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Abstract: In the absence of a flowmeter or due to its inaccuracy, the flow rate at the discharge
section of the pipeline following the observed pump can be roughly estimated if the pressure can be
measured instead. To use the proposed procedure two main conditions should be achieved: (1) a
manometer should be installed at the discharge pipeline between the pump and the flow regulation
valve, and (2) the actual curve that relates pressure and flow for the observed pump unit should be
known in advance. The described example is from Serbia, but it is of interest for any water pumping
station with a submersible pump (installed in wells or tanks) where a limited number of adequate
places for the measuring of flow are available (if any are available at all), but where the pressure at the
discharge pipe of the observed pump can be measured. This simplified method can find applicability
in installations in remote rural regions where limited resources are available. The results show that
the calculated values of the flow obtained by the presented method deviate greatly in relation to the
measured values provided by the portable ultrasonic flowmeter, up to 60% at one of the measuring
points. However, in relation to the measured values provided by the permanently installed flowmeter
the discrepancy is significantly lower (0.6–6.8%).

Keywords: pumps; pressure drop; flow estimation; accurate measurement; pipelines; water-
works; flowmeter

1. Introduction

In the absence of a flowmeter or due to its inaccuracy, the flow rate at the discharge
section of the pipeline following the observed pump can be roughly estimated if the water
pressure can be measured instead. Very often, it is practically impossible to select an
adequate place for a flowmeter due to the presence of many elements in a water pumping
station, such as valves and elbows where the pipeline changes its direction. The problem
of incorrect measurements of the discharge flow rate in waterworks can be easily solved
if a section of the pipe with an adequate length with no flow disturbances is foreseen at
the discharge side of the observed pump. To solve the problem, in this practical technical
note an alternative, simplified approach is given for a rough estimation of the flow rate
at the discharge section of the pipeline of those pumps where the flowmeter is absent or
when the reading from an existing flowmeter is unreliable due to an unfavorable pipeline
configuration or due to any other reason [1–7]. A pump is a machine that is used to transfer
quantities of liquids from one place to another, and here its flow-pressure characteristic
is used to estimate water flow rate at the discharge side of water pumping stations. The
presented simplified approach can be adapted to any other liquid, including crude oil
where a special application can be found in offshore installations with limited places
available for measurement.

In practice, there are situations when there are no flowmeters installed in pumping
stations (especially in remote low-income regions), which is especially common when it
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comes to pumping stations of smaller capacity. In such cases, portable flowmeters are used
to estimate the flow rate, i.e., the amount of liquid pumped in a certain period of time, but
choosing the place of their installation is not easy.

In certain installations with pumps, to make measurements, it is easier and less costly
to install only a manometer (in already existing installations, this will prevent additional
cutting of the pipeline to install a flowmeter). If the place at which a flow meter should be
installed is not properly chosen in the design phase properly chosen in the design phase,
the problem can be solved by a radical approach, which involves the excavation of a part
of the pipeline that is otherwise underground. However, this radical approach involves
significant costs and carries the risk of accidents.

The proposed approach for flow rate estimation has a general character and can be
applied in any pumping station with a submerged pump (in a tank or a well) provided that:

1. It has a pump unit with an in-advance known actual H(Q) curve gained from lab-
oratory testing (possible discrepancy between the design system curves available
from manufacturers and the on-site one is frequent and therefore such curves from
catalogues should be re-evaluated if possible), and,

2. The pressure can be measured at the dischargeside of the observed pump.

Restrictions include a lack of equipment to regulate the speed of the rotors, and the
use of two or more pumps in a parallel configuration, which means that their performance
cannot always be determined (especially true when the non-return valves at the pumps
are not fully tightened). Such a situation often occurs in small remote pumping stations
where the operating regime is not fully respected (the diameter of the suction pipe is not
always the same as the discharge pipe diameter when, due to the risk of cavitation, a larger
diameter of the suction pipe is usually used).

In the absence of permanent measurements of flow in waterworks, or where accuracy
is doubtful, the most commonly used practice is to compare the results that can be obtained
from several different portable control meters (these are, as a rule, portable ultrasonic
meters) [8–16]. We will also test our approach in this manner. As it will be presented, the
results estimated following the recommendation from this practical technical note are more
reliable compared to those obtained using portable flowmeters in systems with a complex
geometry of pipeline following the pump [17–21].

Based on one practical example from Serbia, the theoretical background will be pre-
sented further in the text. This simplified method can find application in installations in
remote, low-income regions where limited places for measurement are available (if any are
available at all).

Similar rough approximate methods for estimation of water flow using local pressure
loss measurements are not known to the authors, but inaccuracies of flowmeters are not
rare [22,23].

2. The Description of the Proposed Approach

To apply the simplified approach proposed in this work for flow-rate estimation,
it is necessary to have a pump with in-advance precisely determined H(Q) curve and
to have a manometer installed at the discharge side of the pump before the valve for
flow regulation [24,25]. It is not advisable to rely on the catalogued characteristics of the
pump, especially for older pump models. Even with the pump units of the same type
and manufactured in the same year, the operating characteristics will not be the same
and will depend on their real condition such as the number of operating hours, the wear
of impellers, the condition of bearings, the number of overhauls and losses in electric
motors, etc.

Figure 1 shows a general arrangement of elements required for the application of
the proposed indirect flow rate estimation in a pump station with submersible pumps
(the flowmeters depicted in red are not present at all or are possibly inaccurate due to
the unsuitable place of placement in a complex pipeline configuration). The example
of the placement of a portable flowmeter shown in Figure 1 is a typical example of an
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inappropriate position in which a significant error in flow measurement occurs (high
measurement uncertainty).
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Figure 1. The layout of the elements required for flow rate estimation.

Regarding the scheme from Figure 1, one should not forget about the pressure loss in
the vertical section of the pipeline—the pressure measured at its top is lower than at the
pump head.

Taking into account the complexity of the pipeline, the equivalent characteristics of
the pump should be evaluated through the analysis of the individual system of pipes on
which the pump is installed. In such a case, it is difficult to talk about the compliance or
noncompliance of the measured characteristics to those given by the pump manufacturer.

In practice, there are situations where flowmeters are not installed in pumping stations,
which is especially common when it comes to pumping stations of smaller capacity (usually
with two pump units that do not work in a parallel configuration, but where one of them
is used as a backup pump). In such cases, portable flowmeters are used to estimate the
flow rate, i.e., the amount of liquid pumped in a certain period, while the choice of the
position of their installation is not easy. If there are no manholes prepared in advance, it
is necessary to excavate the ground around the pipeline. In such situations, this is not a
common practice, but rather the flowmeter is placed in any accessible place.

For the flow-rate estimation, the pressure can be expressed in [Pa] (in [bar], where
1 bar = 105 Pa) or as a pressure head in a unit of length [m], where these two forms are
related as pdis = ρ·g·H, where pdis is pressure [Pa] measured by the manometer at the
discharge side (exactly above the pump), ρ is the density of the water ~1000 kg/m3, g is
gravitational constant ~9.81 m/sec2, while H is pressure head [m]. Hg is the correction in
[m], which depends on the height difference between the position of the manometer and
the water level in the tank. If the water level in the tank is constant during the experiment,
the velocity at the suction side is Vsuc = 0 [m/s]. The velocity at the discharge side Vdis
depends on the pipeline diameter and the flow rate, which are unknown variables at the
beginning. This problem can be solved either by the implementation of iterative analysis,
or by proper choice of the position of the manometer (as it is shown in Section 3.2.1).
Neglecting local losses from the point of fluid suction to the point of pressure measurement,
total head Ht in [m] can be estimated using Equation (1):

Ht =
pdis
ρ·g + Hg +

V2
dis

2·g (1)
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To test the approach for indirect estimation of pump flow discharge proposed here, the
valve at the discharge side of the pump should be fully open. Further, the valve needs to be
gradually closed in discrete steps, which changes the values of the flow and subsequently
of the pressure. Therefore, for each achieved stationary operating point, the values of
the pressure pdis from the manometer should be recorded. Based on Equation (1) and
graph in Figure 2, it is possible to estimate the flow rate Qest at the discharge side of the
observed pump. The curve in Figure 2 relates the total head Ht and the flow rate Q and
has to be obtained from the manufacturer’s catalogue or preferably from a laboratory
test in advance. The possibility of discrepancy between the laboratory characteristics and
characteristics from the catalogue is something that exists in reality, especially for an older
pump, which has been in service for a long period of time and has been defined by valid
technical standards (such as [26]). Depending on the type of pump required, minor or major
deviations from the factory characteristic are permitted. The technical standard, EN ISO
9906:2012 [26], allows relatively large discrepancies between the operating characteristics
of the pumps the catalogue characteristics.
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Figure 2. Indirect determination of flow Qest at the measuring point based on the curve, which relates total head Ht and
flow Q.

Therefore, the corresponding flow Qest can be determined indirectly for each mea-
suring point from the known H(Q) curve, (with satisfactory measurement uncertainty)
for each measuring point of the pressure pdis obtained from the manometer, as shown in
Figure 2 (recalculated to H).

The following simple algorithm, shown in Figure 3, should be used to estimate the
flow rate using the proposed approach.
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3. A Practical Example

The pumping station observed in which the method has been tested has had a long
history of questionable measurements of flow due to the complex geometry of the pipeline
with an insufficient length of pipe where a flowmeter can be installed. Simplified diagram
of the measuring pump station is shown in Figure 4 (the top view).
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Figure 4. Simplified diagram of the pump station.

Due to a serious mistake during the construction process, the main discharge pipeline
made of steel DN700 is not in accordance with the original project and has three elbows at
short distances. Pumps are submersed in the water tank, which is placed beneath the floor
of the pump station. The water level in the tank is held at a constant value. During the
modernization of the pump station that has been carried out recently, the old pumps were
taken out and replaced with two new submersible pumps (Grundfos SP 270-3A G). Before
the installation, one of the new pumps, marked as P1 in Figure 4, had been additionally
tested by the manufacturer’s laboratory.
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To verify the accuracy of the simplified approach proposed here in practice, flow
measurements in the observed pumping station using flowmeters were performed (in
further text Qmes) and then those measured values were compared to the estimated values
(in further text Qest). Besides, the exact curve of the observed Grundfos SP 270-3A G, which
relates total head Ht and flow Q was determined in the manufacturer’s laboratory (the
testing of the pump in the manufacturer’s facility is shown in Figure 5, while the results are
shown in Table 1). In the specific situation presented in this paper, the real characteristics of
the pump recorded in the laboratory differ from those from the manufacturer’s catalogue.
Furthermore, sometimes it is not possible to have a stable frequency of 50 Hz, so the
actual curve from the laboratory, which relates the total head Ht and the flow Q should be
recalculated for the actual conditions in the observed water pumping station [27]. As we
will show in the following case, the operating frequency was set to 49 Hz, to show how to
recalculate a curve designed for 50 Hz.
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Figure 5. Testing of SP 270-3A G pump in the laboratory.

Table 1. Values for the curve that relates total head and flow of the SP 270-3A G pump measured in
the laboratory at 50 Hz and recalculated for 49 Hz.

50 Hz

Q [dm3/s] 0 11.67 59.88 75.84 90.08
H [m] 145.38 138.89 97.47 86.2 71.96

49 Hz

Q [dm3/s] 0 11.44 58.68 74.32 88.28
H [m] 139.62 133.39 93.61 82.79 69.11

The following equipment was used for the test in the pumping station:

1. A submersible pumping unit Grundfos SP 270-3A G with a rated power of 110 kW,
2. The flow was measured using a permanently installed ultrasonic flowmeter Siemens

SITRANS F at the main discharge pipeline atthe observed pump station (additionally
a portable ultrasonic flowmeter TDSH100 was used),
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3. The pressure was measured using an IDROSCAN digital manometer which was
installed on the discharge side of the pump (additionally, an analogue manometer
was installed),

4. The frequency of the power supply tothe drive motor was regulated using a Mitsubishi
F740 regulator, and

5. The flow was regulated using the valve installed at the steel discharge pipe DN 200
after the pump P1.

All equipment used in our experiments has been properly tested using all common
technical norms and standards required for such devices [28].

3.1. Determination of Substitute Characteristics

The purpose of this subsection is to show how the accurate H(Q) curve of the observed
Grundfos SP 270-3A G was determined.

3.1.1. Measuring in the Manufacturer’s Laboratory and the Recalculation for the Actual
Frequency of Power Supply

The measuring in the manufacturer’s laboratory: The actual H(Q) curve of the ob-
served pump SP 270-3A G was determined experimentally in the manufacturer’s laboratory
and the results are valid for power supply frequency of 50 Hz (related flows and the pres-
sure obtained in discrete steps, which have been used to construct the curve are given in
Table 1).

Laboratory tests are expensive, but they are not mandatory and do not represent
what the authors suggest in every situation. In certain situations, especially when it
comes to pumping units of higher power, the price of such tests may be negligible when
compared to the possibilities that the user can get with the help of such tests. The fact
is that pump manufacturers usually do not agree to prove the performance of pumping
units at the installation sites of such pumps, because they cannot guarantee the accuracy of
the measuring equipment in the pumping stations where the observed pumps have been
installed. Instead, they prefer testing in an independent or the manufacturer’s laboratory.
Also, the characteristics of pump units change during service life. In situations where there
are flowmeters installed in pumping stations, it is not complicated to periodically perform
measurements at the installation site to check and/or correct the operating characteristics
of pumping units. This can usually be done as a part of planned maintenance activities in
the pumping stations so that it does not increase running costs. This way, the degree of
deterioration of the operating characteristics of the pumping units can be monitored. This
is particularly important because their efficiency can be reduced to such an extent that it
would be necessary to repair and/or to replace them.

The observed pumping station in which the method was tested has had a long history
of questionable measuring of flow due to the complex geometry of the pipeline with
insufficient length of pipe where a flowmeter could be installed. The installed pumps are
old and due to hard exploitation, their characteristics were altered compared to those from
the catalogue. Therefore, the old pumps were taken out and replaced with new pumps
which have been additionally tested by the manufacturer’s laboratory (testing of the pump
in the manufacturer’s facility is shown in Figure 5, while the results are shown in Table 1).

Recalculation for the actual frequency of the power supply: For an illustration of
the proposed estimation of the flow in general conditions, during the test in the water
pumping station where the pump has been installed, the frequency has been set to 49 Hz
using a Mitsubishi F740 regulator and consequently, the curve, which relates total head
Ht and flow Q for such conditions has been recalculated. The corrected values have been
calculated using Equation (2) and are also presented graphically in Figure 6 (based on the
data points from Table 1).

H49 =
(

49
50

)2
·H50

Q49 = 49
50 ·Q50

}
, (2)
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Statistical calculations in the shown case are based on a limited number of measure-
ment points from Table 1. Although this may be insufficient for a thorough analysis where
the number of these points should be increased, for practical analyses, five points can be
sufficient especially in cases where more data is not available such as in this case.

3.1.2. Regression Model and Statistical Analysis

To facilitate the use of the data from Table 1, the total head and the flow of the pump
SP 270-3A G in our experiment can be presented graphically as given in Figure 6. The
corrected graph for 49 Hz is also given in Figure 6, while the related curve based on
regression analysis is given in Equation (3).

To avoid reading from the curve presented in Figure 6, it is better to use the regression
formula as given in Equation (3), which gives the flow as the function of the total head for
the observed pump; the data from the laboratory for 50 Hz and recalculated values for 49
Hz are in Table 1.

Qest−49 = −0.0018·H2 − 0.8643·H + 156.77 (3)

The data from the measurement that was used for producing of Equation (3) is given
in Table 1. The relation based on the input data of Table 1 was fitted by regression analysis
using Statgraphics Centurion, a statistical statistics package that performs and explains, in
plain language, both basic and highly advanced statistical functions. We have tried several
regression models, and we tested them using Pearson correlation and R-Squared value
coefficient of determination [29,30]:

• The coefficient of determination R-Squared value denoted as R2 equals to 1.0 would
indicate a perfect fit, while an R-Squared value of 0.0 would indicate the opposite case;

• The Pearson correlation coefficient is a statistic that measures the linear correlation
between two variables and has a value between +1 and −1, where a value of +1 is
a total positive linear correlation, 0 is no linear correlation, and −1 is total negative
linear correlation.
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In our particular case, a linear model is slightly more suitable for the points from
Table 1, but we use the squared model because it is more general and suitable for most
cases. For example, the linear model Qest−49 = 180.147− 1.26628·Ht, shows the Intercept
180.147 and the Slope −1.26628 as predictors. These variables are statistically significant
because their p-values equal 0.000, which are < 0.05. It also means that there is a statistically
significant correlation between Qest−49 and Ht at the 95% confidence level (details of the
statistical analysis are given in Table 2).

Table 2. Comparison of alternative models obtained by the Statgraphics Centurion software using
Pearson correlation and R-Squared value coefficient of determination.

Model Correlation R-Squared

Linear −0.9991 99.82%
Squared-Ht −0.9980 99.60%

Squared-Qest−49 reciprocal-Ht 0.9978 99.56%
Square root-Ht −0.9977 99.53%
Logarithmic-Ht −0.9945 98.91%

Squared-Qest−49 logarithmic-Ht −0.9920 98.41%
Squared-Qest−49 square root-Ht −0.9866 97.34%

Reciprocal-Ht 0.9822 96.47%
Squared-Qest−49 −0.9799 96.03%

Square root-Qest−49 squared-Ht −0.9760 95.26%
Square root-Qest−49 −0.9663 93.37%

Double squared −0.9643 92.98%
Double square root −0.9592 92.01%

Square root-Qest−49 logarithmic-Ht −0.9504 90.33%
Square root-Qest−49 reciprocal-Ht −0.9269 85.92%

Besides, it is possible to use the points from Figure 6 and Table 1 valid for the frequency
of power supply of 50 Hz to construct the curve and the related function, while in that case
the values of the measured flow and the pressure from the next two subsections where the
frequency was 49 Hz, should be recalculated for 50 Hz, see Equation (2).

3.2. Measurement in the Observed Pumping Station

The measurements in the observed pumping station were performed for comparison
with the estimated values obtained using the shown simplified method. The pressure mea-
surement in this subsection is used as one of the input parameters and is essential for the
method of flow estimation described in this technical note. However, flow measurements
in this subsection are used only for comparison. The frequency of the power supply during
the measurement at the water pumping station was set to 49 Hz.

3.2.1. Pressure Measurement

The pressure change, in the section between the pump and the valve for the regu-
lation of flow, was monitored by IDROSCAN digital manometer with measuring range
0–50 bar (with a reading resolution of 0.01 bar and with a declared nonlinearity ±0.2%).
The IDROSCAN digital manometer was placed directly on the discharge side of the pump,
together with the analogue manometer (Figure 7). Because of the position of the manome-
ters, some undesirable variation of flow can occur which can introduce a certain error of
pressure measurement due to incompletely stabilized flow. However, both manometers
showed the identical values of the measured pressure. It should be mentioned that due to
the specific placement of the manometer (it is mounted in a special socket on the elbow of
the discharge pipeline, exactly above the pump), the water velocity at the point of measur-
ing is locally considered to be Vdis ≈ 0 [m/s]. Thus, the measured pressure is somewhat
higher than the real static pressure and includes the dynamic pressure. Due to the height
difference between the position of the manometer and the water level in the tank during
our experiment, correction Hg = 1.6 m (related to Figure 1) is introduced into Equation (1).
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The measured values of pressure are given in Table 3.

Table 3. Values obtained by using the presented method in the observed pumping station.

Directly Measured Estimated Error

pdis [bar] Ht [m] Q-SITRANS F
[dm3/s]

Q-TDSH100
[dm3/s] Qest−49 [dm3/s] ∆q%-SITRANS F [%] ∆q%-TDSH100 [%]

8.00 81.71 79.5 64.2 74.13 6.8% −15.5%
8.10 82.73 77.5 61.2 72.94 5.9% −19.2%
8.19 83.65 77.0 70.0 71.87 6.7% −2.7%
8.31 84.88 74.8 67.0 70.44 5.8% −5.1%
8.44 86.21 73.3 54.4 68.88 6.0% −26.6%
8.60 87.84 70.8 50.4 66.96 5.4% −32.9%
8.80 89.88 67.0 46.8 64.54 3.7% −37.9%
9.09 92.85 62.5 44.0 61.01 2.4% −38.7%
9.59 97.95 54.5 34.3 54.84 0.6% −59.9%

Ht is calculated using Equation (1) where Hg = 1.6 m.

3.2.2. Flow Measurement

For comparison to our described method for flow friction estimation, we have per-
formed two measurements using two different flowmeters; the permanently installed and
a portable flowmeter.

Flow measurement using permanently installed ultrasonic flowmeter: The actual
flow during our experiment was measured using the permanently installed Siemens
SITRANS F ultrasonic flowmeter, which is shown in Figure 8.
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A certain error should be predicted related to this measurement because the ultrasonic
probes of Siemens SITRANS F flowmeter have been installed at the underground section
of the steel pipe DN 700 with insufficient length for the flow to be fully developed, due to
the lack of space (Figure 4).

Flow measurement using portable ultrasonic flowmeter: During the experiment,
additional control of flow measurement was attempted with a portable ultrasonic flowmeter
TDSH100 (shown in Figure 9).
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As shown in Figures 4 and 10, during this additional measurement, the measuring
probes were placed in the most favorable available place inside the building (on the 3 m
long straight section of steel pipeline DN 200). Even so, it was not possible to obtain a
satisfactory signal quality, as indicated by a clear warning on the measuring device display.
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3.3. Error Estimation

The flows obtained by direct measurement using the Siemens SITRANS F flowmeter
and by using the portable ultrasonic flowmeter TDSH100, and those estimated using the
method here presented are shown and compared in Table 3 (the frequency of the power
supply during measurement in the water pumping station was set to 49 Hz). Table 3
summarizes the measured and the estimated values from our experiment calculated using
the approach proposed here. We suppose that the flow Qest estimated using this approach
is accurate, while the measured values Qmes by both flowmeters, SITRANS F and TDSH100,
contain a certain level of error. The relative error of the installed flowmeters ∆q% in [%] can
be calculated using Equation (4):

∆q% =
|Qmes −Qest|

Qest
·100%, (4)

In Equation (4), Qmes is the flow measured by flowmeters, while Qest is the flow ob-
tained using our method; from Figure 9 and using Equation (3). Both the measured and the
estimated values of the flow are expressed in [dm3/s]. Due to the height difference between
the position of the manometer and the water level in the tank during our experiment, the
correction of Hg = 1.6 m (related to Figure 1) is introduced into Equation (1).

As can be seen in Table 3, the two flowmeters used in our experiment give different
results, while the permanently installed SITRANS F shows flow rates which do not differ
significantly from the results obtained by using the presented approach. On the other
hand, ultrasonic flowmeter TDSH100 is not reliable due to the lack of adequate position
on the pipeline where the flow is fully developed and stable (the error was indicated on
the display). The fact that in the example presented there was a permanently installed
flowmeter made it possible to see that the portable meter does not provide accurate results,
but in many other cases where there are no permanently installed measuring devices, such
a conclusion cannot be made. In that sense, the results obtained by the approach proposed
in this practical technical note are certainly much more reliable.

4. Conclusions

The simplified approach for flow estimation presented here can be applied in sub-
mersible pumping stations where a valve that regulates flow together with manometer is
installed on the discharge pipe of the monitored pump for which the H(Q) curve is known.
Two main requisites are: (1) in the absence of accurate curves from manufacturers’ cata-
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logues, which are available only for brand new pumps, the curve that relates the pump’s
head and the flow should be known in advance from a laboratory, and (2) a manometer
should be installed after the pump and before the regulating valve.

The approach should be used in cases where a direct measurement of the flow is not
possible due to an insufficient length of the discharge pipe where the flow disturbance is
so high that the readings from a flowmeter are unreliable. During the practical experiment
which has been described in this technical note, the data obtained by the TDSH100 is
completely unreliable and cannot be used for the flow rate measurement, while on the other
hand, the permanently installed Siemens SITRANS F flowmeter gives acceptable results
that can be compared with the flows estimated using our proposed simplified approach.

If there is a flowmeter installed in the pumping station, which showed accurate
measured values at the beginning of the pump life due to the deterioration of the operating
characteristics of the pump units there will be increasing deviations between the real flow
measured. It is the deviation that should show the degree of degradation of the pump
unit’s operating characteristics and show when it should be repaired or replaced.

The simplified rough method shown here can find its applications in remote rural
low-income regions where water distribution is carried out through submersible pumps
(installed in wells or tanks) and where flowmeters are not installed but instead pressure
can be measured or estimated. Also, this approach can find application in offshore oil and
gas installations where the direct flow measurement cannot always be easily performed.
The simple approach can find its additional application in leak-diagnostic systems in a
network of pipes, in pipelines connected with turbines, in the appropriate use of actuators,
in the estimation of the density of the pumped liquid, etc. [31–38].

As the next step in the development of the proposed flow-rate estimation [39–41],
connections between the flow and electrical quantities of the drive electric motor should
be established. Electrical quantities are much easier to measure accurately, the equipment
is less costly and most of these quantities are monitored and recorded on appropriate
SCADA applications. Besides, as a further step, artificial intelligence can be used for error
estimation in calibrating the utility of ultrasonic flowmeters. [11,42].
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Abbreviations

Q flow [m3]
Qest estimated flow rate using the proposed approach
Qmes measured flow rate using flowmeters
p pressure [Pa]
pdis pressure at the discharge side of the pump
H pressure head [m], where p = ρ·g·H
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ρ density of fluid [kg/m3]; for water ~1000 kg/m3

g gravitational constant ~9.81 m/s2

Hg correction [m] due height difference
Ht total head [m], where Ht = H + Hg
H49 total head at 49 Hz
H50 total head at 50 Hz
Q49 flow rate at 49 Hz
Q50 flow rate at 50 Hz
∆q% relative percentage error; ∆q% = 100%·|Qmes−Qest|

Qest

Vsuc velocity at the suction side of pump [m/s]
Vdis velocity at the discharge side of pump [m/s]
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40. Praks, P.; Brkić, D. Review of new flow friction equations: Constructing Colebrook’s explicit correlations accurately. Rev. Int.
Métodos Numéricos Para Cálculo Diseño Ing. 2020, 36, 41. [CrossRef]
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