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Abstract: The purpose of this work is to provide theoretically grounded assessment on both
the field-of-view and the bandwidth of a lensless holographic setup. Indeed, while previous
works have presented results with super-resolution and field-of-view extrapolation, there is no
well established rules to determine them. We show that the theoretical field of view can be
hugely large with a spatial-frequency bandwidth only limited by the wavelength leading to an
unthinkable number of degrees of freedom. To keep a realistic field of view and bandwidth, we
propose several practical bounds based on few setup properties: namely the noise level and the
spatio-temporal coherence of the source.

© 2021 Optical Society of America

1. Introduction

Lensless in-line holography consists in directly recording the light diffracted by the observed
sample on a detector without any optical parts between them. Given the simplicity, the
compactness, the robustness and the relatively low cost of this setup [1–3], inline digital
holography is successfully employed in many applications such as lensfree microscopy [2–5] or
metrology [6].
Contrary to direct imaging methods, the recorded hologram cannot be directly interpreted

and computational algorithms are mandatory to recover an image of the sample or to extract
any parameters of interest. This reconstruction step has its own limitations and it is difficult to
disentangle whether the effective resolution and the field of view (FoV) of the reconstructed
image are due to some physical limits of the setup or to an imperfect reconstruction algorithm:

• Concerning the FoV, many works [7–15] restrict the lateral FoV of the reconstructed
image to the FoV of the sensor. However for similar measurements, some reconstruction
methods [16–19] achieve to recover information on a FoVmuch larger than that of the sensor
(detection in an area 16 times wider than camera FoV in the case of [17]). Nonetheless
none of these works provide any estimation of the size of the extrapolated FoV.

• Without any lens to filter it, the wave-field in the detector plane may contain angular spatial
frequencies as high as the wavenumber of illumination k. However, many works [7–12]
reconstruct the object at the sampling rate given by the detector pixel pitch that can be
order of magnitude coarser. To overcome this limitation, several methods were proposed to
recover aliased spatial frequencies either using super-resolution methods [13–15,19–21]
or using prior knowledge on the observed scene [22–25].

A review of the state of the art of reconstruction methods shows no consensus about how to
assess the resolution and the FoV of a given setup. The purpose of this work is thus to answer the
question: What are the effective field of view and the spatial-frequency bandwidth of a lensless
setup?

In the literature, the Rayleigh criterion is the most commonly used definition of the resolution.
In this work, the spatial resolution R is defined as the inverse of the highest spatial frequency



transmitted by the setup. For a setup of angular bandwidth B, the resolution is R = 4 π/B. The
resolution limits of an holographic system has been discussed by many authors [23, 25–29].
Contrary to what is presented here, most of these works consider the resolution of the whole
system (propagation + sensing + reconstruction) and aliasing issues. In this paper, we propose
bounds on the extent in both space and frequency of the sample to model the measured intensity
with the highest fidelity. This gauging of the bandwidth and the FoV of a setup does not say
anything about how the propagation kernel should be numerically implemented and how the
object should be reconstructed in further numerical processing steps or even if it is possible.
Precise and numerically efficient propagation modeling is a research subject in itself and has
been extensively studied either for reconstruction [22,30–41] or for hologram generation [42,43].

At optical wavelengths, detectors cannot measure complex amplitude but only intensity of the
light. The Fourier spectrum of the intensity is the auto-correlation of the Fourier spectrum of the
complex amplitude [8]. This has two consequences: (i) the bandwidth of the intensity is twice
that of the diffracted wave and (ii) complex amplitude high spatial frequencies are folded by the
auto-correlation and can generate low frequency components in intensity. To properly explain
the spatial frequency content of the measured intensity, it is necessary to model the complex
amplitude at frequencies much higher than the actual sampling rate of the intensity. Hence, the
bandwidth of a lensless inline holography setup is independent of the sampling of the intensity
by the detector (sampling rate, pixel shape, pixel fill-factor,. . . ). In a medium of refractive index
n, only spatial angular frequencies lower than k = n 2 π

λ can propagate and the angular bandwidth
of a perfectly coherent diffracted wave in the detector plane is B = 2 k. Accordingly, regardless
of the sampling rate of the camera, to rigorously model the measured intensity, the diffracted
complex amplitude must be sampled with a sampling rate higher than 2 n

λ .
In addition, propagation kernels such as the angular spectrum kernel are band-limited meaning

that they are infinitely extended in the image domain. As a consequence, the theoretical FoV
of an in-line lensless microscopy is only limited by the size of the illumination beam. Such
large FoV sampled at 2 n

λ lead theoretical space-bandwidth product of several billion pixels that
cannot be handled in practice. The goal of the present paper is to tighten bounds on both the FoV
and the bandwidth to estimate the actual space-bandwidth product of an experimental lensless
holography setup. To be of practical interest on real experiments, we focus on giving bounds on
the bandwidth and the FoV only using easily available parameters, namely: illumination angle,
coherence length and coherence area of the illumination, size of the sensor and its noise.

2. Lensless holography model

2.1. Setup and notations

Throughout this paper, we use lower case letters for functions and scalars (e.g. o and λ), boldface
lowercase letters for vectors (e.g. o) upper case calligraphic letters for operators acting on
functions (e.g. M) and boldface uppercase letters for matrices (e.g. H). x> is the adjoint (i.e.
the conjugate transpose) of x. ‖x‖2 =

√
x>x is the Euclidean norm of x. x>y is the scalar

product t between vectors x and y and x × y their element-wise product.
With these notations, each wave is represented by a square integrable 2D function from R2 to
C (e.g. w : R2 → C) and with lateral coordinates x = [x1, x2]

>. The discretized version of this
wave is the vector w ordered in lexicographical order (e.g. w = [w1, . . . ,wN ]

> where N is the
number of pixels). Functions and vectors with a hat (e.g. ŵ) and without a hat (e.g. w) are in
Fourier domain and space domain respectively.
"We consider the lensless setup depicted in Fig. 1: a thin (2D) sample, described by the

function o : R2 → C, is placed orthogonally to the optical axis at z = 0. It is illuminated by
a plane wave of wavelength λ (or a wavenumber k = n 2 π

λ ) arriving with an incidence angle
θ = [θ1, θ2]

> relatively to the optical axis. After propagation in a medium of refractive index n,
the diffracted wave w is recorded by a detector of size `1 × `2 placed at a distance z, orthogonally



Fig. 1. Scheme of the setup

to the optical axis. The detector produces the discrete measurements d ∈ RN .
To give a correct interpretation of the measurements d, one has to derive a rigorous model

accounting for the totality of the measured information. This is summed up by building the
forward operatorM : L2(R2) → RN acting on the Hilbert space of squared integrable functions
L2 and linking the object o to the measurements d ∈ RN :

d =M(o) + e , (1)

where e is an error term.
In lensless holography, this forward operator can be described as the composition of three

operators:
M = S ◦ C ◦H , (2)

where ◦ denotes the composition and:

• H : L2(R2) → L2(R2) models the light propagation from the sample plane to the detector
plane. This linear operator is described in Sec. 2.2.

• C : L2(R2) → L2(D) cuts the input function on the compact support D ⊂ R2 describing
the sensitive area of the detector of size ` = [`1, `2]>:

C( f )(x) =


f (x) if x ∈ D ,

0 otherwise .
(3)

• S : L2(D) → RN
+ models the sensing and the sampling performed by a detector with N

pixels. In inline holography, the detector samples the intensity of the scattered wave.

2.2. Propagation model

Right after the interaction of the illumination wave with the sample o, the complex wave field v

is:
g(x) = o(x) exp

(
 k x> sin(θ)

)
, (4)

where sin(θ) = [sin(θ1), sin(θ2)]
> is the component wise 2D sine. It can be expressed as a shift

in the Fourier domain:
ĝ(ω) = ô (ω − k sin(θ)) , (5)



where ω = [ω1, ω2]
> ∈ R2 is the 2D angular frequency and F is the continuous (non unitary)

2D Fourier transform operator defined as:

f̂ (ω) = F ( f ) (ω) =
∬
R2

f (x)e−  x
>ωdx . (6)

The property of shifting the sample’s Fourier spectrum by a tilted illumination can be used to
perform aperture synthesis as in Fourier ptychography [44].
Given the high numerical aperture of a lensless setup, the propagation is modeled in the

near-field regime by the mean of the angular spectrum (AS) propagation mode [8]. It gives the
Fourier transform of the complex wave field w in the detector plane as:

ŵ(ω) = f̂ AS(ω) ĝ(ω) , (7)

where f̂ AS is the angular spectrum transfer function for z � λ (neglecting evanescent waves) [8]:

f̂ AS(ω) =


e+  z
√
k2−‖ω ‖2 if ‖ω‖2 ≤ k2

0 otherwise.
. (8)

Let us note here that when most of the propagating wave energy is concentrated on low
angular frequencies, the propagation kernel is non null only when ‖ω‖2 � k2 leading to the

approximation
√

k2 − ‖ω‖2 ≈ k − ‖ω ‖
2

2 k . This is the paraxial approximation and, discarding the
constant term e  k z , the propagation kernel becomes the Fresnel transfer function:

f̂ F(ω) = e− 
z

2 k ‖ω ‖
2
. (9)

The wave field in the detector plane w can be rewritten in the space domain expressing the
operatorH as:

w = H(o) , (10)

w(x) = F −1
(
ĥAS × ô

)
(x) e  k x> sin(θ) , (11)

where ĥ is the shifted angular spectrum transfer function [45]:

ĥAS(ω) =


e  z
√
k2−‖ω+k sin(θ) ‖2 if ‖ω + k sin(θ)‖2 ≤ k2,

0 otherwise .
. (12)

Its expression in space is the Hyugens-Fresnel convolution kernel [8] under oblique illumination
[45]:

hAS(x) =
k z

 2π
(
‖x‖2 + z2

) e  k
(
−x> sin(θ)+

√
‖x ‖2+z2

)
. (13)

3. Space-bandwidth product analysis

The space-bandwidth product (SBP) is a powerful tool to assess the performance of optical setups
and analyze sampling and reconstruction conditions [23, 38, 46–48]. Following Lohmann et
al. [49], we use the geometrical representation of SBP in the Wigner domain. For sake of clarity,
we consider in this section only 1D signals. In this representation, the support of a signal of
angular bandwidth BS over a FoV `s is a rectangle as depicted in Fig. 2.a
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Fig. 2. Transformation of the SBP in the Wigner domain after a Fresnel transform.

3.1. Space-bandwidth product in paraxial approximation

The Wigner distribution function WF of the Fresnel transfer function given Eq. (9) is [49]:

WF(x, ω) =
∫

f̂ F
(
ω +

ω′

2

)
f̂ F∗

(
ω −

ω′

2

)
e  ω

′ x dω′ (14)

= δ

(
ω − x

k
z

)
, (15)

where f̂ F∗ is the complex conjugate of f̂ F and δ the Dirac delta function.
As a multiplication in Fourier domain is a convolution along the space dimension in the Wigner

domain, the Fresnel propagation corresponds to a horizontal shearing of the signal SBP [50] as
depicted in Fig. 2.b. As stated in [23], to prevent loss of information, the propagated signal must
be sampled on an area of width `s + z Bs

k that encompasses all its support in the Wigner domain.
Conversely, as in practice the propagated signal is sampled on a rectangular area in the Wigner

domain of width `, the lensless holographic setup probe a region of the sampled sheared in the
opposite direction as depicted on the dark grey area of Fig. 3. This means that under Fresnel
approximation for a band-limited sample of angular bandwidth Bs, the FoV of a setup with a
detector of width ` is `F

1 × `
F
2 with:

`F
i = `i + z

Bs

k
. (16)

As a consequence of the shearing of the space-bandwidth product, the bandwidth and thus
the resolution of a lensless setup varies within the FoV [25–27]. The resolution is coarser at
the center (with a resolution of rcenter = λ z

2 ` at best) than on the edges of the FoV (resolution of
redge = 4 π

Bs
at best).

3.2. Angular spectrum space-bandwidth product

Wigner distribution function of the angular spectrum kernel Eq. (8) is impossible to estimate
analytically. However, its support in the Wigner domain can be estimated using the instantaneous
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Fig. 3. Space-bandwidth product (light gray) probed by a lensless setup of detector
size ` under a normal illumination (θ = 0). The darker area represents the SBP under
paraxial approximation (when the bandwidth of the probed sample is much smaller
than k).

frequency of the angular spectrum kernel expressed in space Eq. (13):

ξi(x) =
d Arg(hAS(x))

dxi
, (17)

= k
©«

xi√
‖x‖2 + z2

− sin (θi)
ª®®¬ , (18)

where Arg(h) is the complex argument of h and ξi(x) is the instantaneous frequency along the
dimension i and at the position x. In 1D (taking x = x1 and x2 = 0):

ξ(x) = k
(

x
√

x2 + z2
− sin (θ)

)
. (19)

The propagation kernel h is a chirp and its instantaneous frequency increases monotonically with
x. This means that the probed bandwidth of a lensless setup varies within the FoV. At a given
position in the sample plane, the bandwidth probed by the setup is bounded by the instantaneous
frequencies at each edges of the sensor. As a consequence, the SBP of a lensless setup is the area
between ξ(x + `

2 ) and ξ(x −
`
2 ) as depicted Fig. 3. It is:∫ +∞

−∞

ξ

(
x +

`

2

)
− ξ

(
x −

`

2

)
dx = 2 k ` , (20)

that corresponds to a number of degrees of freedom of 2 `
λ : the highest number of degrees of

freedom it is physically possible to record on a detector of size `. The incidence angle shifts the
SBP along the angular frequency axis without changing its shape. The center of the FoV xc is



given by:
ξ(−xc) = 0 ⇐⇒ xc = −z tan(θ) , (21)

as it is expected from geometrical optics.
For low spatial frequencies (i.e. within the paraxial approximation), SBP of AS and Fresnel

(in dark gray on Fig. 3) are identical.
To perfectly explain the propagated wave in the detector plane, one has to model the sampled a

rectangular area in the Wigner domain that encompasses all the SBP of the angular spectrum.
That is on a bandwidth of B = 2 k centered on k sin(θ). Along the space dimension, this SBP
spans the whole axis implying an infinite FoV: `AS = ∞. This is a consequence of the infinite
size in space of the AS kernel Eq. (13).
Assessing the size of the propagation kernel in space also amounts to estimate the smallest

sampling rate of the Fourier space needed to perfectly sample ĥAS. It is estimated by computing
its highest instantaneous frequencies along both dimension:

τi(ω) =
d Arg(ĥ(ω))

dωi
. (22)

The instantaneous frequency τ1 (resp. τ2) is infinite for ω1 = k (sign(θ1) + sin(θ1)) (resp.
ω2 = k (sign(θ2) + sin(θ2))). The diffraction patterns are thus infinitely extended in the detector
plane highlighting the bandlimited nature of ĥAS. However, ĥAS is still approximately well
sampled as long as the phase difference of ĥAS between two consecutive frequels is lower than
π [51]. This is true when the FoV `′ × `′ verifies :

z
√

n2λ−2 −
(
n λ−1 − `′−1)2

≤ 1 , (23)

`′ ≥ λ
©«n −

√
n2 −

(
λ

z

)2ª®¬
−1

. (24)

The theoretical FoV given by Eq. (24) is too large, much larger than the effective FoV of
the setup in practice. As an example, `′ = 3m for the parameters used in [3]: λ = 681 nm
and z = 1.02mm. However several physical phenomena decrease the size of diffraction pattern
detectable in practice, narrowing the FoV.

4. Narrowing the field of view

As the propagation is modeled as a convolution in space, every objects outside of the detector
field but closer to its edge than the half of the size of the propagation kernel in space will have an
influence on the propagated wave w in the detector support. To take into an account the fact that
the effective propagation kernel may no be symmetrical, we define its size along the dimension
i as the sum of its radius to the left p−i and to the right p+i . For each phenomenon, namely:
the spatial and the spectral coherence and the detector noise and quantification, we define the
half-width of the diffraction pattern pspa, pspe, and pnoise respectively. Along dimension i, the
overall half-width of a propagation kernel is given by

p−i = min(p−spa
i , p−spe

i , p−noise
i ) , (25)

p+i = min(p+spa
i , p+spe

i , p+noise
i ) . (26)

The final FoV of the setup is then `′1 × `
′
2 with:

`′i = `i + p−i + p+i . (27)



Fig. 4. Scheme of the diffraction by a half plane under illumination with an incidence
of θ as modeled in Sec. 4.1. The geometrical shadow boundary is at xc .

Fig. 5. Intensity as a distance from geometrical shadow boundary xc of the diffraction
of a half plane at a distance of z = 250 µm for an illumination of wavelength λ = 530 nm
and an incidence θ1 = 0◦ (grey solid line) and θ1 = 30◦ (black solid line) both with
their upper bound (dashed lines) computed according to Eq. (31).

4.1. Measurements noise

The extent of the diffraction kernel can be defined as the area where its intensity is over the
detector detection limits. This can be characterized as the distance p from the center of a
diffraction kernel after which the fringes are no longer detectable by the sensor.

In the detector plane, the contrast of a diffraction pattern decreases with the distance from its
center. As it scatters more power, the larger the object is, the wider its diffraction pattern is. The



largest diffraction pattern is given by a half plane:

o(x1, x2) =


0 if x1 ≤ 0,

1 otherwise .
(28)

Along the x1 axis, the diffraction by a half plane under inclined illumination is given by [52]:

w(r, α) = exp (− π/4)

√
1 + cos(α)

π cos(θ) (cos(θ + α) + cos(θ))

× exp (  k r cos(α)) F
(√

2 k r sin
(α
2

))
, (29)

where (r, α) are polar coordinates as depicted on Fig. 4. F is the Fresnel integral under the form:

F(x) =
∫ ∞

x

exp
(
 t2

)
dt . (30)

The geometrical shadowof the edge is xc = z tan(θ) and its distance from the edge is rc = z/cos(θ).
In an in-line setup, the intensity for t > 0 (α > 0) is approximately bounded by (see Fig. 5 for
two examples) :

|w(xc + t, x2)|
2 . 1 +

√
2 (rc + t sin(|θ |))
√
π k t cos(θ)

. (31)

The half-width of the diffraction pattern to the left p− is the distance t from xc after which the
fringes are no longer detectable. The threshold η below which the fringes are no longer visible is
defined as the smallest effective quantification level relatively to illumination mean intensity I0.

η ≈ (SNR)−1/2 = max
(
σ

I0
,
ζ

I0

)
, (32)

where σ is the mean standard deviation of the noise and ζ is the quantification level of the camera.
The half-width of the diffraction pattern to the right p+ is given by the symmetry with respect to
the sensor (that is changing the sign of θ). As the bound in Eq. (31) depends only on |θ |, we have
p+noise
i = p−noise

i = pnoise
i . Given the threshold η, the half-width of the diffraction pattern along

dimension i is pnoise
i , such that:√

2
(
rc + pnoise

i sin(|θi |)
)

√
π k pnoise

i cos(θi)
= η (33)

pnoise
i =

√
2 z k π η2 cos(θi) + sin2(θi) + sin(|θi |)

k π η2 cos2(θi)
. (34)

As an example, for the parameters used in [3] (λ = 681 nm and z = 1.02mm, θ1 = 9◦)
and a camera of width `1 = 5.3mm and 20 dB of noise (η = 10−2), the estimated bound is
pnoise
i = 911µm leading to a width of the field of view of `′1 = 7.1mm much more tractable than
`′ = 3m given by Eq. (24).
Let us notice that in detection applications such as [24] scatterers can be detected in an even

larger FoV as the noise is averaged on a large number of pixels increasing the effective SNR.



Fig. 6. The extend of a diffraction pattern boundary is the point where optical path
difference between the diffracted wave vd and the illumination wave vi is larger than
the coherence length.

4.2. Partial coherence

In the previous sections, we always consider illumination light as a single monochromatic plane
wave. However, in practice any real source must have a finite size and a finite spectral bandwidth.
This partial coherence affects the size of the diffraction patterns as it decreases the visibility
of the fringes and blurs out intensity high spatial frequencies. As the spatial frequencies of
the fringes increase with the distance from the center of the diffraction pattern, this effectively
reduces its extent. It is possible to assess the extension of the diffraction pattern by considering
the Born approximation model of inline holography where the diffraction pattern is generated by
the interferences between the illumination wave vi and the wave vd diffracted by a scatterer P
as depicted on Fig. 6. On the detector plane, at a distance ∆ = [∆1,∆2]

> from the center of the
diffraction pattern, the coherence of these two waves can be described by their mutual coherence
factor [53] :

µ(∆) =

〈
vi(∆, t) v∗d(∆, t)

〉
t√〈

vi(∆, t) v∗i (∆, t)
〉
t

〈
vd(∆, t) v∗d(∆, t)

〉
t

(35)

where 〈v(t)〉t is the average over time. When ∆ = 0 (at the center of the diffraction pattern)
illumination wave and diffracted wave coincide and |µ(∆)| is maximum. When |µ(∆)| = 0 the
two waves are mutually incoherent and no longer interfere.
To simplify further computations, we set an upper bound estimate on µ(∆) that is separable

along both lateral axis giving the maximal possible extension of the diffraction pattern:

|µ(∆)| ≤ |µ1(∆1)| |µ2(∆2)| . (36)

Along dimension i, the coherence factor µi(∆i) can be inferred from both spectral and spatial
coherence of the illumination wave (supposed quasi-homogeneous [53]) given by its complex
degree of coherence :

γ(δ, τ) =

〈
vi(x, t) v∗i (x + δ, t + τ)

〉
x,t〈

vi(x, t) v∗i (x, t)
〉
x,t

. (37)



Using the notation given on Fig. 6, the distance between P and A is δAPi =
∆i

cos (θi ) the relative
time delay between B and A (for vi), and P and B (for vd) are:

τABi =
n z

c cos(θi)
, (38)

τPB
i =

n
c

(√
z2 + (z tan(θi) + ∆i)2 + ∆i sin(θi)

)
. (39)

This gives the mutual coherence factor between vi and vd at position ∆i:

µi(∆i) = γ(δ
AP
i , τPB

i − τABi ) , (40)

= γ

(
∆i

cos (θi)
,

n
c

(√
z2 + (z tan(θi) + ∆i)2 −

z
cos(θi)

+ ∆i sin(θi)
))

. (41)

This relation will be used to determine the half-width of the diffraction pattern in the two limiting
cases: (i) a spatially coherent illumination (γ(δ, τ) = γ(0, τ), ∀δ ) and (ii) a spatially incoherent
quasi-monochromatic illumination (γ(δ, τ) = γ(δ, 0), ∀τ ).
4.2.1. Spectral coherence

In the case where the source is spatially coherent, the self coherence of the illumination wave
is described by its coherence length Lc that depends on the shape and the spectrum of the
illumination light. We estimate the half-width of the diffraction pattern as the distance where the
optical path difference c (τPB

i − τABi ) is equal to the coherence length Lc . The diffraction pattern
is not symmetric and along dimension i its half-width to the left p+spe

i and to the right p−spe are:

p+spe
i =

Lc

n cos2(θi)

©«
√

1 +
2 n cos(θi) z

Lc
+ sin(θi)

ª®¬ . (42)

p−spe
i =

Lc

n cos2(θi)

©«
√

1 +
2 n cos(θi) z

Lc
− sin(θi)

ª®¬ . (43)

Again, for the parameters used in [3] (λ = 681 nm and z = 1.02mm, θ1 = 9◦ and camera
width `1 = 5.3mm), and a source coherence length of Lc = 1mm, the estimated bounds are
p+spe
i = 1.9mm and p−spe

i = 1.6mm leading to a width of the field of view of `′1 = 8.8mm.

4.2.2. Spatial coherence

In the case of a quasi-monochromatic spatially incoherent source, the visibility of the fringes
and hence the width of the diffraction pattern depends on the source coherence factor in the
illumination plane µs(∆) = γ(∆, 0). Following the Van Cittert-Zernike theorem, this coherence
factor is the Fourier transform of the source brightness distribution. Depending on the shape
of the coherence factor, one can define the half-width pi as the half-width at half-maximum
(HWHM) along dimension i. When the source brightness distribution has a circular symmetry,
the half-width pi can be also defined as the radius of the coherence area.
For a uniformly bright circular source of angular radius α, the coherence factor of the

illumination wave is a cardinal Bessel function of order 1 [53]. Its HWHW is:

pi = 0.35
λ

n tan(α) cos(θi)
(44)

The coherence area of this circular source is Ac =
λ2

π tan2(α)
. Therefore, for an incidence θ, the

radius of source coherence area is:

pi =
1
π

λ

n tan(α) cos(θi)
, (45)



Fig. 7. Effective bandwidth B′ estimated from the extent of the a diffraction pattern
p− + p+.

that is similar to the HWHM criterion (1/π ≈ 0.32).

5. Narrowing the bandwidth

Even with a narrower FoV `′1 × `
′
2 given by Eq. (27), the number of degrees of freedom to

perfectly represent the object can still be huge (N = 2 `′1/λ × 2 `′2/λ). However it is possible to
decrease this number of freedom by estimating a narrower effective angular bandwidth of the
setup B′ < 2 k.
The effective angular bandwidth can be estimated as the highest angular frequency of the

propagation kernel. As it is a frequency chirp, the highest angular frequency of the propagation
kernel is given by its instantaneous frequency at the farthest point from its center (that is at p− or
p+) as illustrated Fig. 7:

B′i = 2 max
(
ξ(p−i ), ξ(p

+
i )

)
, (46)

with the instantaneous angular frequency ξ(x) given in Eq. (19). This gives the spatial resolution
Ri along dimension i:

Ri =
4 π
B′i
=
λ

n

©«
p√

p2
i + z2

+ sin(|θi |)
ª®®¬
−1

. (47)

All waves have thus to be sampled along dimension i with a maximum pixel pitch of ∆i = Ri/2.
In the example given Sec. 4.1 with pnoise

i = 911 µm, this leads to a maximum pixel pitch of
∆i = 511 nm instead of λ/2 = 340 nm dividing the number of freedom by 2.25.

In addition, setting B′ = max(B′1, B
′
2) and p = max(p−1 , p+1 , p−2 , p+2 ), the effective bandwidth B′

can be used to determine whether or not the conditions of Fresnel approximation are fulfilled,
namely if: (

B′

2

)2
� k2 ⇐⇒

p2

p2 + z2 + sin(|θ |) � 1 . (48)

In addition, it is also possible to derive from this bandwidth the effective numerical aperture of
the setup. As the bandwidth along each axis B′1 and B′2 can be different, the resolution of the



Fig. 8. Scheme of the simulated setup where a part of the sample is masked by an
opaque screen placed at a distance t of the sensor edge projected in the sample plane
along the direction of incident light.

setup is anisotropic. Furthermore as explained in paragraph 3.B, the bandwidth of a lensless
setup varies with the position within the FoV. As a consequence, we define NA1(x) and NA2(x)
the numerical apertures along both axis at the position x in the FoV. For the sake of simplicity,
we consider only the case of normal incidence (θ1 = θ2 = 0) and a square detector of size ` × `.
In that case, the half width of the diffraction pattern is p−1 = p+1 = p−2 = p+2 = p. When this size p
is smaller than the half-width of the detector p < `/2, the numerical aperture is approximately
constant across the FoV and NA1 = NA2 = n p

√
p2+z2

. When p > `/2, numerical apertures along

both axis vary across the FoV. They are minimal at the center of the FoV xc (as defined in
Eq. (21)) and maximal at its edges:

NAi(x) = n
min(|xi − xci | + `/2, p)√

min(‖x − xc + `/2‖2 , p2) + z2
(49)

In a 3D imaging context, it is possible to derive from these numerical aperture, the two points
resolution along the depth dimension of an in-line holography setup. In Born approximation, it is
the minimal distance dz along the depth axis where two diffraction patterns can be disentangled.
As the resolution, it varies within the FoV:

dz(x) =
n λ

max(NA2
1(x),NA

2
2(x))

. (50)

6. Numerical experiments

6.1. Methodology

We now illustrate the usefulness of the bounds derived in the previous sections on simulations.
We define a reference intensity r with suitable noise and coherence properties. This reference
is established by simulating the propagation over a large FoV of 20160 × 20160 pixels while
computing the modeling error E in each experiments on a much smaller area (2520 × 2520
pixels). The effect of partial coherence is simulated using a Monte-Carlo method.
In all experiments, we plot the modeling error E(t) (in dB) between this reference r and the

intensity s computed when part of the sample is zeroed by an opaque screen as depicted on Fig. 8.
The intensity s(t) is simulated by propagating the masked sample exactly as the reference r but
without noise and coherence effects. This error E is computed as a function of the lateral distance
t of the screen to the edge of the sensor projected at the sample depth parallel to the illumination
incidence. It is normalized by the error for the intensity computed without the screen s∞ (or
when t is very large):

E(t) = 10 log10 ‖r − s(t)‖22 − 10 log10 ‖r − s∞‖
2
2 . (51)
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Fig. 9. Transmittance (first row) and phase (second row) of the five 20160 × 20160
pixels images used to generate test dataset. (d) is a phase only USAF-1951 image and
(e) is a transmittance only binary USAF-1951 image.

This error is maximum when t = 0 showing the modeling error made when the FoV it restricted
to the size of the sensor and goes to 0 as t increase.
For each experimental condition the measured modeling error E(t) is averaged over many

experiments with different objects and noise realizations. We use 5 different images that were
randomly shifted to generate dozens of images used in simulations. These images1 are shown
on Fig. 9. Three of these were built using very large images eventually padded with mirror
boundaries to the size 20160 × 20160 pixels. One pure phase and one pure transmittance object
were built from vector graphic defined USAF-1951 resolution target discretized at the right
resolution. The propagation is perform with pixels of size 104 nm < λ/4 to ensure that no aliasing
occurs in the intensity modeling. From the object plane to the detector plane, the propagation was
modeled using BLAS (Band-Limited Angular Spectrum) model [33] that implements a version
of the angular spectrum propagation kernel filtered to prevent aliasing. As all the propagations
are performed over the same large FoV and with the same small pixel-size, this filtering has
no influence on our estimations. The physical parameters used all experiments are given in
Tab.1. All numerical experiments were implemented2 within the framework of the GlobalBioIm
library [54].

λ n z pixel size

530 nm 1 250 µm 104 nm

Table 1. Parameters used in all simulations

6.2. Measurements noise

To assess the quality of the bounds derived in Sec. 4 for i.i.d. Gaussian noise, the modeling error
E(t) is estimated for two cases: (i) for a fixed noise level and varying the incidence angle, (ii) for
a fixed incidence angle and varying the noise level. All the curves are computed by averaging the
error over 100 different simulations.

1All images are available at https://doi.org/10.6084/m9.figshare.7998143 and https://doi.
org/10.6084/m9.figshare.7998134

2code available on https://github.com/FerreolS/COMCI

https://doi.org/10.6084/m9.figshare.7998143
https://doi.org/10.6084/m9.figshare.7998134
https://doi.org/10.6084/m9.figshare.7998134
https://github.com/FerreolS/COMCI


Fig. 10. Modeling error E as a function of the projected distance t of the opaque
screen, for incidence [0◦, 30◦, 45◦, 60◦] and a noise level of 20 dB. The bounds given
by Eq. (34) ([37, 47, 75, 113] µm respectively) are indicated by the cross marks.

Fig. 11. Modeling error E as a function of the projected distance t of the opaque screen
for an incidence of θ = 45◦ and noise levels of [6, 14, 20, 26] dBs. The bounds given by
Eq. (34) ([12, 32, 65, 139] µm respectively) are indicated by the cross marks.

Figure 10 shows the modeling error for incidence angles of θ1 = [0◦, 30◦, 45◦, 60◦] and a noise
level of 20 dB. As the width of the diffraction pattern is independent of the sign of the incidence
angle, negative incidence would have produces similar curves. Figure 11 shows the modeling
error for an incidence angle of θ1 = 45◦ and noise level of [6, 14, 20, 26] dB. The bounds derived
in Eq. (34) are plotted on these figures. They are approximately at the bend of each plot and
provide a good trade-off between the size of the FoV and the modeling error.



Fig. 12. Modeling error E(t) as a function of the projected distance t of the opaque screen
for an incidence θ = −30◦ and coherence lengths of the illumination Lc = [2, 20, 80] µm.
The bounds given by Eq. (42) ([38, 113, 217] µm respectively) are indicated by the cross
marks.

6.3. Temporal Coherence

The effect of a finite temporal coherence on the reference r is computed usingMonte-Carlomethod
averaging 100 intensities in the sensor plane for wavelengths drawn under a Normal law modeling
an illumination source with a Gaussian emission spectrum. Figure 12 shows the modeling error
E(t) for an incidence of θ1 = −30◦ and several coherence lengths Lc = [2, 20, 80] µm typical of
light sources used for digital holography (from white light to laser diode).

6.4. Spatial coherence

We simulate the reference r as the hologram of the sample illuminated by an uniformly bright
incoherent quasi-monochromatic circular source. To that end, we model the effect of a finite
spatial coherence using Monte-Carlo method averaging 100 intensities for illumination incidence
drawn uniformly within the angular size of the source. Figure 13 shows the modeling error for a
source placed at θ1 = −30◦ and with different angular radius α = [0.05◦, 0.07◦, 0.2◦].

7. Concluding remarks

Due to the band-limited nature of light propagation, the diffraction patterns are theoretically
unlimited in space. Hence the theoretical FoV of a lensless holographic setup is overwhelmingly
extended. Sampled at λ/2, this lead to an unthinkable theoretical number of pixels needed to
model perfectly the light in the detector plane.
To model precisely enough the light propagation while keeping the number of pixels needed

acceptable, this manuscript provides theoretically grounded estimates of the FoV size and the
bandwidth of a lensless holographic setup. The derived bounds are easy to estimate in practice
as they depend on usually known parameters of the setup, namely the noise and the quantization
level of the sensor (Eq.34), the coherence length (Eq.42) and the coherence area (Eq.44) of the
illumination source. From the size of FoV given by these bounds, we derive its bandwidth and a
bound on the pixel size (Eq.47) needed to prevent aliasing in the modeling.
In addition to the numerical assessment of the quality of the derived bounds in the previous



Fig. 13. Modeling error E(t) as a function of the projected distance t of the opaque
screen for an incidence θ = −30◦ and several angular radius α = [0.05◦, 0.07◦, 0.2◦].
The bounds given by Eq. (44) ([56, 160, 223] µm respectively) are indicated by the cross
marks.

section, we also compute them for several already published studies with varying experimental
parameters. We compare the claimed FoV and/or resolution with the bounds derived in this
paper::

• In [17], particles were detected over a FoV of 34 × 27mm2, 4 times larger than the sensor
area 8.6 × 6.9mm2. Supposing a realistic SNR of 40 dB, the experimental conditions
(λ = 523 nm, z = 250mm and θ = 0) lead to a half width of the diffraction pattern of
pnoise
i = 12mm giving a similar FoV of 33 × 31mm2.

• In [19], the hologram is reconstructed over a FoV of 23 × 23mm2, 3 times larger than the
sensor area 7.6 × 7.6mm2. With the experimental conditions (λ = 662 nm, z = 283mm
and θ = 0), a SNR of 35 dB leads to a half width of the diffraction pattern of pnoise

i = 18mm
giving a similar FoV of 23 × 23mm2.

• In [21], whereas no FoV extrapolation is performed, the resolution claimed is 250 nm
under a highly inclined illumination with a partially coherent source of coherence length
Lc = 62 nm. The experimental conditions (λ = 700 nm, z = 0.1mm, n = 1.52 and
max(θ) = 52◦) lead to a half width of the diffraction given by Eq. (42) of pspe

i = 7.7mm
and a resolution as given by Eq. (47) of R = 259 nm close to the claimed resolution of
250 nm. This slight difference in resolution can be explained by the small spatial support
of the grating lines observed that sufficiently broaden its spatial frequencies to fit within
the setup spatial bandwidth [55].

This work have been done in the context of 2D imaging of thin sample. However its extension
in 3D is straightforward as the capability to distinguish two different planes in a lensless setup
can be deduced from its bandwidth as shown in Sec. 5. Depending on the application, larger
FoV and bandwidth are not always better and the proposed bounds can be used to design the
coherence of the illumination to reduce cross interference between scatterers as in [1].
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