedure of the UPF in [START_REF] Van Der Merwe | The Unscented Particle Filter[END_REF] and stress that the novelty of our proposed GUPF lies in the fact that we generalize the UPF for systems whose state evolves in a Lie group.

We assume an initial state distribution p(x 0), defined by a wrapped Gaussian with mean x0 ∈ S and covariance P x 0 ∈ s ⊗ s. We thus sample a set of {x

(i) 0 } N i=1 particles according to x (i) 0 = x0 Exp χ (i) with χ (i) ∼ N (0, P x 0)
, such that these particles represent the initial state distribution. At time t-1 (including the initial time), we consider a single particle x t-1 where for the sake of brevity we have discarded the superscript (•) (i) . We follow the standard approach of [START_REF] Van Der Merwe | The Unscented Particle Filter[END_REF] and augment the state mean and covariance with the process noise and observation noise parameters. To this end, we define the augmented-state group A := S ×S ×P and the augmented state as x a = (x, m, n) ∈ A, where x ∈ S is the state, m ∈ S the process noise, and n ∈ P the observation noise. The Lie algebra of A is defined as a := s ⊗ s ⊗ p. We will define the augmented state mean and covariance in the tangent space at a point

x a t-1 = (x t-1 , m, n) ∈ A as χa t-1 = 0 ∈ a, P a t-1 = diag(P x , Q, R) ∈ a ⊗ a, (2)
respectively, where P x ∈ s ⊗ s is the state covariance, Q ∈ s ⊗ s the process noise covariance, and R ∈ p ⊗ p the observation noise covariance. This means the sigma points are defined in the Lie algebra a (representing the tangent space of A at the point x a t-1 via left translation). Since this is a vector space, the points can be simply computed as in [START_REF] Van Der Merwe | The Unscented Particle Filter[END_REF], which gives

χ a t-1 = χa t-1 χa t-1 ± (n a + λ)P a t-1
, where λ = α 2 (n a + ζ) -n a with ζ and α scaling parameters to scale the sigma points and n a denoting the dimension of the augmented state, which in our case is n a = 30. As a result, each sigma point j can be written as χ a j,t-1 = [(χ x j,t-1); (χ m j,t-1); (χ n j,t-1)], where ; denotes row concatenation and where χ x j,t-1 ∈ s is the state component, χ m j,t-1 ∈ s the process noise component, and χ n j,t-1 ∈ p the observation noise component of the sigma point. Each sigma point is then weighted such that the true mean and covariance of the particle are fully captured by a set of weighted sigma points denoted by χ a j,t-1 , W ∈ R are the weights of the covariance as in [START_REF] Van Der Merwe | The Unscented Particle Filter[END_REF] and Algorithm 1.

A. Creating the prior and proposal distributions

We now propagate the state component of the sigma points χ x j,t-1 ∈ s, to obtain the predicted state sigma points x j,t|t-1 ∈ S. Propagation is obtained through the motion model f : S → S, and details of this model will be given in Section IV. For now, we assume that this function is known, such that, for every sigma point j ∈ [0, 2n a],

x j,t|t-1 = f x t-1 Exp χ x j,t-1 Exp χ m j,t-1 . (3)
Note that, in the Euclidean case, the noise parameters are incorporated by simple addition. As in our case the state evolves in a Lie group, this procedure is done by postmultiplication of the exponential map of the noise parameters, as is illustrated by the last term of (3). The predicted particle state mean and covariance can now be computed by following the procedure of Algorithm 1, using x 0,t|t-1 as initial guess for the mean. In this way, we obtain for each particle its prior distribution, given by p(x t |x t-1) = N L (x t|t-1 , P x t|t-1). As in [START_REF] Van Der Merwe | The Unscented Particle Filter[END_REF], the next step is to incorporate a measurement. In our case, such a measurement gives the 3D position and orientation of the box, such that Z t = (R, o) ∈ P. This measurement could be the result of some 3D model-based pose estimation algorithm [START_REF] Lepetit | Monocular Model-based 3D Tracking of Rigid Objects[END_REF]. Our proposed method computes the measurement as a weighted mean from the predicted set of particles x (i) t|t-1 obtained by (3) by considering their pose components H (i) = (R (i) , o (i)) ∈ P and evaluating them through a likelihood function L : P → R according to

L (i) = L(H (i)). (4)
For the specific case of rectangular boxes, we will detail this function in Section IV. To compute the measurement from a weighted mean on the pose group, we use as initial guess

Zt = arg max i=1,...,N L H (i) ∈ P, (5)
and follow the same procedure as in Algorithm 1, substituting

W (m) i
with the normalized likelihood L(i) associated to the ith particle. This average is taken as the measurement Z t ∈ P. Each sigma point x j,t|t-1 in (3) is now evaluated through the observation model h : S → P together with the noise component of the sigma point to obtain the predicted pose

H j,t|t-1 = h x j,t|t-1 Exp χ n j,t-1 ∈ P. (6)
Using Algorithm 1, we compute the mean of the points H j,t|t-1 by using H 0,t|t-1 as initial guess. This results in Ht|t-1 , at which we consider a tangent space and we map the predicted poses obtained in [START_REF] Sucar | NodeSLAM: Neural Object Descriptors for Multi-View Shape Reconstruction[END_REF] to this space resulting in H j,t|t-1 ∈ p. The observation noise covariance and stateobservation cross-covariance are then given by

P zz t|t-1 = 2na j=0 W (c) j H j,t|t-1 H j,t|t-1 T ∈ p ⊗ p (7)
and

P xz t|t-1 = 2na j=0 W (c) j χ x j,t|t-1 H j,t|t-1 T ∈ s ⊗ p, (8)
respectively. The innovation is then computed by incorporating the measurement at time t as in [START_REF] Brossard | Unscented Kalman filtering on Lie groups[END_REF] such that

ρ = Log Ht|t-1 -1 Z t ∈ p. (9)
The state mean is now updated according to

x t = x t|t-1 Exp P xz t|t-1 P zz t|t-1 -1 ρ , (10)
and the state covariance is then updated (cf. [START_REF] Brossard | Unscented Kalman filtering on Lie groups[END_REF]) to obtain

P x t = P x t|t-1 -P xz t|t-1 P xz t|t-1 P zz t|t-1 -1 T (11)
with P x t ∈ s ⊗ s. As a result, the proposal distribution for each particle is given by q(x t |y 1:t) = N L (x t , P x t).

B. Computing the weights for each particle

We now sample each particle from its proposal distribution according to xt = x t Exp (χ) with χ ∼ N (0, P x t) as in (1). The prior distribution, the proposal distribution, and the likelihood function are then evaluated at this sampled particle, from which the unnormalized weight can be computed using the importance function as in [START_REF] Doucet | Sequential Monte Carlo Methods in Practice[END_REF]. The final state estimate is obtained by computing a weighted mean of all the particles, following Algorithm 1, where we consider the particle x(i)

t with the highest weight as the initial guess. Next, all particles are resampled according to their weight as in [START_REF] Van Der Merwe | The Unscented Particle Filter[END_REF].

IV. LIKELIHOOD FUNCTION AND MOTION MODEL

In this section, we describe how we apply the GUPF for our specific case of tracking an impacting box. Therefore, we describe the likelihood function used in (4), and derive the motion model used in (3).

A. Color-based likelihood computation

The observation likelihood function is a measure for the compatibility between the observed image and the object pose. Instead of using an approach as in [START_REF] Deng | PoseRBPF: A Rao-Blackwellized Particle Filter for 6-D Object Pose Tracking[END_REF], which would require the training of an auto-encoder, we use an approach similar to [START_REF] Taiana | Tracking Objects with Generic Calibrated Sensors: An Algorithm Based on Color and 3D Shape Features[END_REF], [START_REF] Taiana | Sample-Based 3D Tracking of Colored Objects: A Flexible Architecture[END_REF], where an accurate and computationally efficient method is proposed for likelihood computation of a particle from image data. This method utilizes sets of 3D points, generated around a geometric model of the object, which are a function of the object's dimensions and the particle's pose with respect to the camera. Fig. 2a shows the geometric model of the object and shows the different sets of generated 3D points. In total, we generate thirteen of points for each particle: six sets of points laying on each face of the object (in green); six sets of points laying on each face of the object near the edges (in blue), and one set of points just outside the edges of the object (in red). These sets of points are projected to the image plane, resulting in corresponding sets of 2D points in image coordinates. Fig. 2b shows the projection of these sets of points to the image plane, given a state of the particle. Note that we disregard all the self-occluded points, i.e., the red points laying inside the contouring edges of the box, and blue and green points laying on surfaces that are not visible from the camera for this specific state. We then compute color histograms for each set of 2D points using the HSI color space as in [START_REF] Taiana | Tracking Objects with Generic Calibrated Sensors: An Algorithm Based on Color and 3D Shape Features[END_REF], resulting in the color histograms h cin i (blue points) and h face i (green points) for each visible face i, and h cout (red points). Furthermore, each face has an a-priori created reference color histogram h ref i computed from the known object texture maps. High likelihood values should then be assigned to particles if, for each visible face, the similarity between h cin i and h ref i as well as the similarity between h face i and h ref i is high, while at the same time the similarity between h cin i and h cout is low. These similarities are computed using the Bhattacharyya similarity function, as described in [START_REF] Comaniciu | Real-time tracking of nonrigid objects using mean shift[END_REF], and we denote them by s 1 , s 2 , and s 3 , respectively. Since the histograms are normalized, the similarities are in the range s ∈ [0, 1], where s = 1 refers to a perfect match between histograms. We define

D = κ 1 (1 -s 1) + κ 2 (1 -s 2) + κ 3 s 3 κ 1 + κ 2 + κ 3 (12)
with κ 1 , κ 2 , and κ 3 scaling parameters. In the ideal case, all terms in the numerator are zero when the particle is representing the true state of the object and the background and object colors are exclusive. Finally, the likelihood is modeled as a Laplacian distribution as in [START_REF] Taiana | Sample-Based 3D Tracking of Colored Objects: A Flexible Architecture[END_REF] to obtain p(y t |x

(i) t) ∝ e -|D|
, where is a scaling parameter.

B. Equations of motion

We now derive the motion model f used in [START_REF] Labbe | Consistent multi-view multi-object 6D pose estimation[END_REF]. For the sake of brevity, we will consider only a single particle x t-1 at a given time t -1. We write its pose and velocity with respect to the inertial frame A in terms of the transformation matrix H = [R, o; 0, 1] ∈ SE(3) and the left-trivialized velocity v = [v; ω] ∈ R 6 as in [START_REF] Traversaro | Multibody dynamics notation (version 2)[END_REF]. This means that we write the state as x t-1 = (H(t -1), v(t -1)) and compute the predicted state x t|t-1 = (H(t), v(t)). To derive the equations of motion and unilateral contact and impact dynamics, we closely follow the framework of Glocker in [START_REF] Glocker | Set-Valued Force Laws: Dynamics of Non-Smooth Systems[END_REF]. We write the equations of motion on the level of momenta, to allow for inclusion of impulsive forces and discontinuities in the friction force, such that

Mdv(t)+v(t) × * Mv(t)dt = f (t)dt+W N dP N +W T dP T , (13)
where M denotes the inertia tensor, × * the dual-cross product on R 6 as in [START_REF] Traversaro | Multibody dynamics notation (version 2)[END_REF], and f (t) the generalized wrench containing the generalized forces and torques applied to the center of mass of the body (except for the contact forces), which here involve the gravitational forces. Furthermore, dP N and dP T are respectively the differential measures of the momenta associated to the contact/impact in normal direction and tangential direction, respectively. These differential measures consist of a Lebesgue measurable part λdt which denotes the non-impulsive part of the contact/friction force and an atomic part Λdη, denoting the impulsive part of the contact/friction force [START_REF] Glocker | Set-Valued Force Laws: Dynamics of Non-Smooth Systems[END_REF], such that dP N = λ N dt + Λ N dη and dP T = λ T dt + Λ T dη. Furthermore, we can write the kinematics as

Ḣ(t) = H(t)v ∧ (t), (14)
with (•) ∧ the hat-operator as in [START_REF] Traversaro | Multibody dynamics notation (version 2)[END_REF].

C. Modeling unilateral contact, impact, and friction Consider again Fig. 1, where frame C defines the location and orientation of the contact surface and this frame is oriented such that the unit vector z C defines the normal to the plane. We consider the eight vertices of the box to be the only potential contact points and denote them by p i . The contact distance, referred to as the gap function, is the distance in z-direction of C between the point p i and the origin of C, defined as

g N i := A z T C A o B + A R B B p i -A o C , (15)
and graphically depicted in Fig. 1. Under the assumption that the body and surface are rigid, we can write the constitutive law for unilateral contact using Signorini's contact law [START_REF] Glocker | Set-Valued Force Laws: Dynamics of Non-Smooth Systems[END_REF] using the proximal point formulation as in [START_REF] Leine | Dynamics and bifurcations of non-smooth mechanical systems[END_REF], such that

λ N = prox C N (λ N -rg N) with r > 0, (16)
where

C N = {λ N ∈ R nc | λ N ≥ 0}
is the set of admissible normal forces, g N the column of normal contact distances, and n c is the number of contact points. We will use Newton's impact law, given as γ + N i = -e N γ - N i , to relate the pre-impact normal velocity γ - N i to the post-impact normal velocity γ + N i through the normal coefficient of restitution e N [START_REF] Glocker | Set-Valued Force Laws: Dynamics of Non-Smooth Systems[END_REF]. We use Newton's model due to its simplicity and ease of implementation, but stress that it can lead to inconsistent results when applied in complex contact situations that can occur in real-world collision scenarios [START_REF] Wang | Two-Dimensional Rigid-Body Collisions With Friction[END_REF], [START_REF] Uchida | Making a meaningful impact: modelling simultaneous frictional collisions in spatial multibody systems[END_REF]. The normal velocity is given by the time derivative of (15) such that γ N i = ġNi almost everywhere, and we write it in terms of the left-trivialized velocity such that γ N i = w T N i v ∈ R, where w T N i is the row-vector containing the force directions of the contact impulses of p i . We introduce the variable ξ N i = γ + N i + e N i γ - N i to formulate an impact law that relates the impulsive force Λ N i to γ + N i via a complementarity condition. This gives

Λ N i = prox C N (Λ N i -rξ N i) ∀i ∈ I c , (17)
where I c is the set of closed contacts, C N = R + , and r > 0. In order to model dry friction, we will use a setvalued Coulomb friction model as in [START_REF] Glocker | Set-Valued Force Laws: Dynamics of Non-Smooth Systems[END_REF]. We will define the tangential velocity γ T i as the velocity of p i with respect to C in xand y-direction of the contact plane such that

γ T i = w T T i v ∈ R 2
, where w T T i ∈ R 2×n is the matrix containing the force directions of the friction forces acting on p i . We can formulate the set-valued force law for the non-impulsive part of isotropic Coulomb friction as follows:

λ T i = prox C T i (λ T i -rγ T i) , (18)
where

C T i = {λ T i | λ T i ≤ µλ N i } ∀i ∈ I c and r > 0.
To account for impulsive friction forces associated with a certain amount of restitution, we write the set-valued force laws for Coulomb-friction in terms of momenta. Therefore, we introduce the variable ξ T i = γ + T i + e T γ - T i ∈ R 2 where e T denotes the tangential coefficient of restitution. The setvalued force law for ξ T i and Λ T i then becomes with

Λ T i = prox C T i (Λ T i -rξ T i) (19)
C T i = {Λ T i | Λ T i ≤ µΛ N i } ∀i ∈ I c and r > 0.

D. Numerical integration using time-stepping

We use a timestepping scheme as in [START_REF] Leine | Dynamics and bifurcations of non-smooth mechanical systems[END_REF] for numerical integration of the equations of motion. The advantage of the time-stepping method is that, when integrating the equations of motion (13) over a time-interval possibly containing one or more time instants at which impulsive loads occur, the contributions of the smooth forces and impulsive forces are both taken into account, which avoids the need for event detection of the impacts and allows to perform simulation beyond Zeno events [START_REF] Leine | Dynamics and bifurcations of non-smooth mechanical systems[END_REF]. At the beginning of each time step, the pose H(t -1) of the object and the velocity v(t -1) are known from x t-1 , either from initial conditions or computed from the previous time step. The velocity and pose at the end of the time-step are computed using (13) and (14), respectively. The values for dP N and dP T are found by solving the so-called contact problem, defined by the setvalued force laws of (16), [START_REF] Baik | Geometric particle swarm optimization for robust visual ego-motion estimation via particle filtering[END_REF], [START_REF] Marjanovic | An engineer's guide to particle filtering on matrix Lie groups[END_REF], and [START_REF] Brossard | Unscented Kalman filtering on Lie groups[END_REF]. We use an augmented Lagrangian approach as discussed in [START_REF] Leine | Dynamics and bifurcations of non-smooth mechanical systems[END_REF] to solve this contact problem, due to its simplicity and effectiveness in our specific case of a single rigid body. In summary, the time-stepping scheme consists of the following steps:

1. The pose H(t -1) of the object and the left trivialized velocity v(t-1) are known at the beginning of the time step from the state x t-1 ; 2. The system matrices f , w N i , and w T i are computed, from which γ N i and γ T i follow; 3. The values for v, λ N , λ T , Λ N , and Λ T at the end of the time step are computed using an augmented Lagrangian approach as in [START_REF] Leine | Dynamics and bifurcations of non-smooth mechanical systems[END_REF]; 4. The pose of the object is updated to the next time step according to [START_REF] Okuma | A Boosted Particle Filter: Multitarget Detection and Tracking[END_REF] and form together with the velocity at the end of the time-step the state x t|t-1 = (H(t), v(t)), which can be rewritten to an element of S.

V. NUMERICAL VALIDATION

We validate the proposed method by simulations1 and compare its performance to that of a state-of-the-art tracking algorithms presented in [START_REF] Choi | Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features[END_REF], [START_REF] Kwon | Monocular SLAM with Locally Planar Landmarks via Geometric Rao-Blackwellized Particle Filtering on Lie Groups[END_REF] and [START_REF] Baik | Geometric particle swarm optimization for robust visual ego-motion estimation via particle filtering[END_REF]. These works use a standard with a constant velocity motion model, and therefore differ from our proposed method both in filtering technique and motion model. We consider two tossing scenarios for which ground truth trajectories and artificial images are created. In the first trajectory, the motion of the object is parallel to the camera image, while in the second trajectory the object moves towards the camera. This allows us to test the effect of camera orientation with respect to the object's motion. This means that the two trajectories can be seen as two extreme cases, and we assume that other camera orientations will give similar results. We can write these trajectories by means of the pose of the box as GT t = (A R(t) GT B , A o(t) GT B) and Fig. 3 shows these trajectories, where the black lines indicate the trajectories of the center of mass of the box. Furthermore, for the first and every fifth frame the pose of the box is shown and the camera is illustrated. Assuming a camera frame rate of 60FPS, we create a total of 65 artificial images for each trajectory.

In [START_REF] Choi | Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features[END_REF], [START_REF] Kwon | Monocular SLAM with Locally Planar Landmarks via Geometric Rao-Blackwellized Particle Filtering on Lie Groups[END_REF], and [START_REF] Baik | Geometric particle swarm optimization for robust visual ego-motion estimation via particle filtering[END_REF], a constant velocity model is used to describe the state transition on SE(3). In this constant velocity model, no preference is given to any direction of motion such that the equations of motion can be written as

H(t e) = H(t a)Exp ∆tv ∧ (t a) + √ ∆ta ∧ , (20)
v ∧ (t e) = 1 ∆t Log H(t a) -1 H(t e) , (21)
where a ∈ R 6 is a zero-mean white noise vector, t a and t e represent respectively the time at the beginning end time-step, and ∆t = 1/60 seconds, corresponding to the assumption of a camera. We implement this motion model in a PF on Lie groups, as in [START_REF] Choi | Robust 3D visual tracking using particle filtering on the special Euclidean group: A combined approach of keypoint and edge features[END_REF], [START_REF] Chiuso | Monte Carlo filtering on Lie groups[END_REF], and refer to this as the PF with Constant Velocity model (PF CV). Similarly, we implement our proposed nonsmooth motion model in a PF, and refer to this as the PF with Nonsmooth model (PF NS). Finally, we implement our proposed motion model in the GUPF, and refer to this as GUPF NS.

In the simulations described in this section, we use a set of 500 particles for each simulation. To initialize the filter, one could use the initial ground truth state as initial state for each of these particles. However, since the ground truth data and the filter are based on the same motion model, this would give the filter perfect knowledge of the motion of the object. Instead, we sample the 500 particles from a distribution centered around the ground truth state such that each particle is initialized with a pose and velocity that is different from the ground truth. To this end, we take the initial ground truth state as the initial state mean and sample a set of 500 particles around that mean using [START_REF] Jia | Batting an in-flight object to the target[END_REF]. The artificial images are used as input to the different algorithms for likelihood computation and obtaining a measurement at each time-step. As a result, these algorithms give as output the estimated position and orientation of the box frame B with respect to the camera coordinate frame A. We can plot both the resulting position and orientation from the different algorithms together with the ground truth and this is shown in Figures 4 and5. We have plotted the results for the second scenario of Fig. 3 only, due to space limitations, but both scenarios give qualitatively similar results. To visualize the orientation in Fig. 5, we plot the trajectories of the x, y, and z axis of the coordinate frame B by plotting the first, second, and third column of the rotation matrix A R(t) B on the unit sphere, where the asterisks indicate the starting point of the simulation. Next, we define the error in position between the results of the filter and the ground truth as e o . We define the error in orientation between the results of the filters and the ground truth as e R , which gives the error as an element of so(3). We can take its norm, denoted by e R , to obtain the angular error in radians, which can then easily be converted into degrees. We have plotted these results in Fig. 6.

In Fig. 4, we observe that the PF CV loses track of the box at frame 14, right after the first impact. The constant velocity model is unable to predict the abrupt changes in velocity imposed by the impacts, and the particles drift away from the true state. In Fig. 4 and Fig. 5, we observe that the PF NS already provides superior tracking performance over the PF CV, as a result of incorporating the proposed motion model. However, when considering Fig. 6, we clearly see the benefit of the GUPF NS, which outperforms the PF NS by taking the current observation into account, therefore bringing particles closer to the true state. Table I shows the RMS errors for the different filters and shows for the PF NS and GUPF NS the error reduction with respect to the PF CV. This shows that both PF NS and the GUPF NS have superior tracking performance with respect to the PF CV.

VI. CONCLUSIONS

In this paper, we have shown that state-of-the-art tracking algorithms, making use of standard Particle Filters and constant velocity models, tend to lose track of an object that experiences abrupt changes in velocity imposed by impacts. To tackle this problem, we propose to incorporate potential collision priors within a suitable filter and create a motion model which describes the nonsmooth dynamics of an impacting object. We incorporate this model in a PF and show that, even though tracking performance increases, the PF still loses track of the object, as it does not take current observations into account. We therefore propose a new filter, the Geometric Unscented Particle Filter, which is an extension of the UPF for systems whose state lives in a Lie group, and apply this filter with the proposed nonsmooth motion model. We show, in simulations, that our proposed methods outperform the state of the art in terms of tracking accuracy. In current research, we are applying the proposed methods on a real setup to obtain experimental confirmation of the findings obtained in simulation.

Fig. 1 :

 1 Fig.1: Illustration of the box, about to make contact with a surface. The gap function is indicated by g N i , together with the box frame B, contact surface frame C, and inertial frame A.

∈

 R are the weights of the mean and W (c) j

Fig. 2 :

 2 Fig. 2: Generated 3D points around the geometric model (a) and their projection onto the image plane for a given state (b).

Fig. 3 :

 3 Fig. 3: Ground truth trajectories. First scenario (a) and second scenario (b).

Fig. 4 :

 4 Fig. 4: Tracking results of the position for the various algorithms of the second scenario. The x-position (left), y-position (middle), and z-position (right) of the results are plotted together with the ground truth trajectory.

Fig. 5 :

 5 Fig. 5: Tracking results of the orientation for the various algorithms. We plot the evolution of the x, y, and z axis of the coordinate frame B by plotting the first, second, and third column of the rotation matrix A R(t) B on the unit sphere. The asterisks indicate the starting point of the simulation.

Fig. 6 :

 6 Fig. 6: Tracking errors for the various algorithms for the second scenario.

TABLE I :

 I Resulting RMS values and error reduction of the second scenario.

	Method	eo RM S	Red.	e R RM S	Red.
		[m]	[%]	[deg]	[%]
	PF CV	0.931	-	130.6	-
	PF NS	0.044	95.3	13.2	89.9
	GUPF NS	0.007	99.2	2.0	98.4

Maarten Jongeneel (corresponding author) has conducted this work during his MSc project at the Department of Mechanical Engineering, Eindhoven University of Technology (TU/e), The Netherlands (m.j.jongeneel@tue.nl)

[START_REF] Olufs | Towards Probabilistic Shape Vision in RoboCup: A Practical Approach[END_REF] Alexandre Bernardino is with the Institute for Systems and Robotics, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal (alex@isr.tecnico.ulisboa.

pt)[START_REF] Labbe | Consistent multi-view multi-object 6D pose estimation[END_REF] Nathan van de Wouw is with the Department of Mechanical Engineering, Eindhoven University of Technology (TU/e), The Netherlands (n.v.d.wouw@

tue.nl)[START_REF] Sundermeyer | Implicit 3D Orientation Learning for 6D Object Detection from RGB Images[END_REF] Alessandro Saccon is with the Department of Mechanical Engineering, Eindhoven University of Technology (TU/e), The Netherlands (a.

saccon@tue.nl)[START_REF] Zeng | Multi-view Self-supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge[END_REF] This work was partially supported by the Research Project I.AM. through the European Union H2020 program under GA 871899.

The source code is available at https://gitlab.tue.nl/robotics-labpublic/impact-aware-object-tracking.