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We study the role and structure of commodity taxes when consumption and labor supplies are determined through a bargaining procedure between spouses, and where an optimal income tax is also available. We focus on the question whether there should be di¤erences in tax treatment between "female" and "male" products. When weights (as well as wages) di¤er across couples, the heterogeneity is multidimensional and the Atkinson and Stiglitz theorem does not apply. In addition, when the social welfare function is individual-based, spouses'social weights may di¤er from their weights within the couples. This brings about Pigouvian considerations which in themselves may justify commodity taxes. We show that the expressions for the tax rates include Pigouvian and incentive terms. Their roles are most apparent in the case where some goods are consumed exclusively by one of the spouses. Supposing, for instance, that the female spouse has the lower bargaining weight, we …nd conditions under which the Pigouvian term calls for a subsidization of the "female good", and a taxation of the "male good". The incentive term depends on the distribution of bargaining weights across couples. For instance, for the exclusive consumption case, when the weight of the female spouse increases with wages, the female good tends to be consumed in larger proportion by more productive couples. Consequently, the incentive term makes it a candidate for taxation. In this case the Pigouvian term is mitigated.

Introduction

This paper brings together two issues which have hitherto been studied separately. The …rst one is the role and the design of commodity taxation and the second one is the tax treatment of couples. More precisely, this paper studies the optimal structure of commodity taxes, in a world where consumption and labor supply decisions are made by couples according to some bargaining procedure between spouses and where an optimal income tax is also available. We focus on the question whether there should be di¤erences in tax treatment between "female"and "male" products-remaining agnostic for the time being about the precise de…nition of these categories.

The recent debate about the "tampon tax"illustrates the policy relevance of the underlying issue and shows a case where the gender speci…c classi…cation of the good is hardly debatable.

Until recently tampons were in most EU countries taxed at the "regular"VAT rate (around 20%) , as opposed to the reduced rate (5% or even 0%) which applies to an often ill de…ned category of "necessities". [START_REF] Apps | Taxation and the household[END_REF] Women activists had for long staged vehement protests. Finally, in 2016 the EU commission (which has to approve reductions in VAT rates to levels below 15%) gave its green light and several countries including France and the UK (but not Germany) adopted the reduced rates for tampons. The debate was based more on emotions than on economic arguments but, in any event, taxation theory has little to say so far about the taxation of gender speci…c consumption goods. In particular, it is not clear if there is any good reason to extend the preferential tax treatment to other female goods like perfume, or women's clothing.

The role of commodity taxes is probably one of the most prominent or, at least, one of the oldest issues of taxation policy; see Atkinson (1977). The traditional Ramsey type models which typically advocated nonuniform commodity taxes have received a rather fatal blow by the classic contribution of Atkinson and Stiglitz (1976). In their seminal work, they show that, under some conditions (weak separability of preferences in labor supply and goods), an optimal nonlinear income tax is su¢ cient to implement any incentive compatible Pareto-e¢ cient allocation. In other words, commodity taxes are redundant (or should be uniform). It is by now well understood though that the Atkinson and Stiglitz result has its limitations. In particular, it may not hold under uncertainty (Cremer and Gahvari, 1997) and does not apply under multi-dimensional heterogeneity, for instance, when individuals di¤er in preferences (Cremer, Gahvari and Ladoux, 1998; and Cremer, Pestieau and Rochet, 2001). When demand behavior is determined by couples according to a bargaining procedure, and weights di¤er across couples, we are within such a multidimensional setting. In addition, when the social welfare function is individual based, spouses'social weights may di¤er from their weight within the couple which brings about paternalistic or Pigouvian considerations which in themselves may justify commodity taxes (Cremer, Gahvari and Ladoux, 1998).

The literature on couples' income taxation, though more recent, is also quite substantial.

Following the pioneering paper by Boskin and Sheshinski (1983) many authors have studied the taxation of couples both within linear and nonlinear settings. [START_REF] Apps | Individual vs. joint taxation in models with household production[END_REF] All of these studies concentrate on income taxation and, in particular, the determination of the tax base (with individual or joint taxation as extreme cases). Typically a single consumption good exists so that the issue of commodity taxation does not arise. Additionally, most of these papers consider couples as "unitary", and their preferences are represented by what is essentially an individual utility function. [START_REF] Atkinson | Optimal taxation and the direct versus indirect tax controversy[END_REF] Cremer, Lozachmeur, Maldonado and Roeder (2016), which is the predecessor to the current paper, departs from this unitary couple paradigm and considers bargaining between spouses.

They show that this has striking implications for the design of income tax policy. It a¤ects the incentive properties of the nonlinear income tax scheme and introduces Pigouvian considerations into the determination of the spouses' marginal income tax rates. A crucial and rather plausible assumption of their paper is that, while spouses'incomes are publicly observable, the consumption levels of individual spouses are not observable. In other words, the allocation of the household's disposable income between spouses is not publicly observable. The Pigouvian elements of the income tax aim at "correcting"the levels of labor supply. This is because from an utilitarian perspective the high-weight spouse tends to work too little. However, while bargaining yields consumption levels for the individual spouses that are also di¤erent from the utilitarian ones, the income tax has no leverage on the allocation of the consumption budget within couples. An appropriately designed commodity tax, on the other hand, can a¤ect spouses'budget shares and their (real) consumption budget as long as the male and the female spouse have di¤erent tastes. In other words, as long as spending patterns are gender speci…c, a nonuniform commodity tax provides some partial control of individual consumption levels.

To study this issue, we introduce commodity taxes into a setting which is otherwise similar to Cremer et al. (2016). In particular, couples di¤er in wages and in their bargaining weights.

There is an optimal nonlinear income tax scheme based on spouses'incomes which are observable.

Individual consumption levels of the di¤erent goods are not publicly observable, but anonymous transactions are observable. Consequently, a linear commodity tax is feasible on informational grounds. By now this is the traditional information structure considered in mixed taxation models.

We determine the structure of commodity taxes which maximizes a utilitarian welfare function based on individual utilities. We show that the expressions for the tax rates include Pigouvian and incentive terms. Their respective role is most apparent in the "exclusive"consumption case, where one good is consumed exclusively by the female spouse while another good is exclusively consumed by the male spouse. Assuming that, for instance, the female spouse has the lower bargaining weight, we …nd conditions under which the Pigouvian term calls for subsidization of the female good and taxation of the male good. The incentive term depends on the distribution of bargaining weights across couples. For the exclusive consumption case, when the weight of the female spouse increases with wages, and when the demand for the female is su¢ ciently elastic with respect to the female weight the good will tend to be consumed in larger proportion by more productive couples. Consequently, the incentive term makes it a candidate for taxation. Intuitively, under these circumstances a subsidization of the female good would be regressive. The incentive term then mitigates the Pigouvian term and may even reverse it. This is likely to be the case for perfumes while the weight (and thus income) elasticity is likely to be small for tampons so that one can expect the Pigouvian term to dominate.

The idea that commodity taxes may be used as a device to redistribute within households has been explored by Bargain and Donni (2014). [START_REF] Atkinson | The design of tax structure: direct versus indirect taxation[END_REF] However, these authors consider a representative agent (or rather couple) Ramsey setting. Our study di¤ers in two main respects. First, we consider heterogenous couples so that redistribution between couples also matters. Second, and most signi…cantly, we depart from the Ramsey setting by considering an optimal income tax. Put di¤erently, we derive the Pareto e¢ cient policy given the information structure. We know from Atkinson and Stiglitz that this changes the nature of the problem in a dramatic way. The role of an extra instrument in this setting is no longer revenue raising, nor redistribution (at least not directly) but to contribute to the screening for the unobservable characteristics. Interestingly, though, some of the results of Bargain and Donni (2014) continue to hold, at least in a qualitative way. Their revenue raising (e¢ ciency) term is no longer present in our expressions. However, the term they refer to as "redistributive" is the counterpart to our Pigouvian terms; both arise because social and private weights di¤er. The structure of the term is somewhat di¤erent, but the main idea that the term calls for a subsidization of the good consumed by the low-weight spouse is already re ‡ected in their expression. However, in our setting intra household redistribution and inter household redistribution may be in con ‡ict. The latter is re ‡ected by the incentive term which has no counterpart in the Ramsey setting.

The remainder of the paper is structured as follows. Section 2 describes the economic framework and analyzes the couple's optimization problem. Section 3 determines the optimal tax policy. An in depth analysis of the optimal tax structure is given by Sections 4 and 5. Specifically, Section 4 analyzes the Pigouvian expressions while Section 5 investigates the incentive term in more detail. Section 6 summarizes and concludes.

The couple

Consider a population with i = 1; :::; n couples. The proportion of couple i is i . Members of the couple are indexed by the subscript g = f; m. Each spouse in couple i supplies `i g units of labor at a wage rate w i g . The mating pattern is such that spouses' wages are positively correlated and couples are ordered such that w i g < w i+1 g . In other words, a higher index refers to a couple in which both spouses have a higher wage. Consequently, there is a single level of w f associated with each level of w m . The di¤erence in wages between spouses may di¤er across couples. Gross earnings are given by y i g = w i g `i g ; they are publicly observable for each spouse. With this information, a nonlinear income tax T (y i f ; y i m ) is available. The utility of spouse g in a couple of type i is given by

U i g = u g X i g v `i g ;
where X i g = fx i g1 ; :::; x i gk ; :::x i gK g is a the K-dimensional consumption vector of this spouse. Technologies are linear so that producer prices are given and normalized at one. Individual consumption levels are not observable but anonymous transactions are so that linear (proportional) taxes can be levied on the consumption goods. The consumer prices of goods are given by p k = 1 + t k where t k is the per unit tax levied on good k. Without loss of generality we can …x the tax rate on one of the goods at zero, and we set t 1 = 0 so that p 1 = 1. Let p = (p 1 ; : : : ; p k ; : : : p K ) = (1; : : : ; p k ; : : : p K ) denote the vector of consumer prices. Labor disutil-ity, v, satis…es v 0 > 0 and v 00 > 0, while u g is strictly increasing and concave.

Couples act cooperatively, that is they maximize the weighted sum of spouses'utilities. The weights attached to the female and male spouse in couple i, denoted by i f and i m , sum up to two, i.e., i f + i m = 2. We assume that these weights, which re ‡ect the bargaining power of each spouse, are exogenously given but may di¤er between couples.

For our analysis it is convenient to think about the couple as solving a three-stage optimization problem. In a …rst stage spouses choose their labor supplies and thus their gross income levels, y i f and y i m , which determine the couple's after tax income I i :

I i = y i f + y i m T (y i f ; y i m ):
Next, the net income I i is allocated between spouses so that

I i = c i f + c i m
, where c i g is the expenditure share of spouse g. We assume that the shares of income devoted to the individual spouses are not publicly observable. Finally, each spouse g chooses its consumption bundles given c i g . We solve this three-stage optimization problem by backward induction. Though fairly standard, this exercise is necessary to derive some expressions which will be useful to simplify and interpret the di¤erent components for the optimal tax rates studied in Section 3 below.

Stage 3: consumption vectors

At this stage the y i g 's and c i g 's are given. Given the separability of utility, labor supplies are of no direct relevance for the choice of the consumption vector. Spouse g solves

max X i g u g X i g s.t. K X k=1 p k x i gk c i g :
Denoting the Lagrange multipliers associated with the budget constraint by i g , the …rst order conditions (FOCs) are given by @u g (X i g ) @x i gk = i g p k ; k = 1; : : : ; K; g = f; m; i = 1; : : : ; n:

The resulting demand functions are denoted by x i gk (p; c i g ). Substituting in the utility function u i g yields spouse g's indirect utility function

V i g (p; c i g ) = u g x i g1 p; c i g ; :::x i gK p; c i g :
These are completely standard Marshallian demand and indirect utility functions which satisfy all traditional properties we know from micro theory, including Roy's identity and the Slutsky equation. In particular, note that

i g = @V i g (p; c i g ) @c i g = @u g X i g @x i g1 : (1) 

Stage 2: consumption shares

In stage 2, the couple determines each spouse's consumption share. Recall that I i denotes the household's disposable (after tax) income. For any bundle

(I i ; y i f ; y i m ) couple i solves max c i g W i = X g=f;m i g " V i g p; c i g v y i g w i g !# s.t. X g=f;m c i g I i : (2) 
Substituting the budget constraint into the objective function and di¤erentiating with respect

to c i m yields @W i @c i m = i m i m i f i f = 0: (3) 
This equation, along with the budget constraint (2) de…nes the male's and female's consumption levels as functions of their family income, and the price vector p: c i g p; I i . The second order condition (SOC) is negative and given by

SOC = i m @ 2 V i m (p; c i m ) (@c i m ) 2 + i f @ 2 V i f (p; c i f ) (@c i f ) 2 < 0: (4) 
Di¤erentiating equation (3) with respect to I i and p k yields:

@c i m (p; I i ) @I i = i f @ 2 V i f (p;c i f ) (@c i f ) 2 SOC > 0; (5) 
@c i f (p; I i ) @I i = i m @ 2 V i m (p;c i m ) (@c i m ) 2 SOC > 0; (6) 
@c i m (p; I i ) @p k = i m @ 2 V i m (p;c i m ) @c i m @p k i f @ 2 V i f (p;c i f ) @c i f @p k SOC = @c i f (p; I i ) @p k 7 0: (7) 
That is, a spouse's expenditure increases in the couple's disposable income while its reaction to price changes is indeterminate. Obviously, we have @c i g (p; I i )=@ i g > 0, that is a higher bargaining power increases a spouse's consumption share.

To simplify notation let us de…ne

b V i g (p; I i ) V i g (p; c i g (p; I i )); (8) 
as the indirect sub-utility for spouse g and i gk p; I i x i gk p; c i g p; I i

as the good-k Marshallian demand function of spouse g. Both variables are a function of prices p and disposable household income I i .

Three properties of the couple's optimal allocation of consumption will be useful for our analysis. First, given (I i ; y i f ; y i m ) the optimal allocation of consumption depends only on overall income I i and on the weights ( i f ; i m ) but not on each spouse's labor supply and gross income (y i f ; y i m ). This is due to the separability of utility between consumption and labor. Second, note that

X g=f;m @c i g p; I i @I i = 1: (10) 
In words, when a couple's income increases by one dollar so does the sum of their total consumption. Third, by using equations ( 3) and ( 10) the welfare change of an income increase for couple i is given by

@W i @I i = i f i f @c i f (p; I i ) @I i + i m i m @c i m (p; I i ) @I i = i f i f = i m i m : (11) 

Stage 1: labor supplies

In stage 1, the couple chooses labor supplies. Since we are not aiming at characterizing the optimal income tax scheme, this stage is of no direct relevance to our problem. Consequently, we restrict ourselves to stating the problem which is given by max

I i ;y i g W i = X g=f;m i g " b V i g p; I i v y i g w i g !# (12) s.t. X g=f;m y i g T y i m ; y i f I i 0: (13) 
In words, both spouses choose their labor supplies, taking into account the tax function and the solution of the subsequent stages. The solution is essentially identical (with some change in notation) to that described in Section 3 of Cremer et al. (2016).

Optimal tax policy

Throughout the paper we take a paternalistic approach and consider the utilitarian optimum based on equal weights between husband and wife, i f = i m = 1 8 i. The welfare function is thus given by

W = n X i=1 i X g=f;m " b V i g p; I i v y i g w i g !# : (14) 
Recall that while each spouse's (before tax) income y i g is observable, and the distribution of types is common knowledge, productivities, labor supplies and the spouses' individual consumption levels are not publicly observable. To be more precise, neither the spouses'consumption shares c i g , nor their respective consumption vectors are observable. Under the considered information structure the tax instruments include a possibly nonlinear income tax scheme, T i T (y i f ; y i m ), which can be positive or negative. And since anonymous transactions are observable, consumption goods can be taxed in a linear way. This information framework is the one typically considered in mixed taxation models. [START_REF] Bargain | Optimal commodity taxation and redistribution within households[END_REF] With the considered information structure feasible allocations must satisfy the following incentive constraints

X g=f;m i g " b V i g p; I i v y i g w i g !# X g=f;m i g " b V i g (p; I b ) v y b g w i g !# 8 i 6 = b: (15) 
That is, any type-i couple must be prevented from mimicking any type-b couple. In addition, the resource constraint given by

n X i=1 i 2 4 X g=f;m y i g I i + K X l=2 (p l 1) X g=f;m i gl p; I i 3 5 0 (16) 
must hold. [START_REF] Blacklow | Intra-hoursehold resource allocation, consumer preferences and commodity tax reforms: Australian evidence[END_REF] The optimal feasible utilitarian allocation is then obtained by maximizing ( 14) subject to the constraints ( 15) and ( 16). The Lagrangian L can be written as

L = n X i=1 i X g=f;m " b V i g p; I i v y i g w i g !# + n X i=1 n X b=1;b6 =i ib 8 < : X g=f;m i g " b V i g p; I i v y i g w i g !# X g=f;m i g " b V i g p; I b v y b g w i g !# 9 = ; + n X i=1 i 2 4 X g=f;m y i g I i + K X l=2 (p l 1) X g=f;m i gl p; I i 3 5 ; (17) 
where > 0 is the Lagrange multiplier of the resource constraint while ib 0 is the Lagrange multiplier associated with the self-selection constraint from a type-i to a type-b couple.

Throughout the paper we assume that only downward incentive constraints are binding. In other words, when ib > 0 we always have i > b. [START_REF] Boskin | Optimal tax treatment of the family: married couples[END_REF] The …rst order conditions with respect to I i and p k 8 k = 2; :::K are stated in the Appendix. We show in Appendix A that optimal commodity taxes satisfy the following system of equations

0 B @ t 2 . . . t K 1 C A = 1 1 0 B B B B B B B B B @ n X i=1 i X g=f;m (1 i g ) 8 < 
:

@ b V i g p; I i @p 2 + @ b V i g p; I i @I i X g=f;m x i g2 9 = ; . . . n X i=1 i X g=f;m (1 i g ) 8 < 
:

@ b V i g p; I i @p K + @ b V i g p; I i @I i X g=f;m x i gK 9 = ; 1 C C C C C C C C C A + 1 1 0 B B B B B B B B B @ n X i=1 n X b=1;b6 =i bi b f bi f 0 @ X g=f;m x i g2 X g=f;m x bi g2 1 A . . . n X i=1 n X b=1;b6 =i bi b f bi f 0 @ X g=f;m x i gK X g=f;m x bi gK 1 A 1 C C C C C C C C C A ; (18) 
where we de…ne bi g @V g (p; c b g p; I i )=@c b g and x bi gk

x gk (p; c b g (p; I i )).
is the aggregate reduced (K 1) (K 1) Slutsky matrix given by

= 0 B B B B B B B @ n X i=1 i X g=f;m @ ~ i g2 @p 2 ::: n X i=1 i X g=f;m @ ~ i g2 @p K . . . . . . . . . n X i=1 i X g=f;m @ ~ i gK @p 2 ::: n X i=1 i X g=f;m @ ~ i gK @p K 1 C C C C C C C A : (19) 
It is "reduced" in the sense that the line and column pertaining to the untaxed good 1 are removed. [START_REF] Brett | Optimal nonlinear taxes for families[END_REF] The e is used to denote the Hicksian demands as a function of prices and household disposable income with9 

@ ~ i gl @p k = @ i gl @p k + @ i gl @I i X g=f;m
x i gk l = 2; :::; K:

The Slutsky matrix measures the usual deadweight loss of taxation.

The …rst term on the right hand side of equation ( 18) is the Pigouvian term. It is zero when

i f = i m = 1 8
i, but for the rest its interpretation merits closer investigation. The second term on the right hand side of ( 18) is the incentive term which depends on the relative consumption levels of the mimicking and the mimicked couples.

Before analyzing these terms in greater detail note that to derive the expressions in (18) we combine the FOCs with respect to I i and p k of the government's problem to calculate the compensated derivative of the Lagrangian de…ned by

@L @p k + n X i=1 @L @I i X g=f;m x i gk :
This amounts to studying the e¤ect of a variation (dp k ;dI i ) such that dI i = dp k P g x i gk . This variation leaves the welfare W i of couple i una¤ected because it does not change P g i g b V i g p; I i . We shall now study successively the Pigouvian and the incentive terms in expression (18).

In the process it is helpful to decompose the tax rate into the incentive and the Pigouvian part, i.e, t k = t P k + t IC k 8 k = 2; :::K. As we will discuss in greater detail in the following two sections, the …rst term on the right hand side in (18) determines t P k while the second one determines t IC k .

The Pigouvian term

To understand the terminology "Pigouvian term" note that the …rst term in expression (18) gives the optimal tax rates in the benchmark case where wages (couples'types) are observable, while individual consumption levels remain unobservable. In that case the incentive constraints are not relevant; all the 's are zero and t IC k = 0 8k. Further observe that when all spouses in all couples receive identical weights, so that i f = i m = 1 8i, the Pigouvian tax is zero for all goods, i:e:; t P k = 0 8k. Consequently, it appears that when wages are observable the only reason to use commodity taxes is for paternalistic reasons, that is to "correct"the allocation of consumption within couples.

If individual consumption levels were observable they could be perfectly controlled through nonlinear commodity taxes, and the …rst best utilitarian allocation could be implemented, at least as long as types are observable. The linear commodity taxes considered here only o¤er an imperfect instrument, but as long as the spouses have di¤erent preferences, we can expect that they play a role in achieving an intra-couple allocation that is closer to the utilitarian optimum.

Intuitively, one would expect that the Pigouvian term calls for a lower tax or even a subsidy on the goods which are consumed in a larger proportion by the low-weight spouse. However, as our analysis will show, this simple conjecture may be misleading and neglects some of the e¤ects that are at work. This is because the taxes a¤ect the spouses'relative consumption shares; see equation ( 7). Consider a simple example and assume that one good is mainly consumed by the low-weight female spouse. Then, a subsidy on this good does increase her utility for a given level of c i j , but since the consumption shares will be adjusted (in a direction which is not a priori obvious) the net impact is not necessarily unambiguous.

Before proceeding, it is also useful to recall some of the results obtained by Cremer et al. (2016). In that paper commodity taxes were not available. The optimal income tax also included a Pigouvian term but this one was merely intended to correct spouses'labor supplies.

The income tax in itself had no direct e¤ect on spouses'relative consumption shares. And the fact that commodity taxes do have an impact on these consumption shares is precisely the main addition of this paper.

General expression

Recall that the expressions in (18) measure the e¤ect of a variation (dp k ;dI i ) such that W i = P g i g b V i g p; I i is constant for every i. In words, as consumer prices change, the couple's disposable income is adjusted to keep its utility constant. While this compensation maintains the couple's utility constant, utilities of individual spouses will, in general, not be constant. And it is e¤ectively the impact on the individual spouses'utilities which drives our results. To see this, let's consider the Pigouvian term in (18). The expression

@ e V i g @p k @ b V i g p; I i @p k + @ b V i g p; I i @I i X g=f;m x i gk ( 21 
)
measures the impact of the considered variation on the utility of spouse g = f; m of a given couple i. Since dW i = 0, we have

i f @ e V i f @p k + i m @ e V i m @p k = 0; (22) 
so that @ e V i f =@p k and @ e V i m =@p k are of opposite sign. Solving for @ e V i f =@p k (or @ e V i m =@p k ) and substituting, the term pertaining to couple i in line k of the vector in the Pigouvian tax in (18) can be written as

X g=f;m 1 i g @ e V i g @p k = 1 i f i m ! @ e V i f @p k = 1 i m i f ! @ e V i m @p k : (23) 
The above expression is negative when i f < i m and @ e V i f =@p k < 0 (so that @ e V i m =@p k > 0), that is when the low-weight spouses is made worse o¤ by the (couple compensated) tax increase.

Note that this is equivalent to saying that the high-weight spouse is made better o¤.

When

is diagonal, implying that the (couple) compensated demand of any good k, gk p; I i , does not depend on the prices of the other goods, the Pigouvian term for good k has the same sign as line k of the vector determined by (23). [START_REF] Couprie | Time allocation within the family: welfare implications of life in a couple[END_REF] Consequently, it is negative and thus reduces the tax on good k, or it favors a subsidy if a compensated price increase for that good makes the low-weight spouse worse o¤ (so that a compensated price reduction makes the low-weight spouse better o¤). This argument concentrates on a single couple. Substituting from ( 21) and (23) shows that the Pigouvian tax for good k in ( 18) is given by 0 B @ t P 2 . . .

t P K 1 C A = 1 1 0 B B B B B @ P n i=1 i 1 i f i m @ e V i f @p 2 = P n i=1 i 1 i m i f @ e V i m @p 2
. . .

P n i=1 i 1 i f i m @ e V i f @p K = P n i=1 i 1 i m i f @ e V i m @p k 1 C C C C C A : (24) 
In other words, the Pigouvian term pleads for a subsidy on good k if a (couple compensated)

price increase for that good makes the low-weight spouse in all couples worse o¤.

When Hicksian demands are not independent (so that is not diagonal), couple compensated cross price e¤ects come on top of the "direct"e¤ect just described which may then be mitigated or reinforced. The results obtained for the independent case, however, remain valid as long as we assume that the indirect (cross-price) e¤ects are not too signi…cant. We summarize this in the following proposition.

Proposition 1 Assume that is diagonal, implying that the compensated demand of any good does not depend on the prices of the other goods. Consider an increase in p k , compensated by an increase in I i to keep each couple's welfare constant. The Pigouvian term pleads for a subsidy on good k if such a compensated increase in its price makes the low-weight spouse in all couples worse o¤ . When Hicksian demands are not independent, cross price e¤ ects come on top of the "direct" e¤ ect just described which may then be mitigated or reinforced.

We will now successively present two examples in order to obtain more insights on the sign of the Pigouvian tax and to show under what circumstances the low-weight (high-weight) spouse is made better (worse) o¤ by a price reduction (increase).

Three goods with exclusive consumption

Let us analyze the special case where one of the goods, say good 2, is exclusively consumed by the female spouse while good 3 is consumed only by the male spouse. Further, we assume that both of these goods are normal (positive income elasticity). Formally, we have x i m2 = x i f 3 = 0 8 i. In other words, x 2 does not enter the male spouse's utility, while x 3 is not an argument of the female spouse's utility function. The numeraire good is consumed by both spouses and, for simplicity, we assume that these are the three only goods, i.e., K = 3.

In Appendix B we show that spouse f 's change in utility can be written as

@ e V i f @p 2 = i f i f SOC @ xi f 2 @p 2 @ 2 u i f @x i f 1 @x i f 2 p 2 @ 2 u i f (@x i f 1 ) 2 ! ( 25 
)
and

@ e V i f @p 3 = i f i m SOC @ xi m3 @p 3 @ 2 u i m @x i m1 @x i m3 p 3 @ 2 u i m (@x i m1 ) 2 ; ( 26 
)
where the terms in brackets are positive if and only if good x l for l = 2; 3 is a normal good.

Recall that the SOC is de…ned by equation ( 4). Denoting S kl the terms of the Slutsky matrix de…ned by (19), the optimal Pigouvian taxes are given by:

t P 2 t P 3 = 1 S 22 S 23 S 32 S 33 1 K f K m ; ( 27 
)
where

K f = n X i=1 i 1 i f i m ! @ e V i f @p 2 ; K m = n X i=1 i 1 i f i m ! @ e V i f @p 3 :
Using Cramer's rule to solve (27) yields

t P 2 = K f S 23 K m S 33 D = K f S 33 + K m S 23 D ;
(28)

t P 3 = S 22 K f S 32 K m D = K m S 22 + K f S 32 D ; ( 29 
)
where D is the determinant of the Slutsky matrix. The concavity of spouses' utilities implies S 22 ; S 33 < 0 and D > 0 while the sign of of the cross price e¤ects is ambiguous, that is

S 23 = S 32 Q 0. 11
For the sake of illustration we concentrate on the case where i f < i h 8 i so that the female spouse has the lower weight in all couples. When x i f 2 and x i m3 are normal goods this implies K f < 0 and K m > 0. Consequently, when Hicksian demands are independent (S 23 = S 32 = 0), we obtain t P 2 < 0 and t P 3 > 0. In words, the Pigouvian term calls for a subsidy on the female good and a tax on the male good. The results are exactly reversed if the low-weight spouse is male.

Expressions ( 28) and ( 29) show that the results obtained for the diagonal case, namely t P 2 < 0 and t P 3 > 0 are reinforced when S 23 = S 32 < 0, that is when goods 2 and 3 are (Hicksian) complements for the couple. They may be reversed in the case of Hicksian substitutes (S 23 = S 32 > 0) but this requires that the cross price (substitution) e¤ects outweigh the own substitution e¤ects. Intuitively, this can be explained as follows. When the female and male good are complements, the demand for the male good increases when the price for the female good decreases. However, since we want to reduce his consumption level and increase her consumption level, we need an even higher tax on the male good and an even higher subsidy on the female good in case the two are complements.

When the goods are (Hicksian) substitutes, the expressions become ambiguous, but their sign remains unchanged as long as the cross price e¤ects are su¢ ciently small (in absolute value and compared to the direct e¤ects). Now, a decrease in the price of the female good will also decrease the demand for the male good. Consequently, the desired adjustments in female and male consumption can be accomplished with a lower subsidy on the female good and a lower tax on the male good than when demands are independent.

In sum, when cross price e¤ects are negligible, or the good are (Hicksian) complements the 1 1 Recall that is the reduced Slutsky matrix. The determinant of the full Slutsky matrix would of course be equal to zero.

Pigouvian term pleads for subsidy on the female good like, for instance, tampons, female perfume or female clothes while it pleads for tax on the male product. We summarize our results of this section in the following proposition Proposition 2 Assume that there are only three goods, one of which is exclusively consumed by the female spouse while the other is exclusively consumed by the male spouse. If the two exclusive goods are normal goods and if they are either (Hicksian) complements or have independent Hicksian demands, the Pigouvian term calls for (i) a subsidization of the good exclusively consumed by the low-weight spouse and (ii) a taxation of the good exclusively consumed by the high-weight spouse.

The results continue to apply for the case of Hicksian substitutes as long as the cross price substitution e¤ ects are su¢ ciently small compared to the own substitution e¤ ects.

K Goods with separable utility function

Suppose now that the utility u g is given by

u g X i g = h x i g1 + v g x i g2 ; :::x i gK ; g = f; m: (30) 
In words, the utility function is separable between the numeraire good 1 and the other goods.

Additionally, the sub-utility for good one is the same for both spouses, i.e., h h f = h m .

Suppose further that h(x i g1 ) has constant absolute risk aversion (CARA), so that

A(x i g1 ) @ 2 h(x i g1 )=(@x i g1 ) 2 @h(x i g1 )=@x i g1
= A for g = f; m and 8 i is constant. [START_REF] Cremer | Atkinson and Stiglitz theorem in the presence of a household production sector[END_REF] We show in Appendix C that we can write for spouse f 's change in utility

@ e V i f @p k = i f i f [@ 2 h(x i f 1 )=(@x i f 1 ) 2 ] SOC " K X l=2 p l @ xi f l @p k @ xi ml @p k !# (31) 
so that for i f < i m the Pigouvian term pleads for a subsidy on good k if

K X l=2 p l @ xi f l @p k > K X l=2 p l @ xi mk @p k , t P k < 0: (32) 
In this scenario, we thus obtain that if both spouses have independent Hicksian demands, the Pigouvian term tends to reduce the tax on good k if the demand of the spouse with the lower 1 2 This amounts to assuming that

h(x i g1 ) = e Ax i g1 ;
where is a constant.

weight (assumed to be f for the sake of illustration) is "more responsive" to its price. In the CARA case responsiveness is de…ned in terms of the slope the Hicksian demand curve. This generalizes our exclusive consumption result; there the female good was not at all consumed by the male so that its price elasticity was zero. The result suggests that it is not the consumption level per se which matters but the sensitivity with respect to the price and thus to the tax or subsidy. This is quite intuitive. When i f < i m female consumption levels will be lower than socially optimal. The Pigouvian element in the tax formula then tends to reduce the di¤erence in consumption levels (or more precisely marginal utilities). This pleads for a subsidy on the goods where female consumption is more price responsive.

We summarize this result in the following proposition.

Proposition 3 Assuming that is diagonal and preferences are separable in the numeraire good and the other goods, the Pigouvian term pleads for a subsidy on good k if the subutility of the numeraire good exhibits CARA and the slope of the Hicksian demand for good k is larger in absolute value for the low-weight spouse.

5 The incentive term

General expression

We now turn to the interpretation of t IC k given by (18). We concentrate on the case where is diagonal (or near diagonal so that cross price e¤ects are negligible, i:e:; S kl = 0). These terms have a familiar ‡avor (see e.g., Cremer and Gahvari, 2014) and their sign is essentially determined by the comparison of the consumption levels of the mimicked and mimicking couples. [START_REF] Cremer | Externalities and optimal taxation[END_REF] More precisely, the incentive term is positive and tends to increase the tax if the mimicking couple has a larger total consumption of the considered good than the mimicked couple, that is, P g x ib gk > P g x i gk . In that case the tax relaxes an otherwise binding incentive constraint because it hurts the mimicking couple more than the couple they mimick. Otherwise, it calls for a subsidy or, at least, a lower tax. [START_REF] Cremer | Income taxation of couples and the tax unit choice[END_REF] The interesting question from our perspective is how these terms are a¤ected by the couple's bargaining and, speci…cally, by the pattern of spouses'bargaining weights. This is the issue to which we now turn.

Observe that since preferences are separable between goods and labor supply, the traditional Corlett and Hague considerations (see, for instance, Christiansen, 1984) do not matter. In other words, issues of complementarity with labor are irrelevant. What matters instead are the spouses' preferences and bargaining weights. Note that if both spouses had the same weights in all couples, the mimicking and mimicked couples'consumption of the considered good would coincide, P g x ib gk = P g x i gk . Then the Atkinson and Stiglitz theorem would apply and there would be no need for commodity taxes. [START_REF] Cremer | Household bargaining and the design of couples' income taxation[END_REF] Note that x i gk can e¤ectively also be written as x i gk = x i gk (p; c i g (p; I i ; i g )). Consequently, we can write:

X g=f;m x i gk (p; c i g (p; I i ; i )) = x i f k (p; c i f (p; I i ; i f )) + x i mk (p; I i c i f (p; I i ; i f ))
so that @ P g x i gk (p; c i g (p;

I i ; i )) @ i f = @x i f k @c i f @x i mk @c i m ! @c i f @ i f : (33) 
Equation ( 33) is positive if

@x i f k =@c i f > @x i mk =@c i m (34) 
and negative otherwise. Condition (34) is satis…ed if the female spouse's consumption of the considered good is more responsive to income than that of the male spouse. In other words, the Engel curve has a higher slope for the female than for the male spouse. 1. If @x i f k =@c i f > @x i mk =@c i m for every i, and i f < b f (plausible case in which couple of type b is richer) then X g=f;m

x i gk < X g=f;m
x bi gk , t IC k > 0 so that the incentive term calls for a tax on good k. (this case also applies if @x i f k =@c i f < @x i mk =@c i m for every i and i f > b f ).

2. If @x i f k =@c i f < @x i mk =@c i m for every i,

and i f < b f then X g=f;m x i gk > X g;f m
x bi gk , t IC k < 0 so that the incentive term calls for a subsidy on good k. (this case also applies if @x i f k =@c i f > @x i mk =@c i m for every i and i f > b f ).

We summarize our results in the following proposition.

Proposition 4 Assume that is diagonal. The incentive term pleads for a tax (subsidy) on good k if (i) the low-weight spouse's consumption of good k is more (less) responsive to income changes and the weight of this spouse is increasing in wages.

(ii) the low-weight spouse's consumption of good k is less (more) responsive to income changes and the weight of this spouse is decreasing in wages.

Three goods with exclusive consumption

To illustrate the above results it is interesting to return to the exclusive consumption case considered in Subsection 4.2. Recall that good 2 is the good exclusively consumed by f while good 3 is the good exclusively consumed by m. We thus have by de…nition @x i m2 =@c i m = @x i f 3 =@c i f = 0 and a couple's total consumption of any of these goods is simply that of one of the spouses. Assume again that f is the low-weight spouse in all couples, i.e., i f < i m . [START_REF] Cremer | Direct versus indirect taxation: the design of the tax structure revisited[END_REF] We then know from Subsection 4.2 that the Pigouvian term calls for a subsidy on good 2 and a tax on good 3. These e¤ects are reinforced by the incentive term if i f decreases with w i , which automatically implies that i m increases with w i . In that case the mimicking couple will have a lower consumption of the female good and the incentive term also calls for a subsidy. However, the case where i f decreases does not appear to be the empirically most compelling; see, e.g., Couprie (2007). And when i f increases with wages we get the opposite result so that the incentive term goes against the Pigouvian term. Intuitively, Pigouvian and redistributive considerations then contradict each other. The female good, which ought to be subsidized on Pigouvian grounds is also consumed in larger proportion by high-wage couples (because f has a higher weight there) and this makes it a candidate for taxation on redistributive grounds. So the incentive term can be expected to be nil for tampons and we can make a case for a subsidy on tampons for Pigouvian reasons. The incentive term does, however, countervail the Pigouvian term when it comes to female products like perfume, or clothes since these goods can be expected to be consumed in larger proportion by higher wage couples. Proposition 5 Assume that there are only three goods, one of which is exclusively consumed by the female spouse while the other is exclusively consumed by the male spouse. If the two exclusive goods are normal goods and Hicksian cross price e¤ ects are su¢ ciently small, the Pigouvian term is 1 6 The opposite case is exactly symmetric.

(i) reinforced by the incentive term when the bargaining power of the low-weight spouse decrease with wages and (ii) is dampened when the bargaining power of the low-weight spouse increases with wages.

Summary and conclusion

This paper has studied the design of commodity taxes, in a world where consumption and labor supply decisions are made by couples according to a bargaining procedure between spouses, and where an optimal income tax is also available. We have shown that the expressions for the tax rates include Pigouvian and incentive terms. The Pigouvian term arises when a spouse's social weight di¤ers from her weight within the couple. The incentive term has a familiar ‡avor in that it depends on the mimicker and mimicked couples'respective consumption levels. Interestingly, though, these di¤erences in consumption levels depend on the spouses respective bargaining weight. In particular, whether the weight of the low-weight spouse increases or decreases with wages has been shown to be of crucial importance. The role of the two terms is most apparent in the case where some goods are consumed exclusively by one of the spouses. Supposing, for instance, that the female spouse has the lower bargaining weight, we have found conditions under which the Pigouvian term calls for a subsidization of the "female good", and a taxation of the "male good". However, when the weight of the female spouse increases with wages, and when the demand for the female is su¢ ciently elastic with respect to the female weight the good will tend to be consumed in larger proportion by more productive couples. Consequently, the incentive term makes it a candidate for taxation. Intuitively, under these circumstances a subsidization of the female good would be regressive. The incentive term then mitigates the Pigouvian term and may even reverse it. This is likely to be the case for perfumes while the weight (and thus income) elasticity is likely to be small for tampons so that one can expect the Pigouvian term to dominate. To sum up, our paper clearly provides support for a reduced VAT rate, or even a subsidy on tampons (as long as the female spouse has a lower bargaining weight), but as much "some" of its authors may regret, it does not make a case for the subsidization of expensive perfumes or jewelry. which using equations ( A3)-(A6) implies

@L @p k = n X i=1 i X g=f;m (1 i g ) @ b V i g p; I i @p k n X i=1 i i g i g X g=f;m x i gk + n X i=1 i X g=f;m 8 < : x i gk + X l (p l 1) X g=f;m @ i gl @p k 9 = ; + n X i=1 8 < : n X b=1;b6 =i ib i g i g X g=f;m x i gk + n X b=1;b6 =i bi b g bi g X g=f;m x bi gk 9 = ; = 0: (A9)
Derivation of the compensated derivative of the Lagrangian. Next we calculate the compensated derivative of the Lagrangian de…ned as

@L @p k + n X i=1 @L @I i X g=f;m x i gk = n X i=1 i X g=f;m (1 i g ) 2 4 @ b V i g p; I i @p k + @ b V i g p; I i @I i X g=f;m x i gk 3 5 + n X i=1 i X l (p l 1) X g=f;m 0 @ @ i gl @p k + @ i gl @I i X g=f;m x i gk 1 A + n X i=1 n X b=1;b6 =i bi b g bi g 0 @ X g=f;m x bi gk X g=f;m x i gk 1 A = 0: (A10) 
Rearranging (A10) and noting that t l = p l 1, we obtain

K X l=2 t l n X i=1 i X g=f;m @ ~ i gl @p k = 1 n X i=1 n X b=1;b6 =i bi b f bi f 0 @ X g=f;m x i gk X g=f;m x bi gk 1 A 1 n X i=1 i X g=f;m (1 i g ) 2 4 @ b V i g p; I i @p k + @ b V i g p; I i @I i X g=f;m x i gk 3 5 (A11)
for every k = 1:::K: Rewriting the system of equations ( A11) in matrix notation and premultiplying by 1 yields expression (18) in the main text.

B Derivation of equation (25) and (26)

Using Roy's identity equation ( 21) can be written as

@ e V i f @p k = i f " @c i f @p k + @c i f @I i (x i f k + x i mk ) x i f k # = i f " @c i f @p k + @c i f @I i 1 ! x i f k + x i mk @c i f @I i # (A12)
With equations ( 4), ( 6), ( 7) and (10), equation (A12) can be written as

@ e V i f @p k = i f 2 6 4 i f @ 2 V i f (p;c i f ) @c i f @p k i m @ 2 V i m (p;c i m ) @c i m @p k SOC i f @ 2 V i f (p;c i f ) (@c i f ) 2 SOC x i f k + x i mk i m @ 2 V i m (p;c i m ) (@c i m ) 2 SOC 3 7 5 = i f i f SOC " @ 2 V i f (p; c i f ) @c i f @p k + x i f k @ 2 V i f (p; c i f ) (@c i f ) 2 ! i m i f @ 2 V i m (p; c i m ) @c i m @p k + x i mk @ 2 V i m (p; c i m ) (@c i m ) 2 # : (A13)
We have

@V i f (p; c i f ) @c i f = @u f (c i f P l=2 p l x i f l (p; c i f ); x i f 2 (p; c i f ); ::; x i f K (p; c i f )) @x i f 1 @ 2 V i f (p; c i f ) @c i f @p k = @ 2 u i f (@x i f 1 ) 2 x i f k + X l=2 p l @x i f l @p k ! + K X l=2 @x i f l @p k @ 2 u i f @x i f 1 @x i f l @ 2 V i f (p; c i f ) (@c i f ) 2 = @ 2 u i f (@x i f 1 ) 2 1 K X l=1 p l @x i f l @c i f ! + K X l=1 @x i f l @c i f @ 2 u i f @x i f 1 @x i f l so that @ 2 V i f (p; c i f ) @c i f @p k + x i f k @ 2 V i f (p; c i f ) (@c i f ) 2 = @ 2 u i f (@x i f 1 ) 2 x i f k + K X l=2 p l @x i f l @p k ! + K X l=1 @x i f l @p k @ 2 u i f @x i f 1 @x i f l + @ 2 u i f (@x i f 1 ) 2 x i f k 1 K X l=2 p l @x i f l @c i f ! + x i f k K X l=2 @x i f l @c i f @ 2 u i f @x i f 1 @x i f l = @ 2 u i f (@x i f 1 ) 2 K X l=2 p l @x i f l @p k + x i f k @x i f l @c i f ! + K X l=2 @ 2 u i f @x i f 1 @x i f l @x i f l @p k + x i f k @x i f l @c i f ! = K X l=2 @ xi f l @p k @ 2 u i f @x i f 1 @x i f l p l @ 2 u i f (@x i f 1 ) 2 ! ; (A14)
where

@ xi f l @p k = @x i f l @p k + x i f k @x i f l @c i f :
Similarly, we can show that

@ 2 V i m (p; c i m ) @c i m @p k + x i mk @ 2 V i m (p; c i m ) (@c i m ) 2 = K X l=2 @ xi ml @p k @ 2 u i m @x i m1 @x i ml p l @ 2 u i m (@x i m1 ) 2 (A15)
Substituting equations (A14) and (A15) into (A13) and inserting into (A12) yields

@ e V i f @p k = i f i f SOC " K X l=2 @ xi f l @p k @ 2 u i f @x i f 1 @x i f l p l @ 2 u i f (@x i f 1 ) 2 ! i m i f K X l=2 @ xi ml @p k @ 2 u i m @x i m1 @x i ml p l @ 2 u i m (@x i m1 ) 2 # ; (A16)
where @ 2 U i g =@x i g1 @x i gl p l @ 2 U i g =(@x i g1 ) 2 > 0 if and only if x l is a normal normal. Recall that SOC is de…ned by equation (4).

C Proof of expressions (31)

When utility is given by (30), equation (A16) can be written as

@ e V i f @p k = i f i f SOC " @ 2 h(x i f 1 ) (@x i f 1 ) 2 K X l=2 p l @ xi f l @p k + i m i f @ 2 h(x i m1 ) (@x i m1 ) 2 K X l=2 p l @ xi ml @p k # (A17)
Factoring out @ 2 h(x i f 1 )=(@x i f 1 ) 2 and using i f i f = i m i m , equation (A17) can be written as

@ e V i f @p k = i f i f [@ 2 h(x i f 1 )=(@x i f 1 ) 2 ] SOC 2 6 4 K X l=2 p l @ xi f l @p k @ 2 h(x i m1 ) (@x i m1 ) 2 i m i f @ 2 h(x i f 1 ) (@x i f 1 ) 2 K X l=2 p l @ xi ml @p k 3 7 5 :
Noting that i g = @h(x i g1 )=@x i g1 and given that h is CARA, the above equation simpli…es to

@ e V i f @p k = i f i f [@ 2 h(x i f 1 )=(@x i f 1 ) 2 ] SOC K X l=2 p l @ xi f l @p k @ xi ml @p k ! : (A18)

Which in the UK includes ostrich meat and helicopters, but neither toothpaste nor toilet paper.For a brief summary of the tampon tax controversy see, for instance, www.economist.com/blogs/freeexchange/2016/03/tampon-tax

See for instance, Apps and Rees (1988; 1999); Brett (2007); Cremer, Lozachmeur and Pestieau (2012); Kleven, Kreiner and Saez (2009); Schroyen (2003).

An exception is Immervoll, Kleven, Kreiner and Verdelin (2011).

[START_REF] Blacklow | Intra-hoursehold resource allocation, consumer preferences and commodity tax reforms: Australian evidence[END_REF] consider a related problem. They present an empirical analysis which shows how the spouses'respective spending behavior can be used to design a tax reform.

See, for instance,[START_REF] Christiansen | Which commodity taxes should supplement the income tax?[END_REF] and[START_REF] Cremer | In-kind transfers, self-selection and optimal tax policy[END_REF].

We assume that taxation is purely redistributive; there is no exogenous revenue requirement. This does not a¤ect our results.

This assumption is of no relevance to our formal results. In particular, the expressions for the optimal tax rates are valid whatever the pattern of binding incentive constraints. However, it is convenient for the interpretations. In our setting, where couples can be ranked by increasing wages of both spouses, it is in any event a natural assumption especially with a utilitarian welfare function.

This matrix is of full rank so that its inverse exists; see[START_REF] Takayama | Mathematical Economics. 2nd Ed[END_REF].

These are standard Hicksian demands but for the couple rather than for the individual. They can be properly de…ned as solutions to the couple's expenditure minimization problem.

0 The diagonal term of the Slutsky matrix is negative, but the term is premultiplied by a negative sign.

[START_REF] Atkinson | Optimal taxation and the direct versus indirect tax controversy[END_REF] Which in turn determines the comparison of the marginal rates of substitution between mimicked and mimicking couples.1 4 Remember that the diagonal terms of the Slutzky matrix are negative.

[START_REF] Bargain | Optimal commodity taxation and redistribution within households[END_REF] With equal weights, the Pigouvian term would also vanish.

Appendix

A Derivation of expression (18) First-order conditions. Di¤erentiating L with respect to I i and p k yields (the arguments of some functions are dropped where no confusion can arise)

where the tax on good 1 is …xed at zero.

Simpli…cation and rearrangement of (A1). Di¤erentiation of the weighted sum of equation (8) with respect to I i yields

@c i g p; I i @I i :

Using equations (10) and (11), this implies that

Proceeding in the same way and using Roy's identity, we have

where we de…ne 

and making use of equations ( A3)

Multiplying (A7) by P g x i gk and summing over i yields

Simpli…cation and rearrangement of (A2). We now turn to the FOC with respect to prices. We can rearrange equation (A2) as follows