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HAMILTON-JACOBI AND LEAST-WORST STRATEGY IN THE MORPHOLOGY OF LAKES AND DUNES

We are interested to the explicit formulation of the shape of an overflowing sandpile and a brimful lake over an arbitrary landscape of varying height. We show how the obstacle Hamilton-Jacobi equation as well as its intrinsic metric of least-worst strategy introduced in [18] contribute in the elaboration of these shapes.

Introduction

The Eikonal equation is a particular case of the Hamilton-Jacobi equation. This kind of equation occurs in a large field of applications including optimal control, image processing, fluid dynamics, robotics and geophysics. In this paper, we'll be concerned with two peculiar applications : an overflowing sandpile and a brimful lake in a landscape of varying height. Our approach here is based on a processing of the so called repose angle for the granular matter. This approach was extensively used for the study of the dynamic of a sandpile and dunes (cf. [START_REF]Prigozhin Sandpiles and river networks: Extended systems with nonlocal interactions[END_REF], [START_REF]Prigozhin Variational model of sandpile growth[END_REF], [START_REF] Aronson | Fast/Slow diffusion and growing sandpiles[END_REF], [START_REF] Evans | Fast/Slow diffusion and collapsing sandpiles[END_REF], [START_REF] Barret | Dual formulation in Critical State Problems[END_REF], [START_REF] Dumont | on a Dual Formulation for the Growing Sandpile Problem[END_REF], [START_REF] Dumont | On the collapsing sandpile problem[END_REF], [START_REF] Igbida | A Generalized Collapsing Sandpile Model[END_REF], [START_REF] Igbida | On a Mathematical model for traveling sand dune[END_REF]) on a flat domain. However, the case of non-flat domain the study of the associate dynamic is a complicated question. It is not clear in general how to manage rigorously both constraints related to the repose and the obstacle due to the landscape. At our knowledge, there is only few studies that attempt to tacle this problem (cf. [START_REF] Dorfman | A "Lakes and Rivers" Heuristic Metaphor for the Singular Limit of a Nonlinear Diffusion PDE[END_REF] and [START_REF] Barrett | Lakes and rivers in the landscape: A quasi-variational inequality approach[END_REF]). The approach of [START_REF] Barrett | Lakes and rivers in the landscape: A quasi-variational inequality approach[END_REF] is based on quasi-variational inequality. As to the approach of [START_REF] Dorfman | A "Lakes and Rivers" Heuristic Metaphor for the Singular Limit of a Nonlinear Diffusion PDE[END_REF], it is based on the singular limit of a nonlinear PDE. In both approaches the studies emerge singular models for which the authors establish some regularized models to study the original problem. Our approach here is different, we propose to use Hamilton Jacobi equation with obstacle to establish the exact final geometrical figure representing the overflowing profile of a granular matter structure over a landscape with various height (including the case where the material is a fluid to cover lakes).

More precisely, by using the results of [START_REF] Igbida | Metric Character for the Sub-Hamilton-Jacobi Obstacle Equation[END_REF], we show how one can use the intrinsic metric I g associated with the obstacle Hamilton-Jacobi equation to establish the overflowing profile of a sandpile or a lake in the landscape. The metric I g performs an inf-sup formula managing some kind of least-worst strategy to handle the obstacle. Even if the present paper focus on the stationary problem, we show also (see the last section) how the approach may be used with gradient flow theory in metric space of Wasserstein type and/or with sweeping process theory in Hilbert space to study the dynamic associated with of the problem.

Outline of the contents. In the following brief section, we give some generalities on the sandpile and its connection with Hamilton-Jacobi equation. In Section 3, we present the mathematical model related to the overflowing state of a sandpile and lake in non-flat landscape. We recall some tools introduced in [START_REF] Igbida | Metric Character for the Sub-Hamilton-Jacobi Obstacle Equation[END_REF] concerning obstacle Hamilton-Jacobi equation and the intrinsic metric I g . Then, we state our main results on the identification of the profile of the overflowing state. Section 4 is devoted to the proof of the main theorem. At last, in Section 5 we give further discussions concerning the main issue of our approach and related futur developments concerning the dynamic.

Preliminaries : sandpile on flat table

We consider a sandpile as a generic term for any structure of granular materials. This corresponds to a collection of macroscopic grains large enough such that the Brownien motion is non-existent. The more common property between this structures is their ability to get into a slope effect up to the so called repose angle. This is given by the steepest angle which the surface of a mass of particles in bulk makes with the ground. From physical point of view, this is an intrinsic property determined by the friction, the cohesion and the shapes of the particles. For instance, the repose angle can be 45 o for a pile of gravel or wet sand, 30 o for the dry sand, 38 o for a pile of snow, 22 o for a pile of glass beads, 15 o for wet clay and may tends towards 0 o to represent fluid material like water.

Let us begin with the simplest situation where an homogeneous granular matter is poured continuously from a point source onto a flat horizontal table which stands for a flat ground. In this situation, one gets circular cone whereby the slop is determined by the angle of repose of the material considered. The cone grows until its foot reach the boundary of the table and/or any region from where the material can pour out, like holes, reft etc. Then all additional sand runs over the edge in touch with the boundary and goes outside the table. We call this final overflowing geometrical figure the equilibrium. In our model, the repose angle will be given by its tangent k and may depend on the space variable x. In the particular case, where k is constant in space, a sandpile can be seen as a surface representation in IR 3 of a Lipschitz continuous function with Lipschitz constant k. Then, the equilibrium corresponds to such function with the maximal volume. Notice that, for the case where k depends on space, one needs to use the intrinsic metric of Finsler type associated with k (see Section 3). Here, Lip(Ω) denotes the set of Lipschitz continuous function defined on Ω. Thanks to the theory of Hamilton-Jacobi equation (see for instance [START_REF] Fathi | PDE aspects and Aubry-Mather theory for quasi-convex Hamiltonians[END_REF]), this problem leads in a natural way to the Eikonal equation

(2) |∇u(x)| = k(x), for x ∈ Ω,
subject to a boundary condition u = 0 on D. It is well known by now (see again [START_REF] Fathi | PDE aspects and Aubry-Mather theory for quasi-convex Hamiltonians[END_REF] and the references therein) that the quasi-metric 

Main results : sandpile and lake on non-flat landscape

Now, assume that the experimental table has an non-flat surface (which stands for a landscape with various eight). We consider a function g : Ω → IR + to represent the initiale configuration over the table. In this situation, the supplied granular material lies down on the surface of g where the slope does not exceed the angle of repose. However, it can stay up on the surface where the slope is steep if supported by material in the lower parts. To describe the equilibrium in this case, the maximization volume problem (1) turns into [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] max

Ω z dµ ; z ∈ Lip(Ω), z ≥ g, z = g on D and |∇z| ≤ k in [u > g] .
Here [u > g] denotes the set x ∈ Ω ; u(x) > g(x) . Therefore, formally the sandpile model in non-flat landscape needs to be modified in turn into a problem where one needs to solve a free boundary problem that aims to couple the Eikonal equation |∇u| = k and the constraint u ≥ g. In connection with (2), we'll use here the sub-Eikonal obstacle equation in Ω :

(6)    u ≥ g in Ω, |∇u| = k(x) in [u > g],
subject to a boundary condition u = g on D. In spite the case k ≡ 0 is slightly insignificant whenever g ≡ 0, we see that for arbitrary g ≡ 0, the model of the type (5) gives a substantial description of the morphology of brimful lakes in a non-flat landscape with some kind of leakage through D. The general situation k ≥ 0, may correspond again metaphorically to snow casting where the subregion [k = 0] represents the cast iron region.

The problem ( 6) is a particular case of the sub-Hamilton-Jacobi obstacle problem. In the case where k > 0, the problem (6) falls into the scope of [START_REF] Igbida | Metric Character for the Sub-Hamilton-Jacobi Obstacle Equation[END_REF]. Now, assuming k ≥ 0, our aim here is to show how to use [START_REF] Buttazzo | One-dimensional Variational Problems[END_REF] to provide an explicit expression for the maximization volume problem [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations[END_REF] providing in turn an explicit formula for the profile of an overflowing sandpile and lake in arbitrary landscape. To this aim, let us recall the main tools introduced in [START_REF] Igbida | Metric Character for the Sub-Hamilton-Jacobi Obstacle Equation[END_REF] to study the sub-Hamilton-Jacobi obstacle problem of the type [START_REF] Buttazzo | One-dimensional Variational Problems[END_REF]. For any path ϕ ∈ Lip([0, 1]; Ω), the set of Lipschitz continuous function defined from [0, 1] to Ω, we denote by Λ ϕ (t 1 , t 2 ) the quantity given by

Λ ϕ (t 1 , t 2 ) := t 2 t 1 k(ϕ(t)) |ϕ (t)| dt.
Then, for any given ϕ ∈ Lip([0, 1]; Ω), we define the action of ϕ with respect to the obstacle g by

A g (ϕ) = max t∈[0,1] g(ϕ(t)) + Λ ϕ (t,

1) .

We call A g (ϕ) the g-action of ϕ. See that, when g ≡ 0, A g (ϕ) coincides with the standard action given by Λ ϕ (0, 1) used in the definition of S (see (3)). At last, for any x, y ∈ Ω, we define the minimum g-action from x to y by S g (x, y) = inf A g (ϕ) ; ϕ ∈ Γ(x, y) , and we denote by

I g (x, y) = S g (x, y) -g(x).
In general, for any x, y ∈ Ω, I g (x, x) = 0 and (see [START_REF] Igbida | Metric Character for the Sub-Hamilton-Jacobi Obstacle Equation[END_REF])

(7) max(S(y, x), g(x) -g(y)) ≤ I g (y, x) ≤ S(y, x) + max x∈Ω g(x) -g(y).
However, if g is such that (8) g(x) -g(y) ≤ S(y, x), for any x, y ∈ Ω, then (see [START_REF] Igbida | Metric Character for the Sub-Hamilton-Jacobi Obstacle Equation[END_REF])

(9) I g = S.
Before giving the connection between S g and the maximization volume problem (5), let us take a while to remind and comments the main futur of I g . These are new inf-sup integral formulas involving the trajectories joining two given points and the obstacle g. Thanks to [START_REF] Igbida | Metric Character for the Sub-Hamilton-Jacobi Obstacle Equation[END_REF], we know that I g defines a new quasi-metric in Ω. Roughly speaking, this representation formulas is of game theory type. Indeed, recall that the solution of the Eikonal equation |∇u| = k is the maximal subsolution. So, assuming that u ≥ g and g is not a subsolution is a real conflict situation for the Eikonal equation and our inf-sup expression shows that the equation ( 6) sorts out some kind of least worst strategy. In the case where k > 0, we show in [START_REF] Igbida | Metric Character for the Sub-Hamilton-Jacobi Obstacle Equation[END_REF] that for any fixed y ∈ Ω, the function S g (y, .) is a viscosity solution of the equation ( 6) taking the value g(y) on y. For more results concerning the uniqueness, the comparison principle and the behavior of I g along the geodesics the reader can refer back to [START_REF] Igbida | Metric Character for the Sub-Hamilton-Jacobi Obstacle Equation[END_REF].

To set our main results, for any closed set D ⊂ Ω, let us denote by

K D g = z ∈ Lip(Ω) ; z ≥ g, z = g on D and |∇u| ≤ k in [u > g] .
Concretely, the set K D g is the set of admissible profiles for shapes of granular structure which could be mould upon the obstacle g. To describe the equilibrium profile patterned by a general source term, we consider µ a nonnegative Radon measure to model the source. In particular, µ may be equal to the sum of Dirac masses whenever the source is a set of punctual distribution of sand (or water in the lake case). In this situation, the characterization of the equilibrium is given by the maximization volume problem : [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] max andD ⊂ Ω is a given closed set. We define S g (D, x) = min S g (y, x) ; y ∈ D , for any x ∈ Ω.

z dµ : z ∈ K D g . Theorem 1. Assume that µ ∈ M + b (Ω), k ∈ C(Ω), k ≥ 0 in Ω, g ∈ Lip(Ω), g ≥ 0 in Ω,
We have

(1) S g (D, .) ∈ K D g . (2) S g (D, .
) is a solution of ( 10).

(3) u is a solution of (10) if and only if u ∈ K D g and u = S g (D, .) µ -a.e. in Ω.

Remark 1.

(1) Under the assumption (8), by using ( 9) we have S g (D, x) = min g(y) + S(y, x) ; y ∈ D , for any x ∈ Ω.

So, if g ≡ 0 we retrieve (4). In this situation, the material convers the obstacle everywhere.

(2) Theorem 1 gives the characterization of the equilibrium only in the support of the source µ. So, if such support is equal to Ω, then the profile is completely determined. Otherwise, we conjecture that the right formula is given by (11) u(x) = min z(x) : z ∈ K D g and z = S g (D, .) µ -a.e. in Ω .

However, the vindication of (11) remains to be rough out pending the strengthening of the right dynamic model.

Proofs

Using [6, Theorem 3.7.] (see also [START_REF] Cannarsa | Semiconcave functions, Hamilton-Jacobi equations, and optimal control[END_REF]), it is known that S is geodesically complete. That is, for any x, y ∈ Ω there exists ϕ ∈ Γ(y, x), such that S(y, x) =

1 0 k(ϕ(t))|ϕ (t)|dt.
Using the same arguments, it is not difficult to see that under the assumptions of Theorem 1 the metric S g is also geodesically complete. For any x, y ∈ Ω, we denote by ϕ y,x , a path satisfying S g (y, x) = A g (ϕ y,x ).

Moreover, for any x, y ∈ Ω, we denote by t y,x ∈ [0, 1], the value given by

t y,x = max t ∈ [0, 1] ; A g (ϕ y,x ) = g(ϕ y,x (t)) + 1 t k(ϕ y,x (s)) |ϕ y,x (s)| ds ,
To prove Theorem 1, we begin with the following result Lemma 1. For any closed set D ⊂ Ω and u ∈ K D g , we have u(x) ≤ S g (D, x), for any x ∈ Ω.

Proof : It is enough to prove the result of the lemma for D = {y}, with y ∈ Ω. Indeed, for general D one needs just to take the infimum over y ∈ D. Since S g (y, .) ≥ g in Ω, the result is clear in the region [u = g]. Let us prove the result in any C being a connected component of the set [u > g]. Let x 0 ∈ C be fixed. First, we see that since |∇u| ≤ k a.e. in C, using [START_REF] Igbida | Augmented Lagrangian method for optimal partial transportation[END_REF]Lemma 6.3], for any z ∈ C and ϕ ∈ Γ(z, x 0 ) such that ϕ([0, 1]) ⊂ C, we have [START_REF] Evans | Fast/Slow diffusion and collapsing sandpiles[END_REF] u(x 0 ) -u(z) ≤ S(z, x 0 ). Now, taking ϕ y,x 0 , and using the fact that y ∈ C (since u(y) = g(y)) and x 0 ∈ C, we consider

t = inf t ∈ [0, 1] ; ϕ y,x 0 (s) ∈ C for any s ∈ [t, 1] . Since x 0 ∈ C which
is open, it is not difficult to see that t < 1, ϕ y,x 0 (t) ∈ ∂C and u(ϕ y,x 0 (t)) = g(ϕ y,x 0 (t)). Then, let us define [START_REF] Evans | Fast/Slow diffusion and collapsing sandpiles[END_REF] with ϕ = ϕ y,x 0 , z = ϕ y,x 0 (t) and the definition of S, we obtain

ϕ(t) = ϕ y,x 0 (1 -t)t + t , for any t ∈ [0, 1]. It is clear that ϕ ∈ Γ ϕ y,x 0 (t), x 0 and ϕ([0, 1]) = ϕ y,x 0 ([t, 1]) ⊂ C. So, applying
u(x 0 ) -g(ϕ y,x 0 (t)) = u(x 0 ) -u(ϕ y,x 0 (t))
≤ Λ ϕ (0, 1) = Λ ϕy,x 0 (t, 1).

This implies that u(x 0 ) ≤ g(ϕ y,x 0 (t)) + Λ ϕy,x 0 (t, 1)

≤ max t∈[0,1]
g(ϕ y,x 0 (t)) + Λ ϕy,x 0 (t, 1) = S g (y, x 0 ).

Thus the result of the lemma.

The following lemma is proven in [START_REF] Igbida | Metric Character for the Sub-Hamilton-Jacobi Obstacle Equation[END_REF]. However, to be self-contained we give here the complete arguments of the proof.

Lemma 2. (cf. [18]) Let D ⊂ Ω be a closed set, C a connected component of [S g (D, .) > g] and x, z ∈ C. For any ϕ 2 ∈ Γ(z, x), such that ϕ 2 ([0, 1]) ⊂ C, we have (13) 
S g (D, x) ≤ S g (D, z) + Λ ϕ 2 (0, 1).

Proof : Again, it is enough to prove the result for D = {y}, for a fixed y ∈ Ω. For a given ϕ 1 ∈ Γ(y, z), we fix an arbitrary τ ∈ (0, 1], and we consider ϕ := ϕ 1 ∪ τ ϕ 2 ∈ Γ(y, x) (see for instance Figure 3 on page 9). Then, let

Figure 3. Jusxtaposition inside C y t = max t ∈ [0, 1] ; g(ϕ(t)) + Λ ϕ (t, 1) = A g (ϕ) .
Since x ∈ C, we have ϕ(t) ∈ C and t < τ. This implies that

S g (y, x) ≤ A g (ϕ) ≤ max t∈[0,τ ] g(ϕ(t)) + 1 t k(ϕ(s)) |ϕ (s)| ds ≤ A g (ϕ 1 ) + Λ ϕ 2 (0, 1).
Then, by taking the infimum over ϕ 1 ∈ Γ(y, z), we deduce the result.

The next lemma which is a slight modification of [START_REF] Fathi | PDE aspects and Aubry-Mather theory for quasi-convex Hamiltonians[END_REF]Lemma 5.5] is useful for the proof of Theorem 1.

Lemma 3. Let x 0 ∈ Ω \ ∂[k = 0].
Then, for any > 0, there exists δ ∈ (0, ) such that

(14) S(x, z) = inf A(ϕ) ; ϕ ∈ Γ(x, z) ∩ Lip B(x 0 , ) ,
for any x, z ∈ B(x 0 , δ ).

Proof : Firstly, one sees easily that ( 14) is fulfilled in the case where 14) is not true, there exists 0 > 0, a sequence x n , y n and ϕ n ∈ Γ(x n , y n ) such that lim B(x 0 , 0 ), But this is not possible. Indeed, since x 0 ∈ [k > 0], it is possible to assume that 0 > 0 small enough such that B(x 0 , δ ) ⊂ [k > 0]. Then, taking l n := l(ϕ n ([0, 1]) ∩ B(x 0 , )) the euclidian length of the part of the curve ϕ n included in B(x 0 , ) and m := min k(x) ; x ∈ B(x 0 , ) , for n large enough, we have Proof : It is enough to prove the result for D = {y} for a fixed y ∈ Ω. Recall that S g (y, .) ≥ g in Ω. The continuity of S g (y, .) and g implies that C y is an open domain. Let x 0 ∈ C \ ∂[k = 0]. Thanks to Lemma 3, there exists 0 < δ < , such that B(x 0 , ) ⊂ C and ( 16)

x 0 ∈ int([k = 0]). Indeed, taking δ > 0, such that B(x 0 , δ ) ⊂ int([k = 0]), for any y, z ∈ B(x 0 , δ ) and ϕ ∈ Γ(y, z) such that ϕ([0, 1]) ⊂ B(x 0 , δ ), S(x, z) = A(ϕ) = 0. Now, assume that x 0 ∈ [k > 0]. If (
1 0 k(ϕ n (t)) |ϕ n (t)| dt ≥ m 1 0 |ϕ n (t)| dt ≥ m l n ≥ 1 2 m > 0.
S(x, z) = inf 1 0 σ(ϕ(t), ϕ (t)) dt ; ϕ ∈ Γ(x, z) ∩ Lip B(x 0 , )
for any x, z ∈ B(x 0 , δ).

Thanks to Lemma 2, setting R = δ and taking the infimum over ϕ ∈ Γ(x, z) such that ϕ([0, 1]) ⊂ B(x 0 , ) in ( 13), we deduce the result. On the other hand, if u ∈ K D g is such that max z∈Kg z dµ = u dµ then S g (D, x) dµ(x) = u dµ. Using the fact that (S g (D, .) -u) ≥ 0, µ-a.e. in Ω, we deduce then that (S g (D, .) -u) = 0 µ -a.e. in Ω. This implies that u = S g (D, .), µ -a.e. in Ω.

Proof of

for any ψ ∈ C(Ω). Their model reflect in some sense the evolution equation

u t (t) -µ(t) ∈ ∂II K(u(t)) (u(t)), for t ∈ (0, ∞)
where

K(z) = η ∈ Lip(Ω) ; |∇η| ≤ M (z) a.e.
in Ω , for any z ∈ Lip(Ω).

However, since the equilibrium constraint M (z) is a discontinuous function in general, this quasi-variational approach is more complicated from both theoretical and numerical point of view. Following [START_REF] Rodrigues | Quasivariational solutions for first order quasilinear equations with gradient constraint[END_REF], the authors of [START_REF]Prigozhin Sandpiles and river networks: Extended systems with nonlocal interactions[END_REF] approximate the discontinuous equilibrium constraint by a continuous one and study the regularized problem. Anyway, even if both approaches by a regularization gives some theoretical and numerical satisfactory results, we do believe that the problem of the dynamic of a sandpile and lake in non-flat landscape is not well understood yet. The main futur of our approach in the present paper is completely different. Indeed, using I g , we exhibit here a new metric and geometrical point of view for the problem. We guess that this point of view may reproduce new concrete alternative model for the problem and we hope to return on them in future papers.

• Coming back for a while to the regular case where g L ∞ (Ω) ≤ k, we know that the dynamic is reduced to the projection on the convex set K D 0 . This is closely connected to the Eikonal equation [START_REF] Aronson | Fast/Slow diffusion and growing sandpiles[END_REF]. Indeed, the set K D 0 coincides with the set of 1-Lipschitz continuous function with respect to the intrinsic metric S given by (3). For the singular case where g L ∞ (Ω) > k, we conjecture that the dynamic is given by the projection on the set of 1-Lipschitz continuous functions with respect to the intrinsic metric I g . However, it is not clear yet for us how to justify concretely the connection with the concret situation of sandpile and/or lake on obstacle.

• Recall that in the regular case where k is constant and g L ∞ (Ω) ≤ k, the dynamic may be interpreted also as a gradient flow in the Wasserstein space associated with the Euclidienne distance in IR N (see [START_REF] Ageuh | On the minimizing movement with the 1-Wasserstein distance[END_REF]). Again, this is connected to the intrinsic metric associated with the Eikonal equation [START_REF] Aronson | Fast/Slow diffusion and growing sandpiles[END_REF]. For the singular case, we guess that one need to study the Wasserstein distance associated with I g and we conjecture that the dynamic is given by gradient flow in the corresponding Wasserstein space. However, this is more complicated and remains to be a challenging approach, since the metric I g is not of Finsler type.

At last, notice that many question related to the behavior and some properties of S D remains to be open. For instance, recall that S D is a solution of an obstacle Eikonal equation which represents a new peculiar free boundary problem in the class of Hamilton-Jacobi equation. To name just a few, the regularity of the free boundary as well as the geometrical property of the so called non-contact set ; the set where the solution is far away from the obstacle, remain to be interesting open questions.

Figure 1 .

 1 Figure 1. Equilibrium sandpile on Ω with D = ∂Ω. Let us consider Ω ⊆ IR 2 a bounded open domain to represent the table and a closed D ⊂ Ω to represent a region from where the sand can run out (for instance D = ∂Ω or D = {y} for a given y ∈ Ω). Following the statements above, the equilibrium can be seen as a solution of the following maximization volume problem

  (t)) dt ; ξ ∈ Γ(y, x) , for any x, y ∈ Ω, where Γ(x, y) := ϕ ∈ Lip([0, 1]; Ω) ; ϕ(0) = x and ϕ(1) = y , plays a crucial role in the characterization of the solution to (2). More precisely, the function (4) S(D, x) = min S(y, x) ; y ∈ D , for any x ∈ Ω, is the unique solution (in the viscosity sense) of (2) satisfying u = 0 on D. So, S(D, .) is the corresponding intrinsic distance up to D. In particular, it gives the exact equilibrium shape of a sandpile over Ω with a dispersion through D. Obviously, in the case where k ∈ IR + does not depends on space, S is reduced to S(x, y) = k|y -x| and S(D, x) = kd(x, D), where d(., D) is the distance function up to D (see for instance Figure 1 for the case where D = ∂Ω).

Figure 2 .

 2 Figure 2. Equilibrium sandpile on landscape with various height on Ω with D = ∂Ω.

n→∞ x n = lim n→∞ y n = x 0 , lim n→∞ 1 0

 1 k(ϕ n (t))|ϕ n (t)|dt = 0 and ϕ n ([0, 1]) ⊂

Lemma 4 .

 4 Let D ⊂ Ω be a closed set, C a connected component of [S g (D, .) > g] . For any x 0 ∈ C \ ∂[k = 0], there exists R > 0, such that (15)S g (D, x) -S g (D, z) ≤ S(z, x), for any x, z ∈ B(x 0 , R).

Theorem 1 :

 1 The first part of the theorem follows by Lemma 4. Indeed, since∂[k = 0] is negligible, for a.e. x 0 ∈ C, a connected component of [S g (D, .) > g], there exists R > 0 such that S g (D, x 1 ) -S g (D, x 2 )| ≤ S(x 2 , x 1 ), for any x 1 , x 2 ∈ B(x 0 , R).In particular, this implies that |∇S g (D, .)| ≤ k a.e. in B(x 0 , R) (see for instance[20, Lemma 6.3]). So, |∇S g (D, .)| ≤ k a.e. in any connected component of the set [S g (D, .) > g]. Thus S g (D, .) ∈ K D g . Thanks to Lemma 1, for any µ ∈ M + b (Ω) and z ∈ K D g , we have z ≤ S g (D, .), µ -a.e. in Ω. Using the fact that S g (D, .) ∈ K D g , we deduce that max z∈Kg z dµ = S g (D, x) dµ(x).

Conclusion, comments and open problems

In the present paper, we study the stationary problem corresponding to the equilibrium. The study of the dynamic is well investigated by now in the case where g satisfies (8) from theoretical and numerical point of view. In this case the problem falls into the scope of evolution problem governed by sub-differential operator in Hilbert space. Indeed, in this case we can replace K D g by K D 0 which is convex, and since g ∈ K D 0 , the dynamic involves the sub-differential of the indicator function of K D 0 in L 2 (Ω) with g as an initial data (one can see the papers [START_REF]Prigozhin Sandpiles and river networks: Extended systems with nonlocal interactions[END_REF], [START_REF] Dumont | on a Dual Formulation for the Growing Sandpile Problem[END_REF] and the reference therein for more details). For the general case, i.e. g L ∞ (Ω) > k, the investigation of the dynamic is a difficult problem. The main difficulty is connected to the loose of convexity of K D g . At our knowledge, there is only few studies that attempt to tacle this problem (cf. [START_REF] Dorfman | A "Lakes and Rivers" Heuristic Metaphor for the Singular Limit of a Nonlinear Diffusion PDE[END_REF] and [START_REF] Barrett | Lakes and rivers in the landscape: A quasi-variational inequality approach[END_REF]). In [START_REF] Dorfman | A "Lakes and Rivers" Heuristic Metaphor for the Singular Limit of a Nonlinear Diffusion PDE[END_REF], the authors study the lakes problem, i.e. k ≡ 0, by using the limit, as → 0, in the following nonlinear PDE ( 17)

where φ denotes the multivalued Heaviside function

for z > 0.

Indeed, the limit as → 0 forces the dynamic to be concentrated on the set

The authors justify part of the arguments by mathematical rigor, but other part are justified by formal asymptotic and numerical studies. As to the approach of [START_REF]Prigozhin Sandpiles and river networks: Extended systems with nonlocal interactions[END_REF], it is of quasi-variational type. Indeed, their starting point is the variational structure of the case where the obstacle satisfies the compatibility condition g L ∞ (Ω) ≤ k, in Ω. Then, the authors defines the application

max(k(x), |∇g(x)|) otherwise ,