
HAL Id: hal-03170197
https://hal.science/hal-03170197

Submitted on 16 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Three-valued Approach to Strategic Abilities under
Imperfect Information

Francesco Belardinelli, Vadim Malvone

To cite this version:
Francesco Belardinelli, Vadim Malvone. A Three-valued Approach to Strategic Abilities under Im-
perfect Information. 17th International Conference on Principles of Knowledge Representation and
Reasoning (KR 2020), Sep 2020, Rhodes, Greece. �hal-03170197�

https://hal.science/hal-03170197
https://hal.archives-ouvertes.fr

A Three-valued Approach to Strategic Abilities under Imperfect Information

Francesco Belardinelli1,2 , Vadim Malvone2
1Imperial College London, United Kingdom

2Laboratoire IBISC, Université d’Evry, France
francesco.belardinelli@imperial.ac.uk, vadim.malvone@univ-evry.fr

Abstract

A major challenge for logics for strategies is represented by
their verification in contexts of imperfect information. In this
contribution we advance the state of the art by approximating
the verification of Alternating-time Temporal Logic (ATL)
under imperfect information by using perfect information and
a three-valued semantics. In particular, we develop novel
automata-theoretic techniques for the linear-time logic LTL,
then apply these to finding “failure” states, where the ATL
specification to be model checked is undefined. Such failure
states can then be fed into a refinement procedure, thus pro-
viding a sound, albeit partial, verification procedure.

1 Introduction
Logic-based languages to reason about the strategic abili-
ties of agents are a thriving area of research in the applica-
tions of formal methods to knowledge reasoning and rep-
resentation (Jamroga 2018; Fagin et al. 1995). Over the
years, several logics for strategies have been introduced, in-
cluding Alternating-time Temporal Logic (Alur et al. 2002),
Coalition Logic (Pauly 2002), Strategy Logic (Chatterjee
et al. 2007; Mogavero et al. 2014), which has also led to
the development of model checking tools (Alur et al. 1998;
Lomuscio et al. 2017; Kurpiewski et al. 2019).

A key challenge for these logics for strategies is rep-
resented by their verification in contexts of imperfect in-
formation. Indeed, the model checking problem for the
Alternating-time Temporal Logic ATL under the assump-
tion of perfect information is known to be PTIME-complete
(Alur et al. 2002). However, under imperfect informa-
tion it ranges between ∆P

2 -complete to undecidable, de-
pending on the underlying assumption on memory (Jam-
roga and Dix 2006; Dima and Tiplea 2011). Unfortu-
nately, when reasoning about knowledge, the assumption
of perfect information is either unrealistic or computation-
ally costly. Thus, if logics for strategies are to be de-
ployed in concrete multi-agent scenarios, it is crucial to
develop even partial verification methods capable of tack-
ling contexts of imperfect information. To this end, several
proposals have been put forward, focusing on how the in-
formation is shared amongst agents (Berthon et al. 2017;
Belardinelli et al. 2017a), or developing notions of con-
structive knowledge (Ågotnes et al. 2015) and bounded re-
call (Belardinelli et al. 2018), or again approximating strat-

egy operators by using the µ-calculus (Bulling and Jamroga
2011) (see Section 6 for an in-depth comparison with related
work).

In this contribution we advance the state of the art in rea-
soning about strategic abilities under imperfect information.
More precisely, we develop further the line initiated in (Be-
lardinelli et al. 2019), whereby imperfect information is ap-
proximated (or abstracted) by using perfect information and
a three-valued semantics; thus leading to a sound, albeit par-
tial, verification procedure for the logic ATL∗ under imper-
fect information and perfect recall. The verification proce-
dure there outlined is partial, as it can return the undefined
truth value uu for some specifications, in some states in the
system. In those cases, we would like to use such “failure”
states to refine the abstract model. However, a key ques-
tion left open in (Belardinelli et al. 2019) concerns how to
find such failure states. In (Ball and Kupferman 2006) such
a procedure was provided but only for the Alternating µ-
calculus (AMC) under perfect information. Here we con-
sider the arguably more complex case of full ATL∗ under
imperfect information, whose model checking problem is
undecidable in general, differently from AMC. Moreover,
we prove novel results on automata-theoretic techniques for
linear-time temporal logic (LTL) interpreted on a three-
valued semantics, that we deem of independent interest.

The contribution is structured as follows. In Sec. 2 we
present the syntax of ATL∗, as well as its semantics given
on concurrent game structures with imperfect information
(iCGS). In Sec. 3 we recall the knowledge-based abstrac-
tion in (Belardinelli et al. 2019) and the related three-valued
semantics. Then, in Sec. 4 we develop novel automata-
theoretic techniques for three-valued LTL. Specifically, we
show how to construct Büchi automata accepting all traces
making an LTL formula undefined and then consider the
related non-emptiness problem. These results are used in
Sec. 5 to find failure states, which can then be fed into the
refinement algorithm in (Belardinelli et al. 2019). We con-
clude in Sec. 6 by discussing related literature and pointing
to future work.

2 Classic Imperfect Information
In this section we introduce the classic two-valued seman-
tics for the Alternating-time Temporal Logic ATL∗ under
imperfect information and perfect recall. We assume sets

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

89

Ag = {1, . . . ,m} of agents and AP of atoms. Given a set
U , U denotes its complement. We denote the length of a tu-
ple v as |v|, and its i-th element as vi. Then, last(v) = v|v|
is the last element in v. For i ≤ |v|, let v≥i be the suffix
vi, . . . , v|v| of v starting at vi and v≤i its prefix v1, . . . , vi.

We start by introducing concurrent game structures with
imperfect information as models for multi-agent systems
(Alur et al. 2002; Jamroga and van der Hoek 2004).

Definition 1 (iCGS). Given sets Ag of agents and AP of
atoms, a concurrent game structure with imperfect informa-
tion is a tuple M = 〈S, s0, {Acti}i∈Ag, {∼i}i∈Ag, d, δ, V 〉
such that:

• S 6= ∅ is a finite set of states, with initial state s0 ∈ S.
• For every agent i ∈ Ag, Acti is a nonempty, finite set

of actions. Then, let Act =
⋃
i∈Ag Acti be the set of

all actions, and ACT =
∏
i∈Ag Acti the set of all joint

actions.
• For every agent i ∈ Ag, ∼i is the indistinguishability

relation between states: for every s, s′ ∈ S, s ∼i s′ iff
states s and s′ are observationally indistinguishable for
agent i.
• The protocol function d : Ag × S → (2Act \ ∅) defines

the availability of actions so that for i ∈ Ag, s ∈ S, (i)
d(i, s) ⊆ Acti and (ii) s ∼i s′ implies d(i, s) = d(i, s′).
• The transition function δ : S × ACT → S returns a

successor s′ = δ(s,~a) to every state s ∈ S and joint
action ~a ∈ ACT such that ai ∈ d(i, s) for every i ∈ Ag.
• V : S×AP→ {tt,ff} is the two-valued labelling function.

By Def. 1 an iCGS represents the interactions of a group
Ag of agents, from the initial state s0 ∈ S, according to the
transition function δ, as constrained by protocol d. More-
over, every agent i has imperfect information as regards the
state of the system: in any state s, i considers possible all
states s′ that are i-indistinguishable from s (Fagin et al.
1995). When every ∼i is the identity relation, we obtain
a standard CGS with perfect information (Alur et al. 2002).

Given a coalition Γ ⊆ Ag and a joint action ~a ∈ ACT , let
~aΓ (resp. ~aΓ) be the restricted tuple of actions for the agents
in Γ (resp. Γ) only. Finally, for ~a and ~b in ACT , (~aΓ,~bΓ)
denotes the joint action where the actions for the agents in Γ

(resp. Γ) are taken from ~a (resp.~b).
A history h ∈ S+ is a finite (non-empty) sequence of

states. The indistinguishability relations are extended to
histories in a synchronous, pointwise manner, i.e., histo-
ries h, h′ ∈ S+ are indistinguishable for agent i ∈ Ag, or
h ∼i h′, iff (i) |h| = |h′| and (ii) for all j ≤ |h|, hj ∼i h′j .

We now introduce the Alternating-time Temporal Logic
ATL∗ (Alur et al. 2002) to reason about strategic abilities

Definition 2 (ATL∗). State (ϕ) and path (ψ) formulas in
ATL∗ are defined as follows, where q ∈ AP and Γ ⊆ Ag:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈Γ〉〉ψ
ψ ::= ϕ | ¬ψ | ψ ∧ ψ | Xψ | (ψUψ)

Formulas in ATL∗ are all and only the state formulas.

A formula 〈〈Γ〉〉ψ is read as “coalition Γ has a strategy
to achieve goal ψ”. The meaning of linear-time operators
next X and until U is standard; whereas operators [[Γ]], re-
leaseR, finally F , and globallyG can be introduced as usual
(Baier and Katoen 2008). In particular, the language of the
linear-time logic LTL corresponds to the path formulas in
ATL∗ built from atoms only. Hereafter we also consider the
fragment of Γ-formulas, i.e., formulas in which the strategic
operator 〈〈Γ〉〉 ranges only over a given coalition Γ ⊆ Ag.

We interpret formulas in ATL∗ by using uniform strate-
gies (Jamroga and van der Hoek 2004).
Definition 3 (Strategy). A uniform strategy with perfect re-
call for agent i ∈ Ag is a function fi : S+ → Acti such that
for all histories h, h′ ∈ S+, (i) fi(h) ∈ d(i, last(h)); and
(ii) if h ∼i h′ then fi(h) = fi(h

′).
By Def. 3, item (i), any strategy for agent i returns ac-

tions available to i; and by (ii), the same action is returned,
whenever histories are indistinguishable for i.

Given an iCGS M , a path p ∈ Sω is an infinite sequence
s1s2 . . . of states such that, for every j ≥ 1, sj+1 = δ(sj ,~a)
for some joint action ~a ∈ ACT . Given a joint strategy FΓ =
{fi | i ∈ Γ}, a path p is FΓ-compatible iff for every j ≥ 1,
pj+1 = δ(pj ,~a) for some joint action ~a ∈ ACT such that
for every i ∈ Γ, ai = fi(p≤j). Let out(s, FΓ) be the set of
all FΓ-compatible paths from s.

We now interpret ATL∗ formulas on iCGS according to
a semantics with two truth values: ff and tt.
Definition 4 (Satisfaction). The two-valued satisfaction re-
lation |=2 for an iCGS M , state s ∈ S, path p ∈ Sω , atom
q ∈ AP , andATL∗ formula φ is defined as follows (clauses
for Boolean connectives are immediate and thus omitted):
(M, s) |=2 q iff V (s, q) = tt
(M, s) |=2 〈〈Γ〉〉ψ iff for some joint strategy FΓ,

for all paths p ∈ out(s, FΓ), (M,p) |=2 ψ
(M,p) |=2 ϕ iff (M,p1) |=2 ϕ
(M,p) |=2 Xψ iff (M,p≥2) |=2 ψ
(M,p) |=2 ψUψ′ iff for some k ≥ 1, (M,p≥k) |=2 ψ′, and

for all j, 1 ≤ j < k ⇒ (M,p≥j) |=2 ψ

A formula ϕ is true in M , or M |=2 ϕ, iff (M, s0) |=2 ϕ.
We now state the model checking problem for the classic,

two-valued semantics.
Definition 5 (Model Checking Problem). Given an iCGSM
and a formula φ, determine whether M |=2 φ.

It is well-known that model checking formulas in ATL∗
on iCGS with imperfect information and perfect recall is un-
decidable in general (Dima and Tiplea 2011). In the rest of
the paper we describe a partial decision procedure; but first
we illustrate the formal machine with a toy example.
Example 1. In Fig. 1 we present a coordination game
played by two trains t1 and t2, and a controller c at a junc-
tion. Train t1 (resp. t2) and c need to coordinate and select
the same direction, left (L) or right (R), to move from the
initial state sI . After this first step, the controller can still
change her mind. Specifically, she can either change arbi-
trarily the selection (E), request a new selection to the trains
(A), or execute it (O). Further, train t1 cannot observe the

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

90

sI
b

s2
l1

s1
l1, l2

s3
r1

s4
r1, r2

s5
g

s7
r2

s6
l2

LLL

LRL

LRRRLL

RLR

RRR

∗

O

A

E

O

E

O

A

O

∗

E

O

E

O

t1 c t1

Figure 1: The iCGS M for Example 1. Notice that the transitions
are generated by triples of actions. To improve readability, occur-
rences of the action idle (I) are omitted. Moreover, ∗ denotes any
joint action for which a transition is not given explicitly. Further,
dotted lines are used for indistinguishable states, each one labelled
with the relevant agent.

choice of t2, i.e., if t1 chooses L (resp. R), then she can-
not distinguish whether t2 selects R or L, and c has partial
observability on the choices of t1 and t2: she cannot distin-
guish the identities of t1 and t2, that is, she does not distin-
guish between the result of joint actions RLR and LRL1.
Finally, we use six atoms: b for the initial state sI , l1 (resp.
l2) for coordination on the left between t1 (resp. t2) and c,
r1 (resp. r2) for coordination on the right between t1 (resp.
t2) and c, and g to mark that the players have coordinated.

As an example of specification inATL∗, consider formula
ϕ = 〈〈Γ〉〉F (l1 ∧¬bUg), for Γ = {t1, c}, which can be read
as: t1 and c have a joint strategy such that eventually they
tentatively coordinate on the left, but then an agreement has
to be reached before visiting the initial state again. Notice
that ϕ is true in M by the joint strategy whereby t1 chooses
L in sI and I in all other states, and c chooses L in sI and
O in all other states. However, we want to be able to model
check such specifications in general.

3 Knowledge-based Abstraction
Given the undecidability of model checking ATL∗ under
imperfect information and perfect recall, in this section
we present perfect information, three-valued abstractions of
iCGS. While we keep the section self-contained, we refer to
(Belardinelli et al. 2019) for full proofs. In particular, we
remind that defined truth values of ATL∗ formulas transfer
from such abstractions to the original iCGS (Theorem 1).

Given a coalition Γ ⊆ Ag of agents, the common knowl-
edge relation ∼CΓ is the reflexive and transitive closure
(
⋃
i∈Γ ∼i)∗ of the union of indistinguishability relations ∼i

for all i ∈ Γ (Fagin et al. 1995). Clearly, ∼CΓ is an equiv-
alence relation. Then, let [s]Γ = {s′ ∈ S | s′ ∼CΓ s} be

1Note that, for simplicity, we considered imperfect information
only on the side of the coordination between t1 and c. To make
the iCGS in Fig. 1 symmetric we only need to add s1 ∼t2 s6,
s4 ∼t2 s7, and s6 ∼c s7.

the equivalence class of state s according to ∼CΓ . The rela-
tion∼CΓ is extended to histories in a synchronous, pointwise
manner, i.e., given h, h′ ∈ S+, h ∼CΓ h′ iff (i) |h| = |h′| and
(ii) for all j ≤ |h|, hj ∼CΓ h′j . So, we introduce the notation
[h]Γ = {h′ ∈ S+ | h′ ∼CΓ h}.
Definition 6 (Abstract CGS). Given an iCGS M =
〈S, s0, {Acti}i∈Ag, {∼i}i∈Ag, d, δ, V 〉 and coalition Γ ⊆
Ag, the abstraction MΓ = 〈SΓ, [s0]Γ, {Acti}i∈Ag,
dmay

Γ , dmust
Γ , δmay

Γ , δmust
Γ , VΓ〉 is such that:

• SΓ = {[s]Γ | s ∈ S} is the set of equivalence classes for
all states s ∈ S, with initial state [s0]Γ;
• for every t, t′ ∈ SΓ and joint action ~a, (i) t′ ∈ δmay

Γ (t,~a)
iff δ(s,~a) = s′ for some s ∈ t, s′ ∈ t′; (ii) t′ ∈
δmust
Γ (t,~a) iff for all s ∈ t, there is s′ ∈ t′ such that
δ(s,~a) = s′;
• for t ∈ SΓ and i ∈ Ag, dmust

Γ (i, t) = {ai ∈ Acti |
for all s ∈ t, ai ∈ d(i, s)}; and dmay

Γ (i, t) = {ai ∈
Acti | δmay

Γ (t, (ai,~ai)) is defined for some ~ai};
• for v ∈ {tt,ff}, q ∈ AP , and t ∈ SΓ, VΓ(t, q) = v iff
V (s, q) = v for all s ∈ t; otherwise, VΓ(t, q) = uu.

Intuitively, must-transitions in the abstract CGS are
under-approximations of the transitions in the original
iCGS; whereas may-transitions can be interpreted as over-
approximations. The undefined value uu can be thought
of as unknown, unspecified, or inconsistent. This is stan-
dard in multi-valued abstraction-based methods (Shoham
and Grumberg 2004; Ball and Kupferman 2006) and we do
not discuss this further. A truth value τ is defined if τ 6= uu.

To interpret formulas in ATL∗ on three-valued abstrac-
tions, we introduce must- and may-strategies. In what fol-
lows, for x = may (resp. must), x = must (resp. may).

Definition 7. For x ∈ {may ,must}, a x-strategy with per-
fect recall for agent i ∈ Ag is a function fxi : S+ → Acti
such that for every history h ∈ S+, fxi (h) ∈ dxΓ(i, last(h)).

For x ∈ {may ,must} and joint strategy F xΓ = {fxi | i ∈
Γ}, a path p ∈ Sω is F xΓ -compatible iff for every j ≥ 1,
pj+1 ∈ δx(pj ,~a) for some joint action ~a such that for every
i ∈ Γ, ai = fxi (p≤j). As in (Belardinelli et al. 2019), when
we consider a may (resp. must) strategy for coalition Γ, we
need to consider must (resp. may) transitions in the model.
Then, let out(s, F xΓ) be the set of all F xΓ -compatible paths
starting from state s.

Finally, we define the three-valued, perfect information
semantics for ATL∗ on abstractions as follows.

Definition 8 (Satisfaction). The three-valued satisfaction
relation |=3 for abstraction MΓ, state s ∈ S, path p ∈ Sω ,
atom q ∈ AP , v ∈ {tt,ff}, and Γ-formula φ is defined as in
Table 1. In all other cases the value of φ is uu.

Then, (MΓ |=3 ϕ) = tt (resp. ff) iff ((MΓ, s0) |=3 ϕ) =
tt (resp. ff). Otherwise, (MΓ |=3 ϕ) = uu.

In the clauses for strategy operators 〈〈Γ〉〉, must-strategies
are used to check for truth, while may-strategies appear in
the clauses for falsehood.

We now recall the preservation result from abstraction
MΓ to the original iCGS M .

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

91

((MΓ, s) |=3 q) = v iff VΓ(s, q) = v
((MΓ, s) |=3 〈〈Γ〉〉ψ) = tt iff for some Fmust

Γ , for all p ∈ out(s, Fmust
Γ), ((MΓ, p) |=3 ψ) = tt

((MΓ, s) |=3 〈〈Γ〉〉ψ) = ff iff for every Fmay
Γ , for some p ∈ out(s, Fmay

Γ), ((MΓ, p) |=3 ψ) = ff
((MΓ, p) |=3 ϕ) = v iff ((MΓ, p1) |=3 ϕ) = v
((MΓ, p) |=3 Xψ) = v iff ((MΓ, p≥2) |=3 ψ) = v
((MΓ, p) |=3 ψUψ′) = tt iff for some k ≥ 1, ((MΓ, p≥k) |=3 ψ′) = tt, and for all j, 1 ≤ j < k ⇒ ((MΓ, p≥j) |=3 ψ) = tt
((MΓ, p) |=3 ψUψ′) = ff iff for all k ≥ 1, either ((MΓ, p≥k) |=3 ψ′) = ff or for some j < k, ((MΓ, p≥j) |=3 ψ) = ff .

Table 1: The three-valued, perfect information satisfaction relation for ATL∗. Boolean operators are interpreted as in Kleene’s three-valued
logic and therefore the corresponding clauses are omitted.

Theorem 1 ((Belardinelli et al. 2019)). Given an iCGS M ,
state s, and coalition Γ ⊆ Ag, for every Γ-formula φ,

((MΓ, [s]Γ) |=3 φ) = tt ⇒ (M, s) |=2 φ

((MΓ, [s]Γ) |=3 φ) = ff ⇒ (M, s) 6|=2 φ

Further, for abstract CGS we recall the decidability of the
corresponding model checking problem.
Theorem 2 ((Belardinelli et al. 2019)). The model checking
problem for ATL∗ on abstract CGS (with perfect informa-
tion) is 2EXPTIME-complete.

By combining Theorem 1 and 2 we can outline a method
to verify the strategic abilities of agents under imperfect in-
formation and perfect recall. Given an iCGS M and a Γ-
formula φ in ATL∗, we first build the abstract, three-valued
CGS MΓ according to Def. 6. We can model check φ on
MΓ, as the corresponding decision problem is decidable by
Theorem 2, and then transfer any defined answer to the orig-
inal iCGS M in virtue of Theorem 1. Unfortunately, if un-
defined (uu) is returned, then no conclusive answer can be
drawn. In (Belardinelli et al. 2019) a procedure is provided
to refine the abstraction in a conservative way. However,
this refinement procedure assumes the existence of a “fail-
ure” state in which the truth value of the relevant formula is
undefined, but no algorithm is given for finding such failure
states.

In Sec. 5 we describe such an algorithm, but first we prove
some general results on automata for three-valued LTL in
Sec. 4. To conclude, we illustrate the abstraction procedure
with our coordination game in Example 1.
Example 2. In Fig. 2 we show the abstract CGS obtained
from the iCGS in Example 1 by considering formula ϕ =
〈〈Γ〉〉F (l1 ∧¬bUg) for Γ = {t1, c}. Specifically, abstraction
MΓ includes five abstract states according to the equiva-
lence relation ∼C{t1,c}. Notice that formula ϕ is undefined in
MΓ due to the undefined value of atom l1 in state a2.

4 Automata for Three-valued LTL
In this section we introduce an automata-theoretic approach
to the verification of the three-valued linear-time logic LTL.
We refer to (Baier and Katoen 2008) for a detailed presen-
tation of LTL; here we observe that the syntax of LTL can
be obtained from Def. 2 by considering as state formulas
atoms only (i.e., ϕ ::= q). Then, the three-valued seman-
tics for LTL follows from Table 1 by considering only the
conditions concerning the operators in the syntax of LTL.

a1 sI
b

a2 s2
l1

s1
l1, l2

s3
r1

s4
r1, r2

a3 s5
g

a4 s6
l2

a5
s7
r2

#

∗

LRR

RLL

A

E

OE

O

E

O

∗

Figure 2: The abstract CGS for the iCGS in Example 1, where
∈ {LLL,LRL,RLR,RRR}, must-transitions are depicted
with continuous lines, and may-transitions are the continuous and
dashed lines.

These results will be used in Sec. 5, in procedure
FailureState() to find failure states. To this end, we build
upon the standard, two-valued, automata-theoretic approach
to the verification of LTL (Vardi 1995; Baier and Katoen
2008). We start by recalling that the syntax of LTL can be
obtained by considering the path formulas in Def. 2, where
state formulas ϕ are atoms q only. Then, the three-valued se-
mantics of LTL is as in Def. 8, where again state formulas
are atoms only.

Now, we recall the definition of generalized non-
deterministic Büchi automata (GNBA).
Definition 9. A GNBA is a tuple A = 〈Q,Q0,Σ, δ,F〉
where (i) Q is a finite set of states with Q0 ⊆ Q as the set of
initial states; (ii) Σ is an alphabet; (iii) δ : Q × Σ → 2Q is
the transition relation; (iv) F is a (possibly empty) subset of
2Q. The elements in F are called acceptance sets.

The accepted language L(A) consists of all infinite words
w ∈ Σω for which there exists at least one infinite run
q0q1q2 . . . ∈ Qω such that for each acceptance set F ∈ F
there are infinitely many indices i with qi∈F.

We now show that for every LTL formula ψ, there exists
an automaton Aψ,uu that accepts exactly the infinite paths
that evaluate ψ to undefined (uu). We first provide some
definitions necessary for the construction.
Definition 10 (Closure and Elementarity). The closure
cl(ψ) of an LTL formula ψ is the set consisting of all sub-
formulas φ of ψ as well as their negation ¬φ.

Let B ⊆ cl(ψ). Set B is consistent w.r.t. propositional
logic iff for all ψ1 ∧ ψ2,¬¬φ ∈ cl(ψ): (i) ψ1 ∧ ψ2 ∈ B
iff ψ1 ∈ B and ψ2 ∈ B; (ii) if φ ∈ B then ¬φ 6∈ B; (iii)
¬¬φ ∈ B iff φ ∈ B; (iv) if tt ∈ cl(ψ) then tt ∈ B.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

92

Further, B is locally consistent w.r.t. the until operator iff
for all ψ1Uψ2 ∈ cl(ψ): (i) if ψ2 ∈ B then ψ1Uψ2 ∈ B; (ii)
if ¬(ψ1Uψ2) ∈ B then ¬ψ2 ∈ B; (iii) if ψ1Uψ2 ∈ B and
ψ2 6∈ B then ψ1 ∈ B; (iv) if ¬ψ1 ∈ B then ¬(ψ1Uψ2) ∈ B
or ¬ψ2 6∈ B.

Finally,B is elementary iff it is both consistent and locally
consistent.

Notice that, differently from the standard construction for
two-valued LTL (Baier and Katoen 2008), here we do not
require elementary sets to be maximal, but we do require
extra conditions (iii) on consistency, and (ii) and (iv) on
local consistency. Hereafter Lit = AP ∪ {¬q | q ∈ AP} is
the set of litterals.

Definition 11. Let ψ be a formula in LTL. We define the
automaton Aψ,uu = 〈Q,Q0, 2

Lit, δ,F〉 as follows:

• Q is the set of all elementary sets B ⊆ cl(ψ) with Q0 =
{B ∈ Q | ψ 6∈ B and ¬ψ 6∈ B}.
• The transition relation δ is given by: ifA 6= B∩Lit, then
δ(B,A) = ∅; otherwise δ(B,A) is the set of all elemen-
tary setsB′ of formulas such that for everyXφ,ψ1Uψ2 ∈
cl(ψ): (i) Xφ ∈ B iff φ ∈ B′; (ii) ¬Xφ ∈ B iff
¬φ ∈ B′; (iii) ψ1Uψ2 ∈ B iff ψ2 ∈ B or, ψ1 ∈ B
and ψ1Uψ2 ∈ B′; (iv) ¬(ψ1Uψ2) ∈ B iff ¬ψ2 ∈ B and,
¬ψ1 ∈ B or ¬(ψ1Uψ2) ∈ B′.

• F = {Fψ1Uψ2
, F¬(ψ1Uψ2) | ψ1Uψ2 ∈ cl(ψ)}, where

Fψ1Uψ2
= {B ∈ Q | if ψ1Uψ2 ∈ B then ψ2 ∈

B} and F¬(ψ1Uψ2) = {B ∈ Q | if ¬(ψ1Uψ2) ∈
B then ¬ψ1,¬ψ2 ∈ B}.
By Def. 11 the transition relation works as follows: if the

automaton reads a set A of literals that do not appear in the
state, then the transition is not defined. Otherwise, the au-
tomaton checks the transitions enabled w.r.t. the semantics
of the LTL operators. Notice that in Def. 11 we need to pro-
vide conditions on negated formulas as well, as elementary
sets are not necessarily maximal. Moreover, we can define
automata Aψ,tt and Aψ,ff by setting Qtt

0 = {B ∈ Q | ψ ∈
B} and Qff

0 = {B ∈ Q | ¬ψ ∈ B} respectively. For both
automata we can prove results similar to Theorem 3 below.

We now prove that the paths that evaluate ψ as undefined
are exactly those included in the language of Aψ,uu. To
prove this result, we make use of the following lemma.

Lemma 1. Let run B = B1B2 . . . in Aψ,uu and path p =
p1p2 . . . in (2Lit)ω satisfy (i) Bi+1 ∈ δ(Bi, pi), for all i ≥
0; and (ii) for all F ∈ F , there exist infinitely many j ≥ 0
such that Bj ∈ F . Then, for all φ,¬φ′ ∈ cl(ψ), (a) φ ∈ B1

iff (p |= φ) = tt; and (b) ¬φ′ ∈ B1 iff (p |= φ′) = ff .

Proof. The proof is by mutual induction on the structure of
φ, ¬φ′, where the induction hypothesis is that for all i ≥
0, φ ∈ Bi iff (pipi+1 . . . |= φ) = tt and ¬φ′ ∈ Bi iff
(pipi+1 . . . |= φ′) = ff . Due to limited space, we prove only
(a), as (b) is proved by induction similarly. Notice that by
construction, δ(Bi, pi) is defined iff pi = Bi ∩ Lit.

Base case: The statement for φ = q ∈ AP follows di-
rectly from the fact that (pipi+1 . . . |= φ) = tt iff q ∈ pi =
Bi ∩ Lit, iff q ∈ Bi.

Inductive steps: based on the induction hypothesis that
the claim holds for formulas φ′, ψ1, ψ2 ∈ cl(ψ), we need to
prove that it also holds for φ = Xφ′, φ = ¬φ′, φ = ψ1∧ψ2,
and φ = ψ1Uψ2 in cl(ψ). For reasons of space we provide
details only for φ = ψ1Uψ2. Let p = pipi+1 . . . ∈ (2Lit)ω

and BiBi+1 . . . ∈ Qω satisfy conditions (i) and (ii), we
then show that φ ∈ Bi iff (pipi+1 . . . |= φ) = tt.

(⇐) Suppose that (pipi+1 . . . |= ψ1Uψ2) = tt. Then, for
some j ≥ i, (pjpj+1 . . . |= ψ2) = tt and (pkpk+1 . . . |=
ψ1) = tt for all i ≤ k < j. By the induction hypothesis
applied to ψ1 and ψ2, it follows that ψ2 ∈ Bj and ψ1 ∈ Bk
for all i ≤ k < j. Since Bj is elementary, ψ1Uψ2 ∈ Bj as
well. Further, by definition of δ, we obtain that ψ1Uψ2 ∈
Bk for all i ≤ k < j. In particular, ψ1Uψ2 ∈ Bi.

(⇒) Suppose that ψ1Uψ2 ∈ Bi. Since Bi is elementary,
then either ψ1 ∈ Bi or ψ2 ∈ Bi. If ψ2 ∈ Bi, it follows
from the induction hypothesis that (pipi+1 . . . |= ψ2) = tt,
and thus (pipi+1 . . . |= ψ1Uψ2) = tt. On the other hand,
if ψ2 6∈ Bi, then both ψ1 ∈ Bi and ψ1Uψ2 ∈ Bi. To
obtain a contradiction suppose that ψ2 6∈ Bj for all j ≥
i. By the definition of δ, by using an inductive argument
we have that ψ1 ∈ Bj and ψ1Uψ2 ∈ Bj for all j ≥ i.
Further, since BiBi+1 . . . satisfies constraint (ii), we have
Bj ∈ Fψ1Uψ2

for infinitely many j ≥ i. On the other hand,
we have ψ2 6∈ Bj and ψ1Uψ2 ∈ Bj iff Bj 6∈ Fψ1Uψ2

,
which is a contradiction. Thus, ψ2 ∈ Bj for some j > 0.
Assume that k is the smallest index such that ψ2 ∈ Bk.
By the induction hypothesis applied to ψ1 and ψ2 it follows
(pkpk+1 . . . |= ψ2) = tt and (pjpj+1 . . . |= ψ1) = tt for all
i ≤ j < k. Hence (pipi+1 . . . |= ψ1Uψ2) = tt.

Finally, we prove the main theoretical result in this sec-
tion. Hereafter, Paths(ψ, uu) is the set of paths p ∈ (2Lit)ω

such that (p |= ψ) = uu.

Theorem 3. For every LTL formula ψ there exists a GNBA
Aψ,uu (given as in Def. 11) s.t. L(Aψ,uu) = Paths(ψ, uu).

Moreover, the size ofAψ,uu is exponential in the size of ψ.

Proof. Clearly, by Def. 11 the size of Aψ,uu in terms of
number of states is exponential in the size of ψ.

Then, we prove the set inclusions in both directions.
(1) Let p = p1p2 . . . ∈ Paths(ψ, uu). For i ≥ 0, define

sets Bi of formulas as {φ ∈ cl(ψ) | (pipi+1 . . . |= φ) =
tt} ∪ {¬φ ∈ cl(ψ) | (pipi+1 . . . |= φ) = ff}. Notice that
every Bi is elementary, i.e., Bi ∈ Q. Now, we prove that
B1B2 . . . is an accepting run for p. Observe that Bi+1 ∈
δ(Bi, pi), since for all i > 0:

• pi = Bi ∩ Lit.
• For Xφ ∈ cl(ψ), we have Xφ ∈ Bi iff (pipi+1 . . . |=
Xφ) = tt, iff (pi+1pi+2 . . . |= φ) = tt, iff φ ∈ Bi+1.
• Similarly, ¬Xφ ∈ Bi iff (pipi+1 . . . |= Xφ) = ff iff

(pi+1pi+2 . . . |= φ) = ff iff ¬φ ∈ Bi+1.
• For ψ1Uψ2 ∈ cl(ψ), we have ψ1Uψ2 ∈ Bi iff

(pipi+1 . . . |= ψ1Uψ2) = tt iff (pipi+1 . . . |= ψ2) =
tt or, (pipi+1 . . . |= ψ1) = tt and (pi+1pi+2 . . . |=
ψ1Uψ2) = tt, iff ψ2 ∈ Bi or, ψ1 ∈ Bi and ψ1Uψ2 ∈
Bi+1.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

93

• Similarly, ¬(ψ1Uψ2) ∈ Bi iff (pipi+1 . . . |= ψ1Uψ2) =
ff iff (pipi+1 . . . |= ψ2) = ff and, (pipi+1 . . . |= ψ1) = ff
or (pi+1pi+2 . . . |= ψ1Uψ2) = ff iff ¬ψ2 ∈ Bi and,
¬ψ1 ∈ Bi or ¬(ψ1Uψ2) ∈ Bi+1.

The above shows that B1B2 . . . is a run in Aψ,uu. Now,
we need to prove that it is accepting, i.e., for each subfor-
mula ψ1,jUψ2,j ∈ cl(ψ), Bi ∈ Fj for infinitely many i
and for each subformula ¬(ψ1,xUψ2,x) ∈ cl(ψ), By ∈ Fx
for infinitely many y. We prove this point by contradiction.
Consider there are finitely many i such that Bi ∈ Fj , then
Bi 6∈ Fj = Fψ1,jUψ2,j

implies that ψ1,jUψ2,j ∈ Bi and
ψ2,j 6∈ Bi. By considering how Bi is constructed, we have
that (pipi+1 . . . |= ψ1,jUψ2,j) = tt and (pipi+1 . . . |=
ψ2,j) 6= tt. In particular, for some k > i we have
(pkpk+1 . . . |= ψ2,j) = tt. By the definition of Bi, it fol-
lows that ψ2,j ∈ Bk, and by definition of Fj , Bk ∈ Fj . So,
if Bi ∈ Fj for finitely many i, then Bk ∈ Fj for infinitely
many k, which is a contradiction. The case for subformulas
¬(ψ1,xUψ2,x) ∈ cl(ψ) is proved similarly.

(2) Let p = p1p2 . . . ∈ L(Aψ,uu), i.e., there is an ac-
cepting run B1B2 . . . for p in Aψ,uu. By the definition of
Aψ,uu, we have that δ(B,A) = ∅ for all pairs (B,A) with
A 6= B ∩ Lit. Then, it follows that pi = Bi ∩ Lit for all
i ≥ 0. Thus, p = (B1 ∩ Lit)(B2 ∩ Lit) . . . and we need
to prove that ((B1 ∩ Lit)(B2 ∩ Lit) . . . |= ψ) = uu. But,
this follows by Lemma 1 and the fact that neither ψ nor ¬ψ
belong to B1.

We conclude by recalling that to obtain a GNBA accept-
ing all paths that make true (resp. false) a given LTL for-
mula, it suffices to modify the set of initial states to Qtt

0 =
{B ∈ Q | ψ ∈ B} (resp. Qff

0 = {B ∈ Q | ¬ψ ∈ B}).

5 Finding Failure States
In Sec. 3 we mentioned that the refinement procedure in (Be-
lardinelli et al. 2019) takes as input a “failure” state sf in
which some subformula of the specification to be checked is
undefined. However, no hint is given as to how to find such
state sf . Hereafter we tackle this problem, but first we recall
the notion of failure state from (Ball and Kupferman 2006).
Definition 12 (Failure State). A state s is a failure state with
respect to formula ϕ iff ((M, s) |=3 ϕ) = uu and, either
ϕ = q ∈ AP , or ϕ = 〈〈Γ〉〉ψ and ((M,p) |=3 ψ) ∈ {tt,ff}
for every path p starting from s.

Intuitively, s is a failure state with respect to ϕ iff
((M, s) |=3 ϕ) = uu even though M has definite truth val-
ues for all subformulas of ϕ in the relevant states.

To introduce the procedure to find failure states, we first
define the product between abstract CGS and GNBA.
Definition 13 (Product). Given an abstract CGS
M = 〈S, s0, {Acti}i∈Ag, dmay , dmust , δmay , δmust , V 〉
and a GNBA A = 〈Q,Σ, δ, Q0,F〉, their product M ⊗A =

〈S × Q,S0, {Acti}i∈Ag, dmay , dmust , δmay , δmust , V 〉 is
s.t. for s, t ∈ S, q, q′ ∈ Q, q0 ∈ Q0, and x ∈ {may ,must}.
• S0 = {(s0, q) | q ∈ δ(q0, V (s0))};
• dx((s, q)) = dx(s);

Algorithm 1 FailureState(s, ϕ)

1: if ϕ = q then
2: return (s, ϕ)
3: if ϕ = ¬ϕ′ then
4: return FailureState(s, ϕ′)
5: if ϕ = ϕ1 ∧ ϕ2 then
6: Let i = min{1, 2} such that ((M, s) |=3 ϕi) = uu

return FailureState(s, ϕi)
7: if ϕ = 〈〈Γ〉〉ψ then
8: if Paths(M ⊗ Aψ,uu) = ∅ then
9: return (s, ϕ)

10: else
11: return FailurePath(p ∈ Paths(M⊗Aψ,uu)|S , ψ)

Algorithm 2 FailurePath(p, ψ)

1: if ψ = ϕ then
2: return FailureState(p1, ϕ)
3: if ψ = ¬ψ′ then
4: return FailurePath(p, ψ′)
5: if ψ = ψ1 ∧ ψ2 then
6: Let i = min{1, 2} such that ((M,p) |=3 ψi) = uu

return FailurePath(p, ψi)
7: if ψ = Xψ′ then
8: return FailurePath(p≥2, ψ

′)
9: if ψ = ψ1Uψ2 then

10: checkψ1
= checkψ2

= true; i = 0
11: while checkψ1

= true ∧ checkψ2
= true do

12: i = i+ 1
13: if ((M,p≥i) |=3 ψ2) = uu then
14: checkψ2 = false
15: else if ((M,p≥i) |=3 ψ1) = uu then
16: checkψ1

= false
17: if checkψ2

= false then
18: return FailurePath(p≥i, ψ2)
19: else
20: return FailurePath(p≥i, ψ1)

• δx((s, q), α) = (t, q′) iff δx(s, α) = t & q′ ∈ δ(q, V (t));
• V (s, q) = q;

The procedure FailureState() to find failure states
and relevant subformulas is depicted in Algorithm 1:
FailureState(s, ϕ) takes as input a state s and a formula ϕ
(with at most one strategic operator) such that ((M, s) |=3

ϕ) = uu and returns state s′ and subformula ϕ′ of ϕ.
We can check that the procedure FailureState() is sound.

Proposition 1. Suppose that ((M, s) |=3 ϕ) = uu. If
FailureState(s, ϕ) = (s′, ϕ′) then s′ is a failure state.

Proof. We prove the soundness of FailureState() by induc-
tion. Given a model M , state s, and formula ϕ with no
nested strategy operators, the algorithm FailureState(s, ϕ)
starts by considering the base case in which ϕ is an atom
(lines 1-2). Here, ϕ is a failure state since the atom q is un-
defined on it. For the inductive step, we have the following
cases. In the case of Boolean operators (lines 3-6), the pro-

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

94

cedure propagates over subformulas. To deal with the strate-
gic operator (lines 7-11), the algorithm checks whether there
is a path in the product M ⊗ Aψ,uu (Def. 13). The product
between model M and automaton Aψ,uu accepts all paths
in M that make the subformula ψ undefined. If there is no
such path, then the procedure returns the current state and
formula. Otherwise, procedure FailurePath(p, ϕ) in Algo-
rithm 2 is called, where p is a path consistent with the prod-
uct of M and Aψ,uu, i.e., p ∈ Paths(M ⊗ Aψ,uu)|S

2. In
procedure FailurePath(p, ϕ) the base case for state formu-
las (lines 1-2) returns to FailureState() by taking as input
the first state of path p. In lines 3-6 FailurePath() handles
the Boolean operators, and in lines 7-8 solves the next op-
erator in accordance with its semantics. The main point of
interest is the until operator U (lines 9-20). To prove that the
while loop on line 11 terminates, we make use of Lemma 2
below, whereby we can show that the case of the until oper-
ator U in procedure FailurePath() terminates after a finite
number of step.

Lemma 2. Consider an abstract CGS M, path p, and for-
mula ϕ = ψUψ′. If ((M,p) |=3 ϕ) = uu then for some
i ≥ 0, either ((M,p≥i) |=3 ψ) = uu or ((M,p≥i) |=3

ψ′) = uu.

Proof. We prove the lemma by contradiction. Suppose that
((M,p) |=3 ϕ) = uu and for all i ≥ 0, for some v, v′ ∈
{tt,ff}, ((M,p≥i) |=3 ψ) = v and ((M,p≥i) |=3 ψ′) = v′.
We then consider the following cases:

1. If ((M,p≥i) |=3 ψ′) = ff (resp. tt) for all i ≥ 0, then by
the three-valued semantics we have ((M,p) |=3 ϕ) = ff
(resp. tt), which is a contradiction.

2. If (1) is not the case, then formula ψ′ is sometimes true
and sometimes false, but always defined by assumption.
Consider the smallest i ≥ 0 such that ((M,p≥i) |=3

ψ′) = tt. Then, we can only have one of the following:
(a) If for all 1 ≤ j < i, ((M,p≥j) |=3 ψ) = tt, then by the

three-valued semantics we have ((M,p) |=3 ϕ) = tt,
which is a contradiction.

(b) Otherwise, there exists 1 ≤ j < i such that
((M,p≥j) |=3 ψ) = ff . Since we assumed that i is
the smallest natural number for which ψ′ is true, then
for all 1 ≤ k < j we have ((M,p≥k) |=3 ψ′) = ff .
Hence, by the three-valued semantics it follows that
((M,p) |=3 ϕ) = ff , which is again a contradiction.

In Algorithm 3 we report the high-level iterative model
checking procedure. Given an iCGS M , state s, and Γ-
formula ϕ to check, we first construct the abstract CGS MΓ

based on M and Γ. Then, we model check formula ϕ in
the abstract state sΓ ⊇ s, which is decidable by Theorem 2.
If a defined truth value is returned, by Theorem 1 we trans-
fer this result to the original model checking problem. On
the other hand, if ((MΓ, sΓ) |=3 ϕ) = uu then we use a

2The restriction |S means that path p is a sequence of states in
which each state is only the first component of the product M ⊗
Aψ,uu, i.e., a state in M .

Algorithm 3 ModelCheckingProcedure(M, s, ϕ,Γ)

1: (MΓ, sΓ) = Abstraction(M,Γ)
2: if ((MΓ, sΓ) |=3 ϕ) 6= uu then
3: return ((MΓ, sΓ) |=3 ϕ)
4: i = 0; ϕi = InnermostFormula(ϕ)
5: while ϕi 6= ϕ do
6: for s′Γ ∈ SΓ do
7: while ((MΓ, s

′
Γ) |=3 ϕi) = uu ∧ split = true do

8: (sf , ψ) = FailureState(s′Γ, ϕi)
9: (MΓ, split) = Refinement(MΓ,M, sf)

10: Add(atomϕi
, L(s))

11: MΓ = UpdateModel(MΓ, atomϕi
)

12: ϕ = UpdateFormula(ϕ, atomϕi
)

13: i = i+ 1; ϕi = InnermostFormula(ϕ)
14: while ((MΓ, sΓ) |=3 ϕ) = uu ∧ split = true do
15: (sf , ψ) = FailureState(sΓ, ϕi)
16: (MΓ, split) = Refinement(MΓ,M, sf)
17: if split = true then
18: return (MΓ, sΓ) |=3 ϕ
19: else
20: return ′′No refinement is available, ϕ remains uu′′

a1 sI
b

a4 s6
l2

a5
s7
r2

a1
2 s1

l1, l2
s2
l1

a2
2 s3

r1
s4

r1, r2

a3 s5
g

#

∗

LRR

RLL

A

E

O

A

E

O

E

O

E

O

∗

Figure 3: The refinement for the CGS in Example 2.

bottom-up procedure (lines 4-13). We start by checking for
each state if the innermost formula having a strategic opera-
tor is undefined (line 7). If this is the case, we call procedure
FailureState(sΓ, ϕ) to find failure state sf that “makes” the
formula ϕi undefined (line 7). Then, in line 9 we call the
function Refinement(MΓ,M, sf) that is a slight variant of
the refinement procedure in (Belardinelli et al. 2019) with
sf as input. Intuitively, we look at incoming transitions into
sf . For concrete states s and s′ in sf , if the Γ-component of
actions ending respectively in s and s′ are different, any uni-
form strategy for Γ will visit either s or s′. As a result, the
abstract state sf can be split “safely” into an s- and an s′-
component. More precisely, the procedure Refinement(),
shown in Algorithm 4, begins by initializing as true the val-
ues of a matrix m that stores the relation outlined above be-
tween the concrete states in sf (lines 1-2). Then, the algo-
rithm calls the subroutine Check1(MΓ,M, sf ,m), shown in
Algorithm 5, which updates the values in m by considering
the concrete transition function δ inM . In particular, at each
iteration Check1() considers one predecessor tf of sf (line
1). Then, two other loops (lines 2-3) consider pairs of states

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

95

Algorithm 4 Refinement(MΓ,M, sf)

1: for s, s′ ∈ sf do
2: m[s, s′] = true
3: Check1(MΓ,M, sf ,m); update = true
4: while update = true do
5: Check2(MΓ, sf ,m, update)
6: split = false
7: while s, s′ ∈ sf ∧ split = false do
8: if m[s, s′] = true then
9: split = true; remove(sf , SΓ)

10: add(v, SΓ); add(w, SΓ); add(s, v); add(s′, w)
11: for t ∈ sf do
12: if m[s, t] = true then
13: add(t, w)
14: else
15: add(t, v)
16: return (MΓ, split)

s and s′ in the abstract state sf and pairs of states t and t′ in
the predecessor tf . If s and s′ are indistinguishable for some
agent i ∈ Γ and i performs the same action in the transitions
from t and t′ to s and s′ respectively, then we update the
value of the corresponding cell in m to false (lines 4-7). The
subroutine Check1() carries out the first round of updates
on m. Further updates in the Refinement() algorithm are
performed by the subroutine Check2(MΓ, sf ,m, update),
shown in Algorithm 6, which considers the “indirect” bind-
ing that some concrete states may have in an abstract state.
Specifically, given the states s and s′ in the abstract state sf
that have true as value in m (lines 2-3), we need to consider
the relation that s and s′ have with the other states in sf : if
the values inm for both states related with some other state t
are false, then we update the value of cell m[s, s′] to false
as well (lines 4-6). Subroutine Check2() is called repeat-
edly in algorithm Refinement() as long as guard update
remains true, i.e., until we have at least an update in each
call of the procedure. When update becomes false, we
proceed to check whether there is at least an element true
in m (line 8). If this is the case, we can split sf . So, we
assign the related concrete states s and s′ to two different,
new abstract states v and w (line 10). Finally, we popu-
late the new abstract states v and w with the other concrete
states in the old abstract state sf (which is removed) accord-
ing to matrix m (lines 11-15). When the loop in lines 7-9
of the ModelCheckingProcedure() is concluded, we update
the structure (lines 10-11) and the formula (line 12) and con-
tinue with the new innermost formula (line 13). This part of
the procedure (lines 5-13) terminates when we have ϕ with
a single, outermost strategic operator. So, we can check
formula ϕ on sΓ. If this formula is undefined, we use a
loop (lines 14-16) that calls procedure FailureState(sΓ, ϕ)
to find failure state sf making formula ϕ undefined. Then,
in line 16 we call the refinement procedure with sf as input.
When the while loop in lines 14-16 is terminated, we check
the truth value of the boolean variable split that is returned
by the refinement procedure (line 17). We recall that split
is true if and only if the model has been refined. If this is

Algorithm 5 Check1(MΓ,M, sf ,m)

1: for tf ∈ Pre(sf) do
2: for s, s′ ∈ sf do
3: for t, t′ ∈ tf do
4: if δ(t,~a) = s ∧ δ(t′,~b) = s′ then
5: for i ∈ Γ do
6: if s ∼i s′ ∧ ~ai = ~bi then
7: m[s, s′] = false

Algorithm 6 Check2(MΓ, sf ,m, update)

1: update = false
2: for s, s′ ∈ sf do
3: if m[s, s′] = true then
4: for t ∈ sf do
5: if m[s, t] = false ∧m[s′, t] = false then
6: m[s, s′] = false; update = true

the case, the while loop is exited, as the last refinement step
made the formula ϕ defined and then by Theorem 1 and 2 we
transfer the defined truth value to the original model check-
ing problem (line 18). On the other hand, if split is false,
it was not possible to refine the model in a way to make the
formula defined with our procedure (lines 19-20).

Example 3. As an example of the application of proce-
dure FailureState() we consider as input formula ϕ =
〈〈Γ〉〉F (l1 ∧ ¬bUg) and state a1 in Fig. 2. In Example 2
we observed that ((MΓ, a1) |=3 ϕ) = uu. Since the
main operator in ϕ is the strategic modality 〈〈Γ〉〉, proce-
dure FailureState() goes to line 7. In particular, it con-
structs the automaton Aψ,uu that accepts all paths where
ψ = true U(l1 ∧ ¬bUg) is undefined. Now, the language
of the product between model MΓ and Aψ,uu is not empty.
Hence, the procedure calls FailurePath() with input, for in-
stance, p = a1a2a3 . . ., i.e., one of the paths in the prod-
uct. Since formula ψ has until U as the main operator, the
procedure goes to line 9. Now, ((MΓ, p≥2) |=3 ψ) = uu
and we call FailurePath(p≥2, ψ

′) with ψ′ = l1 ∧ ¬bUg.
Observe that the main operator in ψ′ is ∧ and there-
fore we go to lines 5-6. Here, ((MΓ, p≥2) |=3 l1) =
((MΓ, p2) |=3 l1) = uu, then we call FailurePath(p≥2, l1),
and by lines 1-2, FailureState(p2, l1) finally returns fail-
ure state a2 and atom l1. This ends the FailureState()
procedure. So, the ModelCheckingProcedure() calls the
Refinement() procedure. Here, given a2 as failure state,
theRefinement() procedure splits state a2 in new states a1

2
with concrete states s1 and s2, and a2

2 with concrete states
s3 and s4 as in Fig. 3. In the new model formula ϕ is defined
(specifically, true) and this ends the whole procedure.

5.1 Complexity Results
We conclude this section by discussing the complexity
of our model checking procedure. First, notice that
ModelCheckingProcedure() does not necessarily termi-
nate with a defined truth value. Indeed, the ATL∗ model
checking problem in case of imperfect information and per-

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

96

fect recall is undecidable in general. This is meant to be a
sound, albeit partial, verification algorithm.
Theorem 4. ModelCheckingProcedure() terminates in
2EXPTIME.

Proof. We analyze in detail Algorithm 3. The procedure of
abstraction has to explore a polynomial number of states to
generate the abstract model. Since the abstraction procedure
returns a CGS with perfect information, the verification of
ATL∗ formulas can be performed by using the automata-
theoretic techniques in (Alur et al. 2002) for instance. This
leads to a model checking procedure in 2EXPTIME. The
loops in lines 5-13 explore a polynomial number of formulas
(while in line 5), a polynomial number states (for in line 6),
and a polynomial number of operation on the model (while
in line 7). The last loop is shown to be polynomial by vari-
able split that guarantees termination. Further, procedure
FailurePath() explores a polynomial number of states and
formulas and procedure FailureState() builds a formula
automaton by using polynomial space. So, it appears that
the refinement procedure (lines 8-9) can be performed in
PSPACE. By considering the fact that in lines 14-16 we have
again the refinement procedure, we can conclude that the
whole complexity of our procedure is in 2EXPTIME.

By Theorem 4 the complexity of our partial model check-
ing procedure is high. However, we claim that it is still better
than the general undecidability result.

6 Related Work and Conclusions
Recently several approaches to the verification ofATL∗ un-
der imperfect information and perfect recall have been put
forward. Typically, these contributions assume restrictions
either on the syntax or the semantics of the specification
language, or develop abstraction and approximation meth-
ods. In the first line, decidability results have been proved
for hierachical (Aminof et al. 2012; Berthon et al. 2017) and
broadcast systems (Belardinelli et al. 2017b),(2017a). In
the second line, techniques to construct syntactic (Bulling
and Jamroga 2011) and semantic (Belardinelli et al. 2018)
approximations have been investigated. Our contribution
falls in the second line, specifically semantic approxima-
tions, even though it differs from (Belardinelli et al. 2018),
where memory is abstracted to achieve decidability, as here
we approximate information instead.

More closely related is a series of works on three-
valued abstractions for temporal and strategy logics. An
abstraction-refinement framework for CTL on a three-
valued semantics was studied in (Shoham and Grumberg
2004),(2007), then extended to the µ-calculus in (Grumberg
et al. 2007). As regards ATL, three-valued abstractions
have also been put forward in (Ball and Kupferman 2006;
Lomuscio and Michaliszyn 2014),(2015; 2016). How-
ever, there are considerable differences between these ap-
proaches and the one here pursued. In fact, their meth-
ods focus on settings of perfect information, and (Lomuscio
and Michaliszyn 2014)(2015; 2016) considers non-uniform
strategies (Raimondi and Lomuscio 2005), whereby the cor-
responding model checking problem is decidable. Their

aim, therefore, is to speed-up the verification task and not,
as we do here, to provide a sound, albeit partial, procedure
for an undecidable problem. Moreover, we consider the full
language ATL∗, while the references above only deal with
its fragment ATL (Alur et al. 2002).

Regarding the multi-valued automata technique for
LTL used in this work, we now discuss the differences
w.r.t. (Kupferman and Lustig 2007; Chechik et al. 2001;
Bruns and Godefroid 2003). In particular, (Bruns and Gode-
froid 2003) consider a reduction from multi-valued to two-
valued LTL, but they do not provide automata-theoretic
techniques. On the other hand, (Chechik et al. 2001) present
an automata-theoretic approach to general multi-valued
LTL following the tableau-based construction in (Gerth et
al. 1995). Also (Kupferman and Lustig 2007) is devoted to
general multi-valued automata. Specifically, the authors de-
fine lattices, deterministic and non-deterministic automata,
as well as their extensions to Büchi acceptance conditions.
As an application of their theoretical results, they provide
an automata construction for multi-valued LTL, but only in
passing, without a clear explanation of states and transitions.
To sum up, differently from (Kupferman and Lustig 2007;
Chechik et al. 2001; Bruns and Godefroid 2003), the ap-
proach we proposed here modifies minimally the automata-
theoretic construction for two-valuedLTL in (Baier and Ka-
toen 2008) and extends it to a three-valued interpretation. In
this sense we claim that our contribution is novel w.r.t. the
current literature. Furthermore, it is not clear how the tech-
niques in (Kupferman and Lustig 2007; Chechik et al. 2001;
Bruns and Godefroid 2003) could be used in our construc-
tion. As mentioned above, (Bruns and Godefroid 2003) does
not really deal with LTL. The approach in (Chechik et al.
2001) is more suitable for on-the-fly verification. Finally, in
(Kupferman and Lustig 2007) the authors only briefly dis-
cuss model checking, and their approach is tailored more
generally for multi-valued logics.

Finally, we mentioned that the present work builds upon
(Belardinelli et al. 2019), where a three-valued abstraction
and refinement procedure for ATL∗ is presented. We ob-
served that the refinement procedure takes a failure state as
input, but in (Belardinelli et al. 2019) no method was pro-
vided to find such failure states. Here we presented such an
algorithm that, differently from the state of the art (Ball and
Kupferman 2006), operates on the whole ATL∗, under im-
perfect information. To this end, we developed automata-
theoretic techniques for LTL in a three-valued sematics,
that we deem of independent interest.

As future work we intend to build a toolkit to generate ab-
stractions and refinements automatically. Any such toolkit
will require the novel implementation of the three valued
semantics here described and will therefore constitute a sub-
stantial undertaking. Another interesting question that we
would like to explore as future work is to find the “most
promising” failure states. It might be possible to find robust
heuristics to find good candidates for refinement. Finally, we
plan to extend the verification techniques here developed to
more expressive languages including Strategy Logic (Chat-
terjee et al. 2007; Mogavero et al. 2014) in the light of the
recent comparison results in (Belardinelli et al. 2019).

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

97

Acknowledgments
F. Belardinelli acknowledges the support of ANR JCJC
Project SVeDaS (ANR-16-CE40-0021).

References
Ågotnes, T.; Goranko, V.; Jamroga, W.; and Wooldridge, M.
2015. Knowledge and ability. In Handbook of Logics for
Knowledge and Belief. 543–589.
Alur, R.; Henzinger, T.; Mang, F.; Qadeer, S.; Rajamani,
S.; and Tasiran, S. 1998. MOCHA: Modularity in model
checking. In CAV98, 521–525.
Alur, R.; Henzinger, T.; and Kupferman, O. 2002.
Alternating-time temporal logic. J. ACM 49(5):672–713.
Aminof, B.; Kupferman, O.; and Murano, A. 2012. Im-
proved model checking of hierarchical systems. Inf. Com-
put. 210:68–86.
Baier, C., and Katoen, J. P. 2008. Principles of Model
Checking. MIT Press.
Ball, T., and Kupferman, O. 2006. An abstraction-
refinement framework for multi-agent systems. In LICS06,
379–388.
Belardinelli, F.; Jamroga, W.; Kurpiewski, D.; Malvone, V.;
and Murano, A. 2019. Strategy Logic with Simple Goals:
Tractable Reasoning about Strategies. In IJCAI19, 88–94.
Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S.
2017a. Verification of broadcasting multi-agent systems
against an epistemic strategy logic. In IJCAI17, 91–97.
Belardinelli, F.; Lomuscio, A.; Murano, A.; and Rubin, S.
2017b. Verification of multi-agent systems with imperfect
information and public actions. In AAMAS17, 1268–1276.
Belardinelli, F.; Lomuscio, A.; and Malvone, V. 2018. Ap-
proximating perfect recall when model checking strategic
abilities. In KR2018, 435–444.
Belardinelli, F.; Lomuscio, A.; and Malvone, V. 2019.
An abstraction-based method for verifying strategic prop-
erties in multi-agent systems with imperfect information. In
AAAI19, 6030–6037.
Berthon, R.; Maubert, B.; Murano, A.; Rubin, S.; and Vardi,
M. Y. 2017. Strategy logic with imperfect information. In
LICS, 1–12.
Berthon, R.; Maubert, B.; and Murano, A. 2017. Decidabil-
ity results for ATL* with imperfect information and perfect
recall. In AAMAS17, 1250–1258.
Bruns, G., and Godefroid, P. 2003. Model checking with
multi-valued logics. Technical Report ITD-03-44535H, Bell
Labs.
Bulling, N., and Jamroga, W. 2011. Alternating epistemic
mu-calculus. In IJCAI11, 109–114.
Chatterjee, K.; Henzinger, T.; and Piterman, N. 2007. Strat-
egy logic. In CONCUR07, 59–73.
Chechik, M.; Devereux, B.; and Gurfinkel, A. 2001. Model-
checking in finite state-space systems with fine-grained ab-
stractions using spin. In SPIN, 16–36.

Dima, C., and Tiplea, F. 2011. Model-checking ATL under
imperfect information and perfect recall semantics is unde-
cidable. CoRR abs/1102.4225.
Fagin, R.; Halpern, J.; Moses, Y.; and Vardi, M. 1995. Rea-
soning about Knowledge. MIT.
Gerth, R.; Peled, D.; Vardi, M.; and Wolper, P. 1995. Simple
on-the-fly automatic verification of linear temporal logic. In
PSTV95, 3–18.
Grumberg, O.; Lange, M.; Leucker, M.; and Shoham, S.
2007. When not losing is better than winning: Abstrac-
tion and refinement for the full mu-calculus. Inf. Comput.
205(8):1130–1148.
Jamroga, W., and Dix, J. 2006. Model checking abilities
under incomplete information is indeed ∆2

p-complete. In
EUMAS06, 14–15.
Jamroga, W., and van der Hoek, W. 2004. Agents that know
how to play. Fund. Inf. 62:1–35.
Jamroga, W. 2018. Logical methods for specification and
verification of multi-agent systems.
Kupferman, O., and Lustig, Y. 2007. Lattice automata. In
VMCAI07, 199–213.
Kurpiewski, D.; Jamroga, W.; and Knapik, M. 2019. STV:
model checking for strategies under imperfect information.
In AAMAS19, 2372–2374.
Lomuscio, A., and Michaliszyn, J. 2014. An abstraction
technique for the verification of multi-agent systems against
ATL specifications. In KR14, 428–437.
Lomuscio, A., and Michaliszyn, J. 2015. Verifying multi-
agent systems by model checking three-valued abstractions.
In AAMAS15, 189–198.
Lomuscio, A., and Michaliszyn, J. 2016. Verification of
multi-agent systems via predicate abstraction against ATLK
specifications. In AAMAS16, 662–670.
Lomuscio, A.; Qu, H.; and Raimondi, F. 2017. MCMAS:
an open-source model checker for the verification of multi-
agent systems. In STTT 19(1):9–30.
Mogavero, F.; Murano, A.; Perelli, G.; and Vardi, M. 2014.
Reasoning about strategies: On the model-checking prob-
lem. ACM Trans. Comp. Log. 15(4):34:1–34:47.
Pauly, M. 2002. A modal logic for coalitional power in
games. J. Log. Comput. 12(1):149–166.
Raimondi, F., and Lomuscio, A. 2005. The complexity
of symbolic model checking temporal-epistemic logics. In
CS&P, 421–432.
Shoham, S., and Grumberg, O. 2004. Monotonic
abstraction-refinement for CTL. In TACAS04, 546–560.
Shoham, S., and Grumberg, O. 2007. A game-based frame-
work for CTL counterexamples and 3-valued abstraction-
refinement. ACM Trans. Comput. Log. 9(1):1.
Vardi, M. Y. 1995. An automata-theoretic approach to linear
temporal logic. In Banff Higher Order Workshop, 238–266.

Proceedings of the 17th International Conference on Principles of Knowledge Representation and Reasoning (KR 2020)
Main Track

98

	Introduction
	Classic Imperfect Information
	Knowledge-based Abstraction
	Automata for Three-valued LTL
	Finding Failure States
	Complexity Results

	Related Work and Conclusions

