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Quantifying truncation-related uncertainties in unsteady fluid dynamics
reduced order models *

Valentin Resseguier’, Agustin M. Picard®, Etienne Mémin?, and Bertrand Chapron®

Abstract. In this paper, we present a new method to quantify the uncertainty introduced by the drastic
dimensionality reduction commonly practiced in the field of computational fluid dynamics, the
ultimate goal being to simulate accurate priors for real-time data assimilation. Our key ingredient
is a stochastic Navier-Stokes closure mechanism that arises by assuming random unresolved
flow components. This decomposition is carried out through Galerkin projection with a Proper
Orthogonal Decomposition (POD-Galerkin) basis. The residual velocity fields, model structure
and evolution of coefficients of the reduced order’s solutions are used to compute the resulting
multiplicative and additive noise’s correlations. The low computational cost of these consistent
correlation estimators makes them applicable to the study of complex fluid flows. This stochastic
POD-ROM is applied to 2D and 3D DNS wake flows at Reynolds 100 and 300, respectively, with
Uncertainty Quantification (UQ) and forecasting outside the learning interval being the main
focus. The proposed stochastic POD-ROM approach is shown to stabilize the unstable temporal
coefficients and to maintain their variability under control, while exhibiting an impressively
accurate predictive capability.

Key words. Fluid dynamics, reduced order model, uncertainty quantification, stochastic closure, proper
orthogonal decomposition

AMS subject classifications. 60H35, 65M60, 65M75, 76M35, 93B11

1. Introduction. The industrial application of partial differential equations (PDE)-
driven processes — fluid dynamics, for instance — can be a daunting task, mainly due to
the computational complexity involved with its resolution. This computational burden
becomes even excruciatingly difficult to handle when it comes to achieving real-time sim-
ulations. To tackle this difficulty, reduced order models (ROM) are commonly employed
to speed up deterministic and stochastic design simulations [9, 22, 56], or optimal control
problems [19, 36, 45]. The interested community has proposed a plethora of different algo-
rithms to reduce the computational cost of stochastic PDEs for uncertainty quantification
(UQ) applications [20, 21, 44, 54, 55, 69, 77]. In particular, when some parameters of
deterministic or stochastic PDEs are random, the weighted reduced basis (wRB) method
[20, 21] helps choosing the best parameters’ value for each new full-order simulation. With
the addition of stabilizing terms, [77| applied this method to linear advection-dominated
problems, including advection by a random velocity field.

In turbulent fluid dynamics, the system’s energy usually spreads out over many degrees
of freedom. This prevents low-dimensional approximations of the state vector from being
sufficiently accurate, but such a rough approximations can theoretically be sufficient for
specific industrial applications, especially when the quantity of interest (Qol) is a spatial
average (e.g. lift and drag). However, that multiscale property prevents, in general, the
constitution of accurate reduced systems for the dynamics of those low-dimensional state
approximations. Indeed, severe modal truncations often usually end up destabilizing the
system and overdamping some of the stable coefficients of the reduced order solution [69].
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2 V. RESSEGUIER, A. M. PICARD, E. MEMIN, B. CHAPRON

Consequently, to stabilize the ROM, authors commonly introduce an additional determin-
istic term (typically an eddy viscosity term) [2, 15, 79|, along with a possible calibration on
available data [12, 23, 80]. This calibration procedure can be extended to the complete set
of the ROM’s parameters |1, 10, 61, 72|]. ROM performances have mainly been evaluated on
low Reynolds-number flows (say Re < 100) [e.g. 10, 75, 80], while for flows at much greater
Reynolds numbers, evaluations close to the learning time interval and reduced dynamics
for two-dimensional flow observables (e.g. particle image velocimetry) have usually been
the norm [e.g. 1, 12, 23, 75]. Long time ROM predictions have been otherwise performed
with a substantial number of modes [e.g. 14, 74]. Yet, turbulent flow ROMs remain inexact
and uncontrolled in the long run, owing to their intrinsic chaotic nature and the growth
of accumulated error along time. Outside the learning time interval, predictions becomes
less and less accurate. Moreover, these predictions necessitate accurate initial conditions,
forcing and geometric information, which are often poorly known.

Ensemble-based data assimilation — such as particle filters or ensemble Kalman filters
— can alleviate these issues by forecasting an ensemble of likely future states of the system,
while sequentially constraining them with on-coming measurements [27, 28|. Still, this
necessitates accurate quantification of their associated simulation’s uncertainties. In this
context, the aim is not to reduce the dimensionality of UQ, but rather to quantify the
uncertainty introduced by the dimensionality reduction.

Note, UQ is a recurrent issue in applied fluid dynamics, and many strategies have
been proposed for incorporating randomness in the physical models through some of their
parameters |e.g. 44, 47]. However, the error introduced by these noisy parameters is not a
priori tied to dimensionality reduction and to the contribution of unresolved components.
In particular, in fluid dynamics, random initial conditions have first been widely used for
both UQ and predictability studies [e.g. 51]. It was later demonstrated this yields under-
dispersive quantification, i.e. it has a tendency to underestimate the error associated to
the dimensionality reduction [8, 31, 35, 53].

Alternatively, authors have considered the introduction of additive noises, most likely
beginning with the introduction of EDQNM [46, 57]. Without special care, such a strategy
often leads to energy conservation loss, stability issues and radical changes of the underlying
attractor [17].

The Modified Quasilinear Gaussian (MQG) method [69, 70, 71] approximates the third-
order moment to help redistribute the right amount of energy between the coefficients of
the reduced solution. Finally, several techniques related to averaging and homogenization
theory exploit a time-scale separation hypothesis [34, 43, 53, 58], one of the most notable
being the MTV model [49]. This latter approach can reproduce intermittency and extreme
events alike, thanks to its correlated additive and multiplicative noises. However, besides
potential energy conservation issues, the noise covariance is often not explicit enough,
and has to be simplified and estimated using the available data. Interested readers can
refer to [64], and references herein, for more detailed reviews on model error specification in
coarse-scale computational fluid dynamics (CFD). For ROM UQ), [73] propose distributions
and efficient sampling methods for the projection matrices in Galerkin-projection-based
dimensionality reduction methods. Although apparently more pertinent than methods
based on randomized parameters, the relation of this technique to errors associated to
mode truncation and turbulent chaotic behaviour remains unclear.

In this paper, we propose to quantify the uncertainty introduced by modal dimension-
ality reduction through the so-called dynamics under location uncertainty (LU) [50, 65].
Specifically, we adapt the aforementioned stochastic closure to the Galerkin-projection-
based ROM. Inspired from the theoretical works of [11, 52|, the LU closure relies on the



92
93
94
95
96
97
98
99
100
101

102

103
104
105
106
107
108
109

110

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

131
132
133
134
135
136

137

TRUNCATION UNCERTAINTIES IN REDUCED FLUID SYSTEMS 3

stochastic transport of the flow variables, together with a decorrelation assumption of
the unresolved fluctuations with respect to the resolved slow/large scales. More precisely,
the residual velocity — i.e. the difference between the usual Navier-Stokes solution v and
some large-scale velocity component w — is assumed to be time-uncorrelated at the char-
acteristic time of the large-scale processes. This residual velocity is informally denoted
v/ = 0B = 0dB;/dt where t — o B; is a Q-Wiener process [26, 62|, and hence, Gaus-
sian in nature. Note that this apparent simplified Gaussian assumption leads to, as we
will see, a non-Gaussian multiplicative noise in the dynamics. Spatial correlations of the
residual velocity are then specified through the Hilbert-Schmidt integral operator o with
a C? kernel &: (" — RIx¢.

(1.1) o(z)dB, 2 / (2, 2)dBy(z)dz  V(z,1) € Q x [0,T).
Q

This operator — or equivalently the spatial covariance of the residual velocity — can be
modeled or learned from data. The review [64] describes some of the many choices that
have been explored in this vein. This includes for instance parametric models based on
fluid velocity self-similarity or brute-force non-parametric covariance estimation from high-
resolution datasets. Here, By is an [z-cylindrical Wiener process and dB;/dt plays the role
of spatio-temporal white noise. The above definition enables us to characterize the way
physical quantities are transported by the stochastic flow:

(12) dX,; = UJ(Xt, t)dt + O'(Xt)dBt vVt € [O, T],

This resembles the expression for transport in classical fluid dynamics. Material deriva-
tives and other differential operations of fluid dynamics are then derived through the use
of stochastic PDEs (SPDE), in particular, by applying the Ito-Wentzell formula [42] and a
stochastic version of the Reynolds transport theorem [40, 50, 65|. As such, LU models can
be applied to model error quantification [17, 64, 66, 68|, to improve large-scale simulations
[6, 7, 40, 66, 68], to reduced order modeling and data analysis [67] or to data assimilation
purposes [16, 81] in geophysical fluid dynamics and CFD. To note, in the geometric me-
chanics community [38, 24|, the Stochastic Advection by Lie Transport (SALT) method
has been derived for large-scale modeling and data assimilation [25]. Both frameworks
have been compared, numerically [7, 64| and conceptually, [6, 68|, with LU and SALT
exhibiting different conservation properties, namely energy preservation and circulation
conservation, respectively. Applied to a barotropic Quasi-Geostrophic model, LU leads to
improved accuracy when compared to a classical large-scale deterministic framework or to
the circulation conservation stochastic setup [6, 7]. The LU setting also fully captures the
structural deformation of the large-scale flow component by the spatial inhomogeneity of
the small-scales [6]. It is important to note that these properties are independent of the
choice of stochastic integral.

In this paper, our focus is to analyse the LU setting to help define efficient, highly
reduced order models for real time data assimilation or control applications. For the
sake of simplicity, we will deal with Proper Orthogonal Decomposition (POD) [48] as
dimensionality reduction technique — where time and space dependency are separated —
but the proposed methodology applies to all types of modal decompositions.

In section 2, we introduce the stochastic fluid dynamics closure we will employ through-
out the paper, as well as its algebraic structure, followed by the Galerkin projection of this
SPDE to derive our stochastic ROM, with a brief recall of the principle behind POD-ROMs
in section 3. Several estimations needed to complete our stochastic POD-ROM are detailed
in section 4, as well as the efficient and consistent estimators we exploit to rely both on
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data and on the closure’s physical grounding. In section 5, we discuss the conservative

properties of LU dynamics and of its reduced versions, and finally, section 6 is dedicated
to the numerical evaluation of the UQ capabilities of our ROM.

2. Navier-Stokes model under location uncertainty. Galerkin projections of Navier-
Stokes equations do not specifically take into account residual velocity contributions, and
thus, nor do they offer a precise quantification of their induced errors. To help remedy this
issue, we propose to directly project SPDEs — i.e. the LU Navier-Stokes representation —
instead of the classical Navier-Stokes equations. The resulting ROM is expected to describe
the same physical system, as we postulate that the solution of the SPDE to be statistically
similar to a large-scale representation of the original (deterministic) equation’s solution.

2.1. The random physical model. Let us denote by € an open bounded subset of R¢,
T € R* and L*(Q) (resp. L? 2 (L? (Q))d) the space of square-integrable scalar (resp.

vector) fields on €. In the case of incompressible fluids, the LU Navier-Stokes equations
on Q x [0,7T] read:

(2.1) Diw = -V (pdt+ p,dBy) + 4 Alwdt + odBy),
Stochastic Pressure Molecular viscous
transport forcing dissipation

(2.2) 0=V . (w'dt+ odBy),

~
Mass conservation

where p + p(,% informally represents the pressure also decomposed into a large-scale and
a small-scale time-uncorrelated component, Re stands for the Reynolds number, and for
every smooth-enough function g : Q x [0,7] — R?, we denote:

(2.3) (Diq),, = deqr + (w*dt + 0dBy) - Vg, — V - (3aVg) dt,
Advection urbulen
= e stan_aod t
* A 1 T
(2.4) w'=w-5(V-a),
(2.5) a2 E{(cdB,) (¢dB)"} Jdt =0 ® o,

where operator ® is defined later on in this section.

Throughout this paper, we consider various linear integral operators defined on some
subspace D C L%. Denoted 7, each of those operators can be defined through a matrix
kernel i of (L2 (QQ))dXd as follows:

(2.6) (n€) (z) 2 /Qﬁ(w,z)g(z)dz Ve e D C L%, vz € Q.

kernel

of n
Two first examples of such operator are o encoding the small-scale velocity component
spatial correlations (defined in (1.1)) and p, encoding the small-scale pressure component
spatial correlations. For two such linear integral operators n and 8, we note:

(2.7) (n®0)(x) 2 /Qﬁ(:c, 2) 0 (x,2)dz vz € Q.

Theoretical foundations to analyze SPDEs are outside the scope of this paper. Inter-
ested readers may refer to [30, 52| for deeper insights. Here, we focus on the stochastic
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Physical meaning | Notation Full-order term Property ROM term
Molecular viscous L ﬁA symmetric, < 0 l
dissipation
Turbulent Fyir V.- (%aVo) symmetric, < 0 fdif
diffusion
Advecting velocity Foq % (V-a)V skew-symmetric Sadv
correction (V- (v-a)T =0)
Usual C(w,e) —(w-V) skew-symmetric c
advection (if V-w=0)
Advection by the GdB; —(edB;- V) skew-symmetric adB;
residual velocity noise
(f V.o =0)
Molecular viscous HdB; éAa’dBt additive 0dB;
dissipation of the noise
residual velocity
Pressure dP -V (p dt + p,dB) Potential Included in
gradient field other terms

Table 1: Terms of LU Navier-Stokes equations and their algebraic properties

closure mechanism and its reduced order expression. The stochastic transport operator
Dy involves the usual terms of the deterministic material derivative, on top of three addi-
tional new terms: an advecting velocity correction (w* instead of w), a heterogeneous and
anisotropic turbulent diffusion, and a multiplicative noise. This last term corresponds to
the advection by the unresolved velocity oB. Finally, we can recover the classical Navier-
Stokes equations by setting the residual velocity to zero — i.e. o = 0. Let us highlight
that for conserved scalars, this operator corresponds to the material derivative — i.e. the
derivative along the stochastic flow d (w(X¢,t)) [65]. This stochastic Navier-Stokes model
is generic, and depending on the application, forces and boundary conditions, it may be
modified accordingly to adjust to any incompressible flow configurations. For compressible
stochastic flows, some new terms appear. Interested readers may refer to [65].

In addition to the classical physical assumptions pertaining to the establishment of the
Navier-Stokes equations for incompressible fluids, the main assumption of the LU setting is
to consider the unresolved fluctuation velocity component uncorrelated in time. To note,
the incompressible character of the random fluctuations can be relaxed at the price of
additional terms in the transport operator [65]

2.2. Algebraic structure of the model. The algebraic properties of the different terms
can be quickly described. We can formally rewrite the velocity evolution law (2.1) for
t € [0,T] as follows:

(2.8)  daw = (AM)(w) 2

(L + F)(w) + C(w,w))dt + (GdB;)(w) + (HdB;) + dP,
where table 1 details each term. Operator L represents the molecular viscosity term,
F = Fyit + Fagv, the turbulent diffusion plus the advecting velocity correction, and Gd By,
the advection by the random residual velocity. All of them are linear differential operators,
while C, the term representing the usual non-linear advection effect, is a bilinear differential
operator. The additive noise HdB; corresponds to the molecular viscous dissipation of
the time-uncorrelated velocity component, a’B, while the last term on the right-hand side,
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dP, is the pressure forcing.

Additionally, under suitable boundary conditions, the algebraic structures of the dif-
ferent operators can be further specified. For instance, L and Fy;s are symmetric negative
operators. For the other terms, additional incompressibility conditions are needed. The
mass conservation equation (2.2) implies V - o = 0!, which is actually the case in practice,
either because of the parametric model used for o or because of the incompressibility of
the velocity data used to estimate o. Accordingly, GdB; is a skew-symmetric operator.

As a matter of fact, if ({, €) 2 fQ ¢ - € denotes the scalar product of L2, for every ¢ and
€ in the Sobolev space H}(Q) = {f € L*: [, HVfTH2 <005 fl,, = 0} (with partial
derivative taken in the weak sense and || e || stands for the Euclidean norm on R%*%) an
integration by parts gives:

d d
29) (€GB ==} /Q Gu(o0B: V)6 = =3 /Q GV - (0dBig)

d
(2.10) =Y [ (@dB: - VG) 6 = ~(GdB) (€).€).
=1 Q

The mass conservation equation also implies V - w* = 0 which may or may not be the
case in practice. If V - w = 0, operator C is skew-symmetric with respect to the second
argument — i.e. g — C(f,g) is skew-symmetric — whereas Fyqy is skew-symmetric if the
drift correction w* — w = —3(V - a)7 is divergence-free.

Moreover, the turbulent diffusion Fyj¢ is related to the random skew-symmetric operator

GdB;. Indeed, for every process & in H2(Q) = {f € L?: ax , 8;9881; € L*1<i,j<d},

IID

(2.11)(Fuit(€))y,

V- (3aV&) =V (%w@a)V&k):%( V) (@ (0TV)" &),
(2.12) =1G (®G(&)) = (3G (G

£)), = (3G (8G(¢))),.

where G* denotes the adjoint of G. It also shows that Fy¢(w)dt = d (G(w), B;) , where
(g, h) denotes the quadratic covariation of any functions g and h. The diffusion term
explicitly appears when working with the Ito stochastic integral and is only implicitly
taken into account with Stratonovich integral [6, 68].

As discussed in more detail in section 5, these algebraic properties make the LU Navier-
Stokes model — and to a certain extent, its reduced order versions — conservative (up to
molecular viscosity and boundary conditions effects).

3. Galerkin projection. To sample good priors for future Bayesian estimation algo-
rithms, we aim at deriving a computationally efficient fluid dynamics ROM able to quantify
its own errors with respect to the true fluid dynamics (i.e. the Navier-Stokes equations).
As previously mentioned, standard Galerkin techniques — even with the best determinis-
tic closures — are hardly capable of such a goal as they were not originally designed for
it. Hence, we propose to perform Galerkin projections on the LU Navier-Stokes model
instead, and to study its appropriateness for this sort of tasks.

3.1. A ROM with correlated additive and multiplicative noise. Let v be the real
velocity field (i.e. the Navier-Stokes equations’ solution) and ¢, a background velocity

. . _A .
field, typically the velocity temporal mean v = % fOT v. To reduce the state space dimen-
sion, we project the fluid velocity anomaly, v — @, in a subspace spanned by a number of

He Vg &(x,z)=0V(x, z)cQ?
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orthonormal spatial modes (¢;)1<i<n-

n

(3.1) v(x, t,w) = ' bi(t,w)p,;(x)+ Residual  V(x,t) € Q x [0,T],
=0 - é'v’
Swh

where by = 1 and ¢, = U by convention. The associated temporal coefficients, b;, are
possibly random and depend on a realization w of a sample space Q) whereas the reduced
basis functions ¢;, are assumed to be deterministic and stationary.

As typically done while working with ROMs, we aim at specifying the evolution of the
projected velocity field w®. A standard technique for that is the Galerkin projection of
the physical PDE — here, the Navier-Stokes equations — onto the reduced basis’ functions
¢;, where the resolved component w? is approximated by the solution of these projected
equations. Mode truncation can create many problems. For moderately turbulent to
turbulent flows and small dimension n, a closure model to handle the truncated modes
is unavoidable. With the LU setting — described in section 2 — an elegant stochastic
alternative for this problem can be derived. Accordingly, we will (i) assume that the
residual velocity v’ is time-uncorrelated and is denoted odBy/dt and (ii) approximate the
resolved component w’ to a realization of the solution of the Galerkin projection of the
stochastic Navier-Stokes representation (2.1)-(2.2). The former hypothesis is a debatable
choice with respect to some ROM’s applications whose pertinence and limitations will be
discussed further in section 4.5.

To obtain this stochastic ROM, the SPDE (2.8) is first projected onto the divergence-
free function space through the non-local Leray operator P = I; — VVTA~!. This projec-
tion, which requires the resolution of a Poisson equation is used to simplify the system by
removing the pressure term. Since divergence-free solution is considered (see section 3.2),
the resolved velocity component w? is naturally incompressible and we get

3.2) Pdw” = d;w?, PL(w') = L(w?), PP =0.

Moreover, P (HdB;) = (HdBy) because of the necessary incompressibility of the Brow-
nian term in the continuity equation (2.2)%. Then, the resulting SPDE is projected onto
each of the reduced basis’ functions:

(3.3) db; = (s, dsw™) = (AM)(b) £ (¢, P(AM)(w)), 1<i<n,

where b = (b;)o<i<n and

(AMP)(B) =~ (¢, L(9,)) b dt+z ¢:, PF(¢,)) bydt + Z (s, PC( ¢p,¢q))b bydt
:0%,_/ p— 0%,_/ p,q=0 A
lpz —fpi =Cpqi
(3.4) + (¢;, (HABy)) +Z ¢;, P GdBt)(¢p)) by, 1<i<n.
%,_/
£(8,0dBy) é(api.dBt)

The terms (opiedBi)i<pi<n and ((0ie + agie)dBi)i<i<n correspond to a Gaussian skew-
symmetric matrix and a Gaussian vector respectively, both with correlated coefficients.
If the functions ¢, were spatial Fourier modes associated with small wave-numbers, the
ROM (3.3) would represent a (stochastic) Large-Eddy-Simulation-like model expressed in
Fourier space and b would be the set of Fourier coefficients of the solution. Hereafter, we
will solely focus on the POD.

2which is coherent with the fact that ¥ - v'= 0 from (3.1) because V - v= 0.
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3.2. Proper Orthogonal Decomposition. In the POD framework, the reduced basis’
functions are computed through a set of velocity snapshots (veps(e,ti))ocicny_1- More
precisely, they are a solution to the constrained optimization problem:

(3.5) N{({;}glmlze Z (¢ vobs —D)°  subject to (¢, @,) =dij, 1<i,j<n.
1<i<n i=1

Reduced basis functions ¢, are thus the n orthonormal functions which can best explain
the snapshots’ temporal variability. Similarly to a principal component analysis (PCA),
the solutions of this optimization problem are the eigenfunctions of the velocity anomalies’
(vobs — ) spatial covariance. Numerically, this matrix is extremely large, and we generally
opt to solve the dual problem instead: we seek the eigenvalue decomposition of the velocity
anomalies’ temporal covariance:

(3.6) Ci = (vobs = 0) (8,1i), (Vobs — @) (#,15)), 0<i,j <N —1.

This method is often referred to as the snapshot method. In the POD framework, the
mode ¢, = v is set to the time averaged velocity, and the temporal coeflicients energies

b? are denoted );. Furthermore, if the snapshots describe a divergence-free velocity field
Vobs, the spatial bases ¢; are divergence-free as well.

4. Estimations of subgrid terms. To close our stochastic ROM (3.3)-(3.4), we need
to estimate the variance tensor a (involved in the ROM matrix f fdlf + fadv defined in
table 1 and in equation (3.4) under the braces) as well as the ROM noise variances and
correlations. Firstly, if we recall that by = 1, we note that:

n

(41) (a.i.dBt)T b + (ez.dBt) = Z (Otkl.dBt) bk + ((010 + a()i.)dBt) N 1 g 7 g n.
k=1

The multiplicative and additive noises of the ROM correspond to the first and second term
of the right-hand side, respectively. To simplify notations, we write:

(42) &pio = OQpje + 6}7002'07 I1<i<n, 0<p<n
To fully specify the ROM, the following correlations must be estimated:

(4.3) { a(@) = E{(o()dB,) (o(x)dBy)"} /dt Yz €,

E;g] = E{(apl'dBt) (a(ZJOdBt)} /dta 1 < Za] < n, 0 < b, q < n.

4.1. The curse of dimensionality. Computing correlations of Gaussian noises (&dBy)
involves the two-point quadratic cross-variation tensor of the small-scale velocity:

(4.4) Q(z,y) = E{(o(x)dB;) (o (y)dB;)"} /At Va,y € Q.

The coefficients (4, j) of the covariance matrix of the Gaussian vector (@dB¢) can be ex-
pressed as follows:

(45)  E{(0:dBy) (0;dBy)} =E{(¢;,vV?0dB;) (vV?edBy, ¢;)}
(4.6) = [ #ut@) v oE ViR w)dt ¢,(v) dady.

Since, by definition, Vo € Q, a(x) = Q(x,x), the whole stochastic ROM is closed by
specifying the tensor . In practice, this tensor is often heterogeneous — i.e. oBj is
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non-stationary in space. Thus, its spatially-discrete version is expected to be so large
that its estimation or even its storage becomes prohibitive. To overcome this difficulty,
a first strategy is to assume a model structure for the covariance as per [41, 66, 64, 68|.
If the small-scale velocity is observed, other techniques can be considered. Indeed, one
can build a POD representation of the small-scale velocity o B, learned from available
snapshots or realizations as in |7, 24, 64, 68]. Depending on the desired accuracy for the
noise representation, a great number of modes would have to be estimated and the number
of coefficients involved in the ROM can quickly grow out of control. Here, we rely on
a method specifically devised for this kind of ROM frameworks: the noise structure is
again learned from observed residual velocity snapshots, but without passing through the
covariance Q. It enables us to directly estimate the correlations of the random ROM'’s
coefficients, as it will be explained later on.

4.2. Variance tensor estimation. Considering the variance tensor a stationary leads
to a simple estimator through time averaging as in [67]:

~ T, N\T
(4.7) a=Atv (vgbs) ,
where
n
(4'8) ’Ugbs = Vobs — wc}?bs = Vobs — Z b;‘)bsﬁbia
=0

is the observed POD’s residual velocity. Since adt = d (B, (0 B)"), the estimator (4.7)
is consistent thanks to the quadratic covariation definition.

4.3. Noise correlation estimation. Besides the variance tensor, there are n?(n + 1)
correlations to estimate according to (4.3). For any function & in H?(Q2) , let us introduce
the linear functional:

(4.9) Kjq[€] = (0, —P[(€- V)@, + 00 vAE), 1<j<n, 0<g<n.

Using this notation, the noise’s covariance can be estimated as follows:

obs

o Abobs\ " o
(4.10) X% = ﬁfﬁf Kijq [b;‘ibs (T) CAN ] , 1<i,j<n, 0<p,qg<n,

where bgbs = )\gbs =1 and for 1 <7< n,

(4.11) b = (y, Vobs)

(1.12) X = ()2,

o (Y- (5) - CE)

(4.14) (Affs)' = (B5) = (™) @+ Proi+ (67) " cont ),
wm () - B + 1) - L SN

To ensure the noise’s covariance matrix to have the desired symmetric non-negative struc-
ture, we only keep the symmetric part of the estimated tensor (4.10) and set its possible
negative eigenvalues to zero. The part inside the functional Kj, in the estimator (4.10)
is inspired from [32|, where products of martingale time increments are projected onto
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orthogonal functions of L? ([0,77]). For ROMs with a small number of dimensions n, the
estimator’s computational cost is remarkably low as the observed coefficients of the reduced

solution b°P® were already computed by the method of snapshots (see section 3.2). Hence,

obs \ //
the computational cost for bgbs (Agit ) is negligible and the part inside K}, only involves

a projection of the residual velocity along the time dimension. Finally, the n(n + 1) differ-
ential operators K, are computed only on n(n + 1) functions that do not depend on the
time variable.

We prove the consistency of this estimator in Appendix A by capitalising on the
quadratic covariation’s definition and the orthogonality of the observed temporal coeffi-
cients b?bs. In addition, this can also be extended to non-orthogonal coefficients by solving
the linear system engendered by the matrix (Z)I,Tk)pk.

4.4. Noise dimension reduction. Using the Cholesky decomposition o of the noise
covariance tensor:

(4.16) Soai = D Omunews 1<ij<n, 0<pg<n,
Ik

and O(n?) independent white noises, one can sample realizations of the ROM Gaussian
noise terms &dB;. However, % has O(n?) coefficients, while the ROM works with only
n modes and involves — leaving the noise terms aside — O(n3) coefficients. Therefore, we
propose to reduce the noise dimension through a tensorial PCA of X%, eventually only
keeping the n first eigenvectors. This leads to the following sampling strategy:

(4.17) adBy ~ > &,
k=1

where (dkR) e € R +1)X7 are the matrix forms of the first n eigenvectors (weighted by the
corresponding eigenvalues’ square roots) and (ﬁ(k))k are n independent one-dimensional
Brownian motions. Since adB; is a multiplicative noise and the temporal coefficients b;
have various amplitudes v/);, the covariance matrix £ is adequately re-normalized by the
amplitudes 1/\; before applying the PCA.

It is important to note that the methodology described here is different from a more
usual methodology based on PCA decomposition of the residual velocity v’ keeping n
modes and assuming that the corresponding temporal coefficients (b;),+1<i<on are time-
decorrelated. The complexity of the final ROM is the same in both methodologies but our
ROM maximizes the noise’s variance instead of the residual velocity’s variance. Thus, our
proposed method is better suited in terms of ROM UQ.

4.5. Time down-sampling rate. Under the LU Navier-Stokes model hypothesis, the
unresolved term of the velocity field corresponds to a noise uncorrelated in time. This
assumption is consistent with the fact that the higher-order coefficients of the reduced order
solution often tend to have shorter correlation time in fluid dynamics systems. However,
in practice, this assumption is not found to be true, and it is a recurrent issue for the data-
driven modeling of systems combining fast and slowly evolving components [4, 5, 59, 60].
Consequently, a time down-sampling scheme is proposed to force the noise terms to be as
decorrelated as possible.

By assuming that the spatially averaged covariance function has a Gaussian form with
a standard deviation equals to the correlation time 7, a simple expression allows us to
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compute it. For a given unresolved velocity correlation matrix we write:

n
(4.18) szjl = (’Ugbs(.vti)’ vgbs(.vtj>) = Cz'l} - Z bzbs(ti)bzbs(tj)a 0<i,j<N—1,
k=1

and its associated stationary covariance function

N—-1-p
(4.19) Covs(ty) = 75 Y. Cogipr 0SPp<N—1.
q=0

We propose the following correlation time estimation:

2
Covs

(AGews)”

=)
Il

(4.20)

using a forward Fuler temporal discretization of the stationary covariance:

ACovy () A Covg(ty + At) — Covs(ty)
At P At ’

These estimations follow over-simplified assumptions known to have a restricted validity.
Experimentally, they still systematically provide the best simulation results when compared
to other more complex estimators (whose derivation is outside the scope of this paper).
Moreover, with a white unresolved velocity with a dirac stationary covariance function,
we obtain 7 = d¢. This result is exactly what we would expect from a white unresolved
velocity, to prevent an overly aggressive down-sampling.

Before computing the estimations presented in sections 4.2, 4.3 and 4.4, we use this
estimated correlation time 7 to down-sample both the entire dataset and the observed
coefficients of the reduced order solution, leaving us with a time step At ~ 7. On top of
the considerable gain in accuracy, this time down-sampling reduces the amount of data to
process, and hence, makes the off-line ROM building process faster.

(4.21) 0<p<N-—1.

Having estimated and specified all of the stochastic ROM’s parameters in equations
(3.3) and (3.4), it is now possible to forecast ensembles of realizations of the ROM through
Monte-Carlo simulations. Before presenting numerical results, we discuss some important
properties of LU models and of their reduced order versions.

5. Kinetic energy budget. First, the conservative properties of the LU Navier-Stokes
representation are recalled, followed by a proof that by combining Galerkin projections and
the advecting velocity correction compressibility, an intrinsic energy dissipation appears.

5.1. Full-order model budget. As derived in [65, 68], since the pressure does not
influence the energy budget, by neglecting the molecular viscosity, the divergence of w and
boundary conditions effects, and by applying Ito’s lemma, the expression for the kinetic
energy budget writes:

(5.1) & Glwliz) = (36" (#G(w)) ,w) + 5 |G(w) s =0 Vi< [0,T],

Loss by diffusion Energy flux
from the noise

where ||§||2L2 = (&, &) is the squared norm of L? and

d
(52) Il = [ 3 iy . pdmaz

ij=1
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is the squared Hilbert-Schmidt norm of the integral operator n. This enables us to state
that the energy is conserved for each realization of the stochastic process, and as a direct
consequence of this, the energy intake of the noise and the dissipation by the turbulent
diffusion must exactly compensate each other. The latter dissipates the kinetic energy of
the mean |[E{w}|%,, while the former only releases random energy ||w —E{w}||%, into the
system. Thus, the time-uncorrelated component of the velocity field drains energy from
the mean field to the random component of w.
We can also express this energy transfer with the expectation of equation (5.1):

63) & [ Vartw) = §Blw—Blw}l = —§Ew}3. Ve 0.7]

Besides the physical relevance of energy conservation, variance inflation and its relation
to the mean field are also of primary interest for data assimilation or ensemble forecasting
issues.

5.2. Reduced-order model budget. Following (5.1), the full-order LU Navier-Stokes
model (2.1)-(2.2) conserves the kinetic energy, up to molecular viscosity and boundary
condition effects. With reduced order models, the advecting velocity correction is expected
however to create either energy compression or dilation, and the mode truncation, to
introduce a small energy leak. The ROM (3.3) does not exactly solve the global LU Navier-
Stokes model (2.1)-(2.2) but the Galerkin projection of the divergence-free component of
equation (2.1) :

G4)  dawl =3 db ;= S (@MF)B) § = I, [P(AM)(w™)] Vi € (0.7,
=0 =1

where Il is the projection onto the reduced subspace. Specifically, for any function ¢ € L?

the projection II, is defined as II14[(] = ZZ:1 (d)p,C) ¢,- As previously stated, we can

evaluate the variation of kinetic energy with the Ito formula. The following result is proved
in Appendix B for every ¢ € [0,T]:

(5.5) & (slw™72)

~ 1| Gw™)[s + 5 1T [(G)(w™)] |5 = 3 (V- (V- a)", [wf]?),

Loss by diffusion Energy flux Errom the noise Advecting velocity correction
compressibility
2
R 2 €L R
(5.6) =4 (V- (V-a)" ) -4 [0 (@) .
<0

where || @ || stands for the Euclidean norm on R¢ and HQLS =l — II is the projector onto
the orthogonal complement of the space spanned by the reduced basis’ functions.

The first term of (5.6) corresponds to the fluid compression/dilation created by the
velocity correction w* —w = —3 (V -a)”. By construction, the ROM meets the incom-
pressible condition — i.e. V +w = 0 — but unlike the LU Navier-Stokes model, it does not
satisfy the finite-variation part of the mass conservation (2.2): V - w* = 0. The velocity
correction divergence is associated to turbulence heterogeneity [6, 16, 67], corresponding
to the spatial maxima (positive energy fluxes) and minima (negative energy fluxes) of the
turbulence’s kinetic energy ||v’[|2.

The second term of (5.6) informs about the energy flux due to mode truncation. The
ROM'’s subgrid diffusion extracts energy from some temporal coefficients of the reduced
order solution, while the multiplicative noise distributes it to others. These stabilizing and



455
456
457
158
459
160
461
162
163
464
465
166
467
168
469
470
471

473
474
475
476
477
478
179
480
181
482
183
484
485
486
487
488
489

190
491
192
493
194
495
496
497
498
499
500

TRUNCATION UNCERTAINTIES IN REDUCED FLUID SYSTEMS 13

destabilizing effects recreate a large part of the energy fluxes between coefficients of the
reduced solution, otherwise lost in deterministic ROMs. Thus, the uncorrelated velocity
component drains energy from the coefficients of the reduced solution to give it back to
the temporal coefficients of the truncated modes — i.e. modes orthogonal to the reduced
space. This energy flux is exactly characterized by the second term of (5.6). But, our
stochastic ROM cannot transfer energy from the truncated modes to the reduced solution’s
coefficients, as the former cannot be specified due to the truncation.

Such a dissipation could be perfectly prevented by considering —3 (Il [G])* (®1L, [G])

represented in the ROM by (—% D iy 25 qi> (see equations (B.11) and (B.12) in Ap-
T/ pa

pendix B), instead of the reduced version of the full turbulent diffusion operator
(—% ((,‘bp, G* (@G(gbq))))p = This correction would have been implicit using the Galerkin

projection with Stratonovich calculus. As demonstrated in [6, 64, 68|, using Stratonovich
integral, the turbulent dissipation term does not explicitly appear, neither when deriving
the ROM from scratch nor when switching notations after the Galerkin projection. Let us
stress that the modified advection is still present in the Stratonovich form of the LU model.
Changing the ROM notations from Ito to Stratonovich [42], the following correction term
appears:

n n n n

(57)  3d(b"aepe,B) =) (; > 2;7%) bgdt =" (—; > zgg’qi> by dt.

q=0 i=1 q=0 i=1
In Stratonovich form, the ROM also still implicitly includes the diffusion term ensuing from
the truncature. Notwithstanding, this additional dissipation in (5.6) is not a problem as
it enables the setting of an energy dissipation mechanism representative of a direct energy
cascade in the truncated modes’ coefficients. Hence, for very turbulent flows described by
few modes, the energy leak appears to be necessary as our main concern is to restore energy
fluxes between the coefficients of the reduced order system. Indeed, those energy fluxes
can be very difficult to model correctly in reduced versions of non-linear systems. As an
example, [69] observe that a basis encoding 50% of the energy can lead to a ROM missing
more than 98% of energy transfers. These missing energy fluxes create instabilities in some
coefficients of the reduced solution (missing negative energy fluxes) while overdamping
others (missing positive energy fluxes). Restoring the energy fluxes between coefficients of
the reduced system is a significant challenge LU models tackle through the combination of
multiplicative noise and turbulent diffusion.

To note, the noise dimensionality reduction of section 4.4 introduces an additional
energy leak due to the fact that we are only keeping n eigenvectors over n(n + 1) in the
noise covariance matrix’s PCA. This introduces another negative energy flux, as the noise
variance is reduced while the dissipation is maintained.

6. Ensemble forecasting. As a means to measure the performance of the proposed
ROM in UQ scenarios, ensemble simulations were carried out using the data available
from DNS simulations of wake flows at Reynolds 100 and 300, the former being quasi
two dimensional while the latter, fully three dimensional. Wake flows are well-studied,
non-linear, oscillatory flows which are physically produced by a uniform-velocity inflow
facing a solid obstacle — here, a cylinder. Vortices are thus created behind the obstacle and
periodically detach from it.

The dynamics, and in particular their intrinsic dimensionality, strongly differ between
Reynolds 100 and 300. Indeed, as illustrated by figure 1, at Reynolds 100, most of the
energy is concentrated in just a few coefficients of the reduced order solution. In contrast,
at Reynolds 300, the two first modes are meaningful for a rough approximation, but energy
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spreads over many degrees of freedom. The top panels of figures 3 and 7 confirm a strong
difference in complexity between the two flows.

The ROM'’s results w’ will be compared directly to DNS simulations v on a time
interval outside intervals on which the ROM'’s coefficients and basis functions have been
estimated.

6.1. Baseline ROMs. To better appreciate our stochastic ROM’s capabilities, results
are compared to two different state-of-the-art algorithms.

6.1.1. Deterministic baseline ROM. The first state-of-art ROM is a prototype of
deterministic ROM widely used in fluid dynamics. After a POD-Galerkin on the classical
Navier-Stokes equations, the molecular viscosity coefficient 1/Re is replaced by an eddy
viscosity coefficient 1/Re®Y > 1/Re [15]:

(6.1) $bi = 225 bl + b Coai b, 1<i< .

The eddy viscosity coefficient is typically fitted by least squares using the dataset b°Ps.
Without that correction, some coefficients of the reduced solution might become unstable
because of the missing negative energy fluxes due to mode truncation mentioned in 5.2.
The eddy viscosity term generally manages to stabilize those coefficients, but this does not
always make this data-driven method accurate. In order to emulate that unstable behavior,
we also simulate a simple DNS POD-Galerkin with no eddy viscosity model, i.e. the ROM
(6.1) with Re® = Re.

6.1.2. Stochastic baseline ROM. As a deterministic model, the ROM above can
hardly be used for dynamics-error UQ nor ensemble-based data assimilation. As a matter
of fact, a simple randomization of the initial conditions are known to usually lead to error
underestimation (see section 1). So, to keep things simple, we define a second baseline
ROM by adding a white noise term to the first baseline ROM. This constitutes a simple
adhoc randomization technique for a given dynamical system through a Gaussian additive
forcing. Despite its potential lack of physical relevance, such a strategy is very often
adopted in data-assimilation applications [17].

(6.2) db; = (2% b le; + b"Cae; b) dt + o5y dW,, 1< i<,

where ¢ € R™ " is the Cholesky decomposition of the ROM’s noise covariance X =
o ()T and t — W, € R" is a vector of n independent Brownian motions. Since no
prior physical information is available for these baseline models, the noise’s covariance is
also learned from data as follows:

o Abqbs " Abqbs " L
(6.3) zgjv:At( Y >ev (Ajf> , 1<4,5<n,

ev

where for 1 <7 < n,

Abebs\” AbPs\/ Abbs\/
(6.4) <A1t>:<AZt)_<AZt>’

ev ev ev

obs \ / obs
(6.5) (Agit ) = (Agit ) - (Ffi?v (bObs)Tln; + (bObs)Tc..i bObs) :

ev

obs

"
As for the LU ROM, the implicit assumption of white noise residual < N > may not be
ev

valid. Thus, similarly to section 4.5, an optimal down-sampling time step is estimated with

o (AP A\ o . . N
Y ey (Tt . (t:) | —ar . (tj) instead of Cj;, before the noise covariance estimation.
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Figure 1: Energies of the reduced solution coefficients normalized by the total solution
energy temporal mean [|v||3, for the 2D flow at Reynolds 100 (left panel) and the 3D flow
at Reynolds 300 (right panel).

6.2. 2D wake flow at Reynolds 100. Starting with the simpler of the two test cases,
800 seconds of DNS simulation data (about 160 pseudo-periods) were generated for a 2D
wake flow behind a circular cylinder at Re = 100. These data were then split into training
and test sets, the former (140 pseudo-periods) being utilized for the construction of the
ROMs, and the latter (20 pseudo-periods), as a reference to which the ROMs will be
compared. Performance will thus be measured through four different metrics: comparison
of temporal coeflicients in the time domain, comparison of reconstructed velocity fields in
the spatial domain, global prediction accuracy as measured by the evolution in time of
RMSE, and finally ensemble minimum error.

6.2.1. Temporal coefficients forecast. The 2-dimensional LU ROM of the Reynolds-
100 flow is simulated 100 times. In figure 2, the coefficients of the reduced solution bgk)
(where k stands for the k-th simulation) are compared to the coefficients of the reference
solution bl = (¢b;, vyer) (plotted in black). The ensemble mean (in green) follows almost
perfectly the reference’s phase, and exhibits a slightly damped magnitude. The damping
effect can be seen as a consequence of the exchange of energy between the mean and the
variance (see equation (5.3)). This interplay is also evidenced by the growth of the confi-
dence interval. The realization we have (randomly) singled-out shows a slowly divergent
behavior.

6.2.2. Velocity forecasts. Having analyzed the model’s forecast capabilities in terms
of the ROM’s temporal coefficient, we now focus on the analysis of the velocity fields’
forecast and compare them to the reference — i.e. the projection of full DNS solution onto

the POD basis : I [vcf] 2 My[veer — D) + 0 = S0 0%, (with b5f = 1). Here, our
goal will be to assess qualitatively the potential limitations of the ROM. Through equation
(3.1), we will compute the velocity fields for the mean, the lowest error realization, and the
prediction generated by the eddy viscosity ROM (6.1) of same dimension. At each time
step, we define the lowest-error realization as follows:

2
, = argmin||b®*) — prf||2,

(6.6) b™" = argmin HwR — ﬁ¢[vref] ‘
Eo®),

(™),

We plot in figure 3 the vorticity fields of the ROMs of dimension n = 8. A system of
dimension 8 enables us to reproduce fairly well the topology of the velocity fields, and from
figure 2 we conclude that our model’s best realization is capable of staying in phase with the
reference, even 50 seconds into the validation set, while the ensemble realization’s mean and
the deterministic baseline start losing accuracy. Indeed, the eddies of the latter predictions
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Figure 2: LU POD-ROM forecast for n = 2 coefficients of the reduced solution for a 2D wake
flow at Reynolds 100: ensemble mean (green line), one random realization (yellow line),
confidence interval (gray shade). Blue lines correspond to deterministic ROMs: baseline
eddy-viscosity POD-ROM (6.1) (light-blue dashed line) and DNS POD-Galerkin (dark-blue
solid line). The dash-dot black plots represent the observed references.

are late compared to the reference. This misalignment of eddies is a major type of model
error in CFD, and it is very problematic for data assimilation because misalignment can
hardly be corrected by linear Eulerian algorithms [64]. The LU model’s cornerstone is
precisely the random locations of transported quantities, and in particular, the locations
of eddies. This random location idea is encoded in the random flow equation (1.2) and
gave rise to the name "Location Uncertainty" (LU). Here, the LU POD-ROM generates an
ensemble of simulations. Some of them have eddies in advance compared to the mean and
some have late eddies. This variety of eddies’ locations allows some ensemble realizations
— in particular the best one — to match the reference’s eddies’ locations.

6.2.3. Global prediction accuracy. To compare more precisely the performance of
the proposed ROM, we systematically plot the RMSE, as well as the ensemble’s bias,
variance and minimum error. These quantities will also be compared to those obtained by
the stochastic baseline ROM (6.2). This enables us to inspect the UQ capabilities of the
proposed ROM.

Although the random energy transfers are a necessary feature when the number of
modes is not large enough, it increases the temporal coefficients’ variance while keeping
their biases constant, which yields an increase of the Root Mean Square Error (RMSE) of
the whole ensemble:

N ~ 2 N ~
(6.7)  RMSE 2 Bw” — Hyfowd | , = [Efw?} - Tolvred

2 —
‘LQ—F/QVar(wR).

In all the following normalized error plots, the blue line corresponds to the solution
computed using a deterministic POD-Galerkin ROMs (with and without eddy viscosity)
and the red one, to the RMSE. The green line represents the ensemble bias, whereas the
magenta line is the error incurred by the ensemble’s solution closest to the reference (6.6),
and the gray shade corresponds to 1.96 x the standard-deviation. These quantities are
computed for the whole set of generated realizations. The initial condition is common to
all and the values are normalized by the square root of the solution’s energy averaged over

1/2
the training set : <||5H3.42 +>0, )\i> :
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Figure 3: Vorticity fields — 10 vortex shedding cycles after the learning period — from
(from top to bottom) the reference simulation v.ef (2D DNS at Reynolds 100: state space
dimension of about 10%), its projection onto the POD basis ﬁ¢['vref], the LU POD-ROM
model’s best prediction, the LU POD-ROM model’s ensemble mean, and the prediction of
the deterministic baseline POD-ROM (6.1) (fitted eddy viscosity) (ROM state spaces are
of dimension 8). The vorticity is the velocity curl and is the usual and a convenient way
of visualizing 2D flows and their vortices.

In figure 4, the aforementioned error curves generated by the LU POD-ROM are com-
pared to the stochastic POD with eddy viscosity model (6.2) for n € {2,4,8}. The LU
POD-ROM’s best realization incurs a rather low error, and for the first two cases, a low
bias too. The same cannot be said for the stochastic eddy viscosity model, which sees its
variance grow out of control at the very beginning of the simulation, making the model’s
predictions diverge almost instantly. This divergence can be explained by the very large

obs

"
additive noise variance, fitted on the large ROM residuals (AZ‘ ) through equation
ev
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normL. error

normL. error

NOTIL. Crror
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nOTmL. Crror
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Figure 4: Normalized error for n = 2, 4 and 8 coefficients of the reduced solution of a 2D
wake flow at Reynolds 100 — with the projection of the DNS onto the POD basis I [vy.f] as
reference : RMSE (brown line), bias (green line), ensemble minimum error (magenta line)
and 1.96 x the standard-deviation (shaded gray) for the LU POD-ROM (left panel) and
stochastic baseline POD-ROM (right panel) . Blue lines correspond to deterministic ROMs
: baseline eddy-viscosity POD-ROM (6.1) (light-blue dashed line) and DNS POD-Galerkin
(dark-blue solid line). The black solid line at the top is the error considering only the time
mean velocity, i.e. b; = 0,Vi > 0.

(6.3). This large additive noise hence quickly fills the reduced subspace overwhelming the
physical terms of the reduced dynamics. As for the n = 8 simulation, we observe that
the LU POD-ROM differs from the other two simulations by having unstable realizations,
thence the sudden peaks in the bias and mean curves. When a realisation diverges, we
re-sample it uniformly from the other members of the ensemble.

Focusing on our stochastic POD-ROM, for any n € {2,4, 8}, even though the ensemble
bias grows as time passes by, the best realization error does not. This is a crucial prop-
erty for a UQ model to have, as this means that an appropriate filtering technique could
eventually retrieve it at each observation, leading to a stable, low error data assimilation
system.

6.3. 3D wake flow at Reynolds 300. For a more challenging test, a 3D wake flow
behind a circular cylinder at Re = 300 was simulated, constructing the ROM just like
in the case of the wake flow at Reynolds 100. The 440 seconds of DNS simulation data
(about 88 vortex shedding pseudo-periods) were split into training (80 vortex shedding
pseudo-periods) and test sets (8 pseudo-periods). Similarly, the ROM was subjected to
the same benchmarks as before, with the equivalent eddy-viscosity UQ-enabled model for
comparison. As it is a more complex flow, we expect the different temporal coeflicients to
be harmonically richer and to capture as much of the small-scale interactions as possible,
but yet not to be able to fully reproduce the intricacies of the DNS-simulated flow.
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Figure 5: LU POD-ROM forecast for n = 4 coefficients of the reduced solution of a 3D wake
flow at Reynolds 300: ensemble mean (green line), one random realization (yellow line),
confidence interval (gray shade). Blue lines correspond to deterministic ROMs: baseline
eddy-viscosity POD-ROM (6.1) (light-blue dashed line) and DNS POD-Galerkin (dark-blue
solid line). The dash-dot black plots represent the observed references.

6.3.1. Temporal coefficients forecast. This new scenario being fully 3D and more
complex, the advantages of the proposed model are clear. This can be seen from the
temporal coefficient forecasts, where the proposed LU stochastic ROM manages to stabilize
the system while the deterministic PODs starts diverging after 5 seconds (i.e. before
one complete vortex shedding), as evidenced by the first temporal coefficients in figure
5. Intermittency probably fools the learning procedure of the eddy viscosity method and
makes it less robust and not adapted to the test set. In contrast, the LU learning procedure
— section 4 — shows a greater degree of robustness and leads to more accurate results. It
is also interesting to note how the random energy contribution increases with the order
of the temporal coefficient in the form of ensemble variance. This is attributed to energy
transfers between temporal coefficients, facilitated by the interplay of multiplicative noise
and turbulent diffusion. This effect is in fact amplified in the 8-dimension ROM in figure 6,
where the temporal coefficients’ means get more damped as the amount of random energy
in the system increases. This energy dissipation mechanism helps the system to remain
bounded, unlike its deterministic counterparts.

Interestingly enough, in the n = 8 dimension ROM, even when the ensemble variance
increases with the temporal coefficient order, coefficients 5, 6, 7 and 8 of the random
realization (yellow line) also attempt to follow the right reference amplitude and variability,
as it can be observed in figure 6.

6.3.2. Velocity forecasts. As in the previous case, we now analyze qualitatively the
performance of our proposed method in terms of velocity field predictions.

As can be observed from figure 7, the best prediction remains stable and manages
to stay close to the theoretically optimal solution in 8-dimensions on a period of four
shedding cycles after the learning period. Conversely, the baseline model starts to diverge,
as evidenced by the red zones inside the vortices. This result is quite impressive as, even if
the mean velocity field is not as close to the reference as one would like, it still reveals the
potential of a method combining our model with a data assimilation technique to retrieve
the best realization and provide corrections on the fly.
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Figure 6: LU POD-ROM forecast for n = 8 coefficients of the reduced solution of a 3D wake
flow at Reynolds 300: ensemble mean (green line), one random realization (yellow line),
confidence interval (gray shade). Blue lines correspond to deterministic ROMs: baseline
eddy-viscosity POD-ROM (6.1) (light-blue dashed line) and DNS POD-Galerkin (dark-blue
solid line). The dash-dot black plots represent the observed references.

6.3.3. Global prediction accuracy. Just like in the two-dimensional flow, the error
curves are plotted and compared to the results obtained with the stochastic eddy viscosity
model (6.2). The curves in figure 8 evidence the predictive power of our proposed model: it
is capable of great stability and accuracy even after 40 seconds while the deterministic and
eddy viscosity models prove to be quite unstable by rapidly diverging. These properties are
showcased by the bias and mean curves that converge to the zero-temporal-coefficient error
curve instead of growing in an unbounded manner, while still having at least one realization
with relatively low error that could eventually be identified through data assimilation
techniques.

7. Conclusion. This paper proposed a stochastic ROM derived from a stochastic fluid
dynamics modelling standpoint, called dynamics under location uncertainty (LU), which
formulates unresolved small-scale parameterization through SPDEs. The stochastic ROM
is obtained through a classical POD-Galerkin projection of these SPDEs, and the basis
functions are defined from a high-resolution deterministic simulation of the target flow.
The resulting model bears similarities with the Navier-Stokes equations, but also encom-
passes an advection velocity correction, a turbulent diffusion and a skew-symmetric multi-
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Reference simulation v,ef
(3D DNS at Reynolds 300)

LU
Projection POD-
onto the ROM
POD basis model
I [Vref] ensemble

mean
LU Deter-
POD- ministic
ROM baseline
model POD-
best pre- ROM
diction prediction

Figure 7: Q-criterion iso-surfaces — 4 vortex shedding cycles after the learning period —
from (from left to right and from top to bottom) the reference simulation vy (3D DNS
at Reynolds 300: state space dimension of about 107), its projection onto the POD basis
II4[vref] , the LU POD-ROM model’s ensemble mean, the LU POD-ROM model’s best
prediction, and the prediction of the deterministic baseline POD-ROM (6.1) (fitted eddy
viscosity) (POD-ROM state spaces are of dimension 8). The Q-criterion [39] is a quadratic
function of the velocity gradient and is the usual and a convenient way for visualizing 3D
flows and their vortices.

plicative noise terms. From the statistics of the POD’s residuals — i.e. the data component
orthogonal to the POD’s modes — these new terms can be fully characterized.

The implementation necessitates additional off-line computations on top of the classical
POD-Galerkin procedure: estimations of a variance tensor and of the reduced multiplicative
noise’s covariance matrix. The former, proportional to the point-wise d x d covariance
matrix of POD’s residual, is readily computed. The latter can constitute a formidable
computational challenge. Moreover, with a fully data-driven method, the risk of over-
fitting is very high. To circumvent these issues, an intermediate solution is proposed
with an easy-to-compute estimator, along with consistency proofs under the LU setting
assumptions. Since the latter may not always be met — specifically, the time decorrelation
assumption of the POD residual — measures are taken to enforce them on the model, as
part of its constitutive steps. Namely, to force the decorrelation — and in doing so, improve
the accuracy of the estimators and the ROM as a whole — a down-sampling of the dataset
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Figure 8: Normalized error for n = 2, 4 and 8 coefficients of the reduced solution of a 3D
wake flow at Reynolds 300 — with the projection of the DNS onto the POD basis Iy [vrcf]
as reference : RMSE (red line), bias (green line), ensemble minimum error (magenta line)
and 1.96 x the standard-deviation (shaded gray) for the LU POD-ROM (left panel) and
stochastic baseline POD-ROM (right panel) . Blue lines correspond to deterministic ROMs:
baseline eddy-viscosity POD-ROM (6.1) (light-blue dashed line) and DNS POD-Galerkin
(dark-blue solid line). The black solid line at the top is the error considering only the time
mean velocity, i.e. b; = 0,Vi > 0.

is applied at a rate equal to the residual’s correlation time. Finally, in order to restrict the
number of coefficients needed to characterize the ROM to the usual O(n?), a technique to
reduce the dimensionality of the noise covariance matrix is also proposed.

The conservative properties of the LU closure are discussed, and we demonstrate that,
when performing Galerkin projections of the Ito form of LU SPDEs, we end up forfeiting
these properties. In the reduced order version, two energy fluxes appear: the first one is
attributed to the possible advecting velocity correction divergence, whilst the second one
is negative and is directly associated with mode truncation. We argue that this energy
loss is understandable, and even desirable, with an interplay between noise and turbulent
diffusion to maintain non-linear energy fluxes between coeflicients of the reduced solution
despite mode truncation.

Numerical comparisons are performed between our stochastic ROM and state-of-the-art
deterministic and stochastic ROMs. As test cases, we chose a two-dimensional wake flow
at Reynolds 100 with few degrees of freedom, and a more complex three-dimensional wake
flow at Reynolds 300 with many more degrees of freedom. Deterministic Navier-Stokes sim-
ulations stood for references and all of the ROMs were initialized with their values, and the
forecasts, compared to them. For the stochastic ROMs, ensembles of 100 realizations were
simulated. The state-of-the-art stochastic ROM’s solutions quickly diverged in time, whilst
the temporal coeflicients of our ROM proved to be neither unstable nor over-damped. The
LU POD-ROM solution’s biases were even found to be smaller than those of each of the
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other stochastic ROMs’ that we have considered. Moreover, at any given moment, the LU
POD-ROM ensembles managed to remain very close to the reference, suggesting that they
could be efficient priors for Bayesian inverse problems.

Following this work, we have applied the LU POD-ROM with unknown initial condi-
tions in conjunction with particle filter algorithms to estimate velocity flows in real-time
from few local measurements [63].

Finally, when working at very large Reynolds numbers, DNS simulations are no longer
an option, but LES (Large Eddy Simulation), DDES (Delayed Detached Eddy Simulation)
and RANS (Reynolds Averaged Navier Stokes) can still provide useful data to build ROMs,
at the cost of some approximation error. To tackle this, the closure mechanism’s estima-
tion procedure may be adjusted to address the small-scale velocity statistics neglected by
LES-like approaches. Another approach that we are currently exploring is to consider the
Galerkin projection on a LU version of LES and DDES. Non-polynomial terms of LES and
DDES complicate the dimensional reduction, but discrete empirical interpolation methods
(DEIM) [18] may be able to handle it. As illustrated in this paper, our stochastic closure
naturally prevents truncation-induced instabilities, and we expect a similar behavior at
higher Reynolds. If the proposed in-house stabilization is not sufficient, existing stabilisa-
tion and/or data-driven methods [33, 37, 77| could be added. Furthermore, CFD outputs
may also be at a resolution different from the resolution of the measurements. Hence, de-
pending on the relative precision of CFD and measurements, there could be an additional
or a missing very-small-scale residual turbulence in the assimilated measures. Accordingly,
we will need a simple statistical model for this very-small-scale turbulence and include
its effects in the observation model through either an additional "measurement noise" or
additional smoothing.

Besides, in realistic applications, Reynolds number, initial and boundary conditions, as
well as a plethora of other parameters, are often only approximately known. So, combina-
tions with other state-of-the-art dimensionality reduction methods are most likely neces-
sary. Typically, we could use wRB |20, 21, 77| for uncertain mean inflow (Reynolds number
and angle of attack) and a reduced pressure equation |75, 76] for time dependent boundary
conditions. Our new implementation of LU terms in the ITHACA-FV library |75, 76| will
surely aid on these practical aspects.

Nevertheless, note that a wRB method to simulate random velocity effect [77] does not
directly apply to the purpose of the current paper. Indeed, we try to quantify the uncer-
tainty induced by the dimensional reduction of the deterministic Navier-Stokes equations
and not to reduce the dimension of an uncertainty quantification problem. The random
residual velocity can hardly be considered a wRB parameter because we do not choose
its value. There is only one "realization" and this is the one given by the deterministic
Navier-Stokes equations. We could specify some statistics for the random residual veloc-
ity and simulate the stochastic Navier-Stokes equations (2.1)-(2.2) but this would make
our method much more complex, much more CPU demanding, and could possibly lead to
over-fitting. Moreover, that random velocity is a residual, and thus, its statistics depend
on the reduced dimension n. That would also greatly complicate the wRB algorithm.

Finally, relying purely on data can offer the advantage of directly tackling very high
Reynolds number configurations. It would require us to filter noisy measurements, and
most likely, to rely on simplified (often 2D) data-driven models [1, 13, 29, 78]. From
this latter point of view, modeling under location location offers a great flexibility which
might be of great interest. As a matter of fact, the LU formalism enables us to derive
random dynamics close to the data but still based on stochastic transport principles [3].
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The noise parameters can be updated online from incoming data and simulations. A full
characterization of the noise dynamics through statistical learning procedures would then
probably enable us to devise advanced data-driven models that are able to handle even
more complex situations.

Appendix A. Estimation formulas. In this appendix, we consider a full probability
space (A, F,P), and a filtration of o-algebra {F;};>0. For the Hilbert space H%(Q2), we
understand H? = H2(0,T;), F) as the space of strongly measurable, {F;}i>0 adapted
processes u : R? x [0, T] — R? such that (z — u(x,t)) belong to H2(2) for every t € [0, T
and

T
(A1) JulZe =E /0 (o, 8) 22y it < .

Similarly, we can define £2(0,7;€, F) from L? and its norm. We recall below a classical
proposition related to quadratic variation process:

Proposition: Stochastic integration and quadratic variations. If M is a continuous mar-
tingale and X € £2(0,T; €, F), then there exists a unique bounded continuous martingale
fg X dM such that for every continuous martingale N (with zero initial condition)

(A.2) </0t XdM,N> = /Ot Xd(M,N).

As stated in the introduction, we assume that the operator o is Hilbert-Schmidt and
that its kernel & : 7 — R4 is C2 over the compact bounded set . Therefore,

(A.3) |oB3 < max sup(HUH + 100 & |12 + || 02,02, 5| )\Q2|T<oo,

where || ® || stands for the Euclidean norm on R%*¢ and |Q?| the Lebesgue measure of Q2.
As such, ((z,t) — o(x)B;) belong to H2. In particular, (z +— o(x)B;) belong to H?(Q)
for every t € [0,7] and 0y,0,0,,0;;0 are also Hilbert-Schmidt for every 1 < 4,5 < d.
Additionally, we assume that the POD modes ¢, belong to H?(Q2) and have bounded
gradients.

After defining boundary conditions, P and K are well defined on H'(Q2) and H?(12)
respectively. Then, for every ¢ € H'(Q), |[P¢|lz2 < ||¢||z2 since P is a projection and
then, for every & € H?(f2), by Cauchy-Schwarz and triangular inequalities:

(A.4) 1Kjq(O) < b1l 2 (IV bg lloo + )€l 120

where |V |~ = sup||Ve;| < oo . The bound above gives the continuity of K on
Q

H%(Q2). We also assume that the observed coefficients of the reduced solution b2 =
(¢;, Vobs) are continuous semi-martingales and solutions of the ROM (3.3)-(3.4). From
there, the orthogonality of the coefficients of the reduced solution yields, for 1 < 4,7 < n
and 0 < p,q < n:

T t t
(A.5) / byd(b;, / (GgjedBs)) / Zbd aki.st)bk, / &,edBs),
0 0 0

0 k=0
(A.6) = (/ bpbk> E%’qj,
k=0 /0
(A.7) =TX, E;’;W
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Now, let us note that for 1 <j<nand 0 < q¢<n:
(A.8) QgjedBg = (qu, -P [(ast - V) ¢>q] + dq0 qu-st) d (Kjq[oB]).

Then, with the definition of the quadratic covariation and the increment notation A(ty) =
&(tr+1) —&(tx), we obtain the estimator’s expression and its consistency for every 1 < i,j <
nand 0 < p,g < n:

o 1 T t _
(A9) S = g, Bl [ (@B,
(A.10) :ATT /0 byd(bs, K jq [0 B)),
1 T
(A.11) =T ngtl_lgl by (k) (Abi) (tk) Kjq [0 ABY, ],
=
1 T
(A.12) — K, P-lim S b, (t)(Ab:)(ty) oAB, | |

P /\ T At—0
-

where the continuity of the operator Kj, on H?(£2) enabled us to switch the limit in prob-
ability and the operator Kj,. The martingale flow increments o AB;, are approximated
by v'(e,t;)At. In practice, for each 1 < i < n we can replace Ab; by

(A.13) Ab] = Ab; — AY,
where
(A.14) AV, = Ab; — (bT(l + Flai + b Cai b) At.

Mathematlcally, thls is still correct for very large values of T'. Indeed,

Ab, = (T+AT) HOpN’ . 0 and b} — b; has finite variations. Thus, b — b; approaches a
— 00

finite variation process (for large T'). Numerically, this formulation improves the accuracy

of the model as it allows us to remove the smooth-in-time part of Ab;, thus minimizing

estimation error as well.

Appendix B. Energy dissipation.

On top of assumptions of Appendix A, we neglect the viscosity (L = 0) and assume
zero Dirichlet boundary conditions for the reduced basis’ functions and for & — o (x)B;
for every t € [0,7]. Note that these fields are divergence-free (since they are learned
from a set of incompressible velocity fields). As such, we have: Vi < n, HG((,bZ)HQHS <
VT2 o ||5g < 00, i.e. G(¢h;) is Hilbert-Schmidt. This makes G(w') and T, [G(w')]
also Hilbert-Schmidst.

Using the projected Navier-Stokes model (5.4), for every ¢t € [0,7] we can formally
remove the orthogonal projection by moving it into the divergence-free functions space P
through integration by parts:

n

(B.1) dew® =" (b, P(dM)(w™)) ¢, = > (P, (dM)(w™)) &,

i=1 =1

(B.2) = Z (¢, (AM) (w)) ¢; = L, [(C(w", w™) + F(wh)) dt + (GdBy) (w™)] .
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Then, upon applying the Ito formula to the local kinetic energy we obtain
(B.3) d (%HwRHig) = /Q (de(w™) T + Lde((w™) T, w™) Ve e[0,T].

To remove the (orthogonal) projection operator Ils from the first term, we exploit its
symmetry, and afterwards, the fact that w® is already in the reduced subspace:

(B.4) /th(wR)TwR:

(

(B.5) = (M) (w'™), TT [w™])

(B.6) — ((aM) (w®), w?)

(B.7) = ((Fait + Faav)(w™) + C(w", w™))dt + (GdBy) (w™), w') ,
( lg* (@G( )) ,'wR) dt + (%((V . a)V)'wR, 'wR)
from (Fyir(wh),wh) using (2.12) from (Faqy (wh)wk)

(B.8) + (C(w?, wh)dt + (GdBy)(w"), w) |

=0 by skew-symmetry of &—C(wh,£) and GdB:

(5.9 = 3G s =3 (V- (V- a)" ")

where the second term comes from integration by parts. Besides, the Ito term of the energy
budget is straightforward to compute from equation (B.2):

2
B10) [ () w0 = T [(6) ()]
(B.11) = Z (%/ IL, [G((,‘bp)] ® Iy [G((;bq)]) bpbgdt.
p,q=0 @
From the deﬁnition of the projection operator Il and using the extended notation (n®0) = 2
fQ z)dz, we can express the above quadratic operator with the noise statistics as
follows
=1

Finally, by orthogonality, the kinetic energy budget (B.3) simplifies to:

(B13) § Gllw"32) = 5 |G| = 4 (V- (V)" w™?) = § [T [Glw™)] [
2
(B.14) =~ [ [e@®)| 3 (V- (V-a) ).

where H(JZ; = Iy — II4 is the projector into the orthogonal complement of the reduced
subspace.
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