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Verifying Strategic Abilities in Multi-agent Systems
via First-order Entailment

Francesco Belardinelli 1 and Vadim Malvone 2

Abstract. The verification of strategic abilities of autonomous
agents is a key subject of investigation in the applications of for-
mal methods to the design and certification of multi-agents systems.
In this contribution we propose a novel approach to this verifica-
tion problem. Inspired by recent advances, we introduce a translation
from Alternating-time Temporal Logic (ATL) to First-order Logic
(FOL). We show that our translation is sound on a fragment of ATL,
that we call ATL-live, as it is suitable to express liveness properties
in MAS. Further, we show how the universal model checking prob-
lem for ATL-live can be reduced to semantic entailment in FOL. Fi-
nally, we prove thatATL-live is maximal in the sense that if any other
ATL connective is added, non-FOL reasoning techniques would be
required. These results are meant to be a first step towards the appli-
cation of FOL reasoners to model check strategic abilities expressed
in ATL.

1 Introduction

The verification of strategic abilities of autonomous agents is a key
subject of investigation in the applications of formal methods to the
design and certification of multi-agents systems (MAS) [20, 38]. In
recent years logic-based languages to model temporal [30, 9], epis-
temic [13, 28], and strategic [2, 29] capabilities of agents have been
introduced and their theoretical properties analysed, particularly in
relation with their satisfaction and model checking problems [6, 31].
Results in this area have led to the development of model check-
ing tools [1, 14, 22, 26] that have been successfully applied to MAS
verification in domains as diverse as voting protocols [4, 21], robot
swarms [24], and AUVs [12]. However, the complexity of multi-
agent scenarios means that the verification task is often computa-
tionally costly, viz. undecidable [11]; hence the need for decidability
results and for more efficient model checking tools and techniques.

Reasoners for First-order Logic (FOL), including SMT solvers,
have become the core engine behind a range of powerful technolo-
gies and a thriving research area with many practical applications
[10]. In the context of temporal logics, [36, 35] present the theo-
retical foundations for reducing the model checking problem for a
fragment of computational-tree logic (CTL), over finite and infinite
Kripke structures expressed in FOL, to checking semantic entailment
in FOL. In [37] the same authors demonstrate that it is practical to
verify temporal properties of infinite-state systems expressed in the
same fragment of CTL by using an SMT solver, without iteration,
abstraction, or human intervention. Moreover, they show that, by us-
ing their method, the verification of a leader election protocol with an
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unbounded number of processes may in some cases terminate faster
than when considering a finite number of processes.

Inspired by these works, in this contribution we propose a novel
approach to the verification problem for Alternating-time Temporal
Logic (ATL), one of the most well-studied logic-based languages for
representing strategic abilities of individuals and coalitions [2, 32].
Specifically, in Sec. 2 after introducing preliminary notions on ATL
and FOL, we present a fragment of ATL, that we call ATL-live fol-
lowing [36, 35], as it is suitable to express liveness properties in
MAS. In Sec. 3 we present a translation into FOL for concurrent
game structures (CGSs), the semantics of choice for ATL. Then, in
Sec. 4 we show how the universal model checking problem forATL-
live can be reduced to semantic entailment in FOL. These results are
meant to be a first step towards the application of FOL reasoners to
model check strategic abilities expressed in ATL. The interesting ex-
perimental results discussed in [37] might hint at significant savings
in execution time, thus allowing for the verification of more complex
multi-agent scenarios. Finally, in Section 5 we prove that ATL-live
is maximal in the sense that if any other ATL connective is added,
non-FOL reasoning techniques would be required.

Related work. FOL reasoners and SAT/SMT solvers are increas-
ingly applied to the verification of temporal properties of reactive
systems [10] (e.g., [3] put forward an SMT-based decision proce-
dure for general modal logic). More specifically, in [25] the authors
introduce an explicit reasoning framework for linear temporal logic
(LTL), which is built on top of propositional satisfiability (SAT) solv-
ing. This approach is then extended in the same reference to rea-
son about assertional LTL formulas, where Boolean atoms are re-
placed with assertions about program variables (e.g., k ≤ 5), and
the underlying SAT solver is replaced by an SMT solver. Further,
[15] describes a declarative and deductive symbolic model checker
modulo theories (MCMT) for safety properties of infinite state sys-
tems. The key component of MCMT is a backward reachability pro-
cedure that symbolically computes pre-images of the set of unsafe
states and checks for safety and fix-points by solving SMT problems.
This framework was extended in [7] to handle complex data-aware
business processes with the ability of operating over case and persis-
tent data. Moreover, in [33] a first-order extension of LTL is consid-
ered, and a prototype tool based on SMT-based model checking is
presented. However, none of the contributions above tackles expres-
sive logic-based languages for reasoning about strategies, such as the
logic ATL here considered.

In the context of logics for strategic reasoning, [27] develops a
predicate abstraction technique for the verification of multi-agent
systems against specifications expressed in an epistemic extension of
ATL. In particular, an infinite-state multi-agent program is reduced to
a finite model by predicate abstraction, where predicates are gener-
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ated automatically via SMT calls. In a related field, [16] puts forward
an SMT-based approach to verifying purely epistemic properties of
programs.

To conclude, to the best of our knowledge, this is the first contribu-
tion that tackles the model checking problem for ATL via first-order
reasoning.

2 Background

In this section we introduce standard terminology and notation on
First-order Logics (Sec. 2.1) and Alternating-time Temporal Logic
(Sec. 2.2). We also introduce ATL-live, a fragment of ATL expres-
sive enough to represent reachability goals.

2.1 First order logic

Formulas in First-order Logic (FOL) are built from individual vari-
ables and function and relation symbols, by using logical connec-
tives [19]. The set of logical connectives and their meaning in FOL
is fixed. The following is a standard set of logical connectives for
FOL: the Boolean connectives negation ¬ and implication →, the
universal quantifier ∀, and equality =. On the other hand, the set of
function and relation symbols, as well as their semantics, depends on
the context. Since for different applications different sets of function
and relation symbols are used, we consider the following:

Definition 1 (Base) A base for FOL is a pair B = 〈F ,R〉 such that
F is a set of function symbols andR is a set of relation symbols.

Every function and relation symbol has a corresponding arity.
Constants are function symbols with arity 0. A (function or relation)
symbol X with arity m, for m ≥ 0, is denoted by X/m.

We now recall the syntax of first-order logic (including equality).
In the rest of the paper we fix a set Var of (individual) variables.

Definition 2 (FO-formulas) Given a base B, the formulas ϕ in the
first-order language LB are defined by the following BNF:

t ::= x | f(t1, . . . , tm)

ϕ ::= P (t1, . . . , tm) | t = t′ | ¬ϕ | ϕ→ ϕ | ∀xϕ

where x ∈ Var, f/m ∈ F , P/m ∈ R, t1, . . . , tm is a m-tuple of
terms, and t, t′ are terms.

The constants > and ⊥, disjunction ∨, conjunction ∧, coimplica-
tion↔, and the existential quantifier ∃ can be introduced as standard.

The semantics of FOL formulas is defined by using interpretations.
An interpretation fixes the meaning of a base by assigning values to
variables, function and relation symbols.

Definition 3 (Interpretation) Given a base B = 〈F ,R〉, an inter-
pretation is a pair I = 〈D, ·I〉, where D is a non-empty set, the
domain of I, and ·I is a mapping that assigns:

1. to every function symbol f/m ∈ F of arity m ≥ 0, a total m-ary
function fI from Dm to D;

2. to every relation symbol R/m ∈ R, a subset RI ⊆ Dm.

By Def. 3, the case of 0-ary symbols is dealt with as follows:

• every 0-ary c ∈ F is assigned an element cI ∈ D;
• every 0-ary p ∈ R is assigned either true or false.

To fix the meaning of individual variables, we introduce the notion
of assignment as a function σ from variables in Var to elements inD.
We denote by σxu the assignment such that (i) σxu(x) = u; and (ii)
σxu(x′) = σ(x′) for every x′ 6= x.

Given an interpretation I and assignment σ, we can specify the
interpretation tI of a term t inductively as follows:

• for t = x, tI = σ(x)
• for t = f(t1, . . . , tm), tI = fI(tI1 , . . . , t

I
m)

Finally, we present the semantics of First-order logic.

Definition 4 (Satisfaction of FOL formulas) Given a base B =
〈F ,R〉, an interpretation I = 〈D, ·I〉, and an FO-formula ϕ ∈ LB,
we inductively define whether I satisfies ϕ under assignment σ, or
(I, σ) |= ϕ, as follows:

(I, σ) |= R(t1, . . . , tm) iff (tI1 , . . . , t
I
m) ∈ RI

(I, σ) |= t1 = t2 iff tI1 = tI2
(I, σ) |= ¬ϕ iff (I, σ) 6|= ϕ
(I, σ) |= ϕ→ ϕ′ iff (I, σ) 6|= ϕ or (I, σ) |= ϕ′

(I, σ) |= ∀xϕ iff for all u ∈ D, (I, σxu) |= ϕ

We say that a formula ϕ is true in I, or I |= ϕ, iff (I, σ) |= ϕ for
all assignments σ, or equivalently, I is a model of ϕ.

We now present the standard notion of semantic entailment in
FOL, which plays a key role in the rest of the paper.

Definition 5 (Entailment) Let Γ be a set of FOL formulas and ϕ an
FOL formula. Γ entails ϕ, or Γ |= ϕ, iff every interpretation that
satisfies all the formulas in Γ also satisfies ϕ:

Γ |= ϕ iff for every I, if I |= ψ for every ψ ∈ Γ, then I |= ϕ

Semantic entailment checking for FOL is recursively enumerable
[8]. This means that semantic entailment checking for FOL is not
computable in general, but there is procedure that given Γ and ϕ
produces a proof in the case where Γ |= ϕ. However, many first-
order theories of interest, such as the real and rational numbers, and
the monadic and guarded fragments, have been proved decidable [17,
18].

2.2 Alternating-time Temporal Logic and ATL-live
In this section we recall syntax and semantics of Alternating-time
Temporal Logic ATL and present the ATL-live fragment.

To fix the notation, we assume that Ag is the set of agents and
AP the set of atomic propositions. We denote the length of a tuple
u as |u| and its i-th element as ui. For i ≤ |u|, let u≥i be the suffix
ui, . . . , u|u| of u starting at ui and u≤i its prefix u1, . . . , ui.

Syntax. To reason about the strategic abilities of agents, we use
the Alternating-time Temporal Logic ATL [2].

Definition 6 (ATL) Formulas in ATL are defined as follows, where
q ∈ AP and A ⊆ Ag:

ϕ ::= q | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉Xϕ | 〈〈A〉〉ϕUϕ

As customary, a formula 〈〈A〉〉φ is read as “the agents in coalition
A have a strategy to achieve φ”. The meaning of linear-time opera-
tors next X and until U is standard [23]. Operators [[A]], release R,
finally F , and globally G can be introduced as usual. For instance,
〈〈A〉〉Fφ ≡ 〈〈A〉〉>Uφ and [[A]]Gφ ≡ ¬(〈〈A〉〉F¬φ).
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Inspired by the relationship between the CTL and CTL-live in-
troduced in [35], we introduce a novel fragment of ATL that we call
ATL-live, as it contains the ATL connectives that are normally used
to express liveness properties. In particular, ATL-live can be model
checked directly using an FOL reasoner. Formally, ATL-live is de-
fined as follows.

Definition 7 (ATL-live) Temporal (ϕ) and propositional (φ) formu-
las in ATL-live are defined as follows, where q ∈ AP and A ⊆ Ag:

ϕ ::= φ |ϕ ∨ ϕ |ϕ ∧ ϕ | 〈〈A〉〉Xϕ | [[A]]Xϕ | 〈〈A〉〉ϕUϕ | [[A]]ϕUϕ

φ ::= q | ¬φ | φ ∧ φ

Formulas in ATL-live are all and only the temporal formulas.

ATL-live disallows a temporal connective to be in the scope of
negation ¬, which can only be applied to propositional formulas.
E.g., the ATL formula ¬(〈〈A〉〉pUq) is not allowed, but 〈〈A〉〉(¬p)Uq
is. Equivalently ATL-live can be seen as the fragment of the Alter-
nating Modal µ-calculus restricted to the µ operator (where negation
is only applied to atoms).

Semantics. To interpret formulas in ATL and ATL-live we make
use of game-like structures.

Definition 8 (CGS) A concurrent game structure (CGS) is a tuple
G = 〈Ag, S, s0, {Acta}a∈Ag, τ, L〉 such that

• Ag is a set of agents;
• S is a non-empty set of states and s0 ∈ S is the initial state;
• for every agent a ∈ Ag, Acta is a non-empty set of actions, and
ACT =

∏
a∈Ag Acta is the set of joint actions;

• τ : S ×ACT → S is the transition function;
• L : S → 2AP is the labelling function.

A path is a (finite or infinite) sequence π ∈ S∗ ∪ Sω such that for
every j ≥ 1, πj+1 = τ(πj , ~αj) for some joint action ~αj ∈ ACT .
We distinguish between finite paths, or histories, and infinite paths,
or computations.

When giving a semantics to ATL formulas we assume that agents
are endowed with strategies.

Definition 9 (Perfect Recall Strategy) A strategy with perfect re-
call for agent a ∈ Ag is a function fa : S+ → Acta.

By Def. 9 any strategy for agent a has to return actions that are
enabled for a. Then, given a joint strategy FA = {fa | a ∈ A},
comprising of one strategy for each agent in coalition A, a path p is
FA-compatible iff for every j ≥ 1, pj+1 = τ(pj , ~α) for some joint
action ~α such that for every a ∈ A, αa = fa(p≤j). Let out(s, FA)
be the set of all such FA-compatible paths from s.

We can now assign a meaning to ATL (including ATL-live) for-
mulas on CGS.

Definition 10 (Satisfaction) The satisfaction relation |= for a CGS
G, state s ∈ S, path p ∈ Sω , atom q ∈ AP , and ATL formula φ is
defined as follows:

(G, s) |= q iff q ∈ L(s)
(G, s) |= ¬ϕ iff (G, s) 6|= ϕ
(G, s) |= ϕ ∧ ϕ′ iff (G, s) |= ϕ and (G, s) |= ϕ′

(G, s) |= 〈〈A〉〉Xϕ iff for some FA, for all p ∈ out(s, FA),

sI
out

s1
req

s3
grant

s2
in

r, i

i, i

i, d

i, g

i, i

a, i

e, i

i, o

i, k

Figure 1. The CGS G for the Train Gate Controller scenario in Example 1.

(G, p2) |= ϕ
(G, s) |= 〈〈A〉〉ϕUϕ′ iff for some strategy FA,

for all paths p ∈ out(s, FA),
for some k ≥ 1, (G, pk) |= ϕ′, and
for all j, 1 ≤ j < k implies (G, pj) |= ϕ

A formula ϕ is true in a CGS G, or G |= ϕ, iff (G, s0) |= ϕ.
Further, the set of states of a CGS G that satisfies an ATL formula ϕ
is denoted by [ϕ]G = {s ∈ S | (G, s) |= ϕ}. We omit G when clear
from the context.

We now state the model checking problem within the present set-
ting.

Definition 11 (Model Checking) Given a CGS G and a formula φ,
the model checking problem amounts to determine whether G |= φ.

Definition 12 (Substructure) A CGS G1 = 〈Ag1, S1, s1
0,

{Act1a}a∈Ag1 , τ
1, L1〉 is a substructure of G2 = 〈Ag2, S2,

s2
0, {Act2a}a∈Ag2 , τ

2, L2〉, denoted by G1 v G2, iff Ag1 = Ag2,
S1 = S2, s1

0 = s2
0, {Act1a = Act2a}a∈Ag1 , τ1 = τ2, L1 ⊆ L2. 3

By Def. 10 and 12, we immediately obtain the following result.

Proposition 1 Suppose G1 v G2 and ϕ is anATL formula over L1,
we have that if G1 |= ϕ then G2 |= ϕ.

To conclude this section we present a toy example that illustrates
the formal machinery introduced thus far.

Example 1 The CGS G depicted in Fig. 1 describes the Train Gate
Controller scenario [2]. A train t is outside a gate and it can choose
to either stay outside the gate (move i), in sI , or request (move r) to
enter the gate and proceed to s1. At s1, the controller c can choose to
either grant (move g) the train permission to enter the gate, or deny
(move d) the trains request, or delay (move i) the handling of the re-
quest. At s3, the train can choose to either enter the gate (move e)
or abandon (move a) its permission to enter the gate. At s2, the con-
troller can choose to either keep the gate closed (move k) or reopen
(move o) the gate to new requests.

More formally, the CGS G is comprised of the agents in Ag =
{t, c}, atoms in AP = {out, req, grant, in}, states in S =
{sI , s1, s2, s3} with initial state sI , actions in Act = {r, e, a, i}
and Acc = {g, d, k, o, i}. Transitions are given as in Fig. 1.

As an example of specifications inATL, consider the formula ϕ =
〈〈t〉〉Fin. This formula can be read as: the train t has a strategy such

3 By L1 ⊆ L2 we mean that L1 is the restriction of L2 on some subset A of
the set AP of atomic propositions.
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that sooner or later it enters in the gate. Notice that ϕ is false in G
because, without the grant of controller, t can not be certain to reach
state s2. Another example of specification can be ϕ = 〈〈∅〉〉G(out→
〈〈t, c〉〉Fin), that is whenever the train is out of the gate, the train and
the controller can cooperate so that the train will enter the gate.

3 Translating CGS into FOL Theories
In this section we introduce a translation from concurrent game struc-
ture to FOL theories, starting with the underlying base.

Definition 13 Given sets Ag of agents and AP of atoms, the base
B = 〈F ,R〉 is such that

• F is empty;
• R = {AgB/1, SB/1, S0B/1, TB/(|Ag|+ 2)} ∪ {QB/1 | q ∈
AP} ∪ {ActaB/1 | a ∈ Ag}

We omit subscript B whenever it is clear from the context.

We use the same notation for elements in CGS and B the distinc-
tion will be clear from the context.

First-order formulas over the base in Def. 13 can be used to rep-
resent the various components of a CGS: the state space, the ini-
tial states, the set of actions for each agent, the transition function,
and the labelling function. Then, suitable interpretations satisfying
the FOL formulas on B represent a CGS. Observe that the relation
symbols themselves do not represent a CGS, but an interpretation
satisfying suitable FOL formulas determines the content of these re-
lation symbols, and therefore represents a CGS. Then, the set of all
the satisfying interpretations forms a class of CGSs. We call a set of
formulas that represent a class of CGSs a declarative model [34].

Definition 14 (Declarative model) A declarative model is a pair
D = 〈B,Γ〉, where B is a base according to Def. 13, and Γ is a set of
FOL formulas over B that includes well-formedness constraints on
CGS (e.g., “the set of states is not empty”).

More precisely, Γ includes the following formulas4:

1. ∃xS0(x)
2. ∀x(S0(x)→ S(x))
3. ∀x, x′(S0(x) ∧ S0(x′)→ x = x′)
4.

∧
a∈Ag ∃xActa(x)

5. ∀x∀y1, . . . , y|Ag|(S(x) ∧ Act1(y1) ∧ . . . ∧ Act|Ag|(y|Ag|) →
∃x′(S(x′) ∧ T (x, y1, . . . , y|Ag|, x

′)))
6. ∀x∀y1, . . . , y|Ag|∀x′, x′′((S(x) ∧ Act1(y1) ∧ . . . ∧
Act|Ag|(y|Ag|) ∧ S(x′) ∧ S(x′′) ∧ T (x, y1, . . . , y|Ag|, x

′) ∧
T (x, y1, . . . , y|Ag|, x

′))→ (x′ = x′′))

By Def. 14 we immediately obtain the following result.

Lemma 2 Every interpretation I of a declarative model D =
〈B,Γ〉 is a CGS GI = 〈AgI , SI , S0I , {Acta I}a∈Ag, τI , LI〉 where

• AgI = {u ∈ DI | u ∈ AgIB};
• SI = {u ∈ DI | u ∈ SIB};
• S0I = {u ∈ DI | u ∈ SI0B};
• for every a ∈ AgI , Acta I = {u ∈ DI | u ∈ ActIaB};
• for s, s′ ∈ SI , α ∈ ACTI , s′ = τI(s, α) iff s ∈ SIB , s′ ∈ SIB ,

for every a ∈ AgIB, αa ∈ Acta I , and (s, α, s′) ∈ T IB ;
• for q ∈ AP , s ∈ SI , q ∈ LI(s) iff s ∈ QIB.

4 We do not explicitly assume that the various sets composing a CGS are
disjoint, as our results do not depend on this assumption.

In particular, since interpretation I satisfies Γ, the CGS GI is
well-defined, i.e., it satisfies Def. 8.

The Class of CGSs GI represented by some interpretation I of a
declarative model D = 〈B,Γ〉 is denoted by

CK(D) = {GI | for all ψ ∈ Γ, I |= ψ}

Inclusion of the well-formedness formulas in Γ insures that every
member of CK(D) is a valid CGS. There are many reasons for a
set of FOL formulae to have more than one satisfying interpretation:
the use of uninterpreted functions (relations) can result in more than
one satisfying interpretation. Moreover, under-constraining a model
makes it possible to have non-isomorphic CGSs that are satisfying
interpretations.

By Def. 14 two model checking problems can be studied.

Definition 15 (Universal and Existential Model Checking Problem)
The universal (resp. existential) model checking problem for a
declarative model D and an ATL formula ϕ, denoted by D |=∀ ϕ
(resp. D |=∃ ϕ), is defined as checking whether all (resp. some)
CGSs in CK(D) satisfy ϕ:

D |=∀ ϕ iff for all G ∈ CK(D),G |= ϕ

D |=∃ ϕ iff for some G ∈ CK(D),G |= ϕ

Example 2 An example of declarative modelD = 〈B,Γ〉 can have:

• Base B = 〈F ,R〉:
– F is empty;

– R = {Ag/1, S/1, S0/1, Actt/1, Actc/1, T/4, Out/1,
Req/1, Grant/1, In/1}.

• Constraints Γ includes formulas (1)-(6) in Def. 14 as well as:

– Ag(t) ∧ Ag(c)

– S(sI) ∧ S(s1) ∧ S(s2) ∧ S(s3)

– S0(sI)

– Actt(r) ∧Actt(e) ∧Actt(a) ∧Actt(i)
– Actc(g) ∧Actc(d) ∧Actc(k) ∧Actc(o) ∧Actc(i)
– T (sI , i, i, sI)∧T (sI , r, i, s1)∧T (s1, i, i, s1)∧T (s1, i, d, sI)∧
T (s1, i, g, s3) ∧ T (s3, a, i, sI) ∧ T (s3, e, i, s2) ∧
T (s2, i, o, sI) ∧ T (s2, i, k, s2)

– Out(sI) ∧Req(s1) ∧Grant(s2) ∧ In(s3)

Given B and Γ as defined above, we have the declarative model
D = 〈B,Γ〉 in which one of its interpretations is the CGS G de-
scribed in Example 1.

4 Model Checking ATL-live
In this section we tackle universal model checking for ATL-live for-
mulas. We also show how this approach can be applied to existential
model checking by analysing the relation between these two prob-
lems.

To model check a declarative model D = 〈〈F ,R〉,Γ〉 and an
ATL-live formula ϕ, we make use of functions theory and axiom to
create an enriched version of D. More in detail, for each subformula
ψ of ϕ, we add a new (characteristic) predicate Pψ to R, and to Γ
the set of constraints related to ψ, as follows.
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Definition 16 (Theory) Given a declarative model D and an ATL-
live formula ϕ, theory(D, ϕ) is inductively defined as follows.

Case ϕ of

q ⇒D
�ψ ⇒ 〈〈F ,R∪ {Pϕ/1}〉,Γ ∪ axiom(ϕ)〉

where 〈〈F ,R〉,Γ〉 = theory(D, ψ)
ψ1 ⊗ ψ2 ⇒ 〈〈F ,R1 ∪R2 ∪ {Pϕ/1}}〉,Γ1 ∪ Γ2 ∪ axiom(ϕ)〉

where 〈〈F ,R1〉,Γ1〉 = theory(D, ψ1)
and 〈〈F ,R2〉,Γ2〉 = theory(D, ψ2)

where � ∈ {¬, 〈〈Γ〉〉X, [[Γ]]X} and ⊗ ∈ {∨,∧, 〈〈Γ〉〉U, [[Γ]]U}.

Definition 17 (Axiom) Given an ATL-live formula ϕ, the set
axiom(ϕ) of FOL formulas is defined as follows.

Case ϕ of

q ⇒ ∀ s(Pϕ(s)↔ Q(s))
¬φ ⇒ ∀s(Pϕ(s)↔ ¬Pφ(s))
φ1 ∧ φ2 ⇒ ∀s(Pϕ(s)↔ (Pφ1(s) ∧ Pφ2(s)))
ϕ1 ∨ ϕ2 ⇒ ∀s(Pϕ(s)↔ (Pϕ1(s) ∨ Pϕ2(s)))
ϕ1 ∧ ϕ2 ⇒ ∀s(Pϕ(s)↔ (Pϕ1(s) ∧ Pϕ2(s)))
〈〈Γ〉〉Xϕ′ ⇒ ∀s(Pϕ(s)↔∃s′, α1, . . . , α|Γ|∀α|Γ|+1, . . . , α|Ag\Γ|

(T (s, α1, . . . , α|Ag|, s
′) ∧ Pϕ′(s′)))

〈〈Γ〉〉ϕ1Uϕ2 ⇒ (i) ∀s(Pϕ2(s)→ Pϕ(s)); (ii) ∀s((Pϕ1(s)∧
∃s′, α1,. . ., α|Γ|∀α|Γ|+1,. . ., α|Ag\Γ|
(T (s, α1, . . . , α|Ag|, s

′) ∧ Pϕ(s′)))→ Pϕ(s))
[[Γ]]Xϕ′ ⇒ ∀s(Pϕ(s)↔∀s′, α1, . . . , α|Γ|∃α|Γ|+1, . . . , α|Ag\Γ|

(T (s, α1, . . . , α|Ag|, s
′)→ Pϕ′(s′)))

[[Γ]]ϕ1Uϕ2 ⇒ (i) ∀s(Pϕ2(s)→ Pϕ(s)); (ii) ∀s((Pϕ1(s)∧
∀s′, α1,. . ., α|Γ|∃α|Γ|+1,. . ., α|Ag\Γ|
(T (s, α1, . . . , α|Ag|, s

′)→ Pϕ(s′)))→ Pϕ(s))

The function theory is recursive in the structure of ϕ. For each
operator in ATL-live, the constraints that are added to model D by
theory are defined by the (non-recursive) function axiom. For every
subformula ϕ′ of ϕ, axiom introduces one or two FOL formulas for
each new predicate Pϕ′ , which are then added toD. Observe that the
complexity of theory is linear in the size of ϕ.

Example 3 Given the declarative model of Example 2, D =
〈〈F ,R〉,Γ〉 and formula ϕ = 〈〈t〉〉Fin analysed in Example 1,
we construct a new declarative model D′ = 〈〈F ,R′〉,Γ′〉, where
R′ = R∪Pϕ and Γ′ is the union of Γ with the following constraints:

1. ∀s(S(s) ∧ Pin(s))→ Pϕ(s)
2. ∀s(S(s) ∧ ∃s′, αt,∀αc(S(s′) ∧ Actt(αt) ∧ Actc(αc) ∧
T (s, αt, αc, s

′) ∧ Pϕ(s′)))→ Pϕ(s).

Intuitively, (1) states that every state that satisfies in, also satisfies
〈〈t〉〉Fin. While, (2) states that if from state s there exists an action
for t such that for all the actions of c the resulting state s′ satisfies
〈〈t〉〉Fin, then s also satisfies 〈〈t〉〉Fin.

Recall that a declarative model is basically a set of constraints that
captures CGSs and its models define a class of CGSs, as shown in
Lemma 2. Given a declarative model D, every G ∈ CK(D) can
be seen both as a CGS and as an interpretation of D. As a conse-
quence, both [ϕ]G and PGϕ are sets of states: the extension of [ϕ]G is
determined by the semantics of ATL and considering G as a CGS,
whereas the extension of PGϕ is determined by the semantics of FOL

and considering G as a model of D. Hereafter, we explore the prop-
erties of the declarative model generated by the function theory.

First, we analyse the relationship between the class CK(D) of
CGSs defined by the declarative model D and theory(D, ϕ). The
declarative model theory(D, ϕ) contains a labelling predicate Pϕ′

and some constraints for every subformula ϕ′ of ϕ. As a result, every
CGS in CK(theory(D, ϕ)) can be converted into a CGS in CK(D)
by simply dropping the extra labelling predicates, as stated in the
following lemma, whose proof is immediate.

Lemma 3 Let D be a declarative model and ϕ an ATL-live for-
mula, for every G in CK(theory(D, ϕ)) there exists a G′ in CK(D)
that is a substructure of G, i.e., G′ v G.

Next we investigate the relationship between the set [ϕ] of states
that satisfy an ATL-live formula ϕ and the set of states defined by
the labelling predicate Pϕ. If φ is a propositional formula, as defined
in Def. 7, then for every G in CK(theory(D, φ)), the sets [φ]G and
PGφ are equal. This is due to the fact that the constraints that are
defined in Def. 17 for these connectives are necessary and sufficient
to characterize the set of states that satisfy φ.

Lemma 4 Let D be a declarative model and φ a propositional for-
mula as per Def. 7. Then,

for all G ∈ CK(theory(D, φ)), [φ]G = PGφ

Proof. The proof is by induction on the structure of φ. In the fol-
lowing cases, we assume that G ∈ CK(theory(D, φ)).
Base case: suppose φ = q, for q ∈ AP . By Def. 10 and 17, for every
state s, s ∈ [q]G iff q ∈ L(s), iff s ∈ QG , iff s ∈ PGq . Therefore,
[q]G = PGq .
Induction step: according to the structure of φ, two cases are distin-
guished, with [φ1]G = PGφ1

and [φ2]G = PGφ2
as induction hypothe-

ses:

1. Suppose φ = ¬φ1. By Def. 10, for every state s, s ∈
[¬φ1]G iff s 6∈ [φ1]G . By induction hypothesis, s 6∈ [φ1]G iff s 6∈
PGφ1

, and by Def. 17, s 6∈ PGφ1
iff s ∈ PG¬φ1

. Therefore, [¬φ1]G =

PG¬φ1
.

2. Suppose φ = φ1 ∧ φ2. By Def. 10, for every state s, s ∈ [φ1 ∧
φ2]G iff s ∈ [φ1]G and s ∈ [φ2]G . By induction hypothesis, s ∈
[φ1]G and s ∈ [φ2]G iff s ∈ PGφ1

and s ∈ PGφ2
, and by Def. 17,

s ∈ PGφ1
and s ∈ PGφ2

iff s ∈ PGφ1∧φ2
. Therefore, [φ1 ∧ φ2]G =

PGφ1∧φ2
.

A result similar to Lemma 4 can be proved for general ATL-live
formulas. A key difference, however, is that now the set [ϕ]G is a
subset of PGϕ rather than being equal. This is because the constraints
that are added to D by theory do not completely characterize [ϕ]G :
they are necessary but not sufficient. As a result, the set PGϕ includes
[ϕ]G and possibly some other states.

Lemma 5 Let D be a declarative model and ϕ an ATL-live for-
mula. Then,

for all G ∈ CK(theory(D, ϕ)), [ϕ]G ⊆ PGϕ

Proof. The proof is by induction on the structure of ϕ. In the fol-
lowing cases, we assume that G ∈ CK(theory(D, ϕ)).
Base case: suppose that ϕ is a propositional formula φ. By Lemma 4
we have [ϕ]G = PGϕ . In particular, [ϕ]G ⊆ PGϕ .
Induction step: according to the structure of ϕ, six cases are distin-
guished, with [ϕ1]G⊆PGϕ1

and [ϕ2]G⊆PGϕ2
as induction hypotheses:

24th European Conference on Artificial Intelligence - ECAI 2020
Santiago de Compostela, Spain



1. Suppose ϕ = ϕ1∨ϕ2. By Def. 10, for every s, s ∈ [ϕ1∨ϕ2]G iff
s ∈ [ϕ1]G s ∈ [ϕ2]G . By the induction hypotheses, if s ∈ [ϕ1]G
(resp. s ∈ [ϕ2]G) then s ∈ PGϕ1

(resp. s ∈ PGϕ2
), and by Def. 17,

s ∈ PGϕ1
or s ∈ PGϕ2

iff s ∈ PGϕ1∨ϕ2
. Therefore, [ϕ1 ∨ ϕ2]G ⊆

PGϕ1∨ϕ2
.

2. The case for ϕ = ϕ1 ∧ ϕ2 is similar to (1).
3. Suppose ϕ = 〈〈Γ〉〉Xϕ′. By the semantics of ATL,

for every s, s ∈ [〈〈Γ〉〉Xϕ′]G iff for some actions
α1, . . . , α|Γ|, for all actions α|Γ|+1, . . . , α|Ag\Γ|, we have
τ(s, α1, . . . , α|Ag|) = s′ and s′ ∈ [ϕ′]G . By induction
hypothesis, if τ(s, α1, . . . , α|Ag|) = s′ and s′ ∈ [ϕ′]G ,
then T (s, α1, . . . , α|Ag|, s

′) and s′ ∈ PGϕ′ . By Def. 17,
∃α1, . . . , α|Γ|∀α|Γ|+1, . . . , α|Ag\Γ|, T (s, α1, . . . , α|Ag|, s

′)
and s′ ∈ PGϕ′ implies s ∈ PG〈〈Γ〉〉Xϕ′ . Therefore,
[〈〈Γ〉〉Xϕ′]G ⊆ PG〈〈Γ〉〉Xϕ′ .

4. Suppose ϕ = 〈〈Γ〉〉ϕ1Uϕ2. By the semantics of ATL, s ∈
[〈〈Γ〉〉ϕ1Uϕ2]G iff for some strategy FΓ, for all outcomes p ∈
out(s, FΓ), there exists j ≥ 1, such that sj ∈ [ϕ2]G , and for all
i < j, si ∈ [ϕ1]G . We prove by induction on j, the least number
of steps required to get to a state that satisfies ϕ2, to prove that
s ∈ PG〈〈Γ〉〉ϕ1Uϕ2

. We assume that s ∈ [〈〈Γ〉〉ϕ1Uϕ2]G :
Base case: assume j = 0. In this case, s ∈ [ϕ2]G . By the induction
hypothesis, we have s ∈ PGϕ2

, and according to (i) in Def. 17, line
7, we obtain s ∈ PG〈〈Γ〉〉ϕ1Uϕ2

, as required.
Induction step: assume j = m + 1. The induction hypothesis
for this inner induction is: if s′ ∈ [〈〈Γ〉〉ϕ1Uϕ2]G and from s′

we can reach a state satisfying ϕ2 in less than m steps, then
s′ ∈ PG〈〈Γ〉〉ϕ1Uϕ2

. Since j is the least number of steps required
to get to a state that satisfies ϕ2, state s does not satisfy ϕ2 itself.
Hence, there exists a state s′ next to s that satisfies 〈〈Γ〉〉ϕ1Uϕ2

and j for that state is less than m: ∃s′T (s, α1, . . . , α|Ag|, s
′) and

s′ ∈ [〈〈Γ〉〉ϕ1Uϕ2]G , where for all a ∈ Γ, αa = Fa(s). Ac-
cording to the induction hypothesis for the inner induction, we
have ∃s′(T (s, α1, . . . , α|Ag|, s

′) and s′ ∈ PG〈〈Γ〉〉ϕ1Uϕ2
. Since

s ∈ [〈〈Γ〉〉ϕ1Uϕ2]G and s 6∈ [ϕ2]G , by the semantics of ATL,
we conclude that s ∈ [ϕ1]G . Using the induction hypothesis for
the outer induction ([ϕ1]G ⊆ PGϕ1

), we derive s ∈ PGϕ1
. Finally,

according to (ii) in Def. 17, line 7, and the above property, we ob-
tain s ∈ PG〈〈Γ〉〉ϕ1Uϕ2

. Thus, if j = m + 1 then s ∈ PG〈〈Γ〉〉ϕ1Uϕ2
.

By putting the base case and the induction step together, we con-
clude that [〈〈Γ〉〉ϕ1Uϕ2]G ⊆ PG〈〈Γ〉〉ϕ1Uϕ2

.
5. The case for ϕ = [[Γ]]Xϕ′ is similar to (3).
6. The case for ϕ = [[Γ]]ϕ1Uϕ2 is similar to (4).

As a result, Lemma 5 extends Lemma 4 to the wholeATL-live, but
we only have inclusion and not equality between the interpretations
of formula ϕ and relation symbol Pϕ.

The next lemma relates every CGS in CK(D) to a CGS in
CK(theory(D, ϕ)).

Lemma 6 Let D be a declarative model and ϕ an ATL-live for-
mula. For every G ∈ CK(D) there exists G′ ∈ CK(theory(D, ϕ))

such that s′0 = s0 and PG
′

ϕ = [ϕ]G .

Proof. Suppose G ∈ CK(D). Let G′ be an interpretation with
the same domain as G. For each symbol in the base of D, G′ has the
same value as G, and for every subformula ϕ′ of ϕ, G′ assigns [ϕ′]G

to symbol Pϕ, thus PG
′

ϕ = [ϕ′]G . According to the semantics of
ATL, the constraints that are added to D for each subformula ϕ′ of

ϕ by function theory, are satisfied by sets [ϕ′]G . Thus, G′ is a model
of CK(theory(D, ϕ)), i.e., G′ ∈ CK(theory(D, ϕ)).

In the next theorem we present our main contribution by combin-
ing the results we have proved so far: universal model checking of
ATL-live formulas can be reduced to checking semantic entailment
in FOL.

Theorem 7 Let D be a declarative model and ϕ a ATL-live for-
mula. Then,

D |=∀ ϕ iff theory(D, ϕ) |= ∀s(S0(s)→ Pϕ(s))

Proof. We prove that (i) if D |=∀ ϕ then theory(D, ϕ) |=
∀s(S0(s) → Pϕ(s)), and (ii) if D 6|=∀ ϕ then theory(D, ϕ) 6|=
∀s(S0(s)→ Pϕ(s)).

(i) Assume D |=∀ ϕ. We show that every model of theory(D, ϕ)
also satisfies ∀s(S0(s) → Pϕ(s)), that is, for all G ∈
CK(theory(D, ϕ)), s0 ∈ PGϕ . By Lemma 3, for every G ∈
CK(theory(D, ϕ)), there exists G′ ∈ CK(D) that it is a sub-
structure of G. Since G′ ∈ CK(D) and D |=∀ ϕ, we have that
G′ |= ϕ. Since G′ is a substructure of G, G′ |= ϕ implies G |= ϕ,
and by the semantics of ATL, G |= ϕ implies s0 ∈ [ϕ]G . Then,
by Lemma 5, s0 ∈ [ϕ]G implies s0 ∈ PGϕ . As a result, for every
G′ ∈ CK(theory(D, ϕ)), s0 ∈ PGϕ as required.

(ii) Assume D 6|=∀ ϕ. We show that there exists a model of
theory(D, ϕ) that does not satisfy ∀s(S0(s)→ Pϕ(s)), that is, there
exists G ∈ CK(theory(D, ϕ)) such that s0 6∈ PGϕ . Since D 6|=∀ ϕ,
there exists a CGS G ∈ CK(D) that does not satisfy ϕ, that is,
s0 6∈ [ϕ]G . Since G ∈ CK(D), by Lemma 6, there exists a CGS
G′ ∈ CK(theory(D, ϕ)) such that s0 = s′0 and [ϕ]G = PG

′
ϕ .

Since s0 6∈ PGϕ , we have that s′0 6∈ PG
′

ϕ . Thus, we obtain that for
G′ ∈ CK(theory(D, ϕ)), s′0 6∈ PG

′
ϕ as required.

By Theorem 7 we can reduce a universal model checking instance
D |=∀ ϕ to verifying the entailment between theory(D, ϕ) and
∀s(S0(s)→ Pϕ(s)). In principle, the latter check can be performed
automatically by an SMT solver.

We conclude this section by elaborating on the existential model
checking problem in Def. 15. To solve this latter problem using FOL
reasoning, we remark that a CGS G satisfies an ATL formula ¬ϕ iff
G does not satisfy ϕ. Note that the coimplication holds because we
consider CGS with a single initial state. More formally, we state next
result, which follows immediately by the semantics of ATL.

Lemma 8 Let G be a CGS and ϕ an ATL formula. Then,

G |= ¬ϕ iff G 6|= ϕ

By Lemma 8, we can prove the following corollary:

Corollary 9 Let D be a declarative model and ϕ an ATL-live for-
mula. Then,

D |=∃ ¬ϕ iff D 6|=∀ ϕ iff theory(D, ϕ) 6|= Pϕ(s0)

By Corollary 9 the existential model checking of a negated ATL-
live formula can be reduced to universal model checking.

5 Maximality of ATL-live
In Theorem 7 we showed that model checking ATL-live can be
reduced to semantic entailment in FOL. However, the logical con-
nectives 〈〈A〉〉G, [[A]]G, and ¬ over temporal connectives are not in-
cluded in ATL-live. We show that model checking these three con-
nectives is not reducible to FOL entailment, by reducing the com-
plement of the halting problem on an empty tape for a deterministic
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Turing machines to universal model checking of formulas of type
〈〈Ag〉〉Gϕ and [[Ag]]Gϕ. The complement of the halting problem is
not recursively enumerable, but FOL entailment is. Therefore, uni-
versal model checking of 〈〈Ag〉〉G and [[Ag]]G cannot be reduced to
checking entailment in FOL. We call this result the maximality of
ATL-live. We start by introducing deterministic Turing machines.

Definition 18 (DTM) A deterministic Turing machines is a tuple
M = 〈V,Σ, δ〉, where V = {v1, . . . , vn} is a finite set of states,
Σ = {B, 0} is the tape alphabet, and δ is the transition function
from V × Σ to V × Σ× {L,R}.

A DTMM = 〈V,Σ, δ〉 is assumed to start in state v0. We consider
M to have halted if it reaches state vn. The tape is one way infinite.
In the initial state, the read/write head is on the left-most square of
the tape, and every square on the tape is blank (B).

The intuition behind reducing the complement of the halting prob-
lem on an empty tape for a DTM to universal model checking of
〈〈Ag〉〉G and [[Ag]]G is that the set of all the configurations of a DTM
can be seen as the state space for a CGS and the transition relation
of this CGS can be derived from the transition function of the DTM.
Since the underlying DTM is deterministic, this CGS has only one
computation path, and therefore, satisfying 〈〈Ag〉〉G and [[Ag]]G is
equivalent.

Lemma 10 Let M = 〈V,Σ, δ〉 be a DTM . The complement of the
halting problem on an empty tape for M is reducible to universal
model checking of a formula 〈〈Ag〉〉G.

Proof. To prove this result, we define a declarative modelDM based
on M such that DM universally satisfies formula 〈〈Ag〉〉G¬halt iff
M does not halt on an empty tape. To encode M as a declarative
model DM = 〈B,Γ〉, we use the base B = 〈F ,R〉 such that

• F = {0, inc/1, dec/1, V/1, H/1}5;
• R = {B/2, S0/1, T/|Ag|+ 2, halt/1}.

The constant 0 represents the corresponding number. The function
symbols inc/1 and dec/1 are used to model increment and decre-
ment on natural numbers. We can refer to a natural number n by
applying n times inc to 0. In this lemma and the following, natural
numbers are shorthands of their representations using baseB. Natural
numbers are used to represent configurations of M : the position of
the head, the current state of M , and to point to different squares on
the tape. The expression V (t) = i intuitively represents that the state
of M at step t is vi, and H(t) = i represents that the head of M at
step t is on the i-th square. The binary relation symbol B(t, i) holds
if at step t the i-th square is blank. The relation symbols S0 and T
are used to model the initial state and transition function, while halt
is a relation symbol to represent the halting state.

In the declarative modelDM = 〈B,Γ〉, the constraints in Γ consist
of 5 parts:

1. Formulas to encode the intended semantics of 0, inc, and dec:

• ∀i(inc(i) 6= 0)

• ∀i, i′(inc(i) = inc(i′)→ i = i′)

• ∀i(i 6= 0→ (∃i′(inc(i′) = i)))

• dec(0) = 0

5 For simplicity, we make use of function symbols in the reduction. However,
notice that these are just shorthands, as they can be expressed by using
relation symbols and identity, thus conforming to Def. 13.

• ∀i(dec(inc(i)) = i)

• ∀i(i 6= 0→ inc(dec(i)) = i).

2. A formula stating that at each step of computation at most one po-
sition of the tape can be changed: ∀t, i(H(t) 6= i → (B(t, i) ↔
B(inc(t), i))).

3. Formulas to encode the initial configuration of M .

• V (0) = 0: at step 0, M is at state v0;

• H(0) = 0: at step 0, the tape head of M is at position 0;

• ∀iB(0, i): at step 0, every position of the tape is blank.

4. Formulas to encode the transition function δ: for every pair in V×
Σ we have a formula that mimics the computation of M .

5. Formulas for the initial state, transition function, and halting state
of the corresponding CGS. We use natural numbers as the state
space of the CGS. The configuration of M at state (step) t is rep-
resented by V (t), H(t), and B(t, ·):

• The initial state: ∀t(S0(t)↔ t = 0);

• The transition function:
∀t, t′, x1, . . . , x|Ag|(T (t, x1, . . . , x|Ag|, t

′)↔ t′ = inc(t));

• The halting states: ∀t(halt(t)↔ V (t) = n).

We now claim that the following holds:

DM |=∀ 〈〈Ag〉〉G¬halt iff M does not halt on an empty tape.

(⇒) DM |=∀ 〈〈Ag〉〉G¬halt implies that every CGS G ∈
CK(DM ) satisfies 〈〈Ag〉〉G¬halt. The standard interpretation of
natural numbers, which satisfies DM , corresponds to the computa-
tion of M . Since 〈〈Ag〉〉G¬halt means that there exists a path along
which halt is never true, and the DTM M is deterministic with only
one path, we can conclude that M does not halt on an empty tape.

(⇐) By induction on the number of steps, we can prove that if at
step t,M is at state vi, every CGS G ∈ CK(DM ) satisfies V (t) = i.
Assuming M does not halt on an empty tape, we can conclude that
every CGS G in CK(DM ) has an infinite path 0, 1, 2, . . ., where
none of them is the halting state vn. Therefore, every G ∈ CK(DM )
satisfies 〈〈Ag〉〉G¬halt, that is, DM |=∀ 〈〈Ag〉〉G¬halt.

Next result can be proved by using the same construction and re-
duction as for Lemma 10.

Lemma 11 Let M = 〈V,Σ, δ〉 be a DTM. The complement of the
halting problem on an empty tape for M is reducible to universal
model checking of a formula [[Ag]]G.

We conclude this section by stating our maximality result.

Theorem 12 (Maximality of ATL-live) The temporal part of
ATL-live cannot be extended with 〈〈A〉〉G, [[A]]G, or ¬ over temporal
objectives, for universal model checking in FOL.

6 Conclusions
In this paper we presented ATL-live, a fragment of ATL for which
the model checking problem is reducible to semantic entailment in
FOL. ATL-live comprises two parts: propositional and temporal.
The propositional part contains all Boolean connectives, whereas the
temporal part includes all strategic operators that are normally used
to express liveness properties. Our model checking technique accepts
as input a set of formulas, called a declarative model, where every
satisfying interpretation is a CGS. As a result, a declarative model
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represents in general a class of CGSs. In this setting, we studied two
decision problems: universal and existential model checking. In uni-
versal (resp. existential) model checking we want to check whether
all (resp. some) CGSs in the relevant class satisfy a given ATL for-
mula. We showed how our encoding ofATL-live in FOL can be used
to solve universal model checking and how existential model check-
ing can be reduced to the latter in some cases. Finally, we proved that
ATL-live is maximal in the sense that if any other ATL connective
is added, non-FOL reasoning techniques would be required.

As future work, we plan to study the use of SMT solvers and de-
cidable fragments of FOL for model checking ATL-live formulas.
After this step, we envisage to extend our framework in two differ-
ent and interesting directions: to infinite models (such as data-aware
systems [5]) and formulas with arithmetic operators.
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Uwe Serdült, and David Duenas-Cid, volume 11143 of Lecture Notes
in Computer Science, pp. 100–116. Springer, (2018).

[22] M. Kacprzak, W. Nabialek, A. Niewiadomski, W. Penczek, A. Pólrola,
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