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Stochastic Interacting System for MK Optimal Mass Transport Problem *

We introduce and study a stochastic model that we can associate with Monge-Kantorovich (MK) optimal mass transport problem. It consists in a random process evolving over time which give an interacting particle system describing the random optimal mass transportation. We treat the problem as a set of particles moving according to simple rules in a network of positions. During a time step, we imagine a random clock placed at each position is turning to manage the transportation by making the particles spread, if necessary, to random positions in order to fulfill a required constraint. Starting for instance from zero, our dynamic provides Markov processes modeling a random evolution of the transportation. The main feature of our random dynamic is to achieve long-term good value prices at each site and an optimal transportation of the mass in turn. We prove that the continuum limit, that is the limit of the rescaled stochastic process, provides a deterministic dynamic description of how to reach the optimal solution for both problems MK-problem and its dual formulation (DMKproblem). It corresponds to a system of evolution equations whose solutions converge, for a large time, to the solutions of MK-problem and DMK-problem .

Introduction

The optimal mass transport problem is to consider how to move one distribution of mass to another one as efficiently as possible with respect to a cost function c(x,y) specifying the transportation tariff per unit mass. This is an intensively studied topic ; we shall not mention here all contributions but refer to [START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Villani | Optimal Transport, Old and New[END_REF], [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF] and [START_REF] Evans | Partial differential equations and Monge-Kantorovich mass transfer[END_REF] for more details.

Let ν 1 and ν 2 be two nonnegative Radon measures with disjoint supports Ω 1 and Ω 2 , respectively, satisfying the balance condition ν 1 (IR N ) = ν 2 (IR N ). The Monge-Kantorovich problem (MK-problem for short) of optimal mass transportation consists in determining a nonnegative Radon measure µ with respective marginals ν 1 and ν 2 that minimizes the Monge-Kantorovich cost c(x, y) dµ(x, y),

where the cost function c : IR N × IR N → IR + is a given lower semi-continuous function. We can imagine that ν 1 is a density of material we want to transport to a destination of capacities measured by ν 2 , and c(x, y) is the the price we have to pay for each unit of materials which is transported from x ∈ Ω 1 to y ∈ Ω 2 . An arbitrary transport plane µ(x, y) gives the quantity of material we can load from x ∈ Ω 1 to the destination y ∈ Ω 2 . The Monge-Kantorovich problem aims to minimize the total cost among all the admissible transport planes µ(x, y), with respective marginals ν 1 and ν 2 .

To recall the dual formulation, let us introduce u 1 (x) (resp. u 2 (y)) an arbitrary price of loading (resp. unloading) one unit of materials at position x ∈ Ω 1 (resp. at destination y ∈ Ω 2 ). The quantity

u 1 dν 1 + u 2 dν 2 (1)
gives the total price we need to pay for the transport of ν 1 into ν 2 , with the price distribution

u 1 χ Ω 1 + u 2 χ Ω 2 .
The new problem now aims how to arrange the price distribution in such a way that the total price is (almost) as much as we would have been ready to pay by minimizing the Monge-Kantorovich cost. Of course, to be profitable we can check very easily that the prices need to fulfill the constraint u 1 (x) + u 2 (y) ≤ c(x, y), for any (x, y) ∈ Ω 1 × Ω 2 .

(2) More precisely, in the new problem we seek a couple (u 1 , u 2 ) satisfying the constraint (2) that maximizes the quantity [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF]. This is the so called dual Monge-Kantorovich problem (DMKproblem for short). The Kantorovich duality says that we can find a couple of prices (u 1 , u 2 ) and a transport plane in such a way that we pay the same price in either formulation. Moreover, this price will be the optimal one for both problems ; MK-problem and DMK-problem.

There is an extensive literature on MK-problem and DMK-problem. They were introduced by Kantorovich ( [START_REF] Kantorovich | On the transfer of masses[END_REF]) as a relaxed formulation of the optimal mass transport problem whose study was initiated by Monge himself ( [START_REF] Monge | Memoire sur la théorie des déblais et des remblais[END_REF]). Several other authors continued his work (we mention the bibliographical notes [START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Villani | Optimal Transport, Old and New[END_REF], [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF] and [START_REF] Evans | Partial differential equations and Monge-Kantorovich mass transfer[END_REF] for more details). Optimal mass transportation problem has become a famous optimization problem, with applications appearing in economics, meteorology, astrophysics, probability, and image analysis.

Our main interest here is to give a new interpretation of the optimal mass transportation problem. We introduce a random process evolving over time which gives a stochastic interacting system associated with MK-problem and DMK-problem. Roughly speaking, we present a dynamical random way to manage the price of loading and/or unloading the mass, as well as a dynamical random way to transport the mass between ν 1 and ν 2 , so as to converge towards optimal solution, which correspond to the solutions of MK-problem and DMK-problem, respectively.

In our method, we begin by transforming the problem into a discrete one. By using a small rescaling parameter ε, we redistribute the total mass ν 1 (resp. ν 2 ) over a discrete set D 1 (resp. D 2 ) of positions, that we call sites. We adapt the cost function to the new configuration of the problem by rescaling c into a new one ĉ defined on D 1 × D 2 . This gives rise to a discrete optimal transport problem of how to move the atomic distribution of mass ν ε 1 concentrated in D 1 to ν ε 2 which is concentrated in D 2 , with respect to the cost ĉ. We treat the price function as a set of particles moving according to simple rules in the network of positions in D := D 1 ∪D 2 . We define the space of configurations S to consist of functions η : D → Z Z such that η(x) -η(y) ≤ ĉ(x, y), for any (x, y) ∈ D 1 × D 2 . We start with an arbitrary configuration (for instance η ≡ 0). The configuration η attempts to increase (resp. decrease) at a site x ∈ D 1 (resp. y ∈ D 2 ) by one unit when the random clock rings at the position x ∈ D 1 (resp. y ∈ D 2 ). The increase (resp. decrease) takes place if the new configuration η + δ x (resp. η -δ y ) remains in S. Otherwise, the increase (resp. decrease) is replaced by an increase (resp. decrease) in a position which is randomly selected over the allowable positions in D 2 (resp. D 1 ). In this way we construct a stochastic process (η(t, x), t ≥ 0, x ∈ D) to describe the random evolution of the price function. Moreover, we construct a stochastic process (κ(t, x, y), t ≥ 0, (x, y) ∈ D 1 × D 2 ) to describe the random evolution of the transportation between D 1 and D 2 . Then, we derive a macroscopic system of equations for the limits

u = lim ε→0 u ε and µ = lim ε→0 µ ε ,
where u ε and µ ε are the expectation of random functions obtained by rescaling η and κ respectively. Roughly speaking, we notice that the rescaling of η and κ we are using aims to cover, in one hand, the control of the rate of arrival of new events that consists of a faster and faster increase/decrease of the valued of the random price. On the other hand, it aims to cover some kind of homogenization that return back from the discrete problem to the continuous one.

The macroscopic system of equations we obtain as a continuum limit is a new evolution equation of non local type where the unknown is the couple (u, µ) satisfying a system of coupled equations. As t → ∞, u(t) and µ(t) converge to the solution of DMK and MK problems respectively.

The paper is organized as follows. In Section 2, we recall some basic facts on the optimal mass transport problem. In Section 3, we set our assumptions on the measure ν 1 and ν 2 . For technical reason, we assume that ν 1 and ν 2 satisfy additional assumptions which are not true in general. But, they are fulfilled in many concrete situations like atomic measures, absolutely continuous measures with respect to Lebesgue and many others. Then, we approximate the optimal mass transport problem by a discrete one, where the transportation problem basically aims to find the best way to fulfill the demand of N 1 demand points using the capacities of N 2 supply points. We denote D 1 the set of demand points and D 2 the set of supply points. In Section 4, we set our main results. In a first part, we introduce our stochastic model for the discrete optimal mass transportation problem. The random dynamics that keeps the configuration allowable is managed by a probability distribution of the price. We define a couple of Markov processes η(t) and κ(t, x, y) to describe the random price of loading and/or unloading material and the random plane distribution of the material, respectively, for any time t ≥ 0. Here ηχ D 1 is the random loading price and -ηχ D 2 is the random unloading price. The stability condition requires for each time t ≥ 0, that η(t, x) -η(t, y) ≤ ĉ(x, y) for any (x, y) ∈ D 1 × D 2 , where ĉ is a rescaled cost function. The stochastic model gives a random description on the discrete approximation. The connection with the original problem appears in the study of the so called fluid limit. This is the aim of the second part of Section 4. The limit gives two equivalent evolution problems : one evolution equation governed by by a sub-differential operator (for which the large time behavior gives a solution of DMK-problem), and one system of two nonlocal equations (for which the large time behavior gives a solution of MK-problem) describing the exchanges between the positions x ∈ Ω 1 and the positions y ∈ Ω 2 . Then the rest of the paper is devoted to the proofs. In Section 5, we give some preparatory results. In Section 6, we prove the convergence to the evolution DMK-problem. In Section 7, we prove the convergence to the evolution MK-problem. In the last section, we show that the two problems are equivalent and that the large time behavior provides a solution to MK-problem as well as a solution of DMK-problem.

Preliminaries, assumptions and functional setting

Let ν 1 and ν 2 be two nonnegative Radon measures with disjoint supports Ω 1 and Ω 2 , respectively, satisfying the balance condition

ν 1 (Ω 1 ) = ν 2 (Ω 2 ). (3) 
We fix c : IR N × IR N → [0, +∞] a lower semi-continuous cost function.

Preliminaries

The pushforward measure of µ by T, a map from a measure space (X, µ) to an arbitrary space Y , is denoted by T #µ and is given explicitly by

(T #µ)[B] = µ[T -1 (B)].
We will use the usual convention of denoting by The Monge-Kantorovich problem is to find a measure µ * ∈ Π(ν 1 , ν 2 ) which minimizes the cost functional K(µ), that is, to find a solution to the minimization problem

π x , π y : IR N × IR N → IR N (the projections)
K(µ * ) = min{K(µ) : µ ∈ Π(ν 1 , ν 2 )}. ( 5 
)
The elements µ ∈ Π(ν 1 , ν 2 ) are called transport plans between ν 1 and ν 2 , and µ * satisfying (5) is called an optimal transport plan between ν 1 and ν 2 .

Proposition (see [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF][START_REF] Pratelli | On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation[END_REF] and the references therein) Under the above assumptions, there exists an optimal transport plane µ * ∈ Π(ν 1 , ν 2 ) solving MK.

Monge-Kantorovich dual problem (DMK-problem ) :

As we said in the introduction, the dual problem is to find (u * , v * ) that maximize

D(u, v) := u dν 1 + v dν 2 (6) in the set Φ c (ν 1 , ν 2 ) := (u, v) ∈ L 1 (Ω, dν 1 ) × L 1 (Ω, dν 2 ) : u(x) + v(y) ≤ c(x, y) . Theorem 1 (see [2, Theorem 3.1] or [17, Theorem 1.3]) We have min{K(µ) : µ ∈ Π(ν 1 , ν 2 )} = sup{D(u, v) : (u, v) ∈ Φ c (ν 1 , ν 2 )}. (7)
Furthermore, it does not change the value of the supremum in the right-hand side of ( 7) if one restricts the definition of Φ c (ν 1 , ν 2 ) to those functions (u, v) which are bounded and continuous.

An interesting particular situation which appears in many applications corresponds to the case where the measures ν 1 and ν 2 are supported respectively on a finite number of points. That is

Ω 1 = x 1 , x 2 , ....x N 1 ⊂ IR N and Ω 2 = y 1 , y 2 , ....y N 2 ⊂ IR N with prescribed masses f 1 (x 1 ), f 1 (x 2 ) . . . f 1 (x N 1 ) and f 2 (y 1 ), f 2 (y 2 ) . . . f 2 (x N 2 )
, respectively, the measures ν k , for k = 1, 2, are given by

ν k = x∈Ω k f k (x) δ x ,
where δ x denote the Dirac mass concentrated at x. In this particular case, the transportation problem basically aims to find the best way to fulfill the demand of N 1 demand points using the capacities of N 2 supply points. In this case, the set of plans transport reads

Π(f 1 , f 2 ) :=    µ : Ω 1 × Ω 2 → IR : y∈Ω 2 µ(x, y) = f 1 (x) and x∈Ω 1 µ(x, y) = f 2 (y)    ,
and the Kantorovich functional becomes

K(µ) := (x,y)Ω 1 ×Ω 2 c(x, y) µ(x, y) .
The dual problem reads how to achieve the maximum of

D(u 1 , u 2 ) := x∈Ω 1 u 1 (x) f 1 (x) + x∈Ω 2 u 2 (x) f 2 (x) among the couples (u 1 , u 2 ) living in the set Φ c (ν 1 , ν 2 ) := (u, v) : Ω 1 × Ω 2 → IR × IR : u(x) + v(y) ≤ c(x, y), for any (x, y) ∈ Ω 1 × Ω 2 .

Assumptions and functional setting

Now, let us consider λ a nonnegative Radon measure in IR N , concentrated in a bounded domain, such that

ν k λ, for k = 1, 2. ( 8 
)
We denote f 1 and f 2 the densities of ν 1 and ν 2 respectively. That is, for k = 1, 2,

ν k = f k λ, for k = 1, 2. (9) Let us denote X p := L p (Ω, dλ),
where

Ω := Ω 1 ∪ Ω 2 .
The space X 2 is a Hilbert space when equipped with the inner product

η, ξ = Ω η ξ dλ
and the norm

η = Ω η 2 dλ 1/2 .
We consider the convex set

K := u ∈ X 2 ; u(x) -u(y) ≤ c(x, y), Λ -a.e. (x, y) ∈ Ω 1 × Ω 2 ,
where Λ is the product measure concentrated in Ω 1 × Ω 2 , given by

Λ = λ λ Ω 1 × Ω 2 .
We set

f := f 1 χ Ω 1 -f 2 χ Ω 2 .
Then, it is not difficult to see that the couple (u * 1 , u * 2 ) is a solution of DMK-problem if and only if, setting

u * := u * 1 χ Ω 1 -u * 2 χ Ω 2 we have f ∈ ∂II K (u * ), (10) 
where ∂II K denotes the subdifferential of

II K in X 2 . Here II K : X 2 → [0, ∞] is defined by II K (z) =    0 if z ∈ K +∞ otherwise.
In particular, this implies that DMK-problem and MK-problem are closely connected to the nonlinear dynamic (cf. [START_REF] Brézis | Opérateurs maximaux monotones et semigroups de contractions dans les espaces de Hilbert[END_REF]) :

     du(t) dt + ∂II K (u(t)) f for t ≥ 0 u(0) = 0. ( 11 
)
For a given ε > 0, we consider a partition I i

1 i∈N ε 1 and I j 2 j∈N ε 2
of Ω 1 and Ω 2 , respectively, such that I i p ∩ I j q = ∅, for any (i, p) = (j, q).

We assume that, there exists ν ε > 0, such that

λ(I i 1 ) = λ(I j 2 ) = ν ε , for any i ∈ N ε 1 and j ∈ N ε 2 , (12) 
and, for any h ∈ X 2 , as ε → 0,

i∈N ε 1 1 ν ε I j 2 h dλ χ I i 1 + j∈N ε 2 1 ν ε I j 2 h dλ χ I i 2 → h, in X 2 . ( 13 
)
We consider the sets of arbitrary points

D ε 1 = x i ; x i ∈ I i 1 ∩ Ω 1 , i ∈ N ε 1 and D ε 2 = y j ; y j ∈ I j 2 ∩ Ω 2 , j ∈ N ε 2 .
We rescale the cost function and introduce

ĉ(x i , y j ) = P ε ν 2 ε I i 1 ×I j 2 c(x, y) d Λ(x, y) , for any i ∈ N ε 1 and j ∈ N ε 2 ,
where [ |A| ] denotes the integer part of the real number A, and P ε is a given integer parameter satisfying lim

ε→0 P ε = ∞. ( 14 
)
We see that the choice of the sites x i and y j is arbitrary, however the values of the cost function does not depend on that choice.

At last, we introduce the functions f1 :

D ε 1 → IR + (resp. f2 : D ε 2 → IR + ) defined by f1 (x i ) = 1 ν ε I i 1 f 1 dλ, for i ∈ N ε 1 (resp. f2 (y j ) = 1 ν ε I j 2 f k dλ, for j ∈ N ε 2 .
Remark 1 Our assumptions ( 12) and ( 13) are not true in general. It depends on the measures ν 1 and ν 2 . However, they remains true for some concrete situations that we the following.

1. Assume that ν 1 and ν 2 are two atomic measures ; that is

ν 1 = a 1 δ x 1 + .... + a p δ xp and ν 2 = b 1 δ y 1 + ... + b q δ yq ,
for a given x 1 , ..., x p , y 1 , ..., y q ∈ IR N and a 1 , ..., a p , b 1 , ..., b q ∈ IR. In this case, we see that we can take

• λ = δ x 1 + .... + δ xp + δ y 1 + ... + δ yq .
•

Ω 1 = D ε 1 = x 1 , ..., x p and Ω 2 = D ε 2 = y 1 , ..., y q .
• f1 (x i ) = f 1 (x i ) = a i , for any i = 1, ...p and f2 (y j ) = f 2 (y j ) = b j , for any j = 1, ...q.

• ĉ(x, y) = P ε c(x, y) , for any

(x, y) ∈ D ε 1 × D ε 2 .
Indeed, in this case there exists ε 0 > 0, such that for any ε < ε 0 , taking

I i 1 = B(x i , ε) and I j 2 = B(y j , ε), for any i = 1...N 1 and j = 1...N 2 ,
we have ν ε = 1.

2. An other concrete situation is the case where λ corresponds to Lebesgue measure in

IR N , that is λ = L N .
In this case, for any ε > 0, one can construct the partitions I i

1 i∈N ε 1 and I j 2 j∈N ε 2 such that ν ε = ε N .
3 Main results

The stochastic model

Thanks to [START_REF] Monge | Memoire sur la théorie des déblais et des remblais[END_REF], f1 and f2 satisfy the discrete balance condition

i∈N ε 1 f1 (x i ) = j∈N ε 2 f2 (y j ).
So, it is possible to consider the Monge-Kantorovich optimal mass transportation associated with the atomic measures

ν ε 1 := x∈D ε 1 f1 (x)δ x and ν ε 2 := y∈D ε 2 f2 (y)δ y
with respect to the cost function ĉ.

Now MK-problem and DMK-problem aims to find the best way to fulfill the demand of the demand points x ∈ D ε 1 using the capacities of the supply points y ∈ D ε 2 . Our aim now is to give the stochastic model that we can associate with the optimal mass transportation with respect to the cost ĉ. Here ε > 0 and P ε are fixed.

Throughout this section, we omit the subscript ε. The points of

D := D 1 ∪ D 2 will be called sites. A configuration (admissible) is a mapping η : D → Z Z satisfying the constraint η(x) -η(y) ≤ ĉ(x, y) for any (x, y) ∈ D 1 × D 2 .
The state space is

S := η : D → Z Z ; η is a configuration ,
which is a subspace of the Hilbert space H := l 2 (D) equipped with the inner product

ξ 1 , ξ 2 = x∈D ξ 1 (x) ξ 2 (x).
Let η ∈ S be a given configuration which aims to describe the distribution of the price over D 1 ∪ D 2 (not necessary optimal for DMK-problem). A right dynamic that could converge to the optimal price consists in increasing the price in D 1 and decrease it in D 2 . So, imagine we have a sequence of Poisson clocks at each sites of D, and the value of η at a position x ∈ D 1 (resp. y ∈ D 2 ) increase (resp. decrease) by one unit when the clock rings at x ∈ D 1 (resp. y ∈ D 2 ). It is clear that this may provide a non admissible configuration. This is the situation, for instance if there exists z ∈ D 2 (resp. z ∈ D 1 ), such that η(x)-η(z) = ĉ(x, z) (resp. η(z)-η(y) = ĉ(z, y)). In this situation, a natural dynamic that could keeps the new configuration admissible is to increase (resp. decrease) in turn the value of η at the position z ∈ D 2 (resp. z ∈ D 1 ). In general, such z is not unique so that we need to randomly select among the allowable position. To define the probability to distribute the price over the allowable position, for any (x, y) ∈ D 1 × D 2 , we consider the subsets

λ 1 (x, η) =      z ∈ D 2 ; η(x) -η(z) = ĉ(x, z) if x ∈ D 1 ∅ if x ∈ D 2 ,
and

λ 2 (y, η) =      z ∈ D 1 ; η(z) -η(y) = ĉ(z, y) if y ∈ D 2 ∅ if y ∈ D 1 ,
.

Then, for any (x, y) ∈ D × D, we define

p 1 (η, x, y) =                1 #λ 1 (x, η)
if #λ 1 (x, η) = 0 and y ∈ λ 1 (x, η)

1 if #λ 1 (x, η) = 0 and x = y 0 otherwise, and 
p 2 (η, y, x) =                1 #λ 2 (y, η) if #λ 2 (y, η) = 0 and x ∈ λ 2 (y, η) 1 if #λ 2 (y, η) = 0 and y = x 0 otherwise. See that, for any x ∈ D 1 (resp. y ∈ D 2 ) y∈D p 1 (η, x, y) = 1 (resp. x∈D p 2 (η, y, x) = 1). ( 15 
)
In other words, p 1 (η, x, y) (resp. p 2 (η, y, x)) is the probability that a proposal action to increase (resp. decrease) the price at the position x ∈ D 1 (resp. y ∈ D 2 ) will end up by an increase of the price at the position y ∈ D 2 (resp. x ∈ D 1 ). Now, we set B(S) = F : S → IR ; bounded and measurable , and we define the linear operator A on B(S) by

A F (η) = x,y∈D p 1 (η, x, y) f1 (x)(F (η + T y ) -F (η)) + x,y∈D p 2 (η, x, y) f2 (x)(F (η -T y ) -F (η)), ∀ η ∈ S, (16) 
where, for any y ∈ D, T y : D → IN is given by

T y (x) =    1 if x = y 0 otherwise.
The operator A is the infinitesimal generator of a continuous-time Markov process on S, that we denote by η(t), t ≥ 0 . One of the main feature of A is the C 0 -semigroup T (t) : B(S) → B(S) that it generates. Indeed (cf. [START_REF] Ethier | Markov processes. Characterization and convergence[END_REF]) , for any F ∈ B(S), we have 0), for any t ≥ 0, and, T (t)F is the solution of the evolution equation

IE[F (η(t)) | η(0) = 0] = T (t)F (
d dt T (t)F = A T (t)F = T (t) A F, for any t > 0. ( 17 
)
That is IE[F (η(t)) | η(0) = 0] = e -tA F (0), for any t > 0.

Another feature of the operator A that we'll use in this paper is the time-dependent martingale stochastic integral equation :

F (η(t), t) = t 0 ∂F ∂s + A F (η(s), s) + M(t), (18) 
for any F : S × (0, ∞) → IR Lipchitz continuous in t such that F (η(0), 0) = 0. Here M is a Martingale, satisfying M(0) = 0.

While (η(t); t ≥ 0) is the Markov process which describes the random evolution of the price for the transportation of f1 into f2 , we see that the quantity

κ(t, x, y) =    p 1 (η, x, y) f1 (x) + p 2 (η, y, x) f2 (y) for any (x, y) ∈ D 1 × D 2 0 otherwise.
describes how the mass is distribute between the positions x ∈ D 1 and the positions y ∈ D 2 .

Again (κ(t), t ≥ 0) is a Markov process, and moreover Support(κ(t)) = (x, y) ∈ D 1 × D 2 ; η(t, x) -η(t, y) = ĉ(x, y) , for any t ≥ 0.

As we will see in the following sections, while η and its expectation contains all the information concerning the solution of DMK-problem, the random plane κ and its expectation contains all the information concerning the optimal plane transport problem ; the solution of MK.

Continuum limits

Our aim here, is to let ε → 0 in the following rescaled Markov processes

η ε (t) = 1 P ε   i∈N ε 1 η(P ε t, x i )χ I i 1 + j∈N ε 2 η(P ε t, y j )χ I j 2   , for any t ≥ 0, (19) and κ ε (t) = 1 ν ε (i,j)∈N ε 1 ×N ε 2 κ(P ε t, x i , y j )χ I i 1 ×I j 2 , for any t ≥ 0. (20) Theorem 2 We have lim ε→0 IE η ε (t) -u(t) 2 dλ = 0, for any t ≥ 0,
where u is the unique solution of [START_REF] Kantorovich | On the transfer of masses[END_REF] in the sense that u ∈ W 1,∞ loc (0, ∞; X 2 ), u(0) = 0, for any t ≥ 0, u(t) ∈ K and

f - d dt u(t) u(t) -ξ dλ ≥ 0, for any ξ ∈ K.
In particular, by setting

v ε (t) = IE [ η ε (t) ]
, for any t ≥ 0, and, using Jensen inequality, we see that

v ε (t) -u(t) dλ ≤ IE η ε (t) -u(t) dλ ≤ IE η ε (t) -u(t) dλ .
So, by suing Holder inequality, we deduce in particular the following result.

Corollary 1 Under the assumptions of Theorem 2, we have

lim ε→0 v ε (t) -u(t) dλ = 0, for any t ≥ 0.
For the connection with MK, we assume that c is continuous and we introduce first the transformation T :

M b (Ω 1 × Ω 2 ) → M b (Ω × Ω), defined for any µ ∈ M b (Ω 1 × Ω 2 ), by
ξ dT (µ) = (ξ(x, y) -ξ(y, x)) dµ(x, y), for any ξ ∈ C 0 (Ω × Ω).

Theorem 3 Let us denote by

µ ε (t) = IE [ κ ε (t) ] ,
for any t ≥ 0, and assume that ( 14) is fulfilled. There exists a subsequence, that we denote again by ε, such that

µ ε → µ, in L ∞ (0, ∞; w * -M b (Ω 1 × Ω 2 )),
and µ is a solution of the following system

         π x #T (µ(t)) = ν 1 -ν 2 - du(t) dt λ, for any t > 0, c dµ(t) ≤ f - d dt u(t) u(t) dλ, ( 21 
)
where u is the solution of ( 11) in X 2 .

Remark 2 Coming back to the case where ν 1 and ν 2 are atomic measures (see the first item of Remark 1). Recall that, in this situation ν ε = 1 and the assumption ( 13) is fulfielld. In this case, we do not need to rescale in space, a time rescaling is enough to give the stochastic model for the optimal mass transportation.

See that our approach gives in particular a deterministic dynamical optimal transportation problem. Actually, starting from 0, the evolution problem (21) provides a dynamic to built a solution of MK-problem and DMK-problem, as t → ∞. More precisely, we have Theorem 4 Let u ∈ C([0, ∞), X 2 ) such that u(t) ∈ K for any t ≥ 0. Then, u is a solution of (11) if and only u ∈ W 1,∞ (0, ∞; X 2 ), u(0) = 0 and there exists µ ∈ L ∞ (0, ∞; w * -M b (Ω 1 ×Ω 2 ) + ) such that, for any t ≥ 0, we have (21).

Theorem 5 Let (u, µ) be a solution of (21). We have

• As t → ∞, u(t) → u * , in X 2 -weak,
and the couple

(u * χ Ω 1 , -u * χ Ω 2 ) is a solution of MK-problem.
• There exists a subsequence that we denote again by t → ∞, such that

µ(t) → µ * , in M b (Ω 1 × Ω 2 ) -weak * , ( 22 
)
and µ * is a solution of DMK-problem.

Remark 3 Let (u, µ) be a solution of (21). As t → ∞, Theorem 5 implies the weak stabilization of u(t). In general, we do not know if u(t) converges strongly in X 2 , or not. Using standard theory, we can prove that we have also an ergodic convergence of u(t). That is there exists u * ∈ K, such that f ∈ ∂II K u * and

1 t t 0 u(t) → u * , in X 2 .
Of course the couple

(u * χ Ω 1 , -u * χ Ω 2 ) is a solution of MK-problem.

Preliminary results

Now, we set v(t) = IE [ η(t) ] and κ(t) = IE [ κ(t) ], for any t ≥ 0.

We begin with the connection between v(t) t≥0 and κ(t) t≥0

. This connection is very useful for the rest of the paper. We will use the same notation T for the transformation

l 2 (D 1 × D 2 ) → l 2 (D × D) defined by T (κ)(x, y) = κ(x, y) -κ(y, x), for any κ ∈ l 2 (D 1 × D 2 ).
We begin, with the connection between v and κ.

Proposition 1 The couple (v, κ) satisfies the following system

             dv dt (t, x) + y∈D T (κ(t))(x, y) = f (x), for any t ≥ 0 and x ∈ D, x,y∈D ĉ(x, y)κ(t, x, y) ≤ x∈D f (x) - dv dt (t, x) v(t, x) + Ê(t), for any t ≥ 0 ( 23 
)
where f = f1 χ D 1 -f2 χ D 2 , and 
Ê(t) := 2 M IE x∈D η(t, x) -v(t, x) , with M := max | f (x)| ; x ∈ D .
Proof : For a given x ∈ D, let us consider F (ξ) = ξ(x), for any ξ ∈ S. By definition of A, we have

A F (η(t)) = A η(t, x) = - y∈D T (κ(t))(x, y) + f (x).
So, thanks to [START_REF] Villani | Topics in Optimal Transportation[END_REF] and by using the fact that

T (κ(t) = IE [T (κ(t)] , for any t ≥ 0, (24) we get d dt v(t, x) + y∈D T (κ(t))(x, y) = f (x), for any t ≥ 0 and x ∈ D. ( 25 
)
For the second inequality, recall that κ(t, x, y) = 0 if and only if p 1 (η(t), x, y) = p 2 (η(t), y, x) = 0, which is equivalent to η(t, x) -η(t, y) = ĉ(x, y). So,

x,y∈D ĉ(x, y)κ(t, x, y) = IE   x,y∈D ĉ(x, y) κ(t, x, y)   = IE   x,y∈D (η(t, x) -η(t, y)) κ(t, x, y)   = IE   x,y∈D η(t, x) T (κ(t))(x, y)   .

This implies that

x,y∈D

ĉ(x, y)κ(t, x, y) = IE   x,y∈D η(t, x) -v(t, x) T (κ(t))(x, y)   + IE   x,y∈D v(t, x) T (κ(t))(x, y)   = IE   x,y∈D η(t, x) -v(t, x) T (κ(t))(x, y)   + x,y∈D v(t, x) T (κ(t))(x, y),
where we use again (24). Thanks to [START_REF] Puhl | On the modelling of real sand piles[END_REF], we see that At last, multiplying the first equation of (23) and summing up over x ∈ D, the result of the proposition follows. Now, in order to pass to the limit in the rescaled stochastic process, we introduce the following nonlinear dynamic in H :

     d dt û(t) + ∂II K (û(t)) f for any t ≥ 0 u(0) = 0, ( 26 
)
where ∂II K denotes the sub-differential of II K in H and

K := ξ ∈ H ; ξ(x) -ξ(y) ≤ ĉ(x, y) for any (x, y) ∈ D 1 × D 2 .
Since K is a closed and convex subset of H, the dynamic (26) has a unique solution û (cf. [START_REF] Brézis | Opérateurs maximaux monotones et semigroups de contractions dans les espaces de Hilbert[END_REF]), in the sense that û ∈ W 1,∞ loc (0, ∞; H), û(0) = 0 and, for any t ≥ 0, û(t) ∈ K and

x∈D f (x) - d dt û(t, x) û(t, x) -ξ(x) ≥ 0 for any ξ ∈ K.
Lemma 1 Under the assumptions of Proposition 2, for any ŵ ∈ K, we have

x,y∈D

p 1 (x, y) f1 (x) (η(t, y) -ŵ(y)) ≤ x∈D f1 (x) (η(t, x) -ŵ(x)) (27) and x,y∈D p 2 (x, y) f2 (x) (η(t, y) -ŵ(y)) ≥ x∈D f2 (x) (η(t, x) -ŵ(x)). ( 28 
)
Proof : We see that

x,y∈D p 1 (t, x, y) f1 (x) (η(t, y) -ŵ(y)) = I + x,y∈D p 1 (t, x, y) f1 (x) (η(t, x) -ŵ(x)), where I = x,y∈D p 1 (t, x, y) f1 (x) ( ŵ(x) -ŵ(y)) -(η(t, x) -η(t, y)) . Since y∈D p 1 (t, x, y) = 1, for any (t, x) ∈ D × (0, ∞), it is clear that x,y∈D p 1 (t, x, y) f1 (x) (η(t, x) -ŵ(x)) = x∈D f1 (x) (η(t, x) -ŵ(x)).
Let us prove that I ≤ 0. Recall that, p 1 (t, x, y) = 0 if and only if (x, y) ∈ D 1 × D 2 and η(t, x) -η(t, y) = ĉ(x, y), so that

I = x,y∈D p 1 (t, x, y) f1 (x) ( ŵ(x) -ŵ(y)) -ĉ(x, y) ≤ 0,
where we used the fact that ŵ(x) -ŵ(y) ≤ ĉ(x, y) for any (x, y)

∈ D 1 × D 2 (since ŵ ∈ K).
The proof of (28) follows in the same way.

Lemma 2 For any ŵ ∈ K and t ≥ 0, we have

x,y∈D

T (κ(t)) (η(t, x) -ŵ(x)) ≥ 0.
Proof : This is a simple consequence of Lemma 1 and the fact that

x,y∈D

T (κ(t)) (η(t, x) -ŵ(x)) = x∈D ( f1 (x) -f2 (x))(η(t, x) -ŵ(x)) - x,y∈D p 2 (t, y, x) f2 (y)(η(t, x) -ŵ(x)) + x,y∈D p 2 (t, y, x) f2 (y)(η(t, x) -ŵ(x)).
Lemma 3 For any ŵ ∈ K and t ≥ 0, we have

1 2 A x∈D η(t, x) -ŵ(x) 2 ≤ y∈D f (y) (η(t, y) -ŵ(y)) + 1 2 y∈D | f (y)|.
Proof : For ŵ ∈ K being fixed, we consider F : B(S) → IR defined by

F (ξ) = p∈D ξ(p) -ŵ(p) 2 , for any x ∈ S.
Using the definition of A, we have

1 2 A p∈D η(p, t) -ŵ(p) 2 = I 1 + I 2 ,
where

I 1 := 1 2 x,y∈D p 1 (t, x, y) f1 (x) p∈D η(p, t) + T y (p) -ŵ(p) 2 - p∈D η(p, t) -ŵ(p) 2 , and 
I 2 := 1 2
x,y∈D

p 2 (t, x, y) f2 (x) p∈D η(p, t) -T y (p) -ŵ(p) 2 - p∈D η(p, t) -ŵ(p) 2 .
We see that

I 1 = 1 2 x,y∈D p 1 (t, x, y) f1 (x) p∈D 2η(x) + T y (p) -2 ŵ(x) T y (p) = 1 2 x,y∈D p 1 (t, x, y) f1 (x) (2 η(y) + 1 -2 ŵ(y)) = x,y∈D p 1 (t, x, y) f1 (x) (η(y) -ŵ(y)) + 1 2 x,y∈D p 1 (t, x, y) f1 (x) = x,y∈D (p 1 (t, x, y) f1 (x) + p 2 (t, y, x) f2 (y)) (η(y) -ŵ(y)) + 1 2 x,y∈D p 1 (t, x, y) f1 (x) - y∈D f2 (y) (η(y) -ŵ(y)).
In the same, we have

I 2 = - x,y∈D
(p 2 (t, x, y) f2 (x) + p 1 (t, y, x) f1 (y)) (η(y) -ŵ(y)) + 1 2

x,y∈D p 2 (t, x, y) f2 (x)

- y∈D f1 (y) (η(y) -ŵ(y)).
This implies that

1 2 A x∈D η(t, x) -ŵ(x) 2 = - x,y∈D T (κ(t)(η(t, y) -ŵ(y)) + y∈D f (y) (η(t, y) -ŵ(y)) + 1 2 x∈D | f (x)|.
Then, by applying Lemma 2, the result follows.

Proposition 2 Let û be the solution of ( 26) and (η(t), t ≥ 0) be the stochastic process generated by A. Then, for any t ≥ 0, we have

IE x∈D (η(t, x) -û(t, x)) 2 ≤ t x∈D | f (x)|. (29) Proof : Let F : S × (0, ∞) → IR be given by F ( ξ, t) = 1 2 x∈D ξ(x) -û(t, x) 2
, for any ( ξ, t) ∈ S × (0, T ).

We have

∂F ∂t ( ξ, t) = - x∈D dû dt (t, x) ξ(x) -û(t, x)
, for any ( ξ, t) ∈ S × (0, T ).

So, [START_REF] Villani | Optimal Transport, Old and New[END_REF] implies that, for any t ≥ 0,

1 2 IE x∈D (η(t, x) -û(t, x)) 2 = IE t 0 x∈D dû dt (s, x) (û(s, x) -η(s, x)) + A(F (η(., s), s) ds .
Then, by using Lemma 3, we deduce that

1 2 IE x∈D (η(t, x) -û(t, x)) 2 ≤ IE t 0 x∈D dû dt (s, x) (û(s, x) -η(s, x)) + y∈D f (y) (η(s, y) -û(s, y))| ds   + t 2 y∈D | f (y).
Since u is a solution of (26) and η(t) ∈ K, for any t ≥ 0, we have

x∈D dû dt (t, x) (û(t, x) -η(s, x)) + x∈D f (x) (η(t, x) -û(t, x)) ≤ 0 for any t ≥ 0,
and the result of the proposition follows.

Convergence to the evolution DMK-problem

To pass to the limit, for any ε > 0, we introduce f ε : Ω → IR + the function given by

f ε = i∈N ε 1 f1 (x i )χ I i 1 - j∈N ε 2 f2 (y j )χ I i 2 ,
and, we consider the convex set given by

K ε := ξ ∈ X 2 ; ξ(x) -ξ(y) ≤ c ε (x, y) for any (x, y) ∈ Ω 1 × Ω 2
where c ε : Ω 1 × Ω 2 → IR + is the cost function given by

c ε = 1 P ε (i,j)∈N ε 1 ×N ε 2 ĉ(x i , y i )χ I i 1 ×I j 2 ,
where P ε is a nonnegative real parameter that we fix next ; i.e.

c ε = 1 P ε (i,j)∈N ε 1 ×N ε 2 P ε ν 2 ε I i 1 ×I j 2 c(x, y) d Λ(x, y) χ I i 1 ×I j 2 .
To prove Theorem 2, we rescale again û, the solution of (26), and introduce

u ε (t) = 1 P ε   i∈N ε 1 û(P ε t, x i )χ I i 1 - j∈N ε 2 û(P ε t, y j )χ I i 2 
 , for any t ≥ 0.

Lemma 4

The function u ε is the unique solution of the following evolution equation in X 2 ,

     d dt u ε (t) + ∂II Kε (u ε (t)) f ε , t ≥ 0 u(0) = 0. ( 30 
)
Proof : Using the definition of u ε , it is not difficult to see that u ε ∈ K ε . Now, let ξ ∈ K ε and set

I := f ε - d dt u ε (t) (u ε (t) -ξ) dλ.
We have

I = i∈N ε 1 I i (f ε - d dt u ε (t)) (u ε (t) -ξ) dλ + j∈N ε 2 I j (f ε - d dt u ε (t)) (u ε (t) -ξ) dλ = i∈N ε 1 I i f - d dt û(P ε t) 1 P ε û(P ε t) -ξ dλ + j∈N ε 2 I j f - d dt û(P ε t) 1 P ε û(P ε t) -ξ dλ = ν ε P ε x∈D ε f (x) - d dt û(P ε t, x) û(P ε t, x) -ξ(x) ,
where

ξ(x) =            P ε ν ε I i 1 ξ dλ, for any x ∈ I i i , i ∈ N ε 1 P ε ν ε I j 2 ξ dλ, for any x ∈ I i j , j ∈ N ε 2 .
It is not difficult to see that ξ ∈ K, so that using the fact that û is a solution of (26), we deduce that I ≥ 0 and the proof of the lemma is complete.

Lemma 5 For any ε > 0 and t ≥ 0, we have

IE (η ε (t) -u ε (t)) 2 dλ ≤ t P ε |f ε | dλ.
Proof : Using Proposition 2 and Lemma 4, we have

IE Ω η ε (t) -u ε (t) 2 dλ = 1 P 2 ε IE ν ε x∈D ε |η P ε t, x -û(P ε t, x)| 2 dλ(x) ≤ t P ε x∈D ε ν ε ( f1 (x) + f2 (x)) ≤ t P ε   i∈N ε 1 I i 1 |f ε | dλ + j∈N ε 2 I j 2 |f ε | dλ   ≤ t P ε |f ε | dλ.
Lemma 6 As ε → 0, we have

u ε → u, in C([0, ∞), X 2 ), ( 31 
)
and d dt u ε → d dt u, in L 2 loc ([0, ∞), X 2 ), ( 32 
)
where u is the solution of [START_REF] Kantorovich | On the transfer of masses[END_REF].

Proof : Recall that, as ε → 0,

f ε → f, in X 2 . (33)
Now, let us prove that ∂II Kε → ∂II K , in the graph sense. (34)

To this aim, it is enough to prove the Mosco convergence of II Kε to II K , as ε → 0 (cf. [START_REF] Attouch | Familles d'opérateurs maximaux monotones et mesurabilité[END_REF] and [START_REF] Brézis | Convergence and approximation of semigroups of nonlinear operators in Banach spaces[END_REF]). That is

w -lim sup ε→0 Epi(II Kε ) ⊆ Epi(II K ) ⊆ s -lim sup ε→0 Epi(II Kε ), (35) 
where we denote by Epi the epigraph, w -lim sup ε→0 the weak limsup and s -lim sup ε→0 the strong liminf. See that

Epi(II Kε ) = K ε × [0, ∞) and Epi(II K ) = K × [0, ∞).
For the proof of the first inclusion of (35), we consider

ξ ε ∈ K ε such that ξ ε → ξ in X 2 -weak. Since ξ ε (x) -ξ ε (y) ≤ c ε (x, y) Λ -a.e. Ω 1 × Ω 2 and c ε → u in L 2 (Ω 1 × Ω 2 , dΛ
), we deduce that the weak limit ξ satisfies

ξ(x) -ξ(y) ≤ c(x, y) Λ -a.e. Ω 1 × Ω 2 .
Thus ξ ∈ K. For the second inclusion we see that fro any ξ ∈ K ; we can define, for any ε > 0, ξ ε : Ω → IR, by

ξ ε = i∈N ε 1 χ I i 1 1 ν ε I i 1 ξ dλ - 1 2P ε + j∈N ε 2 χ I j 2 1 ν ε I j 2 ξ dλ + 1 2P ε .
See that ξ ε ∈ K ε . Indeed, if (x, y) ∈ I i 1 × I j 2 , we have

ξ ε (x) -ξ ε (y) = 1 ν ε I i 1 ξ dλ - 1 ν ε I j 2 ξ dλ - 1 P ε ≤ 1 ν 2 ε I i 1 ×I j 2 c(x, y) d Λ(x, y) - 1 P ε ≤ 1 P ε P ε ν 2 ε I i 1 ×I j 2 c(x, y) d Λ(x, y) ≤ c ε (x, y).
Moreover, thanks to (13), we know that ξ ε → ξ in X 2 . This implies that Epi(II K ) ⊆ s -lim sup ε→0

Epi(II Kε ) and the proof of (35) is complete. At last, the proof of (31) and (32)

follows by using (34), (33) and standard perturbation result of [START_REF] Brézis | Opérateurs maximaux monotones et semigroups de contractions dans les espaces de Hilbert[END_REF].

Proof of Theorem 2 : Using Jensen inequality, we have

IE η ε (t) -u(t) 2 dλ ≤ u ε (t) -u(t) 2 dλ + IE u ε (t) -u(t) 2 dλ +2 u ε (t) -u(t) 2 dλ 1 2 IE u ε (t) -u(t) 2 dλ 1 2 
.

Then, thanks to Lemma 5, we get

IE η ε (t) -u(t) 2 dλ ≤ u ε (t) -u(t) 2 dλ + t P ε |f ε | dλ +2 u ε (t) -u(t) 2 dλ 1 2 t P ε |f ε | dλ 1 2 ≤ u ε (t) -u(t) 2 dλ 1 2 + t P ε |f ε | dλ 1 2 2 .
At lats, letting ε → 0, the result of the theorem follows by using Lemma 6 .

Convergence to the evolution MK-problem

The proof of Theorem 3 follows as a consequence of the following sequence of Lemmas.

Lemma 7

The couple (v ε , µ ε ) satisfies the following system

           d dt v ε (t, x) + Ω T (µ ε (t))(x, y) dλ(y) = f ε (x), (t, x) ∈ (0, ∞) × Ω c µ ε (t) d Λ ≤ f ε - d dt v ε (t) v ε (t)d λ + E ε (t) , (36) 
where

E ε (t) := 2M IE η ε (t) -v ε (t) dλ and M := f X∞ . Proof : Recall that v ∈ K and v ε (t, x) = 1 P ε   i∈N ε 1 v(P ε t, x i )χ I i 1 + j∈N ε 2 v(P ε t, y j )χ I j 2   , for any t ≥ 0. So, for any t ≥ 0, v ε (t) ∈ K ε , f ε - d dt v ε (t) =   i∈N ε 1 ( f (x i ) - d dt v(P ε t, x i ))χ I i 1 + j∈N ε 2 ( f (y j ) - d dt v(P ε t, y j ))χ I j 2   and Ω T (µ ε (t))(x, y) dλ(y) = y∈Dε T (κ(P ε t))(x, y).
So, it is not difficult to see that (36) follows by Proposition 1. On the other hand, since

I i 1 ×I j 2 c(x, y)d Λ(x, y) ≤ ν 2 ε P ε P ε ν 2 ε I i 1 ×I j 2 c(x, y) d Λ(x, y) + ν 2 ε P ε ≤ ν 2 ε P ε (ĉ(x i , y j ) + 1)
for any (x i , y j )

∈ I i 1 × I j 2 ∩ D ε 1 × D ε 2 , we see that c µ ε (t) d Λ = i,j I i 1 I j 2 c(x, y) µ ε (t, x, y) d Λ(x, y) = 1 ν ε x i ∈D ε 1 y j ∈D ε 2 κ(P ε t, x i , y j ) I i 1 I j 2 c(x, d Λ(x, y) ≤ ν ε P ε x i ∈D ε 1 y j ∈D ε 2 κ(P ε t, x i , y j ) (ĉ(x i , y j ) + 1) . Since x i ∈D ε 1 y j ∈D ε 2 κ(P ε t, x i , y j ) = x∈D ε f1 (x) + f2 (x) and ν ε x∈D ε f1 (x) + f2 (x) = Ω |f ε (x)| d λ(x), we deduce that c µ ε (t) d Λ ≤ ν ε P ε x i ∈D ε 1 y j ∈D ε 2 κ(P ε t, x i , y j ) ĉ(x i , y j ) + ν ε P ε x∈D ε f1 (x) + f2 (x) ≤ ν ε P ε x i ∈D ε 1 y j ∈D ε 2 κ(P ε t, x i , y j ) ĉ(x i , y j ) + 1 P ε Ω |f ε | d λ.
Thanks again to Proposition 1, the term

I := ν ε P ε x i ∈D ε 1 y j ∈D ε 2 κ(P ε t, x i , y j ) ĉ(x i , y j ) satisfies I ≤ ν ε P ε x∈D ( f (x) - dv dt (P ε t, x)) v(P ε t, x) + Ê(P ε t) , and 
ν ε P ε Ê(P ε t) := 2M ν ε P ε IE x∈D η(t, x) -v(P ε t, x) ≤ 2M IE η ε (t) -v ε (t) dλ
Then the proof is finished by using the fact that

ν ε P ε x∈D f (x) - dv dt (P ε t, x) v(P ε t, x) = f ε - d dt v ε (t) v ε (t) dλ.
Proof of Theorem 3 : First, we see that µ ε is bounded in L ∞ (0, ∞; L 1 (Ω 1 ×Ω 2 , dΛ)). Indeed, for any t ≥ 0, we have

µ ε (t) dΛ = i,j I i 1 ×I j 2 µ ε (t) dΛ = ν ε i,j κ(t, x i , y j ) = ν ε   i f1 (x i ) + j f2 (y j )   = |f ε | dλ. Thus, there exists µ ∈ L ∞ (0, T ; w * -M b (Ω 1 × Ω 2 ))
, and there exists a subsequence, that we denote again by ε → 0, such that

µ ε Λ → µ in L ∞ (0, ∞; w * -M b (Ω 1 × Ω 2 )) -weak * . ( 37 
)
Passing to the limit in the equation fulfilled by µ ε and using Lemma 6, we obtain This ends up the proof of the theorem.

π x #T (µ(t)) = ν 1 -ν 2 - du ( 
7 Convergence to MK-problem and DMK-problem, as t → ∞

Before to prove the convergence to the stationary problems MK-problem and DMK-problem, we begin by to prove the equivalence between the evolution MK-problem and DMK-problem .

Lemma 8 Let u ∈ C([0, ∞), X 2 ) such that u(t) ∈ K for any t ≥ 0. Then, u is a solution of [START_REF] Kantorovich | On the transfer of masses[END_REF] if and only u ∈ W 1,∞ (0, ∞; X 2 ), u(0) = 0 and there exists µ ∈ L ∞ (0, ∞; w * -M b (Ω 1 × Ω 2 ) + ) such that, for any t ≥ 0, (21) is fulfilled.

Proof : Assume that u ∈ W 1,∞ (0, ∞; X 2 ), u(0) = 0 and there exists µ ∈ L ∞ (0, ∞; w * -M b (Ω where u * satisfies f ∈ ∂II K (u * ).

Proof : The convergence (39) follows by Theorem 3.10 of [START_REF] Brézis | Opérateurs maximaux monotones et semigroups de contractions dans les espaces de Hilbert[END_REF]. Now, for any v ∈ K such that f ∈ ∂II K (v), one can prove by using standard argument that d dt |u(t) -v| 2 dλ.

We omit to transcribe the details of the proof here. This implies that u(t) is bounded in X 2 and there exists a subsequence t n → ∞, such that u(t n ) → u * , in X 2 -weak, Using monotonicity arguments and (39) (cf. Proposition 2.5 [START_REF] Brézis | Opérateurs maximaux monotones et semigroups de contractions dans les espaces de Hilbert[END_REF], we see that f ∈ ∂II K (u * ). At last, using Opial's Lemma [START_REF]Weak convergence of the sequence of successive approximations for nonexpansive mapping[END_REF], we deduce (40) and the proof is complete.

Proof of Theorem 4 : The proof of this theorem follows by Lemma 8. At last, we see that by letting t → ∞ in the first equation of (21) and using Lemma 9, we get

Proof of

π x #T (µ * ) = ν 1 -ν 2 .
Since µ * Ω 1 × Ω 2 , we deduce moreover that π x #µ * = ν 1 and π y #µ * = ν 2 .

This implies that µ * is an optimal mass transport of Monge-Kantorovich problem, and the proof is complete.

  π x (a, b) := a and π y (a, b) := b, for any (a, b) ∈ IR N × IR N . Given a Radon measure µ in Ω × Ω, its marginals are defined by proj x (µ) := π x #µ and proj y (µ) := π y #µ. Monge-Kantorovich problem (MK) : Let us denote by Π(ν 1 , ν 2 ) := µ in M + b (Ω × Ω) : proj x (µ) = ν 1 and proj y (µ) = ν 2 , and consider the functional K(µ) := c(x, y) dµ(x, y). (4)

  y∈D |T (κ(t)| ≤ 2 M , for any (x, y) ∈ D × D ; so that x,y∈D ĉ(x, y)T (κ(t) ≤ 2 M IE x∈D η(t, x) -v(t, x) +x,y∈D v(t, x) T (κ(t))(x, y).

  As to the last term of (38), sinceη ε (t) -v ε (t) dλ ≤ η ε (t) -u ε (t) dλ + u ε (t) -v ε (t) dλ,by using Theorem 2 and Corollary 1, we deduce that lim

					t) dt	λ, for any t > 0.
	Thanks to Lemma 7, we see that				
	c(x, y) dµ(t)(x, y) = lim			
	(38)			≤ lim ε→0	f -	d dt	u ε (t) u ε (t) dλ + lim ε→0	E ε (t).
	Thanks to Lemma 6 , we wee that			
	lim ε→0	f -	d dt	u ε (t) u ε (t) dλ =			f -	d dt	u(t) u(t) dλ.

ε→0 c(x, y) µ ε (t, x, y) dΛ(x, y) ε→0 E ε (t) = 0.

  [START_REF] Ambrosio | Lecture notes on optimal transport problems[END_REF] × Ω 2 )) such that (21) is fulfilled. First, we assume that ξ ∈ K ∩ C(Ω). Using the equations of (21) with u(t) -ξ as a test function, we obtain which implies that u is the solution of[START_REF] Kantorovich | On the transfer of masses[END_REF]. The converse part follows from Theorem 3.Lemma 9 Let u be the solution of[START_REF] Kantorovich | On the transfer of masses[END_REF]. As t → ∞, we have

				≥ 0.		
	This implies that					
	f -	d dt	u(t) u(t) dλ = sup ξ∈K∩C(Ω)	f -	d dt	u(t) ξ dλ.
	Thanks to Theorem 1, we deduce that		
	f -	d dt	u(t) u(t) dλ = sup ξ∈K	f -	d dt	u(t) ξ dλ,
	(39)			du(t) dt	→ 0,	in X 2
	and					
	(40)			u(t) → u * ,	in X 2 -weak,

f -d dt u(t) (u(t) -ξ) dλ ≥ c dµ(t) -ξ(x) dT (µ(t))(x, y) ≥ c(x, y) dµ(t)(x, y) -(ξ(x) -ξ(y)) dµ(t)(x, y) ≥ (c(x, y) -(ξ(x) -ξ(y))) dµ(t)(x, y)

  Theorem 5 : Thanks to Lemma 9, we know that there exists u * such that f ∈∂II K (u * ), u(t) → u * , in X 2 -weak and du(t) dt → 0, in X 2 . This implies that (u * χ Ω 1 , -u * χ Ω 2 )is a Kantorovich potential. Now, let us prove the convergence of µ(t). Using (39) and (40), we see that µ(t)t>0 is bounded in M b (Ω 1 × Ω 2 ) + . So, there exists µ ∈ M b (Ω 1 × Ω 2 )

	≤ lim t→∞	f -	d dt	u(t) u(t) dλ
	≤	f u		

+ 

and a subsequence that we denote again by t, such that

µ(t) → µ * , in M b (Ω 1 × Ω 2 ) + -weak * .

Moreover, using the second equation of (

21

) and Lemma 9, we have c(x, y) dµ * (x, y) = lim t→∞ c(x, y) µ(t, dx, dy) * dλ.
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