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Nguyễn Kim Thắng Abhinav Srivastav

IBISC, Univ. Evry, University Paris-Saclay, France

Abstract

In this paper, we study fundamental problems of maximizing DR-submodular continuous functions
that have real-world applications in the domain of machine learning, economics, operations research and
communication systems. It captures a subclass of non-convex optimization that provides both theoretical
and practical guarantees. Here, we focus on minimizing regret for online arriving non-monotone DR-
submodular functions over down-closed and general convex sets.

First, we present an online algorithm that achieves a 1/e-approximation ratio with the regret of
O(T 3/4) for maximizing DR-submodular functions over any down-closed convex set. Note that, the
approximation ratio of 1/e matches the best-known offline guarantee. Next, we give an online algorithm
that achieves an approximation guarantee (depending on the search space) for the problem of maximizing
non-monotone continuous DR-submodular functions over a general convex set (not necessarily down-
closed). Finally we run experiments to verify the performance of our algorithms on problems arising in
machine learning domain with the real-world datasets.

1 Introduction

Continuous DR-submodular optimization is a subclass of non-convex optimization that is an upcoming frontier
in machine learning. Roughly speaking, a differentiable non-negative bounded function F : [0, 1]n → [0, 1]
is DR-submodular if ∇F (x) ≥ ∇F (y) for all x,y ∈ [0, 1]n where xi ≤ yi for every 1 ≤ i ≤ n. (Note
that, w.l.o.g. after normalization, assume that F has values in [0, 1].) Intuitively, continuous DR-submodular
functions represent the diminishing returns property or the economy of scale in continuous domains. DR-
submodularity has been of great interest [3, 1, 10, 22, 31, 35]. Many problems arising in machine learning
and statistics, such as Non-definite Quadratic Programming [24], Determinantal Point Processes [26], log-
submodular models [12], to name a few, have been modelled using the notion of continuous DR-submodular
functions.

In the past decade, online computational framework has been quite successful for tackling a wide variety
of challenging problems and capturing many real-world problems with uncertainty. In this computational
framework, we focus on the model of online learning. In online learning, at any time step, given a history of
actions and a set of associated reward functions, online algorithm first chooses an action from a set of feasible
actions; then, an adversary subsequently selects a reward function. The objective is to perform as good as
the best fixed action in hindsight. This setting have been extensively explored in the literature, especially in
context of convex functions [23].

In fact, several algorithms with theoretical approximation guarantees are known for maximizing (offline
and online) DR-submodular functions. However, these guarantees hold under the assumptions that are
∗This work is supported by the ANR project OATA no ANR-15-CE40-0015-01
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based on the monotonicity of functions coupled with the structure of convex sets such as unconstrained
hypercube and down-closed. Though, a majority of real-world problems can be formulated as non-monotone
DR-submodular functions over convex sets that might not be necessarily down-closed. For example, the
problems of Determinantal Point Processes, log-submodular models, etc can be viewed as non-monotone
DR-submodular maximization problems. Although several algorithms for non-monotone (set) submodular
maximization are known and they are built on maximizing the corresponding multilinear extensions (a
particular class of DR-submodular functions), they do not extend to general DR-submodular functions
since the optimal solutions of the former are integer points while the ones of the latter are not. Besides,
general convex sets include conic convex sets, up-closed convex sets, mixture of covering and packing linear
constraints, etc. which appear in many applications. Among others, conic convex sets play a crucial role in
convex optimization. Conic programming [4] — an important subfield of convex optimization — consists of
optimizing an objective function over a conic convex set. Conic programming reduces to linear programming
and semi-definite programming when the objective function is linear and the convex cones are the positive
orthant Rn+ and positive semidefinite matrices Sn+, respectively. Optimizing non-monotone DR-submodular
functions over a (bounded) conic convex set (not necessarily downward-closed) is an interesting and important
problem both in theory and in practice. To best of our knowledge, no prior work has been done on maximizing
DR-submodular functions over conic sets in online setting. The limit of current theory [3, 1, 10, 22, 31, 38]
motivates us to develop online algorithms for non-monotone functions.

In this work, we explore the online problem of maximizing non-monotone DR-submodular functions
over a hypercube and down-closed1 and over a general convex sets. Formally, we consider the following
setting for DR-submodular maximization: given a convex domain K ⊆ [0, 1]n in advance, at each time step
t = 1, 2, . . . , T , the online algorithm first selects a vector xt ∈ K. Subsequently, the adversary reveals a
non-monotone continuous DR-submodular function F t and the algorithm receives a reward of F t(xt). The
objective is also to maximize the total reward. We say that an algorithm achieves a (r,R(T ))-regret if

T∑
t=1

F t(xt) ≥ r ·max
x∈K

T∑
t=1

F t(x)−R(T )

In other words, r is the approximation ratio that measures the quality of the online algorithm compared to
the best fixed solution in hindsight and R(T ) represents the regret in the classic terms. Equivalently, we say
that the algorithm has r-regret at most R(T ). Our goal is to design online algorithms with (r,R(T ))-regret
where 0 < r ≤ 1 is as large as possible, and R(T ) is sub-linear in T , i.e., R(T ) = o(T ).

1.1 Our contributions and techniques

In this paper, we provide algorithms with performance guarantees for the problem over down-closed and
general convex sets. Our contributions and techniques are summarized as follows (also see Table 1, the entries
in the red correspond to our contribution).

1.1.1 Maximizing online non-monotone DR-submodular functions over down-closed convex sets

The natures of online DR-submodular maximization for monotone and non-monotone functions are quite
different. In the setting of monotone functions, the best approximation guarantee is (1 − 1/e) [10] but
one can prove that the natural gradient descent algorithm attains 1/2-approximation [10]. However, for
online non-monotone DR-submodular maximization, no constant guarantee is known and it is likely that

1K is down-closed if for every z ∈ K and y ≤ z then y ∈ K
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Table 1: Summary of results on DR-submodular maximization. The entries represent the best-known
(r,R(T ))-regret; our results are shown in red. The entry in blue is not explicitly stated in literature but can be
deduced from [17] or from our technique. The guarantees in blank cells can be deduced from a more general
one.

natural algorithms such as gradient descent, mirror descent, etc do not guarantee to achieve any constant
approximation, even small one. An illustrative example of poor local optima (for coordinate ascent algorithm)
can be found in [3, Appendix A].

The main result of our paper is the first online algorithm that achieves a constant approximation ratio
with the regret of O(T 3/4) for maximizing non-monotone DR-submodular functions over any down-closed
convex set where T is number of time steps. Moreover, the approximation is 1/e which matches to the best
guarantee in the offline setting.

Our algorithm is built on the Meta-Frank-Wolfe algorithm introduced by Chen et al. [10] for monotone
DR-submodular maximization. Their meta Frank-Wolfe algorithm combines the framework of meta-actions
proposed in [36] with a variant of the Frank-Wolfe proposed in [2] for maximizing monotone DR-submodular
functions. Informally, at every time t, our algorithm starts from the origin 0 (0 ∈ K since K is down-closed)
and executes L steps of the Frank-Wolfe algorithm where every update vector at iteration 1 ≤ ` ≤ L is
constructed by combining the output of an optimization oracle E` and the current vector so that we can exploit
the concavity property in positive directions of DR-submodular functions. The solution xt is produced at the
end of the L-th step. Subsequently, after observing the function F t, the algorithm subtly defines a vector dt`
and feedbacks 〈·,dt`〉 as the reward function at time t to the oracle E` for 1 ≤ ` ≤ L. The most important
distinguishing point of our algorithm compared to that in [10] relies on the oracles. In their algorithm, they
used linear oracles which are appropriate for maximizing monotone DR-submodular functions. However, it is
not clear whether linear or even convex oracles are strong enough to achieve a constant approximation for
non-monotone functions.

While aiming for a 1/e-approximation — the best known approximation in the offline setting — we
consider the following online non-convex problem, referred throughout this paper as online vee learning
problem. At each time t, the online algorithm knows ct ∈ K in advance and selects a vector xt ∈ K.
Subsequently, the adversary reveals a vector at ∈ Rn and the algorithm receives a reward 〈at, ct ∨ xt〉.
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Given two vectors x and y, the vector x ∨ y has the ith coordinate (x ∨ y)i = max{x(i), y(i)}. The goal is
to maximize the total reward over a time horizon T .

In order to bypass the non-convexity of the online vee learning problem, we propose the following
methodology. Unlike dimension reduction techniques that aim at reducing the dimension of the search space,
we lift the search space and the functions to a higher dimension so as to benefit from their properties in this
new space. Concretely, at a high level, given a convex set K, we define a “sufficiently dense” lattice L in
[0, 1]n such that every point in K can be approximated by a point in the lattice. The term “sufficiently dense”
corresponds to the fact that the values of any Lipschitz function can be approximated by the function values
at lattice points. As the next step, we lift all lattice points in K to a high dimension space so that they form
a subset of vertices (corners points) K̃ of the unit hypercube in the newly defined space. Interestingly, the
reward function 〈at, ct ∨ xt〉 can be transformed to a linear function in the new space. Hence, our algorithm
for the online vee problem consists of updating at every time step a solution in the high-dimension space
using a linear oracle and projecting the solution back to the original space.

Once the solution is projected back to original space, we construct appropriate update vectors for
the original DR-submodular maximization and feedback rewards for the online vee oracle. Exploiting
the underlying properties of DR-submodularity, we show that our algorithm achieves the regret bound of
(1/e,O(T 3/4)). A useful feature of our algorithm is that it is projection-free if using appropriate projection-
free oracles.

Over the hypercube. Restricting on the DR-submodular maximization problem over the hypercube [0, 1]n,
a particular down-closed convex set that has been widely studied, our approach leads to an 1/2-approximation
algorithm with regret bound of O(

√
T log T ). Note that this result can be deduced from [17] but as it is not

explicitly stated in literature, for completeness, we present the proof in the appendix.

1.1.2 Maximizing online non-monotone DR-submodular functions over general convex sets

We go beyond the down-closed structure by considering general convex sets. Building upon our salient ideas
from previous algorithm, we prove that for general convex sets, the Meta-Frank-Wolfe algorithm with adapted
step-sizes guarantees

(
1−minx∈K‖x‖∞

3
√
3

, O( T
lnT )

)
-regret in expectation. Notably, if the set K contains 0 (for

example, K is the intersection of the semi-definite positive matrix cone and the hypercube [0, 1]n) then the
algorithm guarantees in expectation a ( 1

3
√
3
, O( T

log T ))-regret. To the best of our knowledge, this is the first
constant-approximation algorithm for the problem of online non-monotone DR-submodular maximization
over a non-trivial convex set that goes beyond down-closed sets. Note that, any algorithm for the problem
over a non-down-closed convex set (in particular arbitrary convex set containing the origin) that guarantees
a constant approximation must require in general exponentially many value queries to the function [37].
Remark that the quality of the solution, specifically the approximation ratio, depends on the initial solution
x0. This confirms an observation in various contexts that initialization plays an important role in non-convex
optimization.

1.2 Related Work

In this section, we give a summary on best-known results on DR-submodular maximization. The domain has
been investigated more extensively in recent years due to its numerous applications in the field of statistics and
machine learning, for example active learning [19], viral makerting [25], network monitoring [20], document
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summarization [27], crowd teaching [33], feature selection [16], deep neural networks [15], diversity models
[13] and recommender systems [21].

Offline setting. Bian et al. [2] considered the problem of maximizing monotone DR-functions subject
to a down-closed convex set and showed that the greedy method proposed by [7], a variant of well-known
Frank-Wolfe algorithm in convex optimization, guarantees a (1− 1/e)-approximation. However, it has been
observed by [22] that the greedy method is not robust in stochastic settings (where only unbiased estimates of
gradients are available). Subsequently, Hassani et al. [29] proposed a (1− 1/e)-approximation algorithm for
maximizing monotone DR-submodular functions over general convex sets in stochastic settings by a new
variance reduction technique.

The problem of maximizing non-monotone DR-submodular functions is much harder. Bian et al. [3] and
Niazadeh et al. [31] have independently presented algorithms with the same approximation guarantee of (1/2)
for the problem of non-monotone DR-submodular maximization over the hypercube (K = [0, 1]n). These
algorithms are inspired by the bi-greedy algorithms in [6, 5]. Bian et al. [1] made a further step by providing
a (1/e)-approximation algorithm where the convex sets are down-closed. Mokhtari et al. [29] also presented
an algorithm that achieve (1/e) for non-monotone continuous DR-submodular function over a down-closed
convex domain that uses only stochastic gradient estimates. Remark that when aiming for approximation
algorithms (in polynomial time), the restriction to down-closed polytopes is unavoidable. Specifically,
Vondrak [37] proved that any algorithm for the problem over a non-down-closed set that guarantees a constant
approximation must require in general exponentially many value queries to the function. Recently, Durr et
al. [14] presented an algorithm that achieves ((1−minx∈K‖x‖∞)/3

√
3)-approximation for non-monotone

DR-submodular function over general convex sets that are not necessarily down-closed.

Online setting. The results for online DR-submodular maximization are known only for monotone func-
tions. Chen et al. [10] considered the online problem of maximizing monotone DR-submodular functions
over general convex sets and provided an algorithm that achieves a (1− 1/e,O(

√
T ))-regret. Subsequently,

Zhang et al. [38] presented an algorithm that reduces the number of per-function gradient evaluations from
T 3/2 in [10] to 1 and achieves the same approximation ratio of (1− 1/e). Leveraging the idea of one gradient
per iteration, they presented a bandit algorithm for maximizing monotone DR-submodular function over a
general convex set that achieves in expectation (1 − 1/e) approximation ratio with regret O(T 8/9). Note
that in the discrete setting, Roughgarden and Wang [32] studied the non-monotone (discrete) submodular
maximization over the hypercube and gave an algorithm which guarantees the tight (1/2)-approximation
and O(

√
T ) regret. Recently and independently, Niazadeh et al. [30] have provided an (1/2, O(

√
T ))-regret

algorithm for DR-submodular maximization over the hypercube. Their algorithm is built on an interesting
framework that transform offline greedy algorithms to online ones using Blackwell approachability. Our
approach, based on the lifting procedure, is completely different to theirs.

2 Preliminaries and Notations

Throughout the paper, we use bold face letters, e.g., x,y to represent vectors. For every S ⊆ {1, 2, . . . , n},
vector 1S is the n-dim vector whose ith coordinate equals to 1 if i ∈ S and 0 otherwise. Given two n-
dimensional vectors x,y, we say that x ≤ y iff xi ≤ yi for all 1 ≤ i ≤ n. Additionally, we denote by
x ∨ y, their coordinate-wise maximum vector such that (x ∨ y)i = max{xi, yi}. Moreover, the symbol ◦
represents the element-wise multiplication that is, given two vectors x,y, vector x ◦ y is the such that the
i-th coordinate (x ◦ y)i = xiyi. The scalar product 〈x,y〉 =

∑
i xiyi and the norm ‖x‖= 〈x,x〉1/2. In the
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paper, we assume that K ⊆ [0, 1]n. We say that K is the hypercube if K = [0, 1]n; K is down-closed if for
every z ∈ K and y ≤ z then y ∈ K; and K is general if K is a convex subset of [0, 1]n without any special
property.

Definition 1. A function F : [0, 1]n → R+ ∪ {0} is diminishing-return (DR) submodular if for all vector
x ≥ y ∈ [0, 1]n, any basis vector ei = (0, . . . , 0, 1, 0, . . . , 0) and any constant α > 0 such that x + αei ∈
[0, 1]n, y + αei ∈ [0, 1]n, it holds that

F (x + αei)− F (x) ≤ F (y + αei)− F (y). (1)

Note that if function F is differentiable then the diminishing-return (DR) property (1) is equivalent to

∇F (x) ≤ ∇F (y) ∀x ≥ y ∈ [0, 1]n. (2)

Moreover, if F is twice-differentiable then the DR property is equivalent to all of the entries of its Hessian
being non-positive, i.e., ∂2F

∂xi∂xj
≤ 0 for all 1 ≤ i, j ≤ n.

Besides, a differentiable function F : K ⊆ [0, 1]n → R+∪{0} is said to be β-smooth if for any x,y ∈ K,
the following holds,

F (y) ≤ F (x) + 〈∇F (x),y − x〉+
β

2
‖y − x‖2 (3)

or equivalently, the gradient is β-Lipschitz, i.e.,∥∥∇F (x)−∇F (y)
∥∥ ≤ β‖x− y‖ . (4)

Properties of DR-submodularity In the following, we present a property of DR-submodular functions
that are are crucial in our analyses. The most important property is the concavity in positive directions, i.e.,
for every x,y ∈ K and x ≥ y, it holds that

F (x) ≤ F (y) + 〈∇F (y),x− y〉.

Addionally, the following lemmas are useful in our analysis.

Lemma 1 ([22]). For every x,y ∈ K and any DR-submodular function F , it holds that

〈∇F (x),y − x〉 ≥ F (x ∨ y) + F (x ∧ y)− 2F (x)

Lemma 2 ([18, 8, 1]). For every x,y ∈ K and for any DR-submodular function F : [0, 1]n → R+ ∪ {0}, it
holds that F (x ∨ y) ≥ (1− ‖x‖∞)F (y).

Variance Reduction Technique. Our algorithm and its analysis relies on a recent variance reduction
technique proposed by [29]. This theorem has also been used in the context of online monotone submodular
maximization [9, 38].

Lemma 3 ([29], Lemma 2). Let {at}Tt=0 be a sequence of points in Rn. such that
∥∥at − at−1

∥∥ ≤ C/(t+ s)
for all 1 ≤ t ≤ T with fixed constants C ≥ 0 and s ≥ 3. Let {ã}Tt=1 be a sequence of random variables

such that E[ã|Ht−1] = at and E
[∥∥ãt − at

∥∥2 |Ht−1] ≤ σ2 for every t ≥ 0, whereHt−1 is the history up to
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t− 1. Let {dt}Tt=0 be a sequence of random variables where d0 is fixed and subsequent dt are obtained by
the recurrence

dt = (1− ρt)dt−1 + ρtãt

with ρt = 2
(t+s)2/3

. Then we have

E
[∥∥∥at − dt

∥∥∥2] ≤ Q

(t+ s+ 1)2/3
,

where Q = max{
∥∥a0 − d0

∥∥2 (s+ 1)2/3, 4σ2 + 3C2/2}.

3 Online DR-Submodular Maximization over Down-Closed Convex Sets

3.1 Online Vee Learning

In this section, we give an algorithm for an online problem that will be the main building block in the design
of algorithms for online DR-submodular maximization over down-closed convex sets. In the online vee
learning problem, given a down-closed convex set K, at every time t, the online algorithm receives ct ∈ K
at the beginning of the step and needs to choose a vector xt ∈ K. Subsequently, the adversary reveals a
vector at ∈ Rn and the algorithm receives a reward 〈at, ct ∨ xt〉. The goal is to maximize the total reward∑T

t=1〈at, ct ∨ xt〉 over a time horizon T .
The main issue in the online vee problem is that the reward functions are non-concave. In order to

overcome this obstacle, we consider a novel approach that consists of discretizing and lifting the corresponding
functons to a higher dimensional space.

Discretization and lifting. Let L be a lattice such that L = {0, 1
M ,

2
M , . . . ,

`
M , . . . , 1}

n where 0 ≤ ` ≤M
for some parameter M (to be defined later). Note that each xi = `

M for 0 ≤ ` ≤ M can be uniquely
represented by a vector yi ∈ {0, 1}M+1 such that yi0 = . . . = yi` = 1 and yi,`+1 = . . . = yi,M = 0. Based
on this observation, we lift the discrete setK∩L to the (n× (M+1))-dim space. Specifically, define a lifting
map m : K ∩ L → {0, 1}n×(M+1) such that each point (x1, . . . , xn) ∈ K ∩ L is mapped to an unique point
(y10, . . . , y1M , . . . , yn0, . . . , ynM ) ∈ {0, 1}n×M where yi0 = . . . = yi` = 1 and yi,`+1 = . . . = yi,M = 0

iff xi = `
M for 0 ≤ ` ≤M . Define K̃ be the set {1X ∈ {0, 1}n×(M+1) : 1X = m(x) for some x ∈ K∩L}.

Observe that K̃ is a subset of discrete points in {0, 1}n×(M+1). Let C := conv(K̃) be the convex hull of K̃.

Algorithm description. In our algorithm, at every time t, we will output xt ∈ L ∩ K. In fact, we will
reduce the online vee problem to a online linear optimization problem in the (n× (M + 1))-dim space. Given
ct ∈ K, we round every coordinate cti for 1 ≤ i ≤ n to the largest multiple of 1

M which is smaller than cti. In
other words, the rounded vector ct has the ith-coordinate c̄ti = `

M where `
M ≤ c

t
i <

`+1
M . Vector ct ∈ L and

also ct ∈ K (since ct ≤ ct and K is down-closed). Denote 1Ct = m(ct). Besides, for each vector at ∈ Rn,
define its correspondence ãt ∈ Rn×(M+1) such that ãti,j = 1

M a
t
i for all 1 ≤ i ≤ n and 0 ≤ j ≤M . Observe

that 〈at, ct〉 = 〈ãt,1Ct〉 (where the second scalar product is taken in the space of dimension n× (M + 1)).
The formal description is given in Algorithm 1. In the algorithm, we use a procedure update. This

procedure takes arguments as the polytope C, the current vector yt, the gradients of previous time steps
ãt ◦ (1− 1Ct) and outputs the next vector yt+1. One can use different update strategies, in particular the
gradient descent or the follow-the-perturbed-leader algorithm (if aiming for a projection-free algorithm).

yt+1 ← ProjC

(
yt − η · ãt ◦ (1− 1Ct)

)
(Gradient Descent)
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Algorithm 1 Online algorithm for vee learning
Input: A convex set K, a time horizon T .

1: Let L be a lattice in [0, 1]n and denote the polytope C := conv(K̃).
2: Initialize arbitrarily x1 ∈ K ∩ L and y1 = 1X1 = m(x1) ∈ K̃.
3: for t = 1 to T do
4: Observe ct, compute 1Ct = m(ct).
5: Play xt.
6: Observe at (so compute ãt) and receive the reward 〈at, ct ∨ xt〉.
7: Set yt+1 ← updateC(y

t; ãt
′ ◦ (1− 1Ct′ ) : t′ ≤ t) where ◦ denotes the element-wise multiplication.

8: Round: 1Xt+1 ← round(yt+1).
9: Compute xt+1 = m−1(1Xt+1).

10: end for

yt+1 ← arg min
C

{
η

t∑
t′=1

〈ãt′ ◦ (1− 1Ct′ ),y〉+ nT · y
}

(Follow-the-perturbed-leader)

Besides, in the algorithm, we use additionally a procedure round in order to transform a solution yt in the
polytope C of dimension n× (M + 1) to an integer point in K̃. Specifically, given yt ∈ conv(K̃), we round
yt to 1Xt ∈ K̃ using an efficient polynomial-time algorithm given in [28] for the approximate Carathéodory’s
theorem w.r.t the `2-norm. Specifically, given yt ∈ C and an arbitrary ε > 0, the algorithm in [28] returns
a set of k = O(1/ε2) integer points 1Xt

1
, . . . ,1Xt

k
∈ K̃ in O(1/ε2)-time such that ‖yt − 1

k

∑k
j=1 1Xt

j
‖≤ ε.

Hence, given 1Xt
1
, . . . ,1Xt

k
which have been computed, the procedure round simply consists of rounding

yt to 1Xt
j

with probability 1/k. Finally, the solution xt in the original space is computed as m−1(1Xt+1).

Lemma 4. Assume that ‖at‖≤ G for all 1 ≤ t ≤ T and the update scheme is chosen either as the gradient
ascent update or other procedure with regret of O(

√
T ). Then, using the lattice L with parameter M =

(T/n)1/4 and ε = 1/
√
T (in the round procedure), Algorithm 1 achieves a regret bound of O(G(nT )3/4).

The total running time of the algorithm is O(T 2).

Proof. Observe that yt be the solution of the online linear optimization problem in dimension n× (M + 1)
at time t where the reward function at time t is 〈ãt ◦ (1 − 1Ct), ·〉. Moreover, recall that xt ∈ L ∩ K for
every time t. First, by the construction, we have:

m(ct ∨ xt) = m(ct) ∨m(xt) = 1Ct ∨ 1Xt ,

〈at, ct ∨ xt〉 = 〈ãt,1Ct ∨ 1Xt〉.

Therefore,
T∑
t=1

E[〈at, ct ∨ xt〉] =

T∑
t=1

E[〈ãt,1Ct ∨ 1Xt〉]

Besides, for every vector 1C and vector z ∈ [0, 1]n×M , the following identity always holds: 1C ∨ z =
z + 1C ◦ (1− z). Therefore, for every vector z ∈ [0, 1]n×M ,

〈ãt,1Ct ∨ y〉 = 〈ãt, z + 1Ct ◦ (1− z)〉 = 〈ãt, z ◦ (1− 1Ct)〉+ 〈ãt,1Ct〉
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= 〈ãt ◦ (1− 1Ct), z〉+ 〈ãt,1Ct〉 (5)

where note that the last term 〈ãt,1Ct〉 is independent of the decision at time t.
By linearity of expectation, we have

T∑
t=1

E[〈at, ct ∨ xt〉] =
T∑
t=1

E[〈ãt ◦ (1− 1Ct),1Xt〉+ 〈ãt,1Ct〉]

=
T∑
t=1

〈ãt ◦ (1− 1Ct),yt〉+
T∑
t=1

〈ãt ◦ (1− 1Ct),E[1Xt ]− yt〉+
T∑
t=1

〈ãt,1Ct〉

≥
T∑
t=1

〈ãt ◦ (1− 1Ct),yt〉+
T∑
t=1

〈ãt,1Ct〉 −
T∑
t=1

‖ãt ◦ (1− 1Ct)‖·‖E[1Xt ]− yt‖

≥
T∑
t=1

〈ãt ◦ (1− 1Ct),yt〉+
T∑
t=1

〈ãt,1Ct〉 − TGε. (6)

The first inequality follows Cauchy-Schwarz inequality. The last inequality is due to the property of round
and ‖ãt ◦ (1− 1Ct)‖≤ G since ‖at‖≤ G and the construction of ãt.

Let x∗ be the optimal solution in hindsight for the online vee learning problem. Let x∗ be the rounded
solution of x∗ onto the lattice L. Denote 1X∗ = m(x∗). By (5) and (6) and the choice of ε = O(1/

√
T ), we

have
T∑
t=1

E[〈at, ct ∨ xt〉]−
T∑
t=1

〈at, ct ∨ x∗〉 ≥
T∑
t=1

E[〈ãt ◦ (1− 1Ct),yt − 1X∗〉] ≥ −O(nMG
√
T )

where the last inequality is due to the regret bound of the gradient descent or the follow-the-perturbed-leader
algorithms (in dimesion nM ). As ‖at‖≤ G, function 〈at, ·〉 is G-Lipschitz. Hence,

T∑
t=1

E[〈at, ct ∨ xt〉]−
T∑
t=1

〈at, ct ∨ x∗〉

=
T∑
t=1

E[〈at, ct ∨ xt〉]−
T∑
t=1

〈at, ct ∨ xt〉+

T∑
t=1

E[〈at, ct ∨ xt〉]−
T∑
t=1

〈at, ct ∨ x∗〉

+

T∑
t=1

E[〈at, ct ∨ x∗〉]−
T∑
t=1

〈at, ct ∨ x∗〉+

T∑
t=1

E[〈at, ct ∨ x∗〉]−
T∑
t=1

〈at, ct ∨ x∗〉

≥ −O(nMG
√
T )−O(TG

√
n

M
).

where ‖ct ∨xt− ct ∨xt‖≤ ‖ct− ct‖≤
√
n/M and similarly ‖ct ∨x∗− ct ∨x∗‖ and ‖ct ∨x∗− ct ∨x∗‖

are bounded by
√
n/M . Choosing M = (T/n)1/4, one gets the regret bound of O(G(nT )3/4).

Finally, the procedure round has average running time O(1/ε2) = O(T ) per time step; that leads to the
complexity of O(T 2).

3.2 Algorithm for online non-monotone DR-submodular maximization

In this section, we will provide an algorithm for the problem of online non-monotone DR-submodular
maximization. The algorithm maintains L online vee learning oracles E1, . . . , EL. At each time step t, the

9



algorithm starts from 0 (origin) and executes L steps of the Frank-Wolfe algorithm where the update vector
vt` is constructed by combining the output ut` of the online vee optimization oracle E` with the current vector
xt`. In particular, vt` is set to be xt` ∨ ut` − xt`. Then, the solution xt is produced at the end of the L-th
step. Subsequently, after observing the DR-submodular function F t, the algorithm defines a vector dt` and
feedbacks 〈dt`,xt` ∨ ut`〉 as the reward function at time t to the oracle E` for 1 ≤ ` ≤ L. The pseudocode in
presented in Algorithm 2.

Algorithm 2 Online algorithm for down-closed convex sets
Input: A convex set K, a time horizon T , online vee optimization oracles E1, . . . , EL, step sizes ρ` ∈ (0, 1),
and η` = 1/L for all ` ∈ [L]

1: Initialize vee optimizing oracle E` for all ` ∈ {1, . . . L}.
2: Initialize xt1 ← 0 and dt0 ← 0 for every 1 ≤ t ≤ T .
3: for t = 1 to T do
4: Compute ut` ← output of oracle E` in round t for all ` ∈ {1, . . . , L}.
5: for 1 ≤ ` ≤ L do
6: Set vt` ← xt` ∨ ut` − xt`
7: Set xt`+1 ← xt` + η`v

t
`.

8: end for
9: Set xt ← xtL+1.

10: Play xt, observe the function F t and get the reward of F t(xt).
11: Compute a gradient estimate gt` such that E[gt`|xt`] = ∇F t(xt`) for all ` ∈ {1, 2, . . . , L}.
12: Compute dt` = (1− ρ`)dt`−1 + ρ`g

t
`, for every ` ∈ {1, . . . , L}

13: Feedback 〈dt`,xt` ∨ ut`〉 to oracle E` for all ` ∈ {1, 2, . . . , L},
14: end for

We first prove a technical lemma.

Lemma 5. Let xt` be the vectors constructed in Algorithm 2. Then, it holds that 1−‖xt`+1‖∞≥
∏`
`′=1(1−η`′)

for every t ∈ {1, 2, . . . , T} and for every ` ∈ {1, 2, . . . , L}.
Proof. We show that inequality holds for every t. Fix an arbitrary t ∈ {1, 2, . . . , T}. For the ease of
exposition, we drop the index t in the following proof. Let (x`)i, (u`)i and (v`)i be the ith coordinates of
vectors x`, u` and v` for 1 ≤ i ≤ n and for 1 ≤ ` ≤ L, respectively. We first obtain the following recursion
on fixed (x`)i.

1− (x`+1)i = 1−
(
(x`)i + η`(v`)i

)
≥ 1−

(
(x`)i + η`(1− (x`)i)

)
= (1− η`)(1− (x`)i)

where the inequality holds since 0 ≤ (x`∨u`)i ≤ 1. Since (x1)i = 0, we have 1−(xt`+1)i ≥
∏`
`′=1(1−η`′).

The lemma holds since the inequality holds for every 1 ≤ i ≤ n.

We are now ready to prove the main theorem of the section.

Theorem 1. Let K ⊆ [0, 1]n be a down-closed convex set with diameter D. Assume that functions F t’s are
G-Lipschitz, β-smooth and E

[∥∥g̃t` −∇F t(xt`)∥∥2] ≤ σ2 for every t and `. Then, the step-sizes η` = 1/L and

ρ` = 2/(`+ 3)2/3 for all 1 ≤ ` ≤ L , Algorithm 2 achieves the following guarantee:

T∑
t=1

E[F t(xt)] ≥

(
1

e
−O

(
1

L

)) T∑
t=1

F t(x∗)−O(n3/4GT 3/4)−O
(

(βD +G+ σ)DT

L1/3

)
.
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Choosing L = T 3/4 and note that D ≤
√
n, we get

T∑
t=1

E[F t(xt)] ≥

(
1

e
−O

(
1

T 3/4

))
max
x∈K

T∑
t=1

F t(x)−O((G+ σ)n5/4T 3/4). (7)

Proof. Let x∗ be an optimal solution in hindsight, i.e., x∗ ∈ arg maxx∈K
∑T

t=1 F
t(x). Fix a time step

t ∈ {1, 2, . . . , T}. For every 2 ≤ ` ≤ L+ 1, we have following:

F t(xt`)− F t(xt`−1) ≥ 〈∇F t(xt`), (xt` − xt`−1)〉 − (β/2)‖xt` − xt`−1‖2 (using β-smoothness)

= η`−1〈∇F t(xt`),vt`−1〉 −
βη2`−1

2
‖vt`−1‖2 (using the update step in the algorithm)

= η`−1〈∇F t(xt`−1),vt`−1〉+ η`−1〈∇F t(xt`)−∇F t(xt`−1),vt`−1〉 −
βη2`−1

2
‖vt`−1‖2

≥ η`−1〈∇F t(xt`−1),vt`−1〉 − η`−1‖∇F t(xt`)−∇F (xt`−1)‖ · ‖vt`−1‖ −
βη2`−1

2
‖vt`−1‖2

(Cauchy-Schwarz)

≥ η`−1〈∇F t(xt`−1),vt`−1〉 − η`−1β‖xt` − xt`−1‖ · ‖vt`−1‖ −
βη2`−1

2
‖vt`−1‖2

(using β-smoothness)

≥ η`−1〈∇F t(xt`−1),vt`−1〉 − 2βη2`−1‖vt`−1‖2

≥ η`−1〈∇F t(xt`−1),vt`−1〉 − 2βη2`−1D
2 (diametre of K is bounded)

= η`−1〈∇F t(xt`−1),xt`−1 ∨ x∗ − xt`−1〉+ η`−1〈∇F t(xt`−1),vt`−1 − (xt`−1 ∨ x∗ − xt`−1)〉
− 2βη2`−1D

2

= η`−1〈∇F t(xt`−1),xt`−1 ∨ x∗ − xt`−1〉+ η`−1〈dt`−1,vt`−1 − (xt`−1 ∨ x∗ − xt`−1)〉
+ η`−1〈∇F t(xt`−1)− dt`−1,v

t
`−1 − (xt`−1 ∨ x∗ − xt`−1)〉 − 2βη2`−1D

2

≥ η`−1(F t(xt`−1 ∨ x∗)− F t(xt`−1)) + η`−1〈dt`−1,vt`−1 − (xt`−1 ∨ x∗ − xt`−1)〉
+ η`−1〈∇F t(xt`−1)− dt`−1,v

t
`−1 − (xt`−1 ∨ x∗ − xt`−1)〉 − 2βη2`−1D

2

(using concavity in positive direction)

≥ η`−1(F t(xt`−1 ∨ x∗)− F t(xt`−1)) + η`−1〈dt`−1,xt`−1 ∨ ut`−1 − xt`−1 ∨ x∗〉
+ η`−1〈∇F t(xt`−1)− dt`−1,x

t
`−1 ∨ ut`−1 − xt`−1 ∨ x∗〉 − 2βη2`−1D

2

(using the definition of vt`−1)
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≥ η`−1
(

(1− ‖xt`−1‖∞)F t(x∗)− F t(xt`−1)
)

+ η`−1〈dt`−1,xt`−1 ∨ ut`−1 − xt`−1 ∨ x∗〉

+ η`−1〈∇F t(xt`−1)− dt`−1,x
t
`−1 ∨ ut`−1 − xt`−1 ∨ x∗〉 − 2βη2`−1D

2 (using Lemma 2)

≥ η`−1
`−2∏
`′=1

(1− η`′) · F t(x∗)− η`−1F t(xt`−1) + η`−1〈dt`−1,xt`−1 ∨ ut`−1 − xt`−1 ∨ x∗〉

+ η`−1〈∇F t(xt`−1)− dt`−1,x
t
`−1 ∨ ut`−1 − xt`−1 ∨ x∗〉 − 2βη2`−1D

2 (using Lemma 5)

≥ η`−1
`−2∏
`′=1

(1− η`′) · F t(x∗)− η`−1F t(xt`−1) + η`−1〈dt`−1,xt`−1 ∨ ut`−1 − xt`−1 ∨ x∗〉

− η`−1
2

(
1

γ`−1
‖∇F t(xt`−1)− dt`−1‖2+γ`−1‖xt`−1 ∨ ut`−1 − xt`−1 ∨ x∗‖2

)
− 2βη2`−1D

2 (Young’s Inequality, parameter γ`−1 will be defined later)

≥ η`−1
`−2∏
`′=1

(1− η`′) · F t(x∗)− η`−1F t(xt`−1) + η`−1〈dt`−1,xt`−1 ∨ ut`−1 − xt`−1 ∨ x∗〉

− η`−1
2

(
1

γ`−1
‖∇F t(xt`−1)− dt`−1‖2+γ`−1D2

)
− 2βη2`−1D

2.

(since ‖xt`−1 ∨ ut`−1 − xt`−1 ∨ x∗‖≤ ‖ut`−1 − x∗‖≤ D.)

From the above we have

F t(xt`) ≥ (1− η`−1)F t(xt`−1) + η`−1

`−2∏
`′=1

(1− η`′) · F t(x∗) + η`−1〈dt`−1,xt`−1 ∨ ut`−1 − xt`−1 ∨ x∗〉

− η`−1
2

(
1

γ`−1
‖∇F t(xt`−1)− dt`−1‖2+γ`−1D2

)
− 2βη2`−1D

2

=

(
1− 1

L

)
F t(xt`−1) +

1

L

(
1− 1

L

)`−2
F t(x∗) +

1

L
〈dt`−1,xt`−1 ∨ ut`−1 − xt`−1 ∨ x∗〉

− 1

2L

(
1

γ`−1
‖∇F t(xt`−1)− dt`−1‖2+γ`−1D2

)
− 2βD2

L2
(replacing η` = 1/L)

Applying recursively on `, we get:

F t(xt`) ≥
`− 1

L

(
1− 1

L

)`−2
F t(x∗) +

1

L

`−1∑
`′=1

((
1− 1

L

)`−1−`′
〈dt`′ ,xt`′ ∨ ut`′ − xt`′ ∨ x∗〉

)

− 1

2L

`−1∑
`′=1

((
1− 1

L

)`−1−`′ ( 1

γ`′
‖∇F t(xt`′)− dt`′‖2+γ`′D2

))
− 2βD2

L
(8)
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Summing above inequality (with ` = L+ 1) over all t ∈ [T ] and using online vee maximization oracle
with regretRT , we obtain

T∑
t=1

F t(xtL+1)

≥
(

1− 1

L

)L−1 T∑
t=1

F t(x∗) +
1

L

T∑
t=1

L∑
`′=1

((
1− 1

L

)L−`′
〈dt`′ ,xt`′ ∨ ut`′ − xt`′ ∨ x∗〉

)

− 1

2L

T∑
t=1

L∑
`′=1

((
1− 1

L

)L−`′ ( 1

γ`′
‖∇F t(xt`′)− dt`′‖2+γ`′D2

))
− 2βTD2

L

≥
(

1− 1

L

)L−1 T∑
t=1

F t(x∗) +
1

L

L∑
`′=1

(
1− 1

L

)L−`′
·

 T∑
t=1

〈dt`′ ,xt`′ ∨ ut`′ − xt`′ ∨ x∗〉


− 1

2L

T∑
t=1

L∑
`′=1

(
1

γ`′
‖∇F t(xt`′)− dt`′‖2+γ`′D2

)
− 2βTD2

L
(since 1− 1/L < 1)

≥
(

1− 1

L

)L−1 T∑
t=1

F t(x∗)− 1

L

L∑
`′=1

(
1− 1

L

)L−`′
RT − 2βTD2

L

− 1

2L

T∑
t=1

L∑
`′=1

(
1

γ`′
‖∇F t(xt`′)− dt`′‖2+γ`′D2

)
(RT is the regret of a single oracle)

≥

(
1

e
−O

(
1

L

)) T∑
t=1

F t(x∗)−RT − 2βTD2

L
− 1

2L

T∑
t=1

L∑
`′=1

(
1

γ`′
‖∇F t(xt`′)− dt`′‖2+γ`′D2

)
(9)

Claim 1. Choosing γ` = Q1/2

D(`+3)1/3
for 1 ≤ ` ≤ L where Q = {max1≤t≤T ‖∇F t(0)‖242/3, 4σ2 +

3(βD)2/2}, it holds that

T∑
t=1

L∑
`=1

(
1

γ`
E[‖∇F t(xt`)− dt`‖2] + γ`D

2

)
= O

(
(βD +G+ σ)DTL2/3

)
Proof of claim. Fix a time step t. We apply Lemma 3 to the left hand side of the claim inequality where, for
1 ≤ ` ≤ L, a` denotes the gradients ∇F t(xt`), ã` denote the stochastic gradient estimate gt`. Additionally,
ρ` = 2

(`+3)2/3
for 1 ≤ ` ≤ L. Hence we get:

E[‖∇F t(xt`)− dt`‖2] ≤
Q

(`+ 4)2/3
. (10)
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With the choice γ` = Q1/2

D(`+4)1/3
, we obtain:

L∑
`=1

(
1

γ`
E[‖∇F t(xt`)− dt`‖2] + γ`D

2

)
≤ 2DQ1/2

L∑
`=1

1

(`+ 4)1/3

≤ 2DQ1/2

L∫
`=1

1

`1/3
d` ≤ 3DQ1/2L2/3 = O

(
(βD +G+ σ)DL2/3

)
The claim follows by summing the inequality above over all 1 ≤ t ≤ T .

Combining Claim 1 and Inequality (9) we get:

T∑
t=1

E[F t(xtL+1)] ≥

(
1

e
−O

(
1

L

)) T∑
t=1

F t(x∗)−RT − 2βTD2

L
−O

(
(βD +G+ σ)DT

2L1/3

)
.

By Lemma 4, the regret of the online vee oracleRT = O(G(nT )3/4). Thus, the theorem follows.

Remark 1. • If a function F t is not smooth then one can consider F̂ tδ defined as F̂ tδ (x) := Er∼B[F t(x+
δr)] where B is the n-dim unit ball and r ∼ B denotes an uniformaly random variable taken over B.
It is known that F̂ tδ is nG/δ-smooth and |F̂ tδ (x)− F tδ (x)|≤ δG (for example, see [23, Lemma 2.6]).
By considering F̂ tδ (instead of F t) with δ = 1/

√
T and choosing L = T 9/4, one can achieve the same

guarantee (7) stated in Theorem 1.

• In Algorithm 2, we assume the knowledge of the time horizon T . That can be avoided by the standard
doubling trick (shown in the appendix) where Algorithm 2 is invoked repeatedly with a doubling time
horizon.

4 Maximizing Non-Monotone DR-Submodular Functions over General Con-
vex Sets

In this section, we consider the problem of maximizing non-monotone continuous DR-submodular functions
over general convex sets. We show that beyond down-closed convex sets, the Meta-Frank-Wolfe algorithm,
studied by [10] for monotone DR-submodular functions, with appropriately chosen step sizes provides indeed
meaningful guarantees for the problem of online non-monotone DR-submodular maximization over general
convex sets. Note that no algorithm with performance guarantee was known in the online setting.

Online linear optimization oracles. In our algorithms, we use multiple online linear optimization oracles
to estimate the gradient of online arriving functions. This idea was originally developed for maximizing
monotone DR-submodular functions [9]. Before presenting algorithms, we recall the online linear optimiza-
tion problems and corresponding oracles. In the online linear optimization problem, at every time 1 ≤ t ≤ T ,
the oracle selects ut ∈ K. Subsequently, the adversary reveals a vector dt and feedbacks the function 〈·,dt〉
(and a reward 〈ut,dt〉) to the oracle. The objective is to minimize the regret. There exists several oracles that
guarantee sublinear regret, for example the gradient descent algorithm has the regret of O(n

√
T ) (see for

example [23]).
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Algorithm description. At a high level, at every time t, our algorithm produces a solution xt by running
L steps of the Frank-Wolfe algorithm that uses the outputs of L linear optimization oracles as update vectors.
After the algorithm plays xt, it observes stochastic gradient estimates at L points in the convex domain.
Subsequently, these estimates are averaged with the estimates from the previous round and are fed to the
reward functions of L online linear oracles. The pseudocode is presented in the Algorithm 3.

Algorithm 3 Meta-Frank-Wolfe for general convex domains
Input: A convex set K, a time horizon T , online linear optimization oracles E1, . . . , EL, step sizes
ρ` ∈ (0, 1), and η` ∈ (0, 1)

1: Initialize online linear optimization oracle E` for all ` ∈ {1, . . . L}.
2: Initialize xt1 ← x0 for some x0 ∈ K and dt0 ← 0 for every 1 ≤ t ≤ T . Let x0 ← arg minx∈K‖x‖∞.
3: for t = 1 to T do
4: Set vt` ← output of oracle E` in round t− 1 for all ` ∈ {1, . . . , L}.
5: Set xt`+1 ← (1− η`)xt` + η`v

t
`.

6: Play xt = xtL+1.
7: Observe gt` such that E

[
gt`|xt`

]
= ∇F t(xt`).

8: Set dt` ← (1− ρ`) · dt`−1 + ρ` · gt` for ` = {1, . . . , L}.
9: Feedback the reward 〈vt`,dt`〉 to E` for ` = {1, . . . , L}.

10: end for

We prove first a technical lemma which is in the same line of Lemma 5.

Lemma 6. Let (xt`)i be the ith coordinate of vector xt` in Algorithm 3. Setting κ =
(
ln 3
2

)
and η` =(

κ
`HL

)
, ∀` ∈ {1, 2, . . . , L} where HL is the Lth Harmonic number, the following invariant holds true for

every t ∈ {1, . . . , T} and for every coordinate i ∈ {1, . . . , n}

1− (xtL+1)i ≥ e−κ(1+O(1/ln2 L)) · (1− (xt1)i)

Proof. Fix an arbitrary time step t ∈ {1, · · · , T}. For the ease of exposition, we drop the index t in the
following proof. Using the update step 5 from Algorithm 3, for every 1 ≤ ` ≤ L and for every coordinate
1 ≤ i ≤ n, we have

1− (x`+1)i = 1− (1− η`)(x`)i − η`(v`)i ≥ 1− (1− η`)(x`)i − η` = (1− η`)(1− (x`)i)

≥ e−η`−η2` · (1− (x`)i)

where we use inequalities (v`)i ≤ 1 and 1− u ≥ e−u−u2 for 0 ≤ u < 1/2; and η` = κ
`HL

. Therefore, we get

1− (xL+1)i ≥ e−
∑L

`′=1 η`′−
∑L

`′=1 η
2
`′ · (1− (x1)i) ≥ e−κ(1+O(1/ln2 L)) · (1− (x1)i)

where the last inequality is due to the fact that
∑L

`′=1 η`′ = κ and
∑L

`′=1 η
2
`′ =

∑`
`′=1

κ2

`′2H2
L

= O(1/ln2 L).

Theorem 2. Let K ⊆ [0, 1]n be a convex set with the diameter D. Assume that for every 1 ≤ t ≤ T ,
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1. F t is β-smooth DR-submodular function and the norm of the gradient ∇F t is bounded by G, i.e.,∥∥∇F (x)
∥∥ ≤ G,∀x ∈ K,

2. the variance of the unbiased stochastic gradients is bounded by σ2, i.e., E
[∥∥gt` −∇F t(xt`)∥∥2] ≤ σ2

for every 1 ≤ ` ≤ L; and
3. the online linear optimization oracles used in Algorithm 3 have regret at mostRET .

Then for every 1 ≤ ` ≤ L setting κ = ln 3
2 , ρ` = 2

(`+3)2/3
and η` = κ

`HL
where HL is the Lth harmonic

number, the following inequality holds true for Algorithm 3:

T∑
t=1

E
[
F t(xt)

]
≥
(

1

3
√

3

)
(1− ‖x0‖∞) max

x∗∈K

T∑
t=1

F t(x∗)−O
(

(βD +G+ σ)DT

lnL

)
−O(RET ).

In particular, if 0 ∈ K (for e.g. conic convex sets) then choosing x0 = 0, L = O(T ) and online linear
algorithm with guarantee regret guarantee RET = O(

√
T ) (for eg., Online Gradient Descent), Algorithm 3

achieves ∑T

t=1
E
[
F t(xt)

]
≥ 1

3
√

3
max
x∗∈K

∑T

t=1
F t(x∗)−O

(
(βD +G+ σ)DT

lnT

)
−O(

√
T ).

Proof. Let x∗ ∈ K be a solution that maximizes
T∑
t=1

F t(x). Let

r = e−κ(1+O(1/ln2 L)) · (1−max
i

(xt1)i) = e−κ(1+O(1/ln2 L)) · (1−max
i

(x0)i).

Note that from Lemma 6, we have that (1− ‖xt`‖∞) ≥ r for every 1 ≤ t ≤ T and every 1 ≤ ` ≤ L+ 1.
We prove the following claim which is crucial in our analysis.

Claim 2. For every 1 ≤ t ≤ T , it holds that

2F t(xtL+1)− rF t(x∗)

≥
( L∏
`=1

(1− 2η`)

)(
2F t(xt1)− rF t(x∗)

)
−

L∑
`=1

η`

(
1

γ`

∥∥∥∇F t(xt`)− dt`

∥∥∥2 + γ`D
2

)

+

L∑
`=1

2η`

( L∏
`′=`+1

(1− 2η`′)

)
〈dt`, (x∗ − vt`)〉 − 3βD2

L∑
`=1

η2`

where D is the diameter of K and γ` is any constant greater than 0.

Proof of claim. Fix a time step t ∈ {1, · · · , T}. For the ease of exposition, we drop the time index t in
equations. For every 1 ≤ ` ≤ L, we have

2F (x`+1)− rF (x∗)

= 2F ((1− η`)x` + η`v`)− rF (x∗) (the step 5 of Algorithm 3)

≥ 2

(
F (x`)− η`〈∇F ((1− η`)x` + η`v`),x` − v`〉 −

β

2
(η`)

2‖x` − v`‖2
)
− rF (x∗)

(using β-smoothness)
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= 2F (x`)− 2η`〈∇F ((1− η`)x` + η`v`),x` − v`〉 − β(η`)
2‖x` − v`‖2−rF (x∗)

=
(
2F (x`)− rF (x∗)

)
− 2η`〈∇F ((1− η`)x` + η`v`)−∇F (x`),x` − v`〉

− 2η`〈∇F (x`),x` − v`〉 − β(η`)
2‖x` − v`‖2

≥
(
2F (x`)− rF (x∗)

)
− 2η`

∥∥∇F ((1− η`)x` + η`v`)−∇F (x`)
∥∥‖x` − v`‖

− 2η`〈∇F (x`),x` − v`〉 − β(η`)
2‖x` − v`‖2 (Applying Cauchy-Schwarz)

≥
(
2F (x`)− rF (x∗)

)
− 2η`β

∥∥(1− η`)x` + η`v`)− x`
∥∥∥∥(x` − v`)

∥∥
− 2η`〈∇F (x`), (x` − v`)〉 − β(η`)

2‖x` − v`‖2 (β-smoothness as gradient Lipschitz)

≥
(
2F (x`)− rF (x∗)

)
− 2η`〈∇F (x`), (x` − v`)〉 − 3β(η`)

2‖x` − v`‖2

=
(
2F (x`)− rF (x∗)

)
+ 2η`〈∇F (x`), (v` − x`)〉 − 3β(η`)

2‖x` − v`‖2

=
(
2F (x`)− rF (x∗)

)
+ 2η`〈∇F (x`), (x

∗ − x`)〉+ 2η`〈∇F (x`), (v` − x∗)〉 − 3β(η`)
2‖v` − x`‖2

=
(
2F (x`)− rF (x∗)

)
+ 2η`〈∇F (x`), (x

∗ − x`)〉 − 2η`〈∇F (x`)− d`, (x
∗ − v`)〉

− 2η`〈d`, (x∗ − v`)〉 − 3β(η`)
2‖v` − x`‖2

≥
(
2F (x`)− rF (x∗)

)
+ 2η`

(
F (x∗ ∨ x`)− 2F (x`)

)
− 2η`〈∇F (x`)− d`, (x

∗ − v`)〉
− 2η`〈d`, (x∗ − v`)〉 − 3β(η`)

2‖v` − x`‖2 (Lemma 1)

≥
(
2F (x`)− rF (x∗)

)
+ 2η`

(
(1− ‖x`‖∞)F (x∗)− 2F (x`)

)
− 2η`〈∇F (x`)− d`, (x

∗ − v`)〉
− 2η`〈d`, (x∗ − v`)〉 − 3β(η`)

2‖v` − x`‖2 (Lemma 2)

≥
(
2F (x`)− rF (x∗)

)
+ 2η`

(
rF (x∗)− 2F (x`)

)
− 2η`〈∇F (x`)− d`, (x

∗ − v`)〉
− 2η`〈d`, (x∗ − v`)〉 − 3β(η`)

2‖v` − x`‖2 (Lemma 6)

= (1− 2η`)
(
2F (x`)− rF (x∗)

)
− 2η`〈∇F (x`)− d`, (x

∗ − v`)〉
− 2η`〈d`, (x∗ − v`)〉 − 3β(η`)

2‖v` − x`‖2

≥ (1− 2η`)
(
2F (x`)− rF (x∗)

)
− η`

(
1

γ`

∥∥∇F (x`)− d`
∥∥2 + γ`

∥∥v` − x∗
∥∥2)

− 2η`〈d`, (x∗ − v`)〉 − 3β(η`)
2‖v` − x`‖2 (using Young’s Inequality)

where in the last inequality, η`’s are parameters to be defined later (specifically in Claim 4). Applying the
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above inequality for 1 ≤ ` ≤ L and note that the diameter of K is bounded by D, we get

2F (xL+1)− rF (x∗) ≥
L∏
`=1

(1− 2η`)
(
2F (x1)− rF (x∗)

)
−

L∑
`=1

( L∏
`′=`+1

(1− 2η`′)

)
η`

(
1

γ`

∥∥∇F (x`)− d`
∥∥2 + γ`D

2

)

−
L∑
`=1

2η`

( L∏
`′=`+1

(1− 2η`′)

)
〈d`, (x∗ − v`)〉 − 3βD2

L∑
`=1

η2`

≥
L∏
`=1

(1− 2η`)
(
2F (x1)− rF (x∗)

)
−

L∑
`=1

η`

(
1

γ`

∥∥∇F (x`)− d`
∥∥2 + γ`D

2

)

−
L∑
`=1

2η`

( L∏
`′=`+1

(1− 2η`′)

)
〈d`, (x∗ − v`)〉 − 3βD2

L∑
`=1

η2`

where the second inequality holds since
(

L∏
`′=`+1

(1− 2η`′)

)
≤ 1. Hence, the claim follows

Summing the inequality in Claim 2 over all t = {1, 2, . . . , T}, we get

T∑
t=1

(
2F t(xtL+1)− rF t(x∗)

)
≥

T∑
t=1

L∏
`=1

(1− 2η`)
(

2F t(xt1)− rF t(x∗)
)
−

T∑
t=1

L∑
`=1

η`

(
1

γ`

∥∥∥∇F t(xt`)− dt`

∥∥∥2 + γ`D
2

)

−
L∑
`=1

2η`

( L∏
`′=`+1

(1− 2η`′)

) T∑
t=1

〈dt`, (x∗ − vt`)〉 − 3βD2T
L∑
`=1

η2` (11)

Next, we bound the terms on the right hand side of Inequation (11) separately by the following claims.

Claim 3. It holds that
T∑
t=1

L∏
`=1

(1− 2η`)
(

2F t(xt1)− rF t(x∗)
)
≥

T∑
t=1

e−2κ(1+O(1/ln2 L))
(

2F t(xt1)− rF t(x∗)
)
.

Proof of claim. Using the inequality 1− u ≥ e−(u+u2), we have that

T∑
t=1

L∏
`=1

(1− 2η`)
(

2F t(xt1)− rF t(x∗)
)
≥

T∑
t=1

e
−2

L∑̀
=1
η`−4

L∑̀
=1
η2`
(

2F t(xt1)− rF t(x∗)
)

≥
T∑
t=1

e−2κ(1+O(1/ln2 L))
(

2F t(xt1)− rF t(x∗)
)

18



where the last inequality is due to the facts that
∑L

`=1 η` =
∑L

`=1
κ

`HL
= κ and

∑L
`=1 η

2
` =

∑L
`=1

κ2

`2H2
L

=

O(1/ln2 L) for a constant κ.

Claim 4. Choose γ` = Q1/2

D(`+3)1/3
where Q = max{max1≤t≤T

∥∥∇F t(x0)
∥∥2 42/3, 4σ2 + (3/2)β2D2} =

O(G2 + σ2 + β2D2) for 1 ≤ ` ≤ L− 1, it holds that

T∑
t=1

L∑
`=1

η`

(
1

γ`
E
[∥∥∥∇F t(xt`)− dt`

∥∥∥2]+ γ`D
2

)
≤ 3TDQ1/2

HL
.

Proof of claim. Fix a time step t. We apply Lemma 3 to left hand side of the inequality where, for 1 ≤ ` ≤ L,
a` denotes the gradients∇F (xt`), ã` denote the stochastic gradient estimate gt`, and d` denotes the vector dt`

in the algorithm. Additionally, ρ` =

(
2

(`+3)2/3

)
for 1 ≤ ` ≤ L.

We verify the conditions of Lemma 3. By the algorithm,∥∥∥∇F (xt`)−∇F (xt`−1)
∥∥∥ =

∥∥∥∇F ((1− η`)xt` + η`v
t
`)−∇F (xt`−1)

∥∥∥
≤ βη`‖vt` − xt`‖≤ βD

(
κ

`HL

)
≤ βD

(
κ

`+ 3

)
.

Moreover, by the theorem assumption, E
[∥∥gt` −∇F (xt`)

∥∥2] ≤ σ2. Hence, applying Lemma 3, we get

E
[∥∥∥∇F t(xt`)− dt`

∥∥∥2] ≤ Q

(`+ 4)2/3
. (12)

Summing Equation (12) for 1 ≤ t ≤ T and 1 ≤ ` ≤ L and for γ` = Q1/2

D(`+3)1/3
and η` = κ

`HL
, we obtain

T∑
t=1

L∑
`=1

η`

(
1

γ`
E
[∥∥∥∇F t(xt`)− dt`

∥∥∥2]+ γ`D
2

)
≤ TDQ1/2

HL
·
L∑
`=1

1

`(`+ 4)1/3

≤ TDQ1/2

HL
·
L+1∫
1

1

`4/3
d` ≤ TDQ1/2

HL

(
3− 3

(L+ 1)1/3

)
= O

(
(βD +G+ σ)DT

logL

)

Claim 5. It holds that

L∑
`=1

2η`

( L∏
`′=`+1

(1− 2η`′)

) T∑
t=1

〈dt`, (x∗ − vt`)〉 ≤ 2κRET .

Proof of claim. The claim follows from the definition of the regret for the online linear optimization oracles

that is,
T∑
t=1
〈dt`, (x∗ − vt`)〉 ≤ RET , and

L∑̀
=1

η` ≤ κ and
L∏
`′=`

(1− 2η`′) ≤ 1.
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Taking the expectation on Inequality (11) and using Claims 3, 4, 5 , we have

T∑
t=1

(
2E
[
F t(xtL+1)

]
− rF t(x∗)

)
≥

T∑
t=1

e−2κ(1+O(1/ln2 L))
(

2F t(xt1)− rF t(x∗)
)

−O
(

(βD +G+ σ)DT

lnL

)
− 2κRET − 3βD2T

L−1∑
`=1

η2`

Rearranging terms and note that
∑L−1

`=1 η
2
` = O(1/ln2 L) and F t(xt1) ≥ 0, we get

T∑
t=1

E
[
F t(xtL+1)

]
≥r(1− e

−2κ(1+O(1/ln2 L))

2

T∑
t=1

F t(x∗)

−O
(

(βD +G+ σ)DT

lnL

)
− 2κRET −O(βD2T/ln2 L)

For L sufficiently large (so O(1/ln2 L) becomes negligible compared to a constant), the factor

r(1− e−2κ(1+O(1/ln2 L)) = e−κ(1+O(1/ln2 L)(1− e−2κ(1+O(1/ln2 L)))(1− ‖x0‖∞)

attains the maximum value of 1
3
√
3
(1− ‖x0‖∞) at κ = ln 3

2 . Hence, we deduce that

T∑
t=1

E
[
F t(xtL+1)

]
≥
(

1

3
√

3

)
(1− ‖x0‖∞)

T∑
t=1

F t(x∗)−O
(

(βD +G+ σ)DT

lnL

)
−O(RET ).

The theorem follows.

Remark 2. • The regret guarantee, in particular the approximation ratio, depends on the initial solution
x0. This confirms the observation that initialization plays an important role in non-convex optimization.
For particular case whereK is the intersection of a cone and the hypercube [0, 1]n (so 0 ∈ K), Algorithm
3 provides vanishing

(
1

3
√
3

)
-regret. Note that this is the first constant approximation for non-monotone

DR-submodular maximization over a non-trivial convex domain beyond the class of down-closed
convex domains.

• Assume that 0 ∈ K and F t’s are identical, i.e., F t = F∀t , the algorithm guarantees a convergence rate
of O

(
1/log T

)
. It means that to be ε-close to a solution which is 1

3
√
3
-approximation to the optimal

solution of F , the algorithm requires T = O(21/ε) iterations. Note that the exponential complexity
is unavoidable as any contant approximation algorithm for the multilinear extension of a submodular
function (so DR-submodular) over a general convex set requires necessarily an exponential number of
value queries [37].

• The assumptions on the smoothness of functions F t’s and the knowledge of T in Algorithm 3 can be
removed by the argument as Remark 1.
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5 Experiments

In this section, we validate our online algorithms for non-monotone DR submodular optimization on a set of
real-world dataset. We show the performance of our algorithms for maximizing non-montone DR-submodular
function over a down-closed polytope and over a general convex polytope. All experiments are performed in
MATLAB using CPLEX optimization tool on MAC OS version 10.15.

In the revenue maximization problem, the goal of a company is to offer for free or advertise a product to
users so that the revenue increases through their “word-of-mouth" effect on others. Here, we are given an
undirected social network graph G = (V,W ), where wij ∈ W represents the weight of the edge between
vertex i and vertex j. If the company invests xi unit of cost on an user i ∈ V then user i becomes an advocate
of the product with probability 1− (1− p)xi where p ∈ (0, 1) is a parameter. Intuitively, this signifies that for
investing a unit cost to i, we have an extra chance that the user i becomes an advocate with probability p [34].

Let S ⊂ V be a random set of users who advocate for the product. Then the revenue with respect to S is
defined as

∑
i∈S
∑

j∈V \S wij . Let F : [0, 1]|E| → R be the expected revenue obtained in this model, that is

F (x) = ES
[∑
i∈S

∑
j∈V \S

wij

]
=
∑
i

∑
j:i 6=j

wij(1− (1− p)xi)(1− p)xj

It has been shown that F is a non-monotone DR-submodular function [34].
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Figure 1: Performance ratio for online revenue maximization over (a) a down-closed polytope; and (b) a
general polytope.

In our setting, we consider the online variant of the revenue maximization on a social network where at
time t the weight of an edge is given wtij ∈ {0, 1}. The experiments are performed on the Facebook dataset
that contains 20K users (vertices) and 1M relationships (edges). We choose the number of time steps to be
T = 1000. At each time t ∈ 1, . . . , T , we randomly uniformly select 2000 vertices V t ⊂ V , independently
of V 1, . . . , V t−1, and construct a batch Bt with edge-weights wtij = 1 if and only if i, j ∈ V t and edge (i, j)
exists in the Facebook dataset. In case if i or j do not belong to V t, wtij = 0. We set p = 0.0001. In the first
experiment, we impose a maximum investment constraint on the problem such that

∑
i∈V xi ≤ 1. This, in
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addition to xi ≥ 0, ∀i ∈ V constitutes a down-closed feasible convex set. For the general convex set, we
impose an additional minimum investment constraint on the problem such that

∑
i∈V xi ≥ 0.1.

For comparison purposes, we consider (offline) Frank-Wolfe variants as the benchmark. Variants of
Frank-Wolfe algorithm are shown to be competitive for maximizing (offline) non-monotone DR-submodular
functions over down-closed convex sets [1] and over general convex sets [14]. Moreover, as observed in
[1, 14], variants of Frank-Wolfe algorithm behave well in practice with approximation ratio better than 0.9 in
several experiment settings. For these reasons, we adopt Frank-Wolfe variants as our benchmark.

In Figure 1 we show the ratio of between the objective value achieved by the online algorithm and that of
the benchmark over the down-closed convex set (Figure 1(a)) and the general convex set (Figure 1(b)). These
experiments conform with the theoretical guarantees. Specifically, the offline Frank-Wolfe variant performs
almost as well as the optimum solution (approximation ratio larger than 0.92) and our online algorithms attain
a ratio larger than 0.44 compared with the offline benchmark. Hence, the approximation ratios of the online
algorithms is larger than 0.44 ∗ 0.92 > 0.4 > 1/e.)

6 Conclusion

In this paper, we considered the regret minimization problems while maximization online arriving non-
monotone DR-submodular functions over convex sets. We presented the first online algorithm that achieve a
constant 1/e-approximation ratio with the regret of O(T 3/4) over any down-closed convex. Moreover, we
presented an online algorithm that achieves an approximation guarantee (depending on the search space) for
the problem of maximizing non-monotone continuous DR-submodular functions over a general convex set
(not necessarily down-closed). Finally, we run experiments to verify the performance of our algorithms on a
social revenue maximization problem on a Facebook user-relationship dataset. Some interesting directions are
worth to be considered. The first direction is to improve the regret bound of (1/e,O(T 3/4)) for down-closed
convex sets. The design of an (1/e,O(

√
T ))-regret algorithm would be challenging as it has to figure out

the right update vector (as provided by vee oracles) at every time step in order to obtain the approximation
ratio of 1/e while maintaining the regret of O(

√
T ) as guaranteed by natural algorithms (such as gradient

descent, etc) without being trapped into poor local minima. The second direction is to study the trade-off
between the approximation ratio and the regret bound for DR-submodular maximization over general convex
sets, for example the existence of an algorithm with a reasonable non-constant approximation ratio and regret
of O(

√
T ). Another direction for future work is to consider the non-monotone DR-submodular maximization

in the bandit setting by combining our approach with algorithms for monotone DR-submodular functions in
[38].
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[14] C. Dürr, N. K. Thang, A. Srivastav, and L. Tible. Non-monotone dr-submodular maximization:
Approximation and regret guarantees. In Proc. 29th International Joint Conference on Artificial
Intelligence (IJCAI), 2020.

[15] E. Elenberg, A. G. Dimakis, M. Feldman, and A. Karbasi. Streaming weak submodularity: Interpreting
neural networks on the fly. In Advances in Neural Information Processing Systems, pages 4044–4054,
2017.

[16] E. R. Elenberg, R. Khanna, A. G. Dimakis, S. Negahban, et al. Restricted strong convexity implies
weak submodularity. The Annals of Statistics, 46(6B):3539–3568, 2018.

[17] A. Ene and H. L. Nguyen. A reduction for optimizing lattice submodular functions with diminishing
returns. arXiv:1606.08362, 2016.

[18] M. Feldman, J. Naor, and R. Schwartz. A unified continuous greedy algorithm for submodular
maximization. In Proc. 52nd Symposium on Foundations of Computer Science (FOCS), pages 570–579,
2011.

[19] D. Golovin and A. Krause. Adaptive submodularity: Theory and applications in active learning and
stochastic optimization. Journal of Artificial Intelligence Research, 42:427–486, 2011.

23



[20] M. Gomez Rodriguez, J. Leskovec, and A. Krause. Inferring networks of diffusion and influence. In
Proc. 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
1019–1028, 2010.

[21] A. Guillory and J. A. Bilmes. Simultaneous learning and covering with adversarial noise. In ICML,
volume 11, pages 369–376, 2011.

[22] H. Hassani, M. Soltanolkotabi, and A. Karbasi. Gradient methods for submodular maximization. In
Advances in Neural Information Processing Systems, pages 5841–5851, 2017.

[23] E. Hazan. Introduction to online convex optimization. Foundations and Trends R© in Optimization,
2(3-4):157–325, 2016.

[24] S. Ito and R. Fujimaki. Large-scale price optimization via network flow. In Advances in Neural
Information Processing Systems, pages 3855–3863, 2016.

[25] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network.
In Proc. 9th ACM SIGKDD international conference on Knowledge discovery and data mining, pages
137–146, 2003.

[26] A. Kulesza, B. Taskar, et al. Determinantal point processes for machine learning. Foundations and
Trends R© in Machine Learning, 5(2–3):123–286, 2012.

[27] H. Lin and J. Bilmes. A class of submodular functions for document summarization. In Proc. 49th
Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1,
pages 510–520, 2011.

[28] V. Mirrokni, R. P. Leme, A. Vladu, and S. C.-w. Wong. Tight bounds for approximate carathéodory and
beyond. In Proc. 34th International Conference on Machine Learning, pages 2440–2448, 2017.

[29] A. Mokhtari, H. Hassani, and A. Karbasi. Conditional gradient method for stochastic submodular
maximization: Closing the gap. In Procs of the International Conference on Artificial Intelligence and
Statistics, volume 84, pages 1886–1895, 2018.

[30] R. Niazadeh, N. Golrezaei, J. Wang, F. Susan, and A. Badanidiyuru. Online learning via offline greedy:
Applications in market design and optimization. Available at SSRN 3613756, 2020.

[31] R. Niazadeh, T. Roughgarden, and J. R. Wang. Optimal algorithms for continuous non-monotone
submodular and dr-submodular maximization. In Neural Information Processing Systems (NIPS), 2018.

[32] T. Roughgarden and J. R. Wang. An optimal learning algorithm for online unconstrained submodular
maximization. In Conference On Learning Theory, pages 1307–1325, 2018.

[33] A. Singla, I. Bogunovic, G. Bartók, A. Karbasi, and A. Krause. Near-optimally teaching the crowd to
classify. In ICML, pages 154–162, 2014.

[34] T. Soma and Y. Yoshida. Non-monotone dr-submodular function maximization. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[35] M. Staib and S. Jegelka. Robust budget allocation via continuous submodular functions. In International
Conference on Machine Learning, pages 3230–3240, 2017.

24



[36] M. Streeter and D. Golovin. An online algorithm for maximizing submodular functions. In Advances in
Neural Information Processing Systems, pages 1577–1584, 2009.

[37] J. Vondrák. Symmetry and approximability of submodular maximization problems. SIAM Journal on
Computing, 42(1):265–304, 2013.

[38] M. Zhang, L. Chen, H. Hassani, and A. Karbasi. Online continuous submodular maximization: From
full-information to bandit feedback. In Advances in Neural Information Processing Systems, pages
9206–9217, 2019.

25



Appendix

A Removing Knowledge of T

In this section, we show how to remove the assumption on the knowledge of T for Algorithm 3. The
procedure for Algorithms 2 is similar. In particular, we use the standard doubling trick (for example [11])
where Algorithm 3 is invoked repeatedly with a doubling time horizon.

Algorithm 4 Meta-Frank-Wolfe with Doubling Trick
Input: A convex set K and Algorithm 3

1: for m = 0, 1, 2, . . . do
2: L := 2m+1

3: Run Algorithm 3 with horizon 2m, from the (2m + 1)-th iteration to the 2m+1-th iteration.
4: Let xt for 2m + 1 ≤ t ≤ 2m+1 be the solution fo Algorithm 3.
5: end for

Theorem 3. Given Theorem 2, the following inequality holds true for Algorithm 4:

T∑
t=1

E
[
F t(xt)

]
≥
(

1

3
√

3

)
(1− ‖x0‖∞) max

x∗∈K

T∑
t=1

F t(x∗)−O
(

(βD +G+ σ)DT

lnT

)
Proof. From Theorem 2, for each m, it follows that

2m+1∑
t=2m+1

E
[
F t(xt)

]
≥
(

1

3
√

3

)
(1− ‖x0‖∞) max

x∗∈K

2m+1∑
t=2m+1

F t(x∗)−O
(

(βD +G+ σ)D2m+1

(m+ 1) ln 2

)
.

Summing this quantity of m = 0, 1, 2, . . . , dlog2(T + 1)e − 1, we have that

T∑
t=1

E
[
F t(xt)

]

≥
(

1

3
√

3

)
(1− ‖x0‖∞) max

x∗∈K

T∑
t=1

F t(x∗)−
dlog2(T+1)e−1∑

m=0

O

(
(βD +G+ σ)D2m+1

(m+ 1) ln 2

)

≥
(

1

3
√

3

)
(1− ‖x0‖∞) max

x∗∈K

T∑
t=1

F t(x∗)−
dlog2(T+1)e−1∑

m=0

O

(
(βD +G+ σ)D2m+1

ln 2

)

≥
(

1

3
√

3

)
(1− ‖x0‖∞) max

x∗∈K

T∑
t=1

F t(x∗)−O
(

(βD +G+ σ)D

ln 2

) dlog2(T+1)e∑
m=1

(
2m

m

)

≥
(

1

3
√

3

)
(1− ‖x0‖∞) max

x∗∈K

T∑
t=1

F t(x∗)−O
(

(βD +G+ σ)D

ln 2

)
2.2dlog2(T+1)e

dlog2(T + 1)e

≥
(

1

3
√

3

)
(1− ‖x0‖∞) max

x∗∈K

T∑
t=1

F t(x∗)−O
(

(βD +G+ σ)DT

lnT

)
.
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B Online DR-Submodular Maximization over Hypercube [0, 1]n

B.1 Reduction to maximizing online discrete submodular functions

Building upon the salient ideas of the discretization and lifting the problem into a higher dimension space in
Section 3.1, we will transform DR-submodular functions to discrete submodular functions in higher space
and use an online algorithm in [32] to produce solutions in higher space. Subsequently, we project the latter
to the original space and prove that, by this unusual continuous-to-discrete approach (in contrast to usual
discrete-to-continuous relaxations), one can achieve a similar regret guarantee as the one proved in [32] for
online discrete submodular maximization. Note that, the following discretization is different to that for online
vee learning.

Discretization and Lifting. Let F : [0, 1]n → [0, 1] be a non-negative DR-submodular function. Let L
be a lattice L = {0, 2−M , 2 · 2−M , . . . , ` · 2−M , . . . , 1}n where 0 ≤ ` ≤ 2M for some parameter M . Note
that each xi ∈ {0, 2−M , 2 · 2−M , . . . , ` · 2−M , . . . , 1} can be uniquely decomposed as xi =

∑M
j=0 2−jyij

where yij ∈ {0, 1}. We lift the set [0, 1]n ∩ L to the (n × (M + 1))-dim space. Specifically, define a
lifting map m′ : [0, 1]n ∩ L → {0, 1}n×(M+1) such that each point (x1, . . . , xn) ∈ K ∩ L is mapped to
the unique point (y10, . . . , y1M , . . . , yn0, . . . , ynM ) ∈ {0, 1}n×(M+1) where xi =

∑M
j=0 2−jyij . Define

function f̃ : {0, 1}n×(M+1) → [0, 1] such that f̃(1S) := F (m′−1(1S)); in other words, f̃(1S) = F (x)
where x ∈ [0, 1]n ∩ L and 1S = m′(x).

Lemma 7. If F is DR-submodular then f̃ is a submodular function.

Proof. We will prove that for any vectors 1S and 1T such that S ⊂ T and every element k,

f̃(1T∪k)− f̃(1T ) ≤ f̃(1S∪k)− f̃(1S)

⇔ F (m′
−1

(1T∪k))− F (m′
−1

(1T )) ≤ F (m′
−1

(1S∪k))− F (m′
−1

(1S)). (13)

The inequality is trivial if k ∈ S ⊂ T . Assume that k /∈ S ⊂ T . By the definition of the map
m′, as k /∈ S ⊂ T , m′−1(1S∪k) = m′−1(1S) + m′−1(1k), m′−1(1T∪k) = m′−1(1T ) + m′−1(1k), and
m′−1(1S∪k) ≤ m′−1(1T∪k). Hence, the inequality (13) holds by the DR-submodularity of F . Therefore, f̃
is a submodular function.

B.2 Algorithm

Fix a lattice L = {0, 2−M , 2 · 2−M , . . . , ` · 2−M , . . . , 1}n where 0 ≤ ` ≤ 2M for some parameter M (to
be defined later). Let RW be the online (1/2, O(

√
T ))-regret randomized algorithm [32] for online discrete

submodular functions on {0, 1}n×(M+1). Initially, set x1 ∈ [0, 1]n arbitrarily. At every time t ≥ 1,
1. Play xt.
2. Observe function F t : [0, 1]n → [0, 1]. Let f̃ t : {0, 1}n×(M+1) → [0, 1] be the corresponding

submodular function by the construction above. Let 1St+1 ∈ {0, 1}n×(M+1) be the random solution
returned by the algorithm RW(f̃1, . . . , f̃ t). Set xt+1 = m′−1(1St+1).

Theorem 4. Assume that functions F t’s are G-Lipschitz. Then, by choosing M = log T , the above algorithm
achieves

T∑
t=1

F t(xt) ≥ 1

2
max

x∈[0,1]n

T∑
t=1

F t(x)−O(nG
√
T log T ).
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Proof. Let x∗ be the optimal solution in hindsight, i.e., x∗ ∈ arg minx∈[0,1]n
∑T

t=1 F
t(x). Let x∗ be

rounded solution of x∗ onto the lattice L, i.e., x∗i is the largest multiple of 1/2M which is smaller than x∗i
for every 1 ≤ i ≤ n. Note that ‖x∗ − x∗‖≤

√
n

2M
. Denote 1S∗ = m(x∗). Algorithm RW [32, Corollary 3.2]

guarantees that:

T∑
t=1

f̃ t(1St) ≥ 1

2

T∑
t=1

f̃ t(1S∗)−O(nM
√
T ).

By the construction of functions f̃ t’s and the Lipschitz property of F t’s, we get

T∑
t=1

F t(xt) =

T∑
t=1

f̃ t(1St) ≥ 1

2

T∑
t=1

f̃ t(1S∗)−O(nM
√
T )

=
1

2

T∑
t=1

F t(x∗)−O(nM
√
T ) ≥ 1

2

T∑
t=1

F t(x∗)−O
(√

nG

2M
T

)
−O(nM

√
T ).

Choose M = log T , the theorem follows.
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