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Quantifying truncation-related uncertainties in unsteady fluid dynamics1
reduced order models ∗2

Valentin Resseguier† , Agustin M. Picard† , Etienne Mémin‡ , and Bertrand Chapron§3
4

Abstract. In this paper, we present a new method to quantify the uncertainty introduced by the drastic5
dimensionality reduction commonly practiced in the field of computational fluid dynamics, the6
ultimate goal being to simulate accurate priors for real-time data assimilation. Our key ingredient7
is a stochastic Navier-Stokes closure mechanism that arises by assuming random unresolved8
flow components. This decomposition is carried out through Galerkin projection with a Proper9
Orthogonal Decomposition (POD-Galerkin) basis. The residual velocity fields, model structure10
and evolution of coefficients of the reduced order’s solutions are used to compute the resulting11
multiplicative and additive noise’s correlations. The low computational cost of these consistent12
correlation estimators makes them applicable to the study of complex fluid flows. This stochastic13
POD-ROM is applied to 2D and 3D DNS wake flows at Reynolds 100 and 300, respectively, with14
Uncertainty Quantification (UQ) and forecasting outside the learning interval being the main15
focus. The proposed stochastic POD-ROM approach is shown to stabilize the unstable temporal16
coefficients and to maintain their variability under control, while exhibiting an impressively17
accurate predictive capability.18

Key words. Fluid dynamics, reduced order model, uncertainty quantification, stochastic closure, proper19
orthogonal decomposition20

AMS subject classifications. 60H35, 65M60, 65M75, 76M35, 93B1121

1. Introduction. The industrial application of partial differential equations (PDE)-22
driven processes – fluid dynamics, for instance – can be a daunting task, mainly due to23
the computational complexity involved with its resolution. This computational burden24
becomes even excruciatingly difficult to handle when it comes to achieving real-time sim-25
ulations. To tackle this difficulty, reduced order models (ROM) are commonly employed26
to speed up deterministic and stochastic design simulations [9, 22, 56], or optimal control27
problems [19, 36, 45]. The interested community has proposed a plethora of different algo-28
rithms to reduce the computational cost of stochastic PDEs for uncertainty quantification29
(UQ) applications [20, 21, 44, 54, 55, 69, 77]. In particular, when some parameters of30
deterministic or stochastic PDEs are random, the weighted reduced basis (wRB) method31
[20, 21] helps choosing the best parameters’ value for each new full-order simulation. With32
the addition of stabilizing terms, [77] applied this method to linear advection-dominated33
problems, including advection by a random velocity field.34

In turbulent fluid dynamics, the system’s energy usually spreads out over many degrees35
of freedom. This prevents low-dimensional approximations of the state vector from being36
sufficiently accurate, but such a rough approximations can theoretically be sufficient for37
specific industrial applications, especially when the quantity of interest (QoI) is a spatial38
average (e.g. lift and drag). However, that multiscale property prevents, in general, the39
constitution of accurate reduced systems for the dynamics of those low-dimensional state40
approximations. Indeed, severe modal truncations often usually end up destabilizing the41
system and overdamping some of the stable coefficients of the reduced order solution [69].42
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Consequently, to stabilize the ROM, authors commonly introduce an additional determin-43
istic term (typically an eddy viscosity term) [2, 15, 79], along with a possible calibration on44
available data [12, 23, 80]. This calibration procedure can be extended to the complete set45
of the ROM’s parameters [1, 10, 61, 72]. ROM performances have mainly been evaluated on46
low Reynolds-number flows (say Re 6 100) [e.g. 10, 75, 80], while for flows at much greater47
Reynolds numbers, evaluations close to the learning time interval and reduced dynamics48
for two-dimensional flow observables (e.g. particle image velocimetry) have usually been49
the norm [e.g. 1, 12, 23, 75]. Long time ROM predictions have been otherwise performed50
with a substantial number of modes [e.g. 14, 74]. Yet, turbulent flow ROMs remain inexact51
and uncontrolled in the long run, owing to their intrinsic chaotic nature and the growth52
of accumulated error along time. Outside the learning time interval, predictions becomes53
less and less accurate. Moreover, these predictions necessitate accurate initial conditions,54
forcing and geometric information, which are often poorly known.55

Ensemble-based data assimilation – such as particle filters or ensemble Kalman filters56
– can alleviate these issues by forecasting an ensemble of likely future states of the system,57
while sequentially constraining them with on-coming measurements [27, 28]. Still, this58
necessitates accurate quantification of their associated simulation’s uncertainties. In this59
context, the aim is not to reduce the dimensionality of UQ, but rather to quantify the60
uncertainty introduced by the dimensionality reduction.61

Note, UQ is a recurrent issue in applied fluid dynamics, and many strategies have62
been proposed for incorporating randomness in the physical models through some of their63
parameters [e.g. 44, 47]. However, the error introduced by these noisy parameters is not a64
priori tied to dimensionality reduction and to the contribution of unresolved components.65
In particular, in fluid dynamics, random initial conditions have first been widely used for66
both UQ and predictability studies [e.g. 51]. It was later demonstrated this yields under-67
dispersive quantification, i.e. it has a tendency to underestimate the error associated to68
the dimensionality reduction [8, 31, 35, 53].69

Alternatively, authors have considered the introduction of additive noises, most likely70
beginning with the introduction of EDQNM [46, 57]. Without special care, such a strategy71
often leads to energy conservation loss, stability issues and radical changes of the underlying72
attractor [17].73

The Modified Quasilinear Gaussian (MQG) method [69, 70, 71] approximates the third-74
order moment to help redistribute the right amount of energy between the coefficients of75
the reduced solution. Finally, several techniques related to averaging and homogenization76
theory exploit a time-scale separation hypothesis [34, 43, 53, 58], one of the most notable77
being the MTV model [49]. This latter approach can reproduce intermittency and extreme78
events alike, thanks to its correlated additive and multiplicative noises. However, besides79
potential energy conservation issues, the noise covariance is often not explicit enough,80
and has to be simplified and estimated using the available data. Interested readers can81
refer to [64], and references herein, for more detailed reviews on model error specification in82
coarse-scale computational fluid dynamics (CFD). For ROM UQ, [73] propose distributions83
and efficient sampling methods for the projection matrices in Galerkin-projection-based84
dimensionality reduction methods. Although apparently more pertinent than methods85
based on randomized parameters, the relation of this technique to errors associated to86
mode truncation and turbulent chaotic behaviour remains unclear.87

In this paper, we propose to quantify the uncertainty introduced by modal dimension-88
ality reduction through the so-called dynamics under location uncertainty (LU) [50, 65].89
Specifically, we adapt the aforementioned stochastic closure to the Galerkin-projection-90
based ROM. Inspired from the theoretical works of [11, 52], the LU closure relies on the91
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stochastic transport of the flow variables, together with a decorrelation assumption of92
the unresolved fluctuations with respect to the resolved slow/large scales. More precisely,93
the residual velocity – i.e. the difference between the usual Navier-Stokes solution v and94
some large-scale velocity component w – is assumed to be time-uncorrelated at the char-95
acteristic time of the large-scale processes. This residual velocity is informally denoted96
v′ = σḂ = σdBt/dt where t 7→ σBt is a Q-Wiener process [26, 62], and hence, Gaus-97
sian in nature. Note that this apparent simplified Gaussian assumption leads to, as we98
will see, a non-Gaussian multiplicative noise in the dynamics. Spatial correlations of the99
residual velocity are then specified through the Hilbert-Schmidt integral operator σ with100

a C2 kernel σ̆: Ω
2 → Rd×d:101

σ(x)dBt
4
=

∫
Ω
σ̆(x, z)dBt(z)dz ∀(x, t) ∈ Ω× [0, T ].(1.1)102

This operator – or equivalently the spatial covariance of the residual velocity – can be103
modeled or learned from data. The review [64] describes some of the many choices that104
have been explored in this vein. This includes for instance parametric models based on105
fluid velocity self-similarity or brute-force non-parametric covariance estimation from high-106
resolution datasets. Here, Bt is an Id-cylindrical Wiener process and dBt/dt plays the role107
of spatio-temporal white noise. The above definition enables us to characterize the way108
physical quantities are transported by the stochastic flow:109

dXt = w(Xt, t)dt+ σ(Xt)dBt ∀t ∈ [0, T ],(1.2)110

This resembles the expression for transport in classical fluid dynamics. Material deriva-111
tives and other differential operations of fluid dynamics are then derived through the use112
of stochastic PDEs (SPDE), in particular, by applying the Itō-Wentzell formula [42] and a113
stochastic version of the Reynolds transport theorem [40, 50, 65]. As such, LU models can114
be applied to model error quantification [17, 64, 66, 68], to improve large-scale simulations115
[6, 7, 40, 66, 68], to reduced order modeling and data analysis [67] or to data assimilation116
purposes [16, 81] in geophysical fluid dynamics and CFD. To note, in the geometric me-117
chanics community [38, 24], the Stochastic Advection by Lie Transport (SALT) method118
has been derived for large-scale modeling and data assimilation [25]. Both frameworks119
have been compared, numerically [7, 64] and conceptually, [6, 68], with LU and SALT120
exhibiting different conservation properties, namely energy preservation and circulation121
conservation, respectively. Applied to a barotropic Quasi-Geostrophic model, LU leads to122
improved accuracy when compared to a classical large-scale deterministic framework or to123
the circulation conservation stochastic setup [6, 7]. The LU setting also fully captures the124
structural deformation of the large-scale flow component by the spatial inhomogeneity of125
the small-scales [6]. It is important to note that these properties are independent of the126
choice of stochastic integral.127

In this paper, our focus is to analyse the LU setting to help define efficient, highly128
reduced order models for real time data assimilation or control applications. For the129
sake of simplicity, we will deal with Proper Orthogonal Decomposition (POD) [48] as130
dimensionality reduction technique – where time and space dependency are separated –131
but the proposed methodology applies to all types of modal decompositions.132

In section 2, we introduce the stochastic fluid dynamics closure we will employ through-133
out the paper, as well as its algebraic structure, followed by the Galerkin projection of this134
SPDE to derive our stochastic ROM, with a brief recall of the principle behind POD-ROMs135
in section 3. Several estimations needed to complete our stochastic POD-ROM are detailed136
in section 4, as well as the efficient and consistent estimators we exploit to rely both on137
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data and on the closure’s physical grounding. In section 5, we discuss the conservative138
properties of LU dynamics and of its reduced versions, and finally, section 6 is dedicated139
to the numerical evaluation of the UQ capabilities of our ROM.140

2. Navier-Stokes model under location uncertainty. Galerkin projections of Navier-141
Stokes equations do not specifically take into account residual velocity contributions, and142
thus, nor do they offer a precise quantification of their induced errors. To help remedy this143
issue, we propose to directly project SPDEs – i.e. the LU Navier-Stokes representation –144
instead of the classical Navier-Stokes equations. The resulting ROM is expected to describe145
the same physical system, as we postulate that the solution of the SPDE to be statistically146
similar to a large-scale representation of the original (deterministic) equation’s solution.147

2.1. The random physical model. Let us denote by Ω an open bounded subset of Rd,148

T ∈ R∗+ and L2 (Ω) (resp. L2 4=
(
L2 (Ω)

)d) the space of square-integrable scalar (resp.149
vector) fields on Ω. In the case of incompressible fluids, the LU Navier-Stokes equations150
on Ω× [0, T ] read:151

Dtw︸︷︷︸
Stochastic
transport

= −∇ (p dt+ pσdBt)︸ ︷︷ ︸
Pressure
forcing

+ 1
Re∆(wdt+ σdBt)︸ ︷︷ ︸

Molecular viscous
dissipation

,(2.1)152

0 =∇ · (w∗dt+ σdBt)︸ ︷︷ ︸
Mass conservation

,(2.2)153

where p+pσ
dBt
dt informally represents the pressure also decomposed into a large-scale and154

a small-scale time-uncorrelated component, Re stands for the Reynolds number, and for155
every smooth-enough function q : Ω× [0, T ]→ Rd, we denote:156

(Dtq)k
4
= dtqk︸︷︷︸
4
= qk(x,t+dt)−qk(x,t)

Time increment

+ (w∗dt+ σdBt) · ∇qk︸ ︷︷ ︸
Advection

−∇ ·
(

1
2a∇qk

)︸ ︷︷ ︸
Turbulent
diffusion

dt,(2.3)157

w∗
4
= w − 1

2 (∇ · a)T ,(2.4)158

a
4
= E

{
(σdBt) (σdBt)

T
}
/dt = σ ~ σ,(2.5)159

where operator ~ is defined later on in this section.160
Throughout this paper, we consider various linear integral operators defined on some161

subspace D ⊂ L2. Denoted η, each of those operators can be defined through a matrix162

kernel η̆ of
(
L2
(
Ω2
))d×d as follows:163

(ηξ) (x)
4
=

∫
Ω
η̆(x, z)︸ ︷︷ ︸
kernel
of η

ξ(z)dz ∀ξ ∈D ⊂ L2, ∀x ∈ Ω.(2.6)164

Two first examples of such operator are σ encoding the small-scale velocity component165
spatial correlations (defined in (1.1)) and pσ encoding the small-scale pressure component166
spatial correlations. For two such linear integral operators η and θ, we note:167

(η ~ θ)(x)
4
=

∫
Ω
η̆(x, z) θ̆

T
(x, z)dz ∀x ∈ Ω.(2.7)168

Theoretical foundations to analyze SPDEs are outside the scope of this paper. Inter-169
ested readers may refer to [30, 52] for deeper insights. Here, we focus on the stochastic170
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Physical meaning Notation Full-order term Property ROM term
Molecular viscous L 1

Re∆ symmetric, < 0 l
dissipation
Turbulent Fdif ∇ ·

(
1
2a∇•

)
symmetric, < 0 f̆dif

diffusion
Advecting velocity Fadv

1
2 (∇ · a)∇ skew-symmetric f̆adv

correction (if ∇ · (∇ · a)T = 0)

Usual C(w, •) − (w · ∇) skew-symmetric c
advection (if ∇ ·w = 0)

Advection by the GdBt − (σdBt · ∇) skew-symmetric αdBt

residual velocity noise
(if ∇ · σ = 0)

Molecular viscous HdBt
1
Re∆σdBt additive θdBt

dissipation of the noise
residual velocity

Pressure dP −∇ (p dt+ pσdBt) Potential Included in
gradient field other terms

Table 1: Terms of LU Navier-Stokes equations and their algebraic properties

closure mechanism and its reduced order expression. The stochastic transport operator171
Dt involves the usual terms of the deterministic material derivative, on top of three addi-172
tional new terms: an advecting velocity correction (w∗ instead of w), a heterogeneous and173
anisotropic turbulent diffusion, and a multiplicative noise. This last term corresponds to174
the advection by the unresolved velocity σḂ. Finally, we can recover the classical Navier-175
Stokes equations by setting the residual velocity to zero – i.e. σ = 0. Let us highlight176
that for conserved scalars, this operator corresponds to the material derivative – i.e. the177
derivative along the stochastic flow d (w(Xt, t)) [65]. This stochastic Navier-Stokes model178
is generic, and depending on the application, forces and boundary conditions, it may be179
modified accordingly to adjust to any incompressible flow configurations. For compressible180
stochastic flows, some new terms appear. Interested readers may refer to [65].181

In addition to the classical physical assumptions pertaining to the establishment of the182
Navier-Stokes equations for incompressible fluids, the main assumption of the LU setting is183
to consider the unresolved fluctuation velocity component uncorrelated in time. To note,184
the incompressible character of the random fluctuations can be relaxed at the price of185
additional terms in the transport operator [65]186

2.2. Algebraic structure of the model. The algebraic properties of the different terms187
can be quickly described. We can formally rewrite the velocity evolution law (2.1) for188
t ∈ [0, T ] as follows:189

dtw = (dM)(w)
4
= ((L+ F )(w) +C(w,w)) dt+ (GdBt)(w) + (HdBt) + dP ,(2.8)190

where table 1 details each term. Operator L represents the molecular viscosity term,191
F = Fdif +Fadv, the turbulent diffusion plus the advecting velocity correction, and GdBt,192
the advection by the random residual velocity. All of them are linear differential operators,193
whileC, the term representing the usual non-linear advection effect, is a bilinear differential194
operator. The additive noise HdBt corresponds to the molecular viscous dissipation of195
the time-uncorrelated velocity component, σḂ, while the last term on the right-hand side,196
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dP , is the pressure forcing.197
Additionally, under suitable boundary conditions, the algebraic structures of the dif-198

ferent operators can be further specified. For instance, L and Fdif are symmetric negative199
operators. For the other terms, additional incompressibility conditions are needed. The200
mass conservation equation (2.2) implies ∇·σ = 01, which is actually the case in practice,201
either because of the parametric model used for σ or because of the incompressibility of202
the velocity data used to estimate σ. Accordingly, GdBt is a skew-symmetric operator.203

As a matter of fact, if (ζ, ξ)
4
=
∫

Ω ζ · ξ denotes the scalar product of L2, for every ζ and204

ξ in the Sobolev space H1
0 (Ω) = {f ∈ L2 :

∫
Ω

∥∥∇fT∥∥2
< ∞; f |∂Ω

= 0} (with partial205

derivative taken in the weak sense and ‖ • ‖ stands for the Euclidean norm on Rd×d), an206
integration by parts gives:207

(ζ, (GdBt) (ξ)) = −
d∑

k=1

∫
Ω
ζk (σdBt · ∇) ξk = −

d∑
k=1

∫
Ω
ζk∇ · (σdBtξk) ,(2.9)208

=
d∑

k=1

∫
Ω

(σdBt · ∇ζk) ξk = −((GdBt) (ζ), ξ).(2.10)209

The mass conservation equation also implies ∇ · w∗ = 0 which may or may not be the210
case in practice. If ∇ ·w = 0, operator C is skew-symmetric with respect to the second211
argument – i.e. g 7→ C(f , g) is skew-symmetric – whereas Fadv is skew-symmetric if the212
drift correction w∗ −w = −1

2(∇ · a)T is divergence-free.213
Moreover, the turbulent diffusion Fdif is related to the random skew-symmetric operator214

GdBt. Indeed, for every process ξ in H2(Ω) = {f ∈ L2 : ∂f
∂xi
, ∂∂f
∂xi∂xj

∈ L2, 1 6 i, j 6 d},215

(Fdif(ξ))k
4
=∇ ·

(
1
2a∇ξk

)
=∇ ·

(
1
2(σ ~ σ)∇ξk

)
= 1

2 (σT∇)T
(
~ (σT∇)T ξk

)
,(2.11)216

= 1
2G (~G(ξk)) =

(
1
2G (~G(ξ))

)
k

=
(
−1

2G
∗ (~G(ξ))

)
k
,(2.12)217

where G∗ denotes the adjoint of G. It also shows that Fdif(w)dt = 1
2d 〈G(w),Bt〉 , where218

〈g,h〉 denotes the quadratic covariation of any functions g and h. The diffusion term219
explicitly appears when working with the Itō stochastic integral and is only implicitly220
taken into account with Stratonovich integral [6, 68].221

As discussed in more detail in section 5, these algebraic properties make the LU Navier-222
Stokes model – and to a certain extent, its reduced order versions – conservative (up to223
molecular viscosity and boundary conditions effects).224

3. Galerkin projection. To sample good priors for future Bayesian estimation algo-225
rithms, we aim at deriving a computationally efficient fluid dynamics ROM able to quantify226
its own errors with respect to the true fluid dynamics (i.e. the Navier-Stokes equations).227
As previously mentioned, standard Galerkin techniques – even with the best determinis-228
tic closures – are hardly capable of such a goal as they were not originally designed for229
it. Hence, we propose to perform Galerkin projections on the LU Navier-Stokes model230
instead, and to study its appropriateness for this sort of tasks.231

3.1. A ROM with correlated additive and multiplicative noise. Let v be the real232
velocity field (i.e. the Navier-Stokes equations’ solution) and φ0, a background velocity233

field, typically the velocity temporal mean v 4= 1
T

∫ T
0 v. To reduce the state space dimen-234

sion, we project the fluid velocity anomaly, v −φ0, in a subspace spanned by a number of235

1i.e. ∇x · σ̆(x,z) = 0, ∀(x,z) ∈ Ω2
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orthonormal spatial modes (φi)16i6n.236

v(x, t, ω) =
n∑
i=0

bi(t, ω)φi(x)︸ ︷︷ ︸
4
=wR

+Residual︸ ︷︷ ︸
4
=v′

∀(x, t) ∈ Ω× [0, T ],(3.1)237

where b0 = 1 and φ0 = v by convention. The associated temporal coefficients, bi, are238
possibly random and depend on a realization ω of a sample space Ω̆ whereas the reduced239
basis functions φi, are assumed to be deterministic and stationary.240

As typically done while working with ROMs, we aim at specifying the evolution of the241
projected velocity field wR. A standard technique for that is the Galerkin projection of242
the physical PDE – here, the Navier-Stokes equations – onto the reduced basis’ functions243
φi, where the resolved component wR is approximated by the solution of these projected244
equations. Mode truncation can create many problems. For moderately turbulent to245
turbulent flows and small dimension n, a closure model to handle the truncated modes246
is unavoidable. With the LU setting – described in section 2 – an elegant stochastic247
alternative for this problem can be derived. Accordingly, we will (i) assume that the248
residual velocity v′ is time-uncorrelated and is denoted σdBt/dt and (ii) approximate the249
resolved component wR to a realization of the solution of the Galerkin projection of the250
stochastic Navier-Stokes representation (2.1)-(2.2). The former hypothesis is a debatable251
choice with respect to some ROM’s applications whose pertinence and limitations will be252
discussed further in section 4.5.253

To obtain this stochastic ROM, the SPDE (2.8) is first projected onto the divergence-254
free function space through the non-local Leray operator P = Id−∇∇T∆−1. This projec-255
tion, which requires the resolution of a Poisson equation is used to simplify the system by256
removing the pressure term. Since divergence-free solution is considered (see section 3.2),257
the resolved velocity component wR is naturally incompressible and we get258

Pdtw
R = dtw

R, PL(wR) = L(wR), PdP = 0.(3.2)259

Moreover, P (HdBt) = (HdBt) because of the necessary incompressibility of the Brow-260
nian term in the continuity equation (2.2)2. Then, the resulting SPDE is projected onto261
each of the reduced basis’ functions:262

dbi = (φi, dtw
R) = (dMR

i )(b)
4
=
(
φi,P(dM)(wR)

)
, 1 6 i 6 n,(3.3)263

where b = (bi)06i6n and264

(dMR
i )(b) =

n∑
p=0

(
φi,L(φp)

)︸ ︷︷ ︸
4
=lpi

bpdt+
n∑
p=0

(
φi,PF (φp)

)︸ ︷︷ ︸
4
=f̆pi

bpdt+
n∑

p,q=0

(
φi,PC(φp,φq)

)︸ ︷︷ ︸
4
=cpqi

bpbqdt265

+ (φi, (HdBt))︸ ︷︷ ︸
4
=(θi•dBt)

+

n∑
p=0

(
φi,P(GdBt)(φp)

)︸ ︷︷ ︸
4
=(αpi•dBt)

bp, 1 6 i 6 n.(3.4)266

The terms (αpi•dBt)16p,i6n and ((θi• + α0i•)dBt)16i6n correspond to a Gaussian skew-267
symmetric matrix and a Gaussian vector respectively, both with correlated coefficients.268
If the functions φi were spatial Fourier modes associated with small wave-numbers, the269
ROM (3.3) would represent a (stochastic) Large-Eddy-Simulation-like model expressed in270
Fourier space and b would be the set of Fourier coefficients of the solution. Hereafter, we271
will solely focus on the POD.272

2which is coherent with the fact that ∇ · v′= 0 from (3.1) because ∇ · v= 0.
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3.2. Proper Orthogonal Decomposition. In the POD framework, the reduced basis’273
functions are computed through a set of velocity snapshots (vobs(•, ti))06i6N−1. More274
precisely, they are a solution to the constrained optimization problem:275

Maximize
(φi)16i6n

n∑
i=1

(φi,vobs − v)2 subject to
(
φi,φj

)
= δij , 1 6 i, j 6 n.(3.5)276

Reduced basis functions φi are thus the n orthonormal functions which can best explain277
the snapshots’ temporal variability. Similarly to a principal component analysis (PCA),278
the solutions of this optimization problem are the eigenfunctions of the velocity anomalies’279
(vobs−v) spatial covariance. Numerically, this matrix is extremely large, and we generally280
opt to solve the dual problem instead: we seek the eigenvalue decomposition of the velocity281
anomalies’ temporal covariance:282

Cvij = ((vobs − v) (•, ti), (vobs − v) (•, tj)) , 0 6 i, j 6 N − 1.(3.6)283

This method is often referred to as the snapshot method. In the POD framework, the284
mode φ0 = v is set to the time averaged velocity, and the temporal coefficients energies285

b2i are denoted λi. Furthermore, if the snapshots describe a divergence-free velocity field286
vobs, the spatial bases φi are divergence-free as well.287

4. Estimations of subgrid terms. To close our stochastic ROM (3.3)-(3.4), we need288
to estimate the variance tensor a (involved in the ROM matrix f̆ = f̆dif + f̆adv defined in289
table 1 and in equation (3.4) under the braces) as well as the ROM noise variances and290
correlations. Firstly, if we recall that b0 = 1, we note that:291

(α•i•dBt)
T b+ (θi•dBt) =

n∑
k=1

(αki•dBt) bk + ((θi• +α0i•)dBt) , 1 6 i 6 n.(4.1)292

The multiplicative and additive noises of the ROM correspond to the first and second term293
of the right-hand side, respectively. To simplify notations, we write:294

α̃pi• = αpi• + δp0θi•, 1 6 i 6 n, 0 6 p 6 n.(4.2)295

To fully specify the ROM, the following correlations must be estimated:296 {
a(x) = E

{
(σ(x)dBt) (σ(x)dBt)

T
}
/dt ∀x ∈ Ω,

Σαpi,qj = E {(α̃pi•dBt) (α̃qj•dBt)} /dt, 1 6 i, j 6 n, 0 6 p, q 6 n.
(4.3)297

4.1. The curse of dimensionality. Computing correlations of Gaussian noises (α̃dBt)298
involves the two-point quadratic cross-variation tensor of the small-scale velocity:299

Q(x,y) = E
{

(σ(x)dBt) (σ(y)dBt)
T
}
/dt ∀x,y ∈ Ω.(4.4)300

The coefficients (i, j) of the covariance matrix of the Gaussian vector (θdBt) can be ex-301
pressed as follows:302

E {(θi•dBt) (θj•dBt)} = E
{(
φi, ν∇2σdBt

) (
ν∇2σdBt,φj

)}
,(4.5)303

=

∫∫
Ω2

φi(x)Tν2∇2
x∇2

yQ(x,y)dt φj(y) dxdy.(4.6)304

Since, by definition, ∀x ∈ Ω, a(x) = Q(x,x), the whole stochastic ROM is closed by305
specifying the tensor Q. In practice, this tensor is often heterogeneous – i.e. σBt is306
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non-stationary in space. Thus, its spatially-discrete version is expected to be so large307
that its estimation or even its storage becomes prohibitive. To overcome this difficulty,308
a first strategy is to assume a model structure for the covariance as per [41, 66, 64, 68].309
If the small-scale velocity is observed, other techniques can be considered. Indeed, one310
can build a POD representation of the small-scale velocity σḂ, learned from available311
snapshots or realizations as in [7, 24, 64, 68]. Depending on the desired accuracy for the312
noise representation, a great number of modes would have to be estimated and the number313
of coefficients involved in the ROM can quickly grow out of control. Here, we rely on314
a method specifically devised for this kind of ROM frameworks: the noise structure is315
again learned from observed residual velocity snapshots, but without passing through the316
covariance Q. It enables us to directly estimate the correlations of the random ROM’s317
coefficients, as it will be explained later on.318

4.2. Variance tensor estimation. Considering the variance tensor a stationary leads319
to a simple estimator through time averaging as in [67]:320

â = ∆t v′obs
(
v′obs

)T
,(4.7)321

where322

v′obs = vobs −wR
obs = vobs −

n∑
i=0

bobsi φi,(4.8)323

is the observed POD’s residual velocity. Since adt = d
〈
σB, (σB)T

〉
, the estimator (4.7)324

is consistent thanks to the quadratic covariation definition.325

4.3. Noise correlation estimation. Besides the variance tensor, there are n2(n + 1)2326
correlations to estimate according to (4.3). For any function ξ in H2(Ω) , let us introduce327
the linear functional:328

Kjq[ξ]
4
=
(
φj ,−P

[
(ξ · ∇)φq

]
+ δq0 ν∆ξ

)
, 1 6 j 6 n, 0 6 q 6 n.(4.9)329

Using this notation, the noise’s covariance can be estimated as follows:330

Σ̂αpi,qj = ∆t
λobs
p

Kjq

[
bobsp

(
∆bobs

i
∆t

)′′
v′obs

]
, 1 6 i, j 6 n, 0 6 p, q 6 n,(4.10)331

where bobs0 = λobs0 = 1 and for 1 6 i 6 n,332

bobsi = (φi,vobs) ,(4.11)333

λobsi = (bobsi )2,(4.12)334 (
∆bobs

i
∆t

)′′
=
(

∆bobs
i

∆t

)′
−
(

∆bobs
i

∆t

)′
,(4.13)335 (

∆bobs
i

∆t

)′
=
(

∆bobs
i

∆t

)
−
((
bobs

)T
(l+ f̆)•i +

(
bobs

)T
c••i b

obs
)
,(4.14)336 (

∆bobs
i

∆t

)
(tk) =

bobsi (tk + ∆t)− bobsi (tk)

∆t
, 0 6 k 6 N − 1.(4.15)337

To ensure the noise’s covariance matrix to have the desired symmetric non-negative struc-338
ture, we only keep the symmetric part of the estimated tensor (4.10) and set its possible339
negative eigenvalues to zero. The part inside the functional Kjq in the estimator (4.10)340
is inspired from [32], where products of martingale time increments are projected onto341
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orthogonal functions of L2 ([0, T ]). For ROMs with a small number of dimensions n, the342
estimator’s computational cost is remarkably low as the observed coefficients of the reduced343
solution bobs were already computed by the method of snapshots (see section 3.2). Hence,344

the computational cost for bobsp

(
∆bobs

i
∆t

)′′
is negligible and the part inside Kjq only involves345

a projection of the residual velocity along the time dimension. Finally, the n(n+ 1) differ-346
ential operators Kjq are computed only on n(n + 1) functions that do not depend on the347
time variable.348

We prove the consistency of this estimator in Appendix A by capitalising on the349
quadratic covariation’s definition and the orthogonality of the observed temporal coeffi-350
cients bobsi . In addition, this can also be extended to non-orthogonal coefficients by solving351
the linear system engendered by the matrix

(
bpbk

)
pk
.352

4.4. Noise dimension reduction. Using the Cholesky decomposition σα of the noise353
covariance tensor:354

Σαpi,qj =
∑
lk

σαpi,lkσ
α
qj,lk, 1 6 i, j 6 n, 0 6 p, q 6 n,(4.16)355

and O(n2) independent white noises, one can sample realizations of the ROM Gaussian356
noise terms α̃dBt. However, σα has O(n4) coefficients, while the ROM works with only357
n modes and involves – leaving the noise terms aside – O(n3) coefficients. Therefore, we358
propose to reduce the noise dimension through a tensorial PCA of Σα, eventually only359
keeping the n first eigenvectors. This leads to the following sampling strategy:360

α̃dBt ≈
n∑
k=1

α̃Rk dβ
(k)
t ,(4.17)361

where
(
α̃Rk
)
k
∈ R(n+1)×n are the matrix forms of the first n eigenvectors (weighted by the362

corresponding eigenvalues’ square roots) and (β(k))k are n independent one-dimensional363
Brownian motions. Since α̃dBt is a multiplicative noise and the temporal coefficients bi364
have various amplitudes

√
λi, the covariance matrix Σα is adequately re-normalized by the365

amplitudes
√
λi before applying the PCA.366

It is important to note that the methodology described here is different from a more367
usual methodology based on PCA decomposition of the residual velocity v′ keeping n368
modes and assuming that the corresponding temporal coefficients (bi)n+16i62n are time-369
decorrelated. The complexity of the final ROM is the same in both methodologies but our370
ROM maximizes the noise’s variance instead of the residual velocity’s variance. Thus, our371
proposed method is better suited in terms of ROM UQ.372

4.5. Time down-sampling rate. Under the LU Navier-Stokes model hypothesis, the373
unresolved term of the velocity field corresponds to a noise uncorrelated in time. This374
assumption is consistent with the fact that the higher-order coefficients of the reduced order375
solution often tend to have shorter correlation time in fluid dynamics systems. However,376
in practice, this assumption is not found to be true, and it is a recurrent issue for the data-377
driven modeling of systems combining fast and slowly evolving components [4, 5, 59, 60].378
Consequently, a time down-sampling scheme is proposed to force the noise terms to be as379
decorrelated as possible.380

By assuming that the spatially averaged covariance function has a Gaussian form with381
a standard deviation equals to the correlation time τ , a simple expression allows us to382
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compute it. For a given unresolved velocity correlation matrix we write:383

Cv
′
ij =

(
v′obs(•, ti),v′obs(•, tj)

)
= Cvij −

n∑
k=1

bobsk (ti)b
obs
k (tj), 0 6 i, j 6 N − 1,(4.18)384

and its associated stationary covariance function385

Covs(tp) = 1
N−p

N−1−p∑
q=0

Cv
′
q,q+p, 0 6 p 6 N − 1.(4.19)386

We propose the following correlation time estimation:387

τ̂ =

√√√√2
Cov2

s(
∆Covs

∆t

)2 ,(4.20)388

using a forward Euler temporal discretization of the stationary covariance:389

∆Covs
∆t

(tp)
4
=
Covs(tp + ∆t)− Covs(tp)

∆t
, 0 6 p 6 N − 1.(4.21)390

These estimations follow over-simplified assumptions known to have a restricted validity.391
Experimentally, they still systematically provide the best simulation results when compared392
to other more complex estimators (whose derivation is outside the scope of this paper).393
Moreover, with a white unresolved velocity with a dirac stationary covariance function,394
we obtain τ̂ = dt. This result is exactly what we would expect from a white unresolved395
velocity, to prevent an overly aggressive down-sampling.396

Before computing the estimations presented in sections 4.2, 4.3 and 4.4, we use this397
estimated correlation time τ̂ to down-sample both the entire dataset and the observed398
coefficients of the reduced order solution, leaving us with a time step ∆t ≈ τ̂ . On top of399
the considerable gain in accuracy, this time down-sampling reduces the amount of data to400
process, and hence, makes the off-line ROM building process faster.401

402
Having estimated and specified all of the stochastic ROM’s parameters in equations403

(3.3) and (3.4), it is now possible to forecast ensembles of realizations of the ROM through404
Monte-Carlo simulations. Before presenting numerical results, we discuss some important405
properties of LU models and of their reduced order versions.406

5. Kinetic energy budget. First, the conservative properties of the LU Navier-Stokes407
representation are recalled, followed by a proof that by combining Galerkin projections and408
the advecting velocity correction compressibility, an intrinsic energy dissipation appears.409

5.1. Full-order model budget. As derived in [65, 68], since the pressure does not410
influence the energy budget, by neglecting the molecular viscosity, the divergence of w and411
boundary conditions effects, and by applying Itō’s lemma, the expression for the kinetic412
energy budget writes:413

d
dt

(
1
2‖w‖

2
L2

)
=
(
−1

2G
∗ (~G(w)) ,w

)︸ ︷︷ ︸
Loss by diffusion

+ 1
2 ‖G(w)‖2HS︸ ︷︷ ︸
Energy flux

from the noise

= 0 ∀t ∈ [0, T ],(5.1)414

where ‖ξ‖2
L2 = (ξ, ξ) is the squared norm of L2 and415

‖η‖2HS =

∫∫
Ω2

d∑
i,j=1

η̆2
i,j(x, z)dxdz(5.2)416

This manuscript is for review purposes only.



12 V. RESSEGUIER, A. M. PICARD, E. MEMIN, B. CHAPRON

is the squared Hilbert-Schmidt norm of the integral operator η. This enables us to state417
that the energy is conserved for each realization of the stochastic process, and as a direct418
consequence of this, the energy intake of the noise and the dissipation by the turbulent419
diffusion must exactly compensate each other. The latter dissipates the kinetic energy of420
the mean ‖E{w}‖2

L2 , while the former only releases random energy ‖w−E{w}‖2
L2 into the421

system. Thus, the time-uncorrelated component of the velocity field drains energy from422
the mean field to the random component of w.423

We can also express this energy transfer with the expectation of equation (5.1):424

d
dt

∫
Ω
Var(w) = d

dtE‖w − E{w}‖2
L2 = − d

dt‖E{w}‖
2
L2 ∀t ∈ [0, T ].(5.3)425

Besides the physical relevance of energy conservation, variance inflation and its relation426
to the mean field are also of primary interest for data assimilation or ensemble forecasting427
issues.428

5.2. Reduced-order model budget. Following (5.1), the full-order LU Navier-Stokes429
model (2.1)-(2.2) conserves the kinetic energy, up to molecular viscosity and boundary430
condition effects. With reduced order models, the advecting velocity correction is expected431
however to create either energy compression or dilation, and the mode truncation, to432
introduce a small energy leak. The ROM (3.3) does not exactly solve the global LU Navier-433
Stokes model (2.1)-(2.2) but the Galerkin projection of the divergence-free component of434
equation (2.1) :435

dtw
R =

n∑
i=0

dbi φi =

n∑
i=1

(dMR
i )(b) φi = Πφ

[
P(dM)(wR)

]
∀t ∈ [0, T ],(5.4)436

where Πφ is the projection onto the reduced subspace. Specifically, for any function ζ ∈ L2,437

the projection Πφ is defined as Πφ[ζ]
4
=
∑n

p=1

(
φp, ζ

)
φp. As previously stated, we can438

evaluate the variation of kinetic energy with the Itō formula. The following result is proved439
in Appendix B for every t ∈ [0, T ]:440

d
dt

(
1
2‖w

R‖2
L2

)
= −1

2

∥∥G(wR)
∥∥2

HS︸ ︷︷ ︸
Loss by diffusion

+ 1
2

∥∥Πφ

[
(G)(wR)

]∥∥2

HS︸ ︷︷ ︸
Energy flux from the noise

− 1
2

(
∇ · (∇ · a)T , ‖wR‖2

)︸ ︷︷ ︸
Advecting velocity correction

compressibility

,(5.5)441

= −1
2

(
∇ · (∇ · a)T , ‖wR‖2

)
−1

2

∥∥∥Π⊥φ
[
(G)(wR)

]∥∥∥2

HS︸ ︷︷ ︸
<0

,(5.6)442

where ‖ • ‖ stands for the Euclidean norm on Rd and Π⊥φ = Id −Πφ is the projector onto443
the orthogonal complement of the space spanned by the reduced basis’ functions.444

The first term of (5.6) corresponds to the fluid compression/dilation created by the445
velocity correction w∗ −w = −1

2 (∇ · a)T . By construction, the ROM meets the incom-446
pressible condition – i.e. ∇ ·w = 0 – but unlike the LU Navier-Stokes model, it does not447
satisfy the finite-variation part of the mass conservation (2.2): ∇ ·w∗ = 0. The velocity448
correction divergence is associated to turbulence heterogeneity [6, 16, 67], corresponding449
to the spatial maxima (positive energy fluxes) and minima (negative energy fluxes) of the450
turbulence’s kinetic energy ‖v′‖2.451

The second term of (5.6) informs about the energy flux due to mode truncation. The452
ROM’s subgrid diffusion extracts energy from some temporal coefficients of the reduced453
order solution, while the multiplicative noise distributes it to others. These stabilizing and454

This manuscript is for review purposes only.



TRUNCATION UNCERTAINTIES IN REDUCED FLUID SYSTEMS 13

destabilizing effects recreate a large part of the energy fluxes between coefficients of the455
reduced solution, otherwise lost in deterministic ROMs. Thus, the uncorrelated velocity456
component drains energy from the coefficients of the reduced solution to give it back to457
the temporal coefficients of the truncated modes – i.e. modes orthogonal to the reduced458
space. This energy flux is exactly characterized by the second term of (5.6). But, our459
stochastic ROM cannot transfer energy from the truncated modes to the reduced solution’s460
coefficients, as the former cannot be specified due to the truncation.461

Such a dissipation could be perfectly prevented by considering −1
2 (Πφ [G])∗ (~Πφ [G])462

represented in the ROM by
(
−1

2

∑n
i=1 Σαpi,qi

)
p,q

(see equations (B.11) and (B.12) in Ap-463

pendix B), instead of the reduced version of the full turbulent diffusion operator464 (
−1

2

(
φp, G

∗ (~G(φq)
)))

p,q
. This correction would have been implicit using the Galerkin465

projection with Stratonovich calculus. As demonstrated in [6, 64, 68], using Stratonovich466
integral, the turbulent dissipation term does not explicitly appear, neither when deriving467
the ROM from scratch nor when switching notations after the Galerkin projection. Let us468
stress that the modified advection is still present in the Stratonovich form of the LU model.469
Changing the ROM notations from Itō to Stratonovich [42], the following correction term470
appears:471

1
2d 〈bTα•p•,B〉 =

n∑
q=0

(
1
2

n∑
i=1

Σαip,qi

)
bq dt =

n∑
q=0

(
−1

2

n∑
i=1

Σαpi,qi

)
bq dt.(5.7)472

In Stratonovich form, the ROM also still implicitly includes the diffusion term ensuing from473
the truncature. Notwithstanding, this additional dissipation in (5.6) is not a problem as474
it enables the setting of an energy dissipation mechanism representative of a direct energy475
cascade in the truncated modes’ coefficients. Hence, for very turbulent flows described by476
few modes, the energy leak appears to be necessary as our main concern is to restore energy477
fluxes between the coefficients of the reduced order system. Indeed, those energy fluxes478
can be very difficult to model correctly in reduced versions of non-linear systems. As an479
example, [69] observe that a basis encoding 50% of the energy can lead to a ROM missing480
more than 98% of energy transfers. These missing energy fluxes create instabilities in some481
coefficients of the reduced solution (missing negative energy fluxes) while overdamping482
others (missing positive energy fluxes). Restoring the energy fluxes between coefficients of483
the reduced system is a significant challenge LU models tackle through the combination of484
multiplicative noise and turbulent diffusion.485

To note, the noise dimensionality reduction of section 4.4 introduces an additional486
energy leak due to the fact that we are only keeping n eigenvectors over n(n + 1) in the487
noise covariance matrix’s PCA. This introduces another negative energy flux, as the noise488
variance is reduced while the dissipation is maintained.489

6. Ensemble forecasting. As a means to measure the performance of the proposed490
ROM in UQ scenarios, ensemble simulations were carried out using the data available491
from DNS simulations of wake flows at Reynolds 100 and 300, the former being quasi492
two dimensional while the latter, fully three dimensional. Wake flows are well-studied,493
non-linear, oscillatory flows which are physically produced by a uniform-velocity inflow494
facing a solid obstacle – here, a cylinder. Vortices are thus created behind the obstacle and495
periodically detach from it.496

The dynamics, and in particular their intrinsic dimensionality, strongly differ between497
Reynolds 100 and 300. Indeed, as illustrated by figure 1, at Reynolds 100, most of the498
energy is concentrated in just a few coefficients of the reduced order solution. In contrast,499
at Reynolds 300, the two first modes are meaningful for a rough approximation, but energy500
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spreads over many degrees of freedom. The top panels of figures 3 and 7 confirm a strong501
difference in complexity between the two flows.502

The ROM’s results wR will be compared directly to DNS simulations vref on a time503
interval outside intervals on which the ROM’s coefficients and basis functions have been504
estimated.505

6.1. Baseline ROMs. To better appreciate our stochastic ROM’s capabilities, results506
are compared to two different state-of-the-art algorithms.507

6.1.1. Deterministic baseline ROM. The first state-of-art ROM is a prototype of508
deterministic ROM widely used in fluid dynamics. After a POD-Galerkin on the classical509
Navier-Stokes equations, the molecular viscosity coefficient 1/Re is replaced by an eddy510
viscosity coefficient 1/Reev > 1/Re [15]:511

d
dtbi = Re

Reev b
T l•i + bTc••i b, 1 6 i 6 n.(6.1)512

The eddy viscosity coefficient is typically fitted by least squares using the dataset bobs.513
Without that correction, some coefficients of the reduced solution might become unstable514
because of the missing negative energy fluxes due to mode truncation mentioned in 5.2.515
The eddy viscosity term generally manages to stabilize those coefficients, but this does not516
always make this data-driven method accurate. In order to emulate that unstable behavior,517
we also simulate a simple DNS POD-Galerkin with no eddy viscosity model, i.e. the ROM518
(6.1) with Reev = Re.519

6.1.2. Stochastic baseline ROM. As a deterministic model, the ROM above can520
hardly be used for dynamics-error UQ nor ensemble-based data assimilation. As a matter521
of fact, a simple randomization of the initial conditions are known to usually lead to error522
underestimation (see section 1). So, to keep things simple, we define a second baseline523
ROM by adding a white noise term to the first baseline ROM. This constitutes a simple524
adhoc randomization technique for a given dynamical system through a Gaussian additive525
forcing. Despite its potential lack of physical relevance, such a strategy is very often526
adopted in data-assimilation applications [17].527

dbi =
(
Re
Reev b

T l•i + bTc••i b
)

dt+ σev
i•dW t, 1 6 i 6 n,(6.2)528

where σev ∈ Rn×n is the Cholesky decomposition of the ROM’s noise covariance Σev =529
σev (σev)T and t 7→ W t ∈ Rn is a vector of n independent Brownian motions. Since no530
prior physical information is available for these baseline models, the noise’s covariance is531
also learned from data as follows:532

Σ̂ev
ij = ∆t

(
∆bobs

i
∆t

)′′
ev

(
∆bobs

j

∆t

)′′
ev
, 1 6 i, j 6 n,(6.3)533

where for 1 6 i 6 n,534 (
∆bobs

i
∆t

)′′
ev

=
(

∆bobs
i

∆t

)′
ev
−
(

∆bobs
i

∆t

)′
ev
,(6.4)535 (

∆bobs
i

∆t

)′
ev

=
(

∆bobs
i

∆t

)
−
(

Re
Reev

(
bobs

)T
l•i +

(
bobs

)T
c••i b

obs
)
.(6.5)536

As for the LU ROM, the implicit assumption of white noise residual
(

∆bobs
i

∆t

)′′
ev

may not be537

valid. Thus, similarly to section 4.5, an optimal down-sampling time step is estimated with538 ∑n
k=1

(
∆bobs

k
∆t

)′′
ev

(ti)
(

∆bobs
k

∆t

)′′
ev

(tj) instead of Cv′ij , before the noise covariance estimation.539
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Figure 1: Energies of the reduced solution coefficients normalized by the total solution
energy temporal mean ‖v‖2

L2 for the 2D flow at Reynolds 100 (left panel) and the 3D flow
at Reynolds 300 (right panel).

6.2. 2D wake flow at Reynolds 100. Starting with the simpler of the two test cases,540
800 seconds of DNS simulation data (about 160 pseudo-periods) were generated for a 2D541
wake flow behind a circular cylinder at Re = 100. These data were then split into training542
and test sets, the former (140 pseudo-periods) being utilized for the construction of the543
ROMs, and the latter (20 pseudo-periods), as a reference to which the ROMs will be544
compared. Performance will thus be measured through four different metrics: comparison545
of temporal coefficients in the time domain, comparison of reconstructed velocity fields in546
the spatial domain, global prediction accuracy as measured by the evolution in time of547
RMSE, and finally ensemble minimum error.548

6.2.1. Temporal coefficients forecast. The 2-dimensional LU ROM of the Reynolds-549

100 flow is simulated 100 times. In figure 2, the coefficients of the reduced solution b
(k)
i550

(where k stands for the k-th simulation) are compared to the coefficients of the reference551
solution brefi = (φi,vref) (plotted in black). The ensemble mean (in green) follows almost552
perfectly the reference’s phase, and exhibits a slightly damped magnitude. The damping553
effect can be seen as a consequence of the exchange of energy between the mean and the554
variance (see equation (5.3)). This interplay is also evidenced by the growth of the confi-555
dence interval. The realization we have (randomly) singled-out shows a slowly divergent556
behavior.557

6.2.2. Velocity forecasts. Having analyzed the model’s forecast capabilities in terms558
of the ROM’s temporal coefficient, we now focus on the analysis of the velocity fields’559
forecast and compare them to the reference – i.e. the projection of full DNS solution onto560

the POD basis : Π̃φ[vref]
4
= Πφ[vref − v] + v =

∑n
i=0 b

ref
i φi (with bref0 = 1). Here, our561

goal will be to assess qualitatively the potential limitations of the ROM. Through equation562
(3.1), we will compute the velocity fields for the mean, the lowest error realization, and the563
prediction generated by the eddy viscosity ROM (6.1) of same dimension. At each time564
step, we define the lowest-error realization as follows:565

bmin = argmin
(b(k))

k

∥∥∥wR − Π̃φ[vref]
∥∥∥2

L2
= argmin

(b(k))
k

‖b(k) − bref‖2.(6.6)566

We plot in figure 3 the vorticity fields of the ROMs of dimension n = 8. A system of567
dimension 8 enables us to reproduce fairly well the topology of the velocity fields, and from568
figure 2 we conclude that our model’s best realization is capable of staying in phase with the569
reference, even 50 seconds into the validation set, while the ensemble realization’s mean and570
the deterministic baseline start losing accuracy. Indeed, the eddies of the latter predictions571
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Figure 2: LU POD-ROM forecast for n= 2 coefficients of the reduced solution for a 2D wake
flow at Reynolds 100: ensemble mean (green line), one random realization (yellow line),
confidence interval (gray shade). Blue lines correspond to deterministic ROMs: baseline
eddy-viscosity POD-ROM (6.1) (light-blue dashed line) and DNS POD-Galerkin (dark-blue
solid line). The dash-dot black plots represent the observed references.

are late compared to the reference. This misalignment of eddies is a major type of model572
error in CFD, and it is very problematic for data assimilation because misalignment can573
hardly be corrected by linear Eulerian algorithms [64]. The LU model’s cornerstone is574
precisely the random locations of transported quantities, and in particular, the locations575
of eddies. This random location idea is encoded in the random flow equation (1.2) and576
gave rise to the name "Location Uncertainty" (LU). Here, the LU POD-ROM generates an577
ensemble of simulations. Some of them have eddies in advance compared to the mean and578
some have late eddies. This variety of eddies’ locations allows some ensemble realizations579
– in particular the best one – to match the reference’s eddies’ locations.580

6.2.3. Global prediction accuracy. To compare more precisely the performance of581
the proposed ROM, we systematically plot the RMSE, as well as the ensemble’s bias,582
variance and minimum error. These quantities will also be compared to those obtained by583
the stochastic baseline ROM (6.2). This enables us to inspect the UQ capabilities of the584
proposed ROM.585

Although the random energy transfers are a necessary feature when the number of586
modes is not large enough, it increases the temporal coefficients’ variance while keeping587
their biases constant, which yields an increase of the Root Mean Square Error (RMSE) of588
the whole ensemble:589

RMSE 4= Ê
∥∥∥wR − Π̃φ[vref]

∥∥∥2

L2
=
∥∥∥Ê{wR} − Π̃φ[vref]

∥∥∥2

L2
+

∫
Ω
V̂ar(wR).(6.7)590

In all the following normalized error plots, the blue line corresponds to the solution591
computed using a deterministic POD-Galerkin ROMs (with and without eddy viscosity)592
and the red one, to the RMSE. The green line represents the ensemble bias, whereas the593
magenta line is the error incurred by the ensemble’s solution closest to the reference (6.6),594
and the gray shade corresponds to 1.96 × the standard-deviation. These quantities are595
computed for the whole set of generated realizations. The initial condition is common to596
all and the values are normalized by the square root of the solution’s energy averaged over597

the training set :
(
‖v‖2

L2 +
∑n

i=1 λi

)1/2
.598
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Reference simulation vref
(2D DNS at Reynolds 100:
state space dimension
of about 104)

Projection of the reference
onto the POD basis Π̃φ[vref]
(State space
of dimension 8)

LU POD-ROM model
best prediction
(ROM state space
of dimension 8)

LU POD-ROM model
ensemble mean
(ROM state space
of dimension 8)

Prediction of the deterministic
baseline POD-ROM (6.1)
(fitted eddy viscosity)
(ROM state space
of dimension 8)

Figure 3: Vorticity fields – 10 vortex shedding cycles after the learning period – from
(from top to bottom) the reference simulation vref (2D DNS at Reynolds 100: state space
dimension of about 104), its projection onto the POD basis Π̃φ[vref], the LU POD-ROM
model’s best prediction, the LU POD-ROM model’s ensemble mean, and the prediction of
the deterministic baseline POD-ROM (6.1) (fitted eddy viscosity) (ROM state spaces are
of dimension 8). The vorticity is the velocity curl and is the usual and a convenient way
of visualizing 2D flows and their vortices.

In figure 4, the aforementioned error curves generated by the LU POD-ROM are com-599
pared to the stochastic POD with eddy viscosity model (6.2) for n ∈ {2, 4, 8}. The LU600
POD-ROM’s best realization incurs a rather low error, and for the first two cases, a low601
bias too. The same cannot be said for the stochastic eddy viscosity model, which sees its602
variance grow out of control at the very beginning of the simulation, making the model’s603
predictions diverge almost instantly. This divergence can be explained by the very large604

additive noise variance, fitted on the large ROM residuals
(

∆bobs
i

∆t

)′′
ev

through equation605
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Figure 4: Normalized error for n = 2, 4 and 8 coefficients of the reduced solution of a 2D
wake flow at Reynolds 100 – with the projection of the DNS onto the POD basis Π̃φ[vref] as
reference : RMSE (brown line), bias (green line), ensemble minimum error (magenta line)
and 1.96 × the standard-deviation (shaded gray) for the LU POD-ROM (left panel) and
stochastic baseline POD-ROM (right panel) . Blue lines correspond to deterministic ROMs
: baseline eddy-viscosity POD-ROM (6.1) (light-blue dashed line) and DNS POD-Galerkin
(dark-blue solid line). The black solid line at the top is the error considering only the time
mean velocity, i.e. bi = 0,∀i > 0.

(6.3). This large additive noise hence quickly fills the reduced subspace overwhelming the606
physical terms of the reduced dynamics. As for the n = 8 simulation, we observe that607
the LU POD-ROM differs from the other two simulations by having unstable realizations,608
thence the sudden peaks in the bias and mean curves. When a realisation diverges, we609
re-sample it uniformly from the other members of the ensemble.610

Focusing on our stochastic POD-ROM, for any n ∈ {2, 4, 8}, even though the ensemble611
bias grows as time passes by, the best realization error does not. This is a crucial prop-612
erty for a UQ model to have, as this means that an appropriate filtering technique could613
eventually retrieve it at each observation, leading to a stable, low error data assimilation614
system.615

6.3. 3D wake flow at Reynolds 300. For a more challenging test, a 3D wake flow616
behind a circular cylinder at Re = 300 was simulated, constructing the ROM just like617
in the case of the wake flow at Reynolds 100. The 440 seconds of DNS simulation data618
(about 88 vortex shedding pseudo-periods) were split into training (80 vortex shedding619
pseudo-periods) and test sets (8 pseudo-periods). Similarly, the ROM was subjected to620
the same benchmarks as before, with the equivalent eddy-viscosity UQ-enabled model for621
comparison. As it is a more complex flow, we expect the different temporal coefficients to622
be harmonically richer and to capture as much of the small-scale interactions as possible,623
but yet not to be able to fully reproduce the intricacies of the DNS-simulated flow.624
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Figure 5: LU POD-ROM forecast for n = 4 coefficients of the reduced solution of a 3D wake
flow at Reynolds 300: ensemble mean (green line), one random realization (yellow line),
confidence interval (gray shade). Blue lines correspond to deterministic ROMs: baseline
eddy-viscosity POD-ROM (6.1) (light-blue dashed line) and DNS POD-Galerkin (dark-blue
solid line). The dash-dot black plots represent the observed references.

6.3.1. Temporal coefficients forecast. This new scenario being fully 3D and more625
complex, the advantages of the proposed model are clear. This can be seen from the626
temporal coefficient forecasts, where the proposed LU stochastic ROM manages to stabilize627
the system while the deterministic PODs starts diverging after 5 seconds (i.e. before628
one complete vortex shedding), as evidenced by the first temporal coefficients in figure629
5. Intermittency probably fools the learning procedure of the eddy viscosity method and630
makes it less robust and not adapted to the test set. In contrast, the LU learning procedure631
– section 4 – shows a greater degree of robustness and leads to more accurate results. It632
is also interesting to note how the random energy contribution increases with the order633
of the temporal coefficient in the form of ensemble variance. This is attributed to energy634
transfers between temporal coefficients, facilitated by the interplay of multiplicative noise635
and turbulent diffusion. This effect is in fact amplified in the 8-dimension ROM in figure 6,636
where the temporal coefficients’ means get more damped as the amount of random energy637
in the system increases. This energy dissipation mechanism helps the system to remain638
bounded, unlike its deterministic counterparts.639

Interestingly enough, in the n = 8 dimension ROM, even when the ensemble variance640
increases with the temporal coefficient order, coefficients 5, 6, 7 and 8 of the random641
realization (yellow line) also attempt to follow the right reference amplitude and variability,642
as it can be observed in figure 6.643

6.3.2. Velocity forecasts. As in the previous case, we now analyze qualitatively the644
performance of our proposed method in terms of velocity field predictions.645

As can be observed from figure 7, the best prediction remains stable and manages646
to stay close to the theoretically optimal solution in 8-dimensions on a period of four647
shedding cycles after the learning period. Conversely, the baseline model starts to diverge,648
as evidenced by the red zones inside the vortices. This result is quite impressive as, even if649
the mean velocity field is not as close to the reference as one would like, it still reveals the650
potential of a method combining our model with a data assimilation technique to retrieve651
the best realization and provide corrections on the fly.652
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Figure 6: LU POD-ROM forecast for n = 8 coefficients of the reduced solution of a 3D wake
flow at Reynolds 300: ensemble mean (green line), one random realization (yellow line),
confidence interval (gray shade). Blue lines correspond to deterministic ROMs: baseline
eddy-viscosity POD-ROM (6.1) (light-blue dashed line) and DNS POD-Galerkin (dark-blue
solid line). The dash-dot black plots represent the observed references.

6.3.3. Global prediction accuracy. Just like in the two-dimensional flow, the error653
curves are plotted and compared to the results obtained with the stochastic eddy viscosity654
model (6.2). The curves in figure 8 evidence the predictive power of our proposed model: it655
is capable of great stability and accuracy even after 40 seconds while the deterministic and656
eddy viscosity models prove to be quite unstable by rapidly diverging. These properties are657
showcased by the bias and mean curves that converge to the zero-temporal-coefficient error658
curve instead of growing in an unbounded manner, while still having at least one realization659
with relatively low error that could eventually be identified through data assimilation660
techniques.661

7. Conclusion. This paper proposed a stochastic ROM derived from a stochastic fluid662
dynamics modelling standpoint, called dynamics under location uncertainty (LU), which663
formulates unresolved small-scale parameterization through SPDEs. The stochastic ROM664
is obtained through a classical POD-Galerkin projection of these SPDEs, and the basis665
functions are defined from a high-resolution deterministic simulation of the target flow.666
The resulting model bears similarities with the Navier-Stokes equations, but also encom-667
passes an advection velocity correction, a turbulent diffusion and a skew-symmetric multi-668
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Reference simulation vref
(3D DNS at Reynolds 300)

Projection
onto the
POD basis
Π̃φ[vref]

LU
POD-
ROM
model
ensemble
mean

LU
POD-
ROM
model
best pre-
diction

Deter-
ministic
baseline
POD-
ROM
prediction

Figure 7: Q-criterion iso-surfaces – 4 vortex shedding cycles after the learning period –
from (from left to right and from top to bottom) the reference simulation vref (3D DNS
at Reynolds 300: state space dimension of about 107), its projection onto the POD basis
Π̃φ[vref] , the LU POD-ROM model’s ensemble mean, the LU POD-ROM model’s best
prediction, and the prediction of the deterministic baseline POD-ROM (6.1) (fitted eddy
viscosity) (POD-ROM state spaces are of dimension 8). The Q-criterion [39] is a quadratic
function of the velocity gradient and is the usual and a convenient way for visualizing 3D
flows and their vortices.

plicative noise terms. From the statistics of the POD’s residuals – i.e. the data component669
orthogonal to the POD’s modes – these new terms can be fully characterized.670

The implementation necessitates additional off-line computations on top of the classical671
POD-Galerkin procedure: estimations of a variance tensor and of the reduced multiplicative672
noise’s covariance matrix. The former, proportional to the point-wise d × d covariance673
matrix of POD’s residual, is readily computed. The latter can constitute a formidable674
computational challenge. Moreover, with a fully data-driven method, the risk of over-675
fitting is very high. To circumvent these issues, an intermediate solution is proposed676
with an easy-to-compute estimator, along with consistency proofs under the LU setting677
assumptions. Since the latter may not always be met – specifically, the time decorrelation678
assumption of the POD residual – measures are taken to enforce them on the model, as679
part of its constitutive steps. Namely, to force the decorrelation – and in doing so, improve680
the accuracy of the estimators and the ROM as a whole – a down-sampling of the dataset681
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Figure 8: Normalized error for n = 2, 4 and 8 coefficients of the reduced solution of a 3D
wake flow at Reynolds 300 – with the projection of the DNS onto the POD basis Π̃φ[vref]
as reference : RMSE (red line), bias (green line), ensemble minimum error (magenta line)
and 1.96 × the standard-deviation (shaded gray) for the LU POD-ROM (left panel) and
stochastic baseline POD-ROM (right panel) . Blue lines correspond to deterministic ROMs:
baseline eddy-viscosity POD-ROM (6.1) (light-blue dashed line) and DNS POD-Galerkin
(dark-blue solid line). The black solid line at the top is the error considering only the time
mean velocity, i.e. bi = 0,∀i > 0.

is applied at a rate equal to the residual’s correlation time. Finally, in order to restrict the682
number of coefficients needed to characterize the ROM to the usual O(n3), a technique to683
reduce the dimensionality of the noise covariance matrix is also proposed.684

The conservative properties of the LU closure are discussed, and we demonstrate that,685
when performing Galerkin projections of the Itō form of LU SPDEs, we end up forfeiting686
these properties. In the reduced order version, two energy fluxes appear: the first one is687
attributed to the possible advecting velocity correction divergence, whilst the second one688
is negative and is directly associated with mode truncation. We argue that this energy689
loss is understandable, and even desirable, with an interplay between noise and turbulent690
diffusion to maintain non-linear energy fluxes between coefficients of the reduced solution691
despite mode truncation.692

Numerical comparisons are performed between our stochastic ROM and state-of-the-art693
deterministic and stochastic ROMs. As test cases, we chose a two-dimensional wake flow694
at Reynolds 100 with few degrees of freedom, and a more complex three-dimensional wake695
flow at Reynolds 300 with many more degrees of freedom. Deterministic Navier-Stokes sim-696
ulations stood for references and all of the ROMs were initialized with their values, and the697
forecasts, compared to them. For the stochastic ROMs, ensembles of 100 realizations were698
simulated. The state-of-the-art stochastic ROM’s solutions quickly diverged in time, whilst699
the temporal coefficients of our ROM proved to be neither unstable nor over-damped. The700
LU POD-ROM solution’s biases were even found to be smaller than those of each of the701
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other stochastic ROMs’ that we have considered. Moreover, at any given moment, the LU702
POD-ROM ensembles managed to remain very close to the reference, suggesting that they703
could be efficient priors for Bayesian inverse problems.704

705
Following this work, we have applied the LU POD-ROM with unknown initial condi-706

tions in conjunction with particle filter algorithms to estimate velocity flows in real-time707
from few local measurements [63].708

Finally, when working at very large Reynolds numbers, DNS simulations are no longer709
an option, but LES (Large Eddy Simulation), DDES (Delayed Detached Eddy Simulation)710
and RANS (Reynolds Averaged Navier Stokes) can still provide useful data to build ROMs,711
at the cost of some approximation error. To tackle this, the closure mechanism’s estima-712
tion procedure may be adjusted to address the small-scale velocity statistics neglected by713
LES-like approaches. Another approach that we are currently exploring is to consider the714
Galerkin projection on a LU version of LES and DDES. Non-polynomial terms of LES and715
DDES complicate the dimensional reduction, but discrete empirical interpolation methods716
(DEIM) [18] may be able to handle it. As illustrated in this paper, our stochastic closure717
naturally prevents truncation-induced instabilities, and we expect a similar behavior at718
higher Reynolds. If the proposed in-house stabilization is not sufficient, existing stabilisa-719
tion and/or data-driven methods [33, 37, 77] could be added. Furthermore, CFD outputs720
may also be at a resolution different from the resolution of the measurements. Hence, de-721
pending on the relative precision of CFD and measurements, there could be an additional722
or a missing very-small-scale residual turbulence in the assimilated measures. Accordingly,723
we will need a simple statistical model for this very-small-scale turbulence and include724
its effects in the observation model through either an additional "measurement noise" or725
additional smoothing.726

Besides, in realistic applications, Reynolds number, initial and boundary conditions, as727
well as a plethora of other parameters, are often only approximately known. So, combina-728
tions with other state-of-the-art dimensionality reduction methods are most likely neces-729
sary. Typically, we could use wRB [20, 21, 77] for uncertain mean inflow (Reynolds number730
and angle of attack) and a reduced pressure equation [75, 76] for time dependent boundary731
conditions. Our new implementation of LU terms in the ITHACA-FV library [75, 76] will732
surely aid on these practical aspects.733

Nevertheless, note that a wRB method to simulate random velocity effect [77] does not734
directly apply to the purpose of the current paper. Indeed, we try to quantify the uncer-735
tainty induced by the dimensional reduction of the deterministic Navier-Stokes equations736
and not to reduce the dimension of an uncertainty quantification problem. The random737
residual velocity can hardly be considered a wRB parameter because we do not choose738
its value. There is only one "realization" and this is the one given by the deterministic739
Navier-Stokes equations. We could specify some statistics for the random residual veloc-740
ity and simulate the stochastic Navier-Stokes equations (2.1)-(2.2) but this would make741
our method much more complex, much more CPU demanding, and could possibly lead to742
over-fitting. Moreover, that random velocity is a residual, and thus, its statistics depend743
on the reduced dimension n. That would also greatly complicate the wRB algorithm.744

Finally, relying purely on data can offer the advantage of directly tackling very high745
Reynolds number configurations. It would require us to filter noisy measurements, and746
most likely, to rely on simplified (often 2D) data-driven models [1, 13, 29, 78]. From747
this latter point of view, modeling under location location offers a great flexibility which748
might be of great interest. As a matter of fact, the LU formalism enables us to derive749
random dynamics close to the data but still based on stochastic transport principles [3].750
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The noise parameters can be updated online from incoming data and simulations. A full751
characterization of the noise dynamics through statistical learning procedures would then752
probably enable us to devise advanced data-driven models that are able to handle even753
more complex situations.754

Appendix A. Estimation formulas. In this appendix, we consider a full probability755
space (A,F , P ), and a filtration of σ-algebra {Ft}t≥0. For the Hilbert space H2(Ω), we756
understand H2 = H2(0, T ; Ω,F) as the space of strongly measurable, {Ft}t≥0 adapted757
processes u : Rd× [0, T ]→ Rd such that (x 7→ u(x, t)) belong to H2(Ω) for every t ∈ [0, T ]758
and759

‖u‖2H2 = E
∫ T

0
‖u(•, t)‖2H2(Ω) dt <∞.(A.1)760

Similarly, we can define L2(0, T ; Ω,F) from L2 and its norm. We recall below a classical761
proposition related to quadratic variation process:762

Proposition: Stochastic integration and quadratic variations. If M is a continuous mar-763
tingale and X ∈ L2(0, T ; Ω,F), then there exists a unique bounded continuous martingale764 ∫ t

0 XdM such that for every continuous martingale N (with zero initial condition)765

(A.2)
〈∫ t

0
XdM ,N

〉
=

∫ t

0
Xd〈M ,N〉.766

As stated in the introduction, we assume that the operator σ is Hilbert-Schmidt and767

that its kernel σ̆ : Ω
2 → Rd×d is C2 over the compact bounded set Ω

2. Therefore,768

‖σB‖2H2 6 max
i,j

sup
Ω

2

(
‖σ̆‖2 + ‖∂xiσ̆‖

2 +
∥∥∂xi∂xj σ̆∥∥2

) ∣∣Ω2
∣∣T <∞,(A.3)769

where ‖ • ‖ stands for the Euclidean norm on Rd×d and |Ω2| the Lebesgue measure of Ω2.770
As such, ((x, t) 7→ σ(x)Bt) belong to H2. In particular, (x 7→ σ(x)Bt) belong to H2(Ω)771
for every t ∈ [0, T ] and ∂xiσ, ∂xi∂xjσ are also Hilbert-Schmidt for every 1 6 i, j 6 d.772
Additionally, we assume that the POD modes φi belong to H2(Ω) and have bounded773
gradients.774

After defining boundary conditions, P and K are well defined on H1(Ω) and H2(Ω)775
respectively. Then, for every ζ ∈ H1(Ω), ‖Pζ‖L2 6 ‖ζ‖L2 since P is a projection and776
then, for every ξ ∈ H2(Ω), by Cauchy-Schwarz and triangular inequalities:777

|Kjq(ξ)| 6 ‖φj‖L2(‖∇φT
q ‖∞ + ν)‖ξ‖H2(Ω),(A.4)778

where ‖∇φT
i ‖∞ = sup

Ω
‖∇φT

i ‖ < ∞ . The bound above gives the continuity of K on779

H2(Ω). We also assume that the observed coefficients of the reduced solution bobsi =780
(φi,vobs) are continuous semi-martingales and solutions of the ROM (3.3)-(3.4). From781
there, the orthogonality of the coefficients of the reduced solution yields, for 1 6 i, j 6 n782
and 0 6 p, q 6 n:783 ∫ T

0
bpd
〈
bi,

∫ t

0
(α̃qj•dBs)

〉
=

∫ T

0

n∑
k=0

bpd〈
∫ t

0
(α̃ki•dBs) bk,

∫ t

0
α̃qj•dBs〉,(A.5)784

=

n∑
k=0

(∫ T

0
bpbk

)
Σαki,qj ,(A.6)785

= Tλp Σαpi,qj .(A.7)786
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Now, let us note that for 1 6 j 6 n and 0 6 q 6 n:787

α̃qj•dBs =
(
φj ,−P

[
(σdBs · ∇)φq

]
+ δq0 ν∆σdBs

)
= d (Kjq [σB]) .(A.8)788

Then, with the definition of the quadratic covariation and the increment notation ∆ξ(tk) =789
ξ(tk+1)−ξ(tk), we obtain the estimator’s expression and its consistency for every 1 6 i, j 6790
n and 0 6 p, q 6 n:791

Σαpi,qj =
1

λpT

∫ T

0
bpd〈bi,

∫ t

0
(α̃qj•dBs)〉,(A.9)792

=
1

λpT

∫ T

0
bpd〈bi,Kjq [σB]〉,(A.10)793

=
1

λpT
P- lim
∆t→0

T∑
tk=0

bp(tk)(∆bi)(tk)Kjq [σ∆Btk ] ,(A.11)794

= Kjp

 1

λpT
P- lim
∆t→0

T∑
tk=0

bp(tk)(∆bi)(tk) σ∆Btk

 ,(A.12)795

where the continuity of the operator Kjp on H2(Ω) enabled us to switch the limit in prob-796
ability and the operator Kjp. The martingale flow increments σ∆Btk are approximated797
by v′(•, tk)∆t. In practice, for each 1 6 i 6 n we can replace ∆bi by798

∆b′′i = ∆b′i −∆b′i,(A.13)799

where800

∆b′i = ∆bi −
(
bT (l+ f̆)•i + bTc••i b

)
∆t.(A.14)801

Mathematically, this is still correct for very large values of T . Indeed,802

∆b′i =
b′i(T+∆T )−b′i(0)

T ∆t −→
T→∞

0 and b′i− bi has finite variations. Thus, b′′i − bi approaches a803

finite variation process (for large T ). Numerically, this formulation improves the accuracy804
of the model as it allows us to remove the smooth-in-time part of ∆bi, thus minimizing805
estimation error as well.806

Appendix B. Energy dissipation.807
On top of assumptions of Appendix A, we neglect the viscosity (L = 0) and assume808

zero Dirichlet boundary conditions for the reduced basis’ functions and for x 7→ σ(x)Bt809
for every t ∈ [0, T ]. Note that these fields are divergence-free (since they are learned810
from a set of incompressible velocity fields). As such, we have: ∀i 6 n, ‖G(φi)‖

2
HS 6811

‖∇φT
i ‖2∞ ‖σ‖

2
HS <∞, i.e. G(φi) is Hilbert-Schmidt. This makes G(wR) and Πφ

[
G(wR)

]
812

also Hilbert-Schmidt.813
Using the projected Navier-Stokes model (5.4), for every t ∈ [0, T ] we can formally814

remove the orthogonal projection by moving it into the divergence-free functions space P815
through integration by parts:816

dtw
R =

n∑
i=1

(
φi,P(dM)(wR)

)
φi =

n∑
i=1

(
Pφi, (dM)(wR)

)
φi,(B.1)817

=
n∑
i=1

(
φi, (dM)(wR)

)
φi = Πφ

[(
C(wR,wR) + F (wR)

)
dt+ (GdBt)(w

R)
]
.(B.2)818
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Then, upon applying the Itō formula to the local kinetic energy we obtain819

d
(

1
2‖w

R‖2
L2

)
=

∫
Ω

(
dt(w

R)TwR + 1
2dt〈(wR)T ,wR〉

)
∀t ∈ [0, T ].(B.3)820

To remove the (orthogonal) projection operator Πφ from the first term, we exploit its821
symmetry, and afterwards, the fact that wR is already in the reduced subspace:822 ∫

Ω
dt(w

R)TwR =
(
Πφ

[
(dM)(wR)

]
,wR

)
,(B.4)823

=
(
(dM)(wR),Πφ

[
wR
])
,(B.5)824

=
(
(dM)(wR),wR

)
,(B.6)825

=
(
((Fdif + Fadv)(wR) +C(wR,wR))dt+ (GdBt)(w

R),wR
)
,(B.7)826

=
(
−1

2G
∗ (~G(wR)

)
,wR

)
dt︸ ︷︷ ︸

from (Fdif(wR),wR) using (2.12)

+
(

1
2((∇ · a)∇)wR,wR

)︸ ︷︷ ︸
from (Fadv(wR),wR)

827

+
(
C(wR,wR)dt+ (GdBt)(w

R),wR
)︸ ︷︷ ︸

=0 by skew-symmetry of ξ 7→C(wR,ξ) and GdBt

,(B.8)828

= 1
2

∥∥G(wR)
∥∥2

HS −
1
2

(
∇ · (∇ · a)T , ‖wR‖2

)
,(B.9)829

where the second term comes from integration by parts. Besides, the Itō term of the energy830
budget is straightforward to compute from equation (B.2):831 ∫

Ω

1
2dt〈(wR)T ,wR〉 = 1

2

∥∥Πφ

[
(G)(wR)

]∥∥2

HS dt,(B.10)832

=
n∑

p,q=0

(
1
2

∫
Ω

Πφ

[
G(φp)

]
~ Πφ

[
G(φq)

])
bpbqdt.(B.11)833

From the definition of the projection operator Πφ and using the extended notation (η~θ)
4
=834 ∫

Ω η̆(z) θ̆
T
(z)dz, we can express the above quadratic operator with the noise statistics as835

follows:836 ∫
Ω

Πφ

[
G(φp)

]
~ Πφ

[
G(φq)

]
=

n∑
i=1

(
φi,G(φp)

)
~
(
φi,G(φq)

)
=

n∑
i=1

Σαpi,qi.(B.12)837

Finally, by orthogonality, the kinetic energy budget (B.3) simplifies to:838

d
dt

(
1
2‖w

R‖2
L2

)
= 1

2

∥∥G(wR)
∥∥2

HS −
1
2

(
∇ · (∇ · a)T , ‖wR‖2

)
− 1

2

∥∥Πφ

[
G(wR)

]∥∥2

HS ,(B.13)839

= −1
2

∥∥∥Π⊥φ
[
G(wR)

]∥∥∥2

HS
− 1

2

(
∇ · (∇ · a)T , ‖wR‖2

)
,(B.14)840

where Π⊥φ = Id − Πφ is the projector into the orthogonal complement of the reduced841
subspace.842
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