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Let (S t ) t≥0 be the running maximum of a standard Brownian motion (B t ) t≥0 and T m := inf{t; mS t < t}, m > 0. In this note we calculate the joint distribution of T m and B Tm . The motivation for our work comes from a mathematical model for animal foraging. We also present results for Brownian motion with drift.

Introduction

A part of the motivation behind the study presented here stems from a toymodel designed by Paul Krapivsky for animal foraging [START_REF] Krapivsky | Forager on a line[END_REF]. Among many applications, stochastic processes have indeed often been used to model the paths traced by animals searching for food, shelter or other necessities [START_REF] Viswanathan | The Physics of Foraging: An Introduction to Random Searches and Biological Encounters[END_REF]. The toy-model which we have in mind here deals with the simplied, stylized case of an animal foraging in a one-dimensional space. The animal's initial position coincides with the origin, and we model its position as time t elapses by a standard Brownian motion (B t ) t≥0 . For the sake of simplicity, we suppose that the forager's metabolism is basic: to survive, it needs one unit of food per unit time, and it may stockpile any extra supply for future use, without any upper limit on the size of the stock nor any expiry date for the consumption thereof. As for the provision of food, we assume that only half of the space (say, the positive half-line) is initially lled with one unit of food per unit length, and that there is no replenishment. Thus, after a time t, the forager has absorbed an amount of food equal to S t , its maximal displacement in the positive direction. For the forager to survive up to a time t, it should be the case that, at every time s ≤ t, the amount of food it had absorbed was not less than s. In other terms, the probability that the forager survives up to a time t is given by the probability that S s ≥ s for all s ∈ [0, t]. Equivalently, this is the probability that the rst (downward) hitting time T of the supremum process (S t ) t≥0 on the diagonal barrier occurs after t, as shown in Figure 1.

T

A natural extension of the original problem consists of the so-called double-sided case, that is, there is food on both sides for the forager/animal to nd. The survival probability at time t then becomes the probability that the range R s := sup r≤s B r -inf r≤s B k of a standard Brownian motion always remains greater than s for all s ≤ t.

It is an open question to determine the distribution of the survival time in this case.

To study the distribution and properties of the supremum of a stochastic process is a very classical and central topic in the theory of stochastic processes. As well known, for Brownian motion the distribution of S t can be found using a path transformation, that is, D. André's reection principle.

The process (S t ) t≥0 can also be seen as a local time process of a reecting Brownian motion due to the profound result by P. Lévy characterizing the process (S t -B t ) t≥0 as a reecting Brownian motion. There are also a number of papers devoted to the joint law of the supremum, the position and the random timepoint when the supremum is attained, in particular, for diffusions. In this occasion we wish to refer to a work by L. Shepp [START_REF] Shepp | The joint density of the maximum and its location for a wiener process with drift[END_REF] where the distribution is found for a Brownian motion with drift. As explained in Section 2 the distribution of T has been calculated by R. Doney in [START_REF] Doney | Hitting probabilites for spectrally positive Lévy processes[END_REF]. Our main contribution in this paper is to nd the joint density of T and B T .

We consider rst the case without drift in Section 2, and then apply Girsanov's theorem to nd the distribution for Brownian motion with drift µ = 0 in Section 3. The proof for standard Brownian motion does not, however, explain how the distribution was originally found. The presented proof is a verication, that is, we charaterize the density as a unique solution of an integral equation and show that our candidate density solves the equation. We have three approaches for calculating the candidate density. The rst one is based on path transformations and the second one on analysing the inverse of the running maximum process (S t ) t≥0 combined with some formulas from the Brownian excursion theory. The third approach is to study the problem in a discrete setting and anticipate a passage to limit to obtain the formula for standard Brownian motion. Unfortunately, in all these approaches there are some technical diculties which we have not been able to resolve up to now. Because of this, we do not treat these approaches in detail in this paper but hope to return to this issue in a forthcoming publication. However, some indications concerning the Lévy process approach are given in Remark 2.9, and the path transformation method is discussed in Section 4.

2 Joint distribution of T and B T for standard Brownian motion

Let B = (B t ) t≥0 be a standard Brownian motion initiated at 0, S t := sup{B s ; 0 ≤ s ≤ t} its running supremum up to a xed time t > 0, and for m > 0

T m := inf{t ; mS t < t} (2.1)
the rst time when the process (mS t -t) t≥0 becomes (strictly) negative. Notice also that, by continuity, S Tm = T m /m. We let P x and E x denote the probability measure and the expectation of a Brownian motion when initiated from an arbitrary point x. In this section we nd the joint P 0 -density of T m and B Tm . The focus is rst on the distribution of T m . We use the theory of Lévy processes from Doney [START_REF] Doney | Hitting probabilites for spectrally positive Lévy processes[END_REF], which yields the Laplace transform of T m , see ibid p. 572. To make the paper more self contained we give anyway the main points of the derivation. Of course, the distribution of T m can also be obtained from the joint distribution of T m and B Tm presented in Theorem 2.7.

Remark 2.1. It is, in fact, enough to nd the joint distribution of T m and B Tm "only" for m = 1 and use the scaling property of Brownian motion to deduce the distribution for a general m > 0. To see this, let Bt = B m 2 t /m. Then ( Bt ) t≥0 is a Brownian motion and

T 1 ( B) = inf t ≥ 0, St < t ,
where St = sup 0≤u≤t Bu . Now we have a.s.

T 1 ( B) = inf t ≥ 0, 1 m S m 2 t < t = 1 m 2 inf m 2 t, mS m 2 t < m 2 t = 1 m 2 T m , (2.2) 
and, further, a.s.

BT 1 ( B) = 1 m B m 2 T 1 ( B) = 1 m B Tm .
Consequently,

(T m , B Tm ) (d) = (m 2 T 1 ( B), m BT 1 ( B)
).

( 

L t := lim ε↓0 1 2ε t 0 1 [0,ε) (|B s |) ds a.s.
The processes of the type (L t -t) t≥0 has been introduced and analyzed as models for uid queues. For this , see, in particular, [START_REF] Mannersalo | A storage process with local time input[END_REF], where (L t ) t≥0 is the local time at 0 of a reecting Brownian motion with negative drift, and [START_REF] Konstantopoulos | On the excursions of reected local time processes and stochastic uid queues[END_REF], where a more general setting is considered and also further references can be found. In these articles the main interest is in nding the distribution of the length of a busy period (and also of the idle period) under the stationary probability measure associated with the underlying process. Moreover, the Laplace transform of T m is for α > -1/(2m 2 ) given by

E 0 (e -αTm ) = 2 1 + √ 1 + 2m 2 α (2.5) = 1 αm 2 √ 1 + 2αm 2 -1 , (2.6) 
and, hence, T m has all (positive) moments.

Remark 2.4. Let f 1 denote the density of T 1 . Then

f 1 (t) = 2g(t) -1 + G(t), (2.7) 
where g is the density of the gamma distribution with parameters 1/2 and 1/2 and G is the corresponding distribution function. Using (2.2) we get

f m (t) = 1 m 2 2 g t m 2 -1 + G t m 2 , (2.8) 
where f m denotes the density of T m . The identity (2.8) can also be checked directly from (2.4).

Corollary 2.5. The distribution function of T m is given by

P 0 (T m > t) = 1 -G t m 2 - t m 2 f 1 t m 2 , (2.9) 
where f 1 and G are as dened in the Remark 2.4. The moments of T m are given for k = 1, 2, . . . by

E 0 T k m = 1 • 3 • ... • (2k -1) (k + 1)! m 2k (2.10) 
Proof of Theorem 2.3. Due to scaling, as explained in Remark 2.1, we assume without loss of generality that m = 1, and introduce T := T 1 . Let (T t ) t≥0 denote the right continuous inverse of (S t ) t≥0 , i.e.

T t := inf{u ; S u > t}.

It is well known that (T t ) t≥0 is a 1/2-stable subordinator. Hence, the process X = (X t ) t≥0 dened by X t := t -T t is a spectrally negative Lévy process of bounded variation having the Laplace exponent

E 0 e λXt = E 0 e λ(t-Tt = e t(λ- √ 2λ) , λ ≥ 0.
(2.11)

The key observation is that

H 0 := inf{t ; X t < 0} = inf{t ; T t > t} = inf{u ; S u < u} = T.
(2.12)

From the theory of Lévy processes we know that the process X satises (i) 0 is regular for (0, +∞) and irregular for (-∞, 0), and, hence, X is initially positive, (ii) lim t→∞ X t = -∞ a.s.

For (i), see, e.g., Kyprianou [5] p. 232. For (ii) notice that the function [START_REF] Shepp | The joint density of the maximum and its location for a wiener process with drift[END_REF], satises ψ (0+) = -∞, and, then, consult [5] p. 233. Consequently, T is almost surely positive and nite. For the Laplace transform of T we recall the formula

ψ(λ) := λ - √ 2λ, cf. (2.
E 0 e -αT = E 0 e -αH 0 = 1 - α φ(α) W (α) (0), (2.13) 
where W (α) is the scale function of X and φ(α

) := 1 + α + √ 1 + 2α
is the inverse of λ → ψ(λ), λ ≥ λ + , with λ + = 2 the unique positive root of the equation ψ(λ) = 0 (see [START_REF] Kyprianou | Fluctuations of Lévy Processes with Applications[END_REF] (8.9) p. 234 and for the fact W (α) (0) = 1 p. 243). To show that the expression given in (2.13) coincides with the one in (2.5) is straightforward. We leave also to the reader to check that the Laplace transform of f 1 in (2.7) is given as in (2.5) with m = 1.

Remark 2.6. The fact that T 1 (and then also T m ) is almost surely positive and nite can also be proved utilizing the following laws of iterated logarithm

lim sup t→0 B t 2t ln ln (1/t) = lim sup t→∞ B t √ 2t ln ln t = 1 a.s.
The rst law implies that there exists a random constant c 1 > 0 such that for all t ∈ (0, 1) c 1 t 3/4 < B t ≤ S t , and, hence, for all t < c 4 1 it holds t < S t , i.e., T 1 is almost surely positive. From the second law it is seen that there exists a random constant c 2 > 1 such that B t < t 3/4 for all t > c 2 . Since

S t = max{S c 2 , max c 2 <s<t B s } for t > c 2 it follows that S t < t 3/4 < t for all t > max{c 2 , S 4/3 c 2 } yielding that T 1 is almost surely nite.
Proof of Corollary 2.5. We consider again the special case m = 1. It is possible to integrate the density given in (2.4) to obtain the expression for the distribution function given in (2.9). Instead of performing the (tedious) integration we show, rstly, that the derivative of the right hand side in (2.9) equals f 1 and, secondly, that the limit as t → 0 equals 1. We have

f 1 (t) = 2g (t) + g(t) and g (t) = - 1 2t g(t) - 1 2 g(t),
and, consequently,

f 1 (t) = - 1 t g(t).
(2.14) Using (2.14) when dierentiating in (2.9) yields the derivative as given in (2.4). Next, notice that

f 1 (t) = 2 πt -1 + o(1), t → 0+
and applying this in (2.9) shows that the limit of the right hand side in (2.9) equals 1. The moments can be calculated conveniently from the Laplace transform as given in (2.6). We skip the details.

We proceed now with the main result of the paper presenting the joint distribution of T m and B Tm .

Theorem 2.7. The joint density of T m and B Tm is given by

ψ m (t, x) := P 0 (T m ∈ dt, B Tm ∈ dx) /dtdx = ( t m -x) + mt 2 πt exp - ( 2t m -x) 2 2t , t > 0.
(2.15)

Moreover, for -

1 2 ≤ mα < 4 E 0 e -αB Tm = 1 1 -mα + √ 1 + 2mα , (2.16)
and, hence, B Tm has all (positive) moments.

We state also the following corollary which can be easily veried once recalling that S Tm = T m /m.

Corollary 2.8. The joint density of S Tm -B Tm and S Tm is for t > 0 and u > 0 given by

P 0 (S Tm -B Tm ∈ du, S Tm ∈ dt) (2.17) = 2u 2π(tm) 3 exp - (t + u) 2 2tm dtdu.
In particular, S Tm -B Tm is exponentially distributed with mean m/2.

Remark 2.9. To explain briey the heuristics behind the formula (2.15) based on the theory of spectrally one-sided Lévy processes and excursions consider

P 0 (T ∈ dt, B T ≤ x) = t z=0 P 0 H 0 ∈ dt, B T H 0 -+X H 0 -≤ x, X H 0 -∈ dz (2.18)
where T := T 1 = H 0 and the identity

X H 0 -= H 0 -T H 0 -is used.
The joint distribution of H 0 and X H 0 -can be calculated explicitly. Without going into the details, we state that X H 0 -is gamma-distributed with parameters 2 and 1/2, i.e.,

P 0 (X H 0 -∈ dy) = 2 π y -1/2 e -2y dy,
and the conditional law of H 0 given X H 0 -= y > 0 is equal to the law of

y + ξ (1) 
y , where ξ (1) y is the rst hitting time of y for a Brownian motion with drift 1 started at 0. To derive (2.15) from (2.18) the conditional law of B T H 0 -+X H 0 -given H 0 and X H 0 -is needed. Guessing that this conditional distribution is simply given by the Itô excursion law of a reecting Brownian motion results into the claimed formula (2.15). However, we do not have a rigorous proof of this last statement.

Proof of Theorem 2.7 is structured into several steps starting with Proposition 2.10 and ending with Proposition 2.16. As indicated in Remark 2.1 it is enough to consider the case m = 1. Let T := T 1 and ψ(t, x) := ψ 1 (t, x). Recall that almost surely 0 < T < ∞, and, hence, also 0 < S T < ∞ almost surely.

Proposition 2.10. For t > 0

ψ(t, x) = 2 π (t -x) + A 1 (t, x), (2.19) 
where the function A 1 is given for all s > 0 and s > y by

A 1 (s, y) := E 0 (s -H s ) -3/2 exp - (s -y) 2 2(s -H s ) 1 {s<S T } .
Proof. Our approach is similar to the one presented in Rogers [START_REF] Rogers | Williams' characterization of the Brownian excursion law : proof and applications[END_REF]. Notice rst that A 1 is well dened since S T > s implies that s > H s . Let h be a test Taking the expectation in (2.20) and using the Master Formula for Poisson point processes, see Revuz and Yor [START_REF] Revuz | Continuous Martingales and Brownian Motion[END_REF] p. 471, yield

E 0 (h(T, B T )) = 2 π E 0 ∞ 0 ds ∞ 0 dy h(s, s -y) y (s -H s ) 3/2 e -y 2 /2(s-Hs) 1 {s<S T ,Hs<s} = 2 π E 0 ∞ 0 ds s -∞ dz h(s, z) s -z (s -H s ) 3/2 e -(s-z) 2 /2(s-Hs) 1 {s<S T } ,
where in the second step we have substituted z = s -y and used the fact that S T > s implies H s < s. Formula (2.19) follows now immediately.

To proceed we write for s > y

A 1 (s, y) = A 2 (s, y) -A 3 (s, y), (2.21) where A 2 (s, y) := E 0 (s -H s ) -3/2 exp - (s -y) 2 2(s -H s ) 1 {Hs<s} . and A 3 (s, y) := E 0 (s -H s ) -3/2 exp - (s -y) 2 2(s -H s ) 1 {Hs<s,S T <s} . (2.22)
In fact, we need a slightly more general functional than A 2 and, hence, introduce for s > 0, u > 0 and v ≤ u

A 4 (s, u, v) := E 0 (u -H v ) -3/2 exp - s 2 2(u -H v ) 1 {Hv<u} .
Lemma 2.11. It holds

A 4 (s, u, v) = s + v su 3/2 exp - (s + v) 2 2u .
In particular,

A 2 (s, y) = A 4 (s -y, s, s) = 2s -y (s -y)s 3/2 exp - (2s -y) 2
2s .

(2.23)

Proof. Recall that for v > 0

P 0 (H v ∈ dt) = v √ 2πt 3 e -v 2 /2t dt and, consequently, A 4 (s, u, v) = u 0 1 (u -t) 3 e -s 2 /2(u-t) v √ 2πt 3 e -v 2 /2t dt.
Substituting t = u/(1 + r) yields after some manipulations

A 4 (s, u, v) (2.24) = v u 2 exp - s 2 2u - v 2 2u ∞ 0 1 + r √ 2πr 3 exp - v 2 2u r - s 2 2ur
dr.

In the integral term above, we identify the following Laplace transforms

∞ 0 1 √ 2πr 3 exp - v 2 2u r - s 2 2ur dr = √ u s exp - vs u ,
i.e. the Laplace transform of the rst hitting time, and

∞ 0 1 √ 2πr exp - v 2 2u r - s 2 2ur dr = √ u v exp - vs u , (2.25) 
i.e., the Green kernel of the standard Brownian motion. Putting these expressions in (2.24) yields the claimed formula.

Next we derive an alternative expression for the function A 3 crucial for the further analysis.

Lemma 2.12. For s > y it holds

A 3 (s, y) = 1 s -y E 0 2s -y -B T (s -T ) 3/2 exp - (2s -y -B T ) 2 2(s -T ) 1 {T <s} .
(2.26)

Proof. In the denition (2.22) of A 3 we have the condition S T < s. Consequently, because T = S T , it holds on {S T < s} that

H s = inf{u ≥ T ; B u = s} = T + H s-B T ,
where H x = inf{u ; B u = x} and B u := B T +u -B T , u ≥ 0, is a Brownian motion independent of (B u ) 0≤u≤T . Consider now

A 3 (s, y) = E 0 E 0 (s -H s ) -3/2 exp - (s -y) 2 2(s -H s ) 1 {Hs<s,S T <s} F T = E 0 A 4 (s -y, s -T, s -B T )1 {T <s} .
Using the expression for A 4 given in Lemma 2.11 results into the claimed formula (2.26).

Recall that ψ denotes the density of (T, B T ). Clearly, if we know ψ, it is seen from Lemma 2.12 that we can calculate A 3 . This observation leads to the following property of ψ. where for t > 0 and x < t

ψ 0 (t, x) := 2 π (t -x) + A 2 (t, x) = 2 π 2t -x t 3/2 exp - (2t -x) 2 2t ,
and

Λψ(t, x) := 2 π (t -x) + A 3 (t, x) = 2 π t 0 du u -∞ dv 2t -x -v (t -u) 3/2 exp - (2t -x -v) 2 2(t -u) ψ(u, v).
Proof. 

h = ψ 0 -Λh (2.28)
for measurable functions h : D → R + with D := {(t, x) ; t > 0, x < t}. In the proposition to follow it is seen that our candidate for the density of (T, B T ) solves (2.28).

Proposition 2.14. The function

ψ * (t, x) := (t -x) + t 2 πt exp - (2t -x) 2 2t , t > 0,
is a density function and solves the integral equation (2.28).

Proof. The claims can be accomplished by straightforward (but tedious) integrations. We skip these calculations.

Our nal goal is to show that the integral equation (2.28) has an integrable and almost everywhere unique solution. For this we need the following result concerning the operator Λ.

Lemma 2.15. Let λ ≥ 0 and h : D → R + be measurable. Then

D e -λt Λh(t, x)dtdx = 2 √ 1 + 2λ D e -(λu+(u-v)(1+ √ 1+2λ)) h(u, v)dudv.
Proof. Using Fubini's theorem we get

D e -λt Λh(t, x)dtdx = D ρ(u, v) h(u, v)dudv, where ρ(u, v) := 2 π D e -λt 2t -x -v (t -u) 3/2 exp - (2t -x -v) 2 2(t -u) 1 {u<t} dtdx.
To check that ρ takes the claimed form, set t -u = r, integrate rst with respect to x, and use then (2.25) with u = 1, v 2 = 2λ + 1, and s = u -v. 

h = |φ| D e -λt Λ(|φ|)(t, x)|dtdx = 2 √ 1 + 2λ D e -(λu+(u-v)(1+ √ 1+2λ)) |φ(u, v)| dudv ≤ 2 √ 1 + 2λ D e -λu |φ(u, v)| dudv,
where in the second step it is used that u > v inside the integral. Choosing

λ so that 2 √ 1 + 2λ ≤ 1 2
and recalling that φ = -Λφ we obtain

D e -λu |φ(u, v)| dudv ≤ 1 2 D e -λu |φ(u, v)| dudv,
i.e., φ ≡ 0 almost everywhere, as claimed.

To conclude, we have proved that 1) the density function of (T, B T ) solves the integral equation (2.28), 2) also the candidate density function given in (2.15) solves this equation, and 3) the equation has an almost everywhere unique solution. Consequently, the function given in (2.15) is the density of (T, B T ). To calculate the Laplace transform of B T is a straightforward but tedious integration, and we skip the details. The proof of Theorem 2.7 is now complete.

3 Joint distribution of T and B T for Brownian motion with drift

In this section, using Girsanov's theorem, we derive the joint distribution of T m and B Tm for a Brownian motion with drift µ. We let P (µ)

x and E (µ)

x denote the probability measure and the expectation of a Brownian motion with drift µ when initiated from x. Under P (µ)

x and E (µ)

x the notation (B t ) t≥0 stands for a Brownian motion with drift µ. We also write P x instead of P (0)

x .

Theorem 3.1. For Brownian motion with drift µ the joint distribution of T m and B Tm is given by

P (µ) 0 (T m ∈ dt, B Tm ∈ dx, T m < ∞) = e µx-µ 2 t 2 ( t m -x) + mt 2 πt exp - ( 2t m -x) 2 2t dtdx (3.1)
In particular, for µm = -1

P (µ) 0 (T m ∈ dt) = 1 m 2 e 2µt/m |1 + µm|f 1 (1 + µm) 2 t/m 2 +2(-µm -1) + dt, (3.2) 
where

f 1 (t) := P 0 (T 1 ∈ dt)/dt = 2 πt e -t/2 - ∞ t e -y 2 /2t dy , (3.3) 
and for µm = -1

P (µ) 0 (T m ∈ dt) = 1 m 2 πt e -2t/m 2 dt. (3.4) 
Moreover, it holds

P (µ) 0 (T m < ∞) =    1, µm ≤ 1, 1 µm
, µm > 1.

(

The Laplace transform of T m is for α > -(1 -µm) 2 /(2m 2 ) in case µm ≥ -1 and for α > 2µ/m in case µm ≤ -1 given by

E (µ) 0 e -αTm 1 {Tm<∞} = 2 1 + µm + (1 -µm) 2 + 2m 2 α . (3.6) 
The Laplace transform of B Tm on {T m < ∞} is for

- (1 -µm) 2 2 < mα < µm + 2 + (µm) 2 + 4
given by

E (µ) 0 e -αB Tm 1 {Tm<∞} = 2 1 + µm -mα + (1 -µm) 2 + 2mα . (3.7) 
In the proof of the next corollary one can make use of the proof of Corollary 2.5; in particular formula(2.14). We skip the details.

Corollary 3.2. The distribution function of T m is given by:

1. if µm ∈ {-1, 0, 1} P (µ) 0 (T m > t) (3.8) 
= 1 2µm F (t; µ, m) + 1 µm (µm -1) + - 1 µm (-µm -1) + e 2µt/m ,
where

F (t; µ, m) := |µm-1|f 1 (1-µm) 2 t/m 2 -|µm+1| e 2µt/m f 1 (1+µm) 2 t/m 2 , 2. if µ = 0 P (µ) 0 (T m > t) = 1 -G t m 2 - t m 2 f 1 t m 2 , (3.9) 
where G is as in Remark 2.4,

3. if µm = 1 P (µ) 0 (T m > t) = m √ 2πt -f 1 4t m 2 e 2t/m 2 , (3.10) 
4. if µm = -1

P (µ) 0 (T m > t) = m √ 2πt e -2t/m 2 -f 1 4t m 2 . (3.11)
Also the proof of the next corollary is straightforward, and we skip the details. Recall that µm ≤ 1 implies that T m < ∞ almost surely. It is a bit surprising that the distribution of S Tm -B Tm does not depend explicitly on µ.

Corollary 3.3. The joint density of S Tm -B Tm and S Tm is for t > 0 and u > 0 given by

P (µ) 0 (S Tm -B Tm ∈ du, S Tm ∈ dt, T m < ∞) (3.12) = e µ(t-u)-µ 2 tm 2 2u 2π(tm) 3 exp - (t + u) 2 2tm dtdu.
In particular, S Tm -B Tm is, when conditioned on T m < ∞, exponentially distributed with mean m/2.

Proof of Theorem 3.1. For notational simplicity we prove the result for m = 1 and let T := T 1 . The proof is easily modied for a general m > 0.

Alternatively, one could use the scaling property of Brownian motion with drift, which says that the P Clearly,

∆ n := E (µ) 0 ϕ(T, B T )1 {T ≤n} = E (µ) 0 ϕ(T ∧ n, B T ∧n )1 {T ≤n} = E 0 ϕ(T ∧ n, B T ∧n )1 {T ≤n} M T ∧n ,
where (M t ) t≥0 is P 0 -martingale given by M t := exp µB t -µ 2 2 t , and in the third step Girsanov's theorem is used which is applicable since ϕ(T ∧ n, B T ∧n )1 {T ≤n} is F T ∧n -measurable. Consequently, Theorem 2.7 yields (µ) 0 -density and also to deduce (3.5). To de- rive the formula (3.7) demands also tedious integrations. We leave the details to the reader.

∆ n = R + ×R ϕ(t, x) e µx-µ 2 t 2 1 - x t + 2 πt e -(x-2t) 2 /2t
In case µ < 0 it holds that S ∞ := lim t→∞ S t < ∞. Recall also that S ∞ is in this case under P (µ) 0 exponentially distributed with parameter 2|µ|. Let ρ := inf{t; B t = S ∞ }. We are interested in decomposing the joint distribution of T m and B Tm into two parts depending on whether T < ρ or T > ρ. A crucial tool in our analysis is the following description of the conditional law of Brownian motion with negative drift given the value of the global supremum, see Williams [START_REF] Williams | Path decompositions and continuity of local time for onedimensional diusions[END_REF]. Theorem 3.4. For µ < 0 and conditionally on S ∞ = x the process (B t ) 0≤t<ρ is under P (µ) 0 distributed as (B t ) 0≤t<Hx under P (|µ|) 0 . In other words, for a bounded measurable functional F on truncated paths and a bounded measurable function h

E (µ) 0 F (B u ; 0 ≤ u < ρ)h(S ∞ ) = 2|µ| ∞ 0 e -2|µ|x h(x) E (|µ|) 0 F (B u ; 0 ≤ u < H x ) dx. (3.13)
In the next theorem we give the joint distribution under the restriction T m < ρ.

Theorem 3.5. For Brownian motion with negative drift µ < 0 it holds

P (µ) 0 (T m ∈ dt, B Tm ∈ dx, T m < ρ) (3.14) = e |µ|x-µ 2 t 2 - 2|µ|t m ( t m -x) + mt 2 πt exp - ( 2t m -x) 2 2t dtdx.
In particular, with f 1 is as given in (3.3) {T < H y } = {S T < y} = {T < y}.

P (µ) 0 (T m ∈ dt, T m < ρ) = 1 m 2 (1 -µm)f 1 ((1 -µm) 2 t/m 2 )dt
(3.17)

Consequently, we may apply (3.1) in Theorem 3.1 to obtain The results analogous to the results in Theorem 3.5 under the restriction T ≥ ρ can now be obtained by subtracting the formulas in Theorem 3.5 from the corresponding formulas in Theorem 3.1. For instance, for µ < 0

∆ = 2|µ| ∞ 0 e -2|µ|y R + ×R h(t, z) P (|µ|) 0 (T ∈ dt, B T ∈ dz, T < y) dy = R + ×R h(t, z) 2 πt 1 - z t + e |µ|z-µ 2 t 2 -(z-2t) 2 /2t
P (µ) 0 (T m ∈ dt, ρ ≤ T m )/dt = 1 m 2 e 2µt/m |1 + µm|f 1 (1 + µm) 2 t/m 2 + 2(-µm -1) + - 1 m 2 (1 -µm)f 1 ((1 -µm) 2 t/m 2 ).

Path transformations

Another approach through which it seems possible to construct the joint density of (T, B T ) as given in (2.15) is with path transformations. We sketch the idea for µ = 0 and m = 1.

The starting point here is the observation that {T ∈ dt, B T ∈ dx} is (strictly) contained in {S t ∈ dt, B t ∈ dx}. Let us therefore introduce two sets of sample paths that is, two subsets of C(R + ), the set of continuous functions on R + . For t > 0, x ≤ t, and u > 0 we dene

Γ(t, x; u) = ω ∈ C(R + ) ω(0) = 0, sup r∈[0,u] ω(r) ∈ dt and ω(u) ∈ dx , and Γ o (t, x; u) = ω ∈ C(R + ) ω ∈ Γ(t, x; u) and ∃ s < u, sup r∈[0,s] ω(r) < s .
As noted above, Γ o (t, x; u) Γ(t, x; u), and the event {T ∈ dt, B T ∈ dx} corresponds to ω ∈ Γ(t, x; t) \ Γ o (t, x; t). Hence, if we write B <u for the sample path of (B s ) 0≤s≤u , we have heuristically P 0 (T ∈ dt, B T ∈ dx) = P 0 (B <t ∈ Γ(t, x; t)) -P 0 (B <t ∈ Γ o (t, x; t)) . The rst term on the right-hand side in (4.1) may simply be identied with the joint distribution of S t and B t , which of course is well known [START_REF] Lévy | Processus stochastiques et mouvement brownien[END_REF] and, for y ≥ 0 and x ≤ y, is given by P 0 (B <t ∈ Γ(y, x; t)) = P 0 (S t ∈ dy, B t ∈ dx) 

which is the same as ψ 1 (x, t) in equation 2.15. We show on Figure 2 a procedure that indeed transforms a path ω ∈ Γ o (t, x; t) into a path ω ∈ u>0 Γ(t + u, x + u; t). There remains to prove that this transformation is bijective or at least that it allows us to assert P 0 (B <t ∈ Γ o (t, x; t)) = P 0 B <t ∈ u>0 Γ(t + u, x + u; t) . The main idea behind this transformation is that if T < t while S t = t, then ∃s < t, S s = s while S t = t and this means that there exists a downward excursion away from S s = s straddling s. This excursion may be extracted and used to transform the path.

The cutting times that are needed to transform an initial path ω ∈ Γ o (t, x; t) are also shown on gure 2, and they are well dened: τ 1 is the rst time when level s is hit: τ 1 = inf {r > 0, ω(r) = s} (it is guaranteed to exist since sup r∈[0,t] ω(r) ∈ dt and t > s), τ 2 is the rst time when level s is hit after τ 1 : τ 2 = inf {r > τ 1 , ω(r) ≥ s} (it is guaranteed to exist since ω ∈ Γ o (t, x; t) and sup r∈[0,s] ω(r) ∈ ds and t > s),

Figure 1 :

 1 Figure 1: Position of an animal foraging in a one-dimensional space, modelled as standard Brownian motion. Shown are also the supremum process of the Brownian motion and T , the rst hitting time of the supremum on the diagonal barrier.
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 32 {ζ(eα)>0} h α, α -e α (α -H α ) 1 {Hα≤α≤Hα+ζ(eα) ; α≤S T } , where H α := inf{u ≥ 0 ; B u = α}, H α+ := inf y>α H y = inf{u ≥ 0 ; B u > α}, and e α (u) := α -B Hα+u for 0 ≤ u ≤ ζ(e α ) := H α+ -H α . Notice that the sum in (2.20) contains only one term and this is connected to the excursion straddling T . If S T = α then B T = S T -(S T -B T ) = α -e α (α -H α ). Let n + denote the characteristic measure of the Poisson point process associated with the excursions of reecting Brownian motion. Then we have for z > 0 the formula, see Salminen, Vallois and Yor [10] Theorem 2, n + (e(u) ∈ dy, ζ(e) > u) = 2y √ 2u dy.
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 213 The density function ψ satises ψ = ψ 0 -Λψ,(2.27) 

(µ) 0 - 0 E

 00 law of (T m , B Tm ) is equal to the P (µm) 0 -law of (m 2 T 1 , mB T 1 ). Let now ϕ : R + × R → R + be a Borel measurable and bounded function. Then for n > (T, B T )) = lim n→∞ E (µ) ϕ(T, B T )1 {T ≤n} .

( 3 .

 3 16)Proof. Again, we prove the result for T := T 1 . Consider for a bounded and measurable h : R + × R → R + T, B T ); T < y) dy, where, in the rst step, (3.13) is used, and for the second step observe that

= 2 πt 3

 3 (2y -x) e -(2y-x) 2 /2t dxdy.
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  .3) Remark 2.2. Recall that (S t ) t≥0 has the same law as (L t ) t≥0 , where L t is the local time at 0 of a reecting Brownian motion (|B t |) t≥0 dened via
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