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ABSTRACT

Numerical experiments demonstrate that deep neural network classifiers progres-
sively separate class distributions around their mean, achieving linear separability
on the training set, and increasing the Fisher discriminant ratio. We explain this
mechanism with two types of operators. We prove that a rectifier without biases
applied to sign-invariant tight frames can separate class means and increase Fisher
ratios. On the opposite, a soft-thresholding on tight frames can reduce within-
class variabilities while preserving class means. Variance reduction bounds are
proved for Gaussian mixture models. For image classification, we show that sep-
aration of class means can be achieved with rectified wavelet tight frames that
are not learned. It defines a scattering transform. Learning 1 × 1 convolutional
tight frames along scattering channels and applying a soft-thresholding reduces
within-class variabilities. The resulting scattering network reaches the classifica-
tion accuracy of ResNet-18 on CIFAR-10 and ImageNet, with fewer layers and no
learned biases.

1 INTRODUCTION

Several numerical works (Oyallon, 2017; Papyan, 2020; Papyan et al., 2020) have shown that deep
neural networks classifiers (LeCun et al., 2015) progressively concentrate each class around sep-
arated means, until the last layer, where within-classes variability may nearly “collapse” (Papyan
et al., 2020). The linear separability of a class mixture is characterized by the Fisher discriminant
ratio (Fisher, 1936; Rao, 1948). The Fisher discriminant ratio measures the separation of class
means relatively to the variability within each class, as measured by their covariances. The neu-
ral collapse appears through a considerable increase of the Fisher discriminant ratio during training
(Papyan et al., 2020). No mathematical mechanism has yet been provided to explain this separation
and concentration of probability measures.

Linear separability and Fisher ratios can be increased by separating class means without increasing
the variability of each class, or by concentrating each class around its mean while preserving the
mean separation. This paper shows that these separation or concentration properties can be achieved
with one-layer network operators using different pointwise non-linearities. We cascade these opera-
tors to define structured deep neural networks with high classification accuracies, and which can be
analyzed mathematically.

Section 2 studies two-layer networks computed with a linear classifier applied to ρF , where F is
linear and ρ is a pointwise non-linearity. First, we show that ρF can separate class means with a
ReLU ρr(u) = max(u, 0) and a sign-invariant F . We prove that ρrF then increases the Fisher ratio.
As in Parseval networks (Cisse et al., 2017), F is normalized by imposing that it is a tight frame
which satisfies FTF = Id. Second, to concentrate the variability of each class around its mean, we
use a shrinking non-linearity implemented by a soft-thresholding ρt. For Gaussian mixture mod-
els, we prove that ρtF concentrates within-class variabilities while nearly preserving class means,
under appropriate sparsity hypotheses. A linear classifier applied to these ρF defines two-layer
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neural networks with no learned bias parameters in the hidden layer, whose properties are studied
mathematically and numerically.

Cascading several convolutional tight frames with ReLUs or soft-thresholdings defines a deep neu-
ral network which progressively separates class means and concentrates their variability. One may
wonder if we can avoid learning these frames by using prior information on the geometry of im-
ages. Section 3 shows that the class mean separation can be computed with wavelet tight frames,
which are not learned. They separate scales, directions and phases, which are known groups of
transformations. A cascade of wavelet filters and rectifiers defines a scattering transform (Mallat,
2012), which has previously been applied to image classification (Bruna & Mallat, 2013; Oyal-
lon & Mallat, 2015). However, such networks do not reach state-of-the-art classification results.
We show that important improvements are obtained by learning 1 × 1 convolutional projectors
and tight frames, which concentrate within-class variabilities with soft-thresholdings. It defines
a bias-free deep scattering network whose classification accuracy reaches ResNet-18 (He et al.,
2016) on CIFAR-10 and ImageNet. Code to reproduce all experiments of the paper is available at
https://github.com/j-zarka/separation_concentration_deepnets.

The main contributions of this paper are:

• A double mathematical mechanism to separate and concentrate distinct probability mea-
sures, with a rectifier and a soft-thresholding applied to tight frames. The increase of
Fisher ratio is proved for tight-frame separation with a rectifier. Bounds on within-class
covariance reduction are proved for a soft-thresholding on Gaussian mixture models.

• The introduction of a bias-free scattering network which reaches ResNet-18 accuracy on
CIFAR-10 and ImageNet. Learning is reduced to 1 × 1 convolutional tight frames which
concentrate variabilities along scattering channels.

2 CLASSIFICATION BY SEPARATION AND CONCENTRATION

The last hidden layer of a neural network defines a representation Φ(x), to which is applied a linear
classifier. This section studies the separation of class means and class variability concentration for
Φ = ρF in a two-layer network.

2.1 TIGHT FRAME RECTIFICATION AND THRESHOLDING

We begin by briefly reviewing the properties of linear classifiers and Fisher discriminant ratios. We
then analyze the separation and concentration of Φ = ρF , when ρ is a rectifier or a soft-thresholding
and F is a tight frame.

Linear classification and Fisher ratio We consider a random data vector x ∈ Rd whose class
labels are y(x) ∈ {1, ..., C}. Let xc be a random vector representing the class c, whose probabil-
ity distribution is the distribution of x conditioned by y(x) = c. We suppose that all classes are
equiprobable for simplicity. Avec denotes C−1

∑C
c=1.

We compute a representation of x with an operator Φ which is standardized, so that E(Φ(x)) = 0
and each coefficient of Φ(x) has a unit variance. The class means µc = E(Φ(xc)) thus satisfy∑
c µc = 0. A linear classifier (W, b) on Φ(x) returns the index of the maximum coordinate of

WΦ(x) + b ∈ RC . An optimal linear classifier (W, b) minimizes the probability of a classification
error. Optimal linear classifiers are estimated by minimizing a regularized loss function on the
training data. Neural networks often use logistic linear classifiers, which minimize a cross-entropy
loss. The standardization of the last layer Φ(x) is implemented with a batch normalization (Ioffe &
Szegedy, 2015).

A linear classifier can have a small error if the typical sets of each Φ(xc) have little overlap, and in
particular if the class means µc = E(Φ(xc)) are sufficiently separated relatively to the variability
of each class. Under the Gaussian hypothesis, the variability of each class is measured by the
covariance Σc of Φ(xc). Let ΣW = Avec Σc be the average within-class covariance and ΣB =
Avec µc µ

T
c be the between-class covariance of the means. The within-class covariance can be

whitened and normalized to Id by transforming Φ(x) with the square root Σ
− 1

2

W of Σ−1W . All classes
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c, c′ are highly separated if ‖Σ−
1
2

W µc − Σ
− 1

2

W µc′‖ � 1. This separation is captured by the Fisher
discriminant ratio Σ−1W ΣB . We shall measure its trace:

C−1 Tr(Σ−1W ΣB) = Ave
c
‖Σ−

1
2

W µc‖2. (1)

Fisher ratios have been used to train deep neural networks as a replacement for the cross-entropy
loss (Dorfer et al., 2015; Stuhlsatz et al., 2012; Sun et al., 2019; Wu et al., 2017; Sultana et al., 2018;
Li et al., 2016). In this paper, we use their analytic expression to analyze the improvement of linear
classifiers.

Linear classification obviously cannot be improved with a linear representation Φ. The following
proposition gives a simple condition to improve (or maintain) the error of linear classifiers with a
non-linear representation.

Proposition 2.1. If Φ has a linear inverse, then it decreases (or maintains) the error of the optimal
linear classifier, and it increases (or maintains) the Fisher ratio (1).

To prove this result, observe that if Φ has a linear inverse Φ−1 then Wx = W ′Φ(x) with W ′ =
WΦ−1. The minimum classification error by optimizing W is thus above the error obtained by
optimizing W ′. Appendix A proves that the Fisher ratio (1) is also increased or preserved.

There are qualitatively two types of non-linear operators that increase the Fisher ratio Σ−1W ΣB . Sep-
aration operators typically increase the distance between the class means without increasing the vari-
ance ΣW within each class. We first study such operators having a linear inverse, which guarantees
through Proposition 2.1 that they increase the Fisher ratio. We then study concentration operators
which reduce the variability ΣW with non-linear shrinking operators, which are not invertible. It
will thus require a finer analysis of their properties.

Separation by tight frame rectification Let Φ = ρF be an operator which computes the first
layer of a neural network, where ρ is a pointwise non-linearity and F is linear. We first study sep-
aration operators computed with a ReLU ρr(u) = max(u, 0) applied to an invertible sign-invariant
matrix. Such a matrix has rows that can be regrouped in pairs of opposite signs. It can thus be
written F = [−F̃T , F̃T ]T where F̃ is invertible. The operator ρF separates coefficients according
to their sign. Since ρr(u)−ρr(−u) = u, it results that Φ = ρrF is linearly invertible. According to
Proposition 2.1, it increases (or maintains) the Fisher ratio, and we want to choose F to maximize
this increase.

Observe that ρr(αu) = αρr(u) if α ≥ 0. We can thus normalize the rows fm of F without affecting
linear classification performance. To ensure that F ∈ Rp×d is invertible with a stable inverse, we
impose that it is a normalized tight frame of Rd satisfying

FTF = Id and ‖fm‖2 = d/p for 1 ≤ m ≤ p.

The tight frame can be interpreted as a rotation operator in a higher dimensional space, which aligns
the axes and the directions along which ρr performs the sign separation. This rotation must be
adapted in order to optimize the separation of class means. The fact that F is a tight frame can be
interpreted as a normalization which simplifies the mathematical analysis.

Suppose that all classes xc of x have a Gaussian distribution with a zero mean µc = 0, but different
covariances Σc. These classes are not linearly separable because they have the same mean, and the
Fisher ratio is 0. Applying ρrF can separate these classes and improve the Fisher ratio. Indeed, if
z is a zero-mean Gaussian random variable, then E(max(z, 0)) = (2π)−1/2E(z2)1/2 so we verify
that for F = [−F̃T , F̃T ]T ,

E(ρrFxc) = (2π)−1/2
(

diag(F̃ΣcF̃
T )1/2,diag(F̃ΣcF̃

T )1/2
)
.

The Fisher ratio can then be optimized by maximizing the covariance ΣB between the mean vector
components diag(F̃ΣcF

T )1/2 for all classes c. If we know a priori that that xc and −xc have the
same probability distribution, as in the Gaussian example, then we can replace ρr by the absolute
value ρa(u) = |u| = ρr(u) + ρr(−u), and ρrF by ρaF̃ , which reduces by 2 the frame size.
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Concentration by tight frame soft-thresholding If the class means of x are already separated,
then we can increase the Fisher ratio with a non-linear Φ that concentrates each class around its
mean. The operator Φ must reduce the within-class variance while preserving the class separation.
This can be interpreted as a non-linear noise removal if we consider the within-class variability
as an additive noise relatively to the class mean. It can be done with soft-thresholding estimators
introduced in Donoho & Johnstone (1994). A soft-thresholding ρt(u) = sign(u) max(|u| − λ, 0)
shrinks the amplitude of u by λ in order to reduce its variance, while introducing a bias that depends
on λ. Donoho & Johnstone (1994) proved that soft-thresholding estimators are highly effective to
estimate signals that have a sparse representation in a tight frame F .

To evaluate more easily the effect of a tight frame soft-thresholding on the class means, we apply
the linear reconstruction FT on ρtFx, which thus defines a representation Φ(x) = FT ρtFx. For
a strictly positive threshold, this operator is not invertible, so we cannot apply Proposition 2.1 to
prove that the Fisher ratio increases. We study directly the impact of Φ on the mean and covariance
of each class. Let xc be the vector representing the class c. The mean µc = E(xc) is transformed
into µ̄c = E(Φ(xc)) and the covariance Σc of xc into the covariance Σc of Φ(xc). The average
covariances are ΣW = Avec Σc and ΣW = Avec Σc.

Suppose that each xc is a Gaussian mixture, with a potentially large number of Gaussian components
centered at µc,k with a fixed covariance σ2Id:

pc =
∑
k

πc,kN (µc,k, σ
2Id). (2)

This model is quite general, since it amounts to covering the typical set of realizations of xc with a
union of balls of radius σ, centered in the (µc,k)k. The following theorem relates the reduction of
within-class covariance to the sparsity of Fµc,k. It relies on the soft-thresholding estimation results
of Donoho & Johnstone (1994).

For simplicity, we suppose that the tight frame is an orthogonal basis, but the result can be extended
to general normalized tight frames. The sparsity is expressed through the decay of sorted basis
coefficients. For a vector z ∈ Rd, we denote z(r) a coefficient of rank r: |z(r)| ≥ |z(r+1)| for
1 ≤ r ≤ d. The theorem imposes a condition on the amplitude decay of the (Fµc,k)(r) when r
increases, which is a sparsity measure. We write a(r) ∼ b(r) if C1 a(r) ≤ b(r) ≤ C2 a(r) where
C1 and C2 do not depend upon d nor σ. The theorem derives upper bounds on the reduction of
within-class covariances and on the displacements of class means. The constants do not depend
upon d when it increases to∞ nor on σ when it decreases to 0.
Theorem 2.2. Under the mixture model hypothesis (2), we have:

Tr(ΣW ) = Tr(ΣM ) + σ2 d, with Tr(ΣM ) = C−1
∑
c,k

πc,k ‖µc − µc,k‖2. (3)

If there exists s > 1/2 such that |(Fµc,k)(r)| ∼ r−s then a tight frame soft-thresholding with
threshold λ = σ

√
2 log d satisfies:

Tr(ΣW ) = 2 Tr(ΣM ) +O(σ2−1/s log d), (4)

and all class means satisfy:
‖µc − µc‖2 = O(σ2−1/s log d). (5)

Under appropriate sparsity hypotheses, the theorem proves that applying Φ = FT ρtF reduces
considerably the trace of the within-class covariance. The Gaussian variance σ2d is dominant in (3)
and is reduced to O(σ2−1/s log d) in (4). The upper bound (5) also proves that FT ρtF creates a
relatively small displacement of class means, which is proportional to log d. This is important to
ensure that all class means remain well separated. These bounds qualitatively explains the increase
of Fisher ratios, but they are not sufficient to prove a precise bound on these ratios.

In numerical experiments, the threshold value of the theorem is automatically adjusted as follows.
Non-asymptotic optimal threshold values have been tabulated as a function of d by Donoho & John-
stone (1994). For the range of d used in our applications, a nearly optimal threshold is λ = 1.5σ.
We rescale the frame variance σ2 by standardizing the input x so that it has a zero mean and each
coefficient has a unit variance. In high dimension d, the within-class variance typically dominates
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the variance between class means. Under the unit variance assumption we have Tr(ΣW ) ≈ d. If
F ∈ Rp×d is a normalized tight frame then we also verify as in (3) that Tr(ΣW ) ≈ σ2p so σ2 ≈ d/p.
It results that we choose λ = 1.5

√
d/p.

A soft-thresholding can also be computed from a ReLU with threshold ρrt(u) = max(u − λ, 0)
because ρt(u) = ρrt(u) − ρrt(−u). It results that [FT ,−FT ] ρrt [FT ,−FT ]T = FT ρt F . How-
ever, a thresholded rectifier has more flexibility than a soft-thresholding, because it may recombine
differently ρrtF and ρrt(−F ) to also separate class means, as explained previously. The choice of
threshold then becomes a trade-off between separation of class means and concentration of class
variability. In numerical experiments, we choose a lower λ =

√
d/p for a ReLU with a threshold.

2.2 TWO-LAYER NETWORKS WITHOUT BIAS

We study two-layer bias-free networks that implement a linear classification on ρF , where F is
a normalized tight frame and ρ may be a rectifier, an absolute value or a soft-thresholding, with
no learned bias parameter. Bias-free networks have been introduced for denoising in Mohan et al.
(2019), as opposed to classification or regression. We show that such bias-free networks have a lim-
ited expressivity and do not satisfy universal approximation theorems (Pinkus, 1999; Bach, 2017).
However, numerical results indicate that their separation and contractions capabilities are sufficient
to reach similar classification results as two-layer networks with biases on standard image datasets.

Applying a linear classifier on Φ(x) computes:

WΦ(x) + b = WρFx+ b.

This two-layer neural network has no learned bias parameters in the hidden layer, and we impose
that FTF = Id with frame rows (fm)m having constant norms. As a result, the following theorem
proves that it does not satisfy the universal approximation theorem. We define a binary classifica-
tion problem for which the probability of error remains above 1/4 for any number p of neurons in
the hidden layer. The proof is provided in Appendix C for a ReLU ρrt with any threshold. The
theorem remains valid with an absolute value ρa or a soft-thresholding ρt, because they are linear
combinations of ρrt.

Theorem 2.3. Let λ ≥ 0 be a fixed threshold and ρrt(u) = max(u − λ, 0). Let F be the set of
matrices F ∈ Rp×d with bounded rows ‖fm‖ ≤ 1. There exists a random vector x ∈ Rd which
admits a probability density supported on the unit ball, and a C∞ function h : Rd → R such that,
for all p ≥ d:

inf
W∈R1×p,F∈F,b∈R

P[sgn(WρrtFx+ b) 6= sgn(h(x))] ≥ 1

4
.

Optimization The parameters W , F and b are optimized with a stochastic gradient descent that
minimizes a logistic cross-entropy loss on the output. To impose FTF = Id, following the optimiza-
tion of Parseval networks (Cisse et al., 2017), after each gradient update of all network parameters,
we insert a second gradient step to minimize α/2 ‖FTF − Id‖2. This gradient update is:

F ← (1 + α)F − αFFTF. (6)

We also make sure after every Parseval step that each tight frame row fm keeps a constant norm
‖fm‖ =

√
d/p by applying a spherical projection: fm ←

√
d/p fm/‖fm‖. These steps are per-

formed across all experiments described in the paper, which ensures that all singular values of every
learned tight frame are comprised between 0.99 and 1.01.

To reduce the number of parameters of the classification matrix W ∈ RC×p, we factorize W =
W ′ FT with W ′ ∈ RC×d. It amounts to reprojecting ρF in Rd with the semi-orthogonal frame
synthesis FT , and thus defines:

Φ(x) = FT ρFx.

A batch normalization is introduced after Φ to stabilize the learning of W ′.

Image classification by separation and concentration Image classification is first evaluated on
the MNIST (LeCun et al., 2010) and CIFAR-10 (Krizhevsky, 2009) image datasets. Table 1 gives
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Table 1: For MNIST and CIFAR-10, the first row gives the logistic classification error and the
second row the Fisher ratio (1), for different signal representations Φ(x). Results are evaluated with
an absolute value ρa, a soft-thresholding ρt, and a ReLU with threshold ρrt.

Φ(x) x
FT ρFx

ST (x)
ρ = ρa ρ = ρt ρ = ρrt

MNIST Error (%) 7.4 1.3 1.4 1.3 0.8
Fisher 19 68 69 67 130

CIFAR Error (%) 60.5 28.1 34.8 26.5 27.7
Fisher 6.7 15 13 16 12

the results of logistic classifiers applied to the input signal x and to Φ(x) = FT ρFx for 3 different
non-linearities ρ: absolute value ρa, soft-thresholding ρt, and ReLU with threshold ρrt. The tight
frame F is a convolution on patches of size k × k with a stride of k/2, with k = 14 for MNIST and
k = 8 for CIFAR. The tight frame F maps each patch to a vector of larger dimension, specified in
Appendix D. Figure 1 in Appendix D shows examples of learned tight frame filters.

On each dataset, applying FT ρF on x greatly reduces linear classification error, which also appears
with an increase of the Fisher ratio. For MNIST, all non-linearities produce nearly the same classi-
fication accuracy, but on CIFAR, the soft-thresholding has a higher error. Indeed, the class means
of MNIST are distinct averaged digits, which are well separated, because all digits are centered in
the image. Concentrating variability with a soft-thresholding is then sufficient. On the opposite, the
classes of CIFAR images define nearly stationary random vectors because of arbitrary translations.
As a consequence, the class means µc are nearly constant images, which are only discriminated by
their average color. Separating these class means is then important for improving classification. As
explained in Section 2.1, this is done by a ReLU ρr, or in this case an absolute value ρa, which
reduces the error. The ReLU with threshold ρrt can interpolate between mean separation and vari-
ability concentration, and thus performs usually at least as well as the other non-linearities.

The error of the bias-free networks with a ReLU and an absolute value are similar to the errors
obtained by training two-layer networks of similar sizes but with bias parameters: 1.6% error on
MNIST (Simard et al., 2003), and 25% on CIFAR-10 (Krizhevsky, 2010). It indicates that the
elimination of bias parameters does not affect performances, despite the existence of the counter-
examples from Theorem 2.3 that cannot be well approximated by such architectures. This means that
image classification problems have more structure that are not captured by these counter-examples,
and that completeness in linear high-dimensional functional spaces may not be key mathematical
properties to explain the preformances of neural networks. Figure 1 in Appendix D shows that the
learned convolutional tight frames include oriented oscillatory filters, which is also often the case of
the first layer of deeper networks (Krizhevsky et al., 2012). They resemble wavelet frames, which
are studied in the next section.

3 DEEP LEARNING BY SCATTERING AND CONCENTRATING

To improve classification accuracy, we cascade mean separation and variability concentration opera-
tors, implemented by ReLUs and soft-thresholdings on tight frames. This defines deep convolutional
networks. However, we show that some tight frames do not need to be learned. Section 3.1 reviews
scattering trees, which perform mean separation by cascading ReLUs on wavelet tight frames. Sec-
tion 3.2 shows that we reach high classification accuracies by learning projectors and tight frame
soft-thresholdings, which concentrate within-class variabilities along scattering channels.

3.1 SCATTERING CASCADE OF WAVELET FRAME SEPARATIONS

Scattering transforms have been introduced to classify images by cascading predefined wavelet fil-
ters with a modulus or a rectifier non-linearity (Bruna & Mallat, 2013). We write it as a product of
wavelet tight frame rectifications, which progressively separate class means.
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Wavelet frame A wavelet frame separates image variations at different scales, directions and
phases, with a cascade of filterings and subsamplings. We use steerable wavelets (Simoncelli &
Freeman, 1995) computed with Morlet filters (Bruna & Mallat, 2013). There is one low-pass filter
g0, and L complex band-pass filters g` having an angular direction θ = `π/L for 0 < ` ≤ L. These
filters can be adjusted (Selesnick et al., 2005) so that the filtering and subsampling:

F̃wx(n, `) = x ? g`(2n)

defines a complex tight frame F̃w. Fast multiscale wavelet transforms are computed by cascading
the filter bank F̃w on the output of the low-pass filter g0 (Mallat, 2008).

Each complex filter g` is analytic, and thus has a real part and imaginary part whose phases are
shifted by α = π/2. This property is important to preserve equivariance to translation despite the
subsampling with a stride of 2 (Selesnick et al., 2005). To define a sign-invariant frame as in Section
2.1, we must incorporate filters of opposite signs, which amounts to shifting their phase by π. We
thus associate to F̃w a real sign-invariant tight frame Fw by considering separately the four phases
α = 0, π/2, π, 3π/2. It is defined by

Fwx(n, `, α) = x ? g`,α(2n),

with g`,0 = 2−1/2Real(g`), g`,π/2 = 2−1/2Imag(g`) and g`,α+π = −g`. We apply a rectifier ρr to
the output of all real band-pass filters g`,α but not to the low-pass filter:

ρrFw =
(
x ? g0(2n) , ρr(x ? g`,α(2n))

)
n,α,`

.

The use of wavelet phase parameters with rectifiers is studied in Mallat et al. (2019). The operator
ρrFw is linearly invertible because Fw is a tight frame and the ReLU is applied to band-pass filters,
which come in pairs of opposite sign. Since there are 4 phases and a subsampling with a stride of 2,
Fwx is (L+ 1/4) times larger than x.

Scattering tree A full scattering tree ST of depth J is computed by iterating J times over ρrFw.
Since each ρrFw has a linear inverse, Proposition 2.1 proves that this separation can only increase
the Fisher ratio. However it also increases the signal size by (L + 1/4)J , which is typically much
too large. This is avoided with orthogonal projectors, which perform a dimension reduction after
applying each ρrFw.

A pruned scattering tree ST of depth J and order o is defined in Bruna & Mallat (2013) as a convo-
lutional tree which cascades J rectified wavelet filter banks, and at each depth prunes the branches
with Pj to prevent an exponential growth:

ST =

J∏
j=1

Pj ρr Fw. (7)

After the ReLU, the pruning operator Pj eliminates the branches of the scattering which cascade
more than o band-pass filters and rectifiers, where o is the scattering order (Bruna & Mallat, 2013).
After J cascades, the remaining channels have thus been filtered by at least J−o successive low-pass
filters g0. We shall use a scattering transform of order o = 2. The operator Pj also averages the rec-
tified output of the filters g`,α along the phase α, for ` fixed. This averaging eliminates the phase. It
approximatively computes a complex modulus and produces a localized translation invariance. The
resulting pruning and phase average operator Pj is a 1×1 convolutional operator, which reduces the
dimension of scattering channels with an orthogonal projection. If x has d pixels, then ST (x)[n, k]
is an array of images having 2−2Jd pixels at each channel k, because of the J subsamplings with a
stride of 2. The total number of channels K is 1 + JL + J(J − 1)L2/2. Numerical experiments
are performed with wavelet filters which approximate Gabor wavelets (Bruna & Mallat, 2013), with
L = 8 directions. The number of scales J depends upon the image size. It is J = 3 for MNIST and
CIFAR, and J = 4 for ImageNet, resulting in respectively K = 217, 651 and 1251 channels.

Each ρrFw can only improve the Fisher ratio and the linear classification accuracy, but it is not
guaranteed that this remains valid after applying Pj . Table 1 gives the classification error of a
logistic classifier applied on ST (x), after a 1 × 1 orthogonal projection to reduce the number of
channels, and a spatial normalization. This error is almost twice smaller than a two-layer neural
network on MNIST, given in Table 1, but it does not improve the error on CIFAR. On CIFAR, the
error obtained by a ResNet-20 is 3 times lower than the one of a classifier on ST (x). The main issue
is now to understand where this inefficiency comes from.

7



Published as a conference paper at ICLR 2021

Table 2: Linear classification error and Fisher ratios (1) of several scattering representations,
on CIFAR-10 and ImageNet. For SC , results are evaluated with a soft-thresholding ρt and a
thresholded rectifier ρrt. The last column gives the error of ResNet-20 for CIFAR-10 (He et al.,
2016) and ResNet-18 for ImageNet, taken from https://pytorch.org/docs/stable/
torchvision/models.html.

Φ ST SP SC (ρt) SC (ρrt) ResNet

CIFAR Error (%) 27.7 12.8 8.0 7.6 8.8
Fisher 12 20 43 41 -

ImageNet Error (%) Top-5 54.1 20.5 11.6 10.7 10.9
Top-1 73.0 42.3 31.4 29.7 30.2

Fisher 2.0 18 51 44 -

3.2 SEPARATION AND CONCENTRATION IN LEARNED SCATTERING NETWORKS

A scattering tree iteratively separates class means with wavelet filters. Its dimension is reduced by
predefined projection operators, which may decrease the Fisher ratio and linear separability. To
avoid this source of inefficiency, we define a scattering network which learns these projections. The
second step introduces tight frame thresholdings along scattering channels, to concentrate within-
class variabilities. Image classification results are evaluated on the CIFAR-10 (Krizhevsky, 2009)
and ImageNet (Russakovsky et al., 2015) datasets.

Learned scattering projections Beyond scattering trees, the projections Pj of a scattering trans-
form (7) can be redefined as arbitrary orthogonal 1 × 1 convolutional operators, which reduce the
number of scattering channels: PjPTj = Id. Orthogonal projectors acting along the direction index
` of wavelet filters can improve classification (Oyallon & Mallat, 2015). We are now going to learn
these linear operators together with the final linear classifier. Before computing this projection, the
mean and variances of each scattering channel is standardized with a batch normalization BN , by
setting affine coefficients γ = 1 and β = 0. This projected scattering operator can be written:

SP =

J∏
j=1

Pj BN ρr Fw.

Applying a linear classifier to SP (x) defines a deep convolutional network whose parameters are
the 1×1 convolutional Pj and the classifier weights W , b. The wavelet convolution filters in Fw are
not learned. The orthogonality of Pj is imposed through the gradient steps (6) applied to F = PTj .
Table 2 shows that learning the projectors Pj more than halves the scattering classification error of
SP relatively to ST on CIFAR-10 and ImageNet, reaching AlexNet accuracy on ImageNet, while
achieving a higher Fisher ratio.

The learned orthogonal projections Pj create invariants to families of linear transformations along
scattering channels that depend upon scales, directions and phases. They correspond to image trans-
formations which have been linearized by the scattering transform. Small diffeomorphisms which
deform the image are examples of operators which are linearized by a scattering transform (Mal-
lat, 2012). The learned projector eliminates within-class variabilities which are not discriminative
across classes. Since it is linear, it does not improve linear separability or the Fisher ratio. It takes
advantage of the non-linear separation produced by the previous scattering layers.

The operator Pj is a projection on a family of orthogonal directions which define new scattering
channels, and is followed by a wavelet convolution Fw along spatial variables. It defines separable
convolutional filters FwPj along space and channels. Learning Pj amounts to choosing orthogonal
directions so that ρrFwPj optimizes the class means separation. If the class distributions are invari-
ant by rotations, the separation can be achieved with wavelet convolutions along the direction index
` (Oyallon & Mallat, 2015), but better results are obtained by learning these filters. This separable
scattering architecture is different from separable approximations of deep network filters in discrete
cosine bases (Ulicny et al., 2019) or in Fourier-Bessel bases (Qiu et al., 2018). A wavelet scattering
computes ρrFwPj as opposed to a separable decomposition ρrPjFw, so the ReLU is applied in a

8
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Table 3: Evolution of Fisher ratio across layers for the scattering concentration network SC with a
ReLU with threshold ρrt, on the CIFAR dataset.

CIFAR Layer 0 1 2 3 4 5 6 7 8
Fisher 1.8 11 13 11 15 15 22 25 40

higher dimensional space indexed by wavelet variables produced by Fw. It provides explicit coordi-
nates to analyze the mathematical properties, but it also increase the number of learned parameters
as shown in Table 4, Appendix D.

Concentration along scattering channels A projected scattering transform can separate class
means, but does not concentrate class variabilities. To further reduce classification errors, following
Section 2.1, a concentration is computed with a tight frame soft-thresholding FTj ρtFj , applied on
scattering channels. It increases the dimension of scattering channels with a 1 × 1 convolutional
tight frame Fj , applies a soft-thresholding ρt, and reduces the number of channels with the 1 × 1
convolutional operator FTj . The resulting concentrated scattering operator is

SC =

J∏
j=1

(FTj ρt Fj) (Pj BN ρrFw). (8)

It has 2J layers, with odd layers computed by separating means with a ReLu ρr and even layers
computed by concentrating class variabilities with a soft-thresholding ρt. According to Section
2.1 the soft-threshold is λ = 1.5

√
d/p. This soft-thresholding may be replaced by a thresholded

rectifier ρrt(u) = max(u− λ, 0) with a lower threshold λ =
√
d/p. A logistic classifier is applied

to SC(x). The resulting deep network does not include any learned bias parameter, except in the
final linear classification layer. Learning is reduced to the 1 × 1 convolutional operators Pj and Fj
along scattering channels, and the linear classification parameters.

Table 2 gives the classification errors of this concentrated scattering on CIFAR for J = 4 (8 layers)
and ImageNet for J = 6 (12 layers). The layer dimensions are specified in Appendix D. The number
of parameters of the scattering networks are given in Table 4, Appendix D. This concentration step
reduces the error of SC by about 40% relatively to a projected scattering SP . A ReLU thresholding
ρrt produces an error slightly below a soft-thresholding ρt both on CIFAR-10 and ImageNet, and
this error is also below the errors of ResNet-20 for CIFAR and ResNet-18 for ImageNet. These
errors are also nearly half the classification errors previously obtained by cascading a scattering tree
ST with several 1 × 1 convolutional layers and large MLP classifiers (Zarka et al., 2020; Oyallon
et al., 2017). It shows that the separation and concentration learning must be done at each scale
rather than at the largest scale output. Table 3 shows the progressive improvement of the Fisher
ratio measured at each layer of SC on CIFAR-10. The transition from an odd layer 2j − 1 to an
even layer 2j results from FjT ρtFj , which always improve the Fisher ratio by concentrating class
variabilities. The transition from 2j to 2j + 1 is done by Pj+1ρrFw, which may decrease the Fisher
ratio because of the projection Pj+1, but globally brings an important improvement.

4 CONCLUSION

We proved that separation and concentration of probability measures can be achieved with rectifiers
and thresholdings applied to appropriate tight frames F . We also showed that the separation of class
means can be achieved by cascading wavelet frames that are not learned. It defines a scattering
transform. By concentrating variabilities with a thresholding along scattering channels, we reach
ResNet-18 classification accuracy on CIFAR-10 and ImageNet.

A major mathematical issue is to understand the mathematical properties of the learned projectors
and tight frames along scattering channels. This is necessary to understand the types of classification
problems that are well approximated with such architectures, and to prove lower bounds on the
evolution of Fisher ratios across layers.
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A PROOF OF PROPOSITION 2.1

We first prove the following lemma:

Lemma A.1. If Φ is linear, then the Fisher ratio is decreased (or equal) and the optimal linear
classification error is increased (or equal).

If Φ is linear, then it is a matrix ∈ Rp×d. We assume that Φ has rank p (and thus p ≤ d) for the sake
of simplicity. By applying a polar decomposition on ΦΣ

1
2

W , we can write

Φ = UPΣ
− 1

2

W ,

where U ∈ Rp×p is symmetric positive-definite and P ∈ Rp×d verifies PPT = Id. The within-
class covariance and class means of Φx are given by

ΣW = ΦΣWΦT = U2 ,

µc = Φµc = UPΣ
− 1

2

W µc .

The Fisher ratio of Φx is thus:

C−1 Tr(Σ
−1
W ΣB) = Ave

c
‖Σ−1/2W µ̄c‖

2

= Ave
c
‖PΣ

− 1
2

W µc‖
2

≤ Ave
c
‖Σ−

1
2

W µc‖
2

= C−1 Tr(Σ−1W ΣB),

so Φ decreases the Fisher ratio. Besides, if (W, b) is the optimal linear classifier on Φx, then (WΦ, b)
is a linear classifier on x, and thus has a larger (or equal) error than the optimal linear classifier on
x.

Now, if Φ has a linear inverse Φ−1, we apply the Lemma A.1 to x′ = Φx and Φ′ = Φ−1 (so that
Φ′x′ = x), which concludes the proof.

Additionally, we can see from the proof of the lemma that a linear Φ preserves the Fisher ratio if
and only if ‖PΣ

− 1
2

W µc‖ = ‖Σ−
1
2

W µc‖ for all c. This happens when Σ
− 1

2

W µc is in the orthogonal of

KerP = KerUP = Ker ΦΣ
1
2

W , which means that Σ−1W µc is in the orthogonal of Ker Φ. When Φ
is an orthogonal projector, the orthogonal of Ker Φ is the range of Φ.

B PROOF OF THEOREM 2.2

We begin by proving (3). Since Tr(ΣW ) = Avec Tr(Σc) with Tr(Σc) = E(‖xc − µc‖2) and xc is
a mixture of N (µc,k, σ

2Id) we get that Tr(Σc) = Tr(ΣM ) + d σ2 with

Tr(ΣM ) = C−1
∑
k

πc,k ‖µc,k − µc‖2,

which verifies (3).

The inequalities (4) and (5) of Theorem 2.2 are derived from the following lemma which is mostly
a consequence of a theorem proved by Donoho & Johnstone (1994) on soft-thresholding estimators.

Lemma B.1. Let x be a d dimensional Gaussian vector whose distribution is N (µ, σ2Id) with
|µ(r)| ∼ r−s. For all d ≥ 4 and λ = σ

√
2 log d,

E(‖ρt(x)− µ‖2) = O(σ2−1/s log d). (9)

Each class xc is a mixture of several xc,k whose distributions are N (µc,k, σ
2Id). We first prove the

theorem by applying this lemma to each xc,k, and we shall then prove the lemma.

12
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We apply (9) to x = Fxc,k, µ = Fµc,k = {〈µc,k, fm〉}m, and Φ = FT ρF . Since F is orthogonal

E(‖Φ(xc,k)− µc,k‖2) = E(‖ρtFxc,k − Fµc,k‖2) = O(σ2−1/s log d). (10)

Let µc = E(Φ(xc)) and µc,k = E(Φ(xc,k)). As we have the decomposition

E(‖Φ(xc,k)− µc,k‖2) = E(‖Φ(xc,k)− µc,k‖2) + ‖µc,k − µc,k‖2,

equation (10) implies that
‖µc,k − µc,k‖2 = O(σ2−1/s log d) (11)

and
E(‖Φ(xc,k)− µc,k‖2) = O(σ2−1/s log d). (12)

We first prove (5) by observing that

‖µc − µc‖2 = ‖
∑
k

πc,k(µc,k − µc,k)‖2 ≤
(∑

k

πc,k‖µc,k − µc,k‖
)2

It results from (11) that
‖µc − µc‖2 = O(σ2−1/s log d)

which proves (5).

As in the proof of (3), we verify that

Tr(ΣW ) = Tr(ΣM ) + C−1
∑
c,k

πc,k E(‖Φ(xc,k)− µc,k‖2),

with
Tr(ΣM ) = C−1

∑
c,k

πc,k ‖µc,k − µc‖2.

Inserting (12) gives
Tr(ΣW ) = Tr(ΣM ) +O(σ2−1/s log d). (13)

By decomposing and inserting (11) we get

Tr(ΣM ) ≤ C−1
∑
c,k

πc,k

(
‖µc,k − µc,k‖+ ‖µc,k − µc‖+ ‖µc − µc‖

)2
= C−1

∑
c,k

πc,k

(
‖µc,k − µc‖+O(σ1−1/(2s) log1/2 d)

)2
= C−1

∑
c,k

πc,k 2
(
‖µc,k − µc‖2 +O(σ2−1/s log d)

)
= 2 Tr(ΣM ) +O(σ2−1/s log d).

Inserting this inequality in (13) proves that

Tr(ΣW ) = 2 Tr(ΣM ) +O(σ2−1/s log d)

which proves (4).

We now prove Lemma B.1. Donoho & Johnstone (1994) proved that for all d ≥ 4,

E(‖ρt(x)− µ‖2) ≤ (2 log d+ 1) (σ2 +

d∑
m=1

min(µ[m]2, σ2)). (14)

We are now going to prove that if |µ(r)| ∼ r−s then

d∑
m=1

min(µ[m]2, σ2) = O(σ2−1/s).
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Let us first observe that
d∑

m=1

min(µ[m]2, σ2) =

d∑
r=M+1

|µ(r)|2 +Mσ2 (15)

with |µ(M)| ≥ σ > |µ(M+1)|.

Since |µ(r)| ∼ r−s,
d∑

m=1

min(µ[m]2, σ2) ∼
d∑

r=M+1

r−2s +Mσ2 ∼M1−2s +Mσ2.

Since σ ∼ |µ(M)| ∼M−s, we conclude

d∑
m=1

min(µ[m]2, σ2) = O(σ2−1/s).

Inserting this result in (14) finishes the proof of the lemma.

C PROOF OF THEOREM 2.3

We choose x = ru with u ∼ U(Sd−1) and r ∈]0, 1] to be determined, with r and u independent.
Let us fix p ≥ d, F ∈ Rp×d, W ∈ R1×p and b ∈ R. With g(x) = WρrtFx+ b, we have:

g(x) =

p∑
m=1

wmρr(r〈u, fm〉 − λ) + b

= r

p∑
m=1

wmρr(〈u, fm〉 − λ/r) + b .

If λ = 0, this gives g(x) = rWρr(Fu) + b which is an affine function of r. Therefore, its sign can
change at most once. We choose h(x) = cos(2π‖x‖) so that:

sgn(h(x)) =

{
+1 r < 1

4 or 3
4 < r

−1 1
4 < r < 3

4

Now g(x) is an affine function of r, so at least one of the following must occur:
sgn(g(x)) = −1 r < 1

4

sgn(g(x)) = +1 1
4 < r < 3

4

sgn(g(x)) = −1 3
4 < r

We finally choose r ∼ U(0, 1) and so we conclude that:

P[sgn(g(x)) 6= sgn(h(x))] ≥ 1

4
.

If λ > 0, then when r ≤ λ, we have 〈u, fm〉 ≤ ‖u‖‖fm‖ ≤ 1 ≤ λ/r, which means that g(x) = b is
constant. We thus choose r ∼ U(0, λ), h(x) = cos(π/λ‖x‖) and so we conclude that:

P[sgn(g(x)) 6= sgn(h(x))] =
1

2
≥ 1

4
.

D IMPLEMENTATION AND NETWORK DIMENSIONS

All networks are trained with SGD with a momentum of 0.9 and a weight decay of 10−4 for the
classifier weights, with no weight decay being applied to tight frames. The learning rate is set to
0.01 for all networks, with a Parseval regularization parameter α = 0.0005. The batch size is 128 for
all experiments. The scattering transform is based on the Kymatio package (Andreux et al., 2020).
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Table 4: Number of parameters of scattering architectures on ImageNet. They are dominated by the
size of the 1× 1 orthogonal projectors Pj . Indeed, the wavelet tight frame Fw has a redundancy of
(L + 1/4), whereas in ResNet strided convolutions have a redundancy of 1/2. This is due to the
fact that Fw is not learned. However, Fw comes with a known structure across channels, which is
beneficial for the analysis of the projectors Pj .

Φ ST SP SC ResNet-18

ImageNet Parameters 25.9M 27.6M 31.2M 11.7M

Standard data augmentation was used on CIFAR and ImageNet: horizontal flips and random crops
for CIFAR, and random resized crops of size 224 and horizontal flips for ImageNet. Classification
error on ImageNet validation set is computed on a single center-crop of size 224.

Non-linearity thresholds are set to λ = 1.5
√
d/p for the soft-thresholding ρt, and λ =

√
d/p for

the thresholded rectifier ρrt. Here d and p represent the dimension of the patches the convolutional
operators F and FT act on. To ensure that the fixed threshold is well adapted to the scale of the input
x, we normalize all its patches so that they have a norm of

√
d. For 1× 1 convolutional operators as

in SC , this amounts to normalizing the channel vectors at each spatial location in x.

Two-layer networks When learning a frame contraction directly on the input image, F is a con-
volutional operator over image patches of size k× k with a stride of k/2, where k = 14 for MNIST
(d = k2 = 196) and k = 8 for CIFAR (d = 3k2 = 192). The frame F has p output channels, where
p = 2048 for MNIST and p = 8192 for CIFAR. It thus maps each patch of dimension d to a channel
vector of size p ≥ d. Training lasts for 300 epochs, the learning rate being divided by 10 every 70
epochs.

Scattering tree We use J = 3 for MNIST and CIFAR and J = 4 for ImageNet. Each Fw uses
L = 8 angles. It is followed by a standardization which sets the mean and variance of every channel
to 0 and 1. We then learn a 1 × 1 convolutional orthogonal projector PJ to reduce the number
of channels to d = 512. We finally apply a 1 × 1 spatial normalization, as before a tight frame
thresholding. Training lasts for 300 epochs for MNIST and CIFAR (200 epochs for ImageNet), the
learning rate being divided by 10 every 70 epochs (60 epochs for ImageNet).

Learned scattering We use J = 4 for CIFAR and J = 6 for ImageNet. Each Fw uses L = 8
angles. Each Pj is an orthogonal projector which is a 1 × 1 convolution. It reduces the number of
channels to dj with d1 = 64, d2 = 128, d3 = 256 and d4 = 512. For ImageNet, we also have
d5 = d6 = 512. It is followed by a normalization which sets the norm across channels of each
spatial position to

√
dj . Fj is a 1 × 1 convolutional tight frame with pj output channels, where

p1 = 1024, p2 = 2048, p3 = 4096 and p4 = 8192 for CIFAR, p1 = 512, p2 = p3 = 1024 and
p4 = p5 = p6 = 2048 for ImageNet. Training lasts for 300 epochs for CIFAR (200 epochs for
ImageNet), the learning rate being divided by 10 every 70 epochs (60 epochs for ImageNet).

Fisher ratios Fisher ratios (eq. (1)) were computed using estimations of ΣW and µc on the vali-
dation set. These estimations are unstable when the dimension d becomes large with respect to the
number of data samples. To mitigate this, the Fisher ratios across layers from Table 3 were com-
puted on the train set. Fisher ratios on ImageNet from Table 2 were computed only across channels,
by considering each pixel as a distinct sample of the same class, in order to reduce dimensionality.
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Figure 1: Examples of filters fm from the convolutional tight frame F learned directly on the input
x for CIFAR-10, using an absolute value non-linearity ρa. They resemble wavelet filters.
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