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Abstract: A better understanding of the mechanical performance and the failure modes of 

corroded reinforced concrete (RC) structures is crucial for implementing measures that 

reduce failure risks. Therefore, this paper proposes a probabilistic numerical framework to 

estimate the structural performance and to identify the failure modes as well as the main 

influencing parameters affecting the safety of corroded RC structures. This framework 

comprehensively combines experimental data, finite element method (FEM), and polynomial 

chaos expansion (PCE) modeling. First, the FEM for failure analysis is developed and 

verified with a 26-year-old corroded RC beam. The investigated case considers the effects of 

corrosion degree and bond behavior of the steel-concrete interface on the mechanical 

properties and failure mode of the corroded RC beam. Second, PCE surrogate models for 

serviceability and ultimate limit states are established by combining the sampling technique 

(e.g., Sobol sequences) and the validated FEM model. Finally, a global sensitivity analysis is 

conducted using the PCE model. Several illustrative cases are presented to analyze, in 

deterministic and probabilistic manners, the failure modes and the sensitivities of material 

properties and geometry characteristics for both serviceability and ultimate limit states. The 

results of this study could provide useful insights for understanding the main failure modes of 

RC structures under different corrosion scenarios.  
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List of acronyms 
FEM:  Finite element method  
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RC:  Reinforced concrete  
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SA:  Sensitivity analysis 
SLS:  Serviceability limit state 
ULS:  Ultimate limit state 

1 Introduction 

Under aggressive chloride-contaminated environments, reinforcement corrosion might occur, 

reducing the serviceability and safety of reinforced concrete (RC) structures and further 

causing a long-term impact on society and the environment [1–3]. A survey published by 

NACE International indicated that the global cost of corrosion is around 2.5 trillion US 

dollars, which corresponds to about 3.4 % of global Gross Domestic Product in 2013 [4]. 

Thus, concerning the high corrosion cost, it is of great importance to raise awareness of 

improved maintenance practices that reduce cost, environmental and social impacts. Towards 

this aim, a robust and unified assessment methodology for the performance assessment of RC 

structures needs to be proposed. 

Failure analysis and performance assessment of corroded RC structures are based on 

deterministic and probabilistic approaches. Experiments [5,6], analytical methods [7], and 

finite element methods (FEM) [8,9] are typically used in deterministic studies. For instance, 

Ye et al. [6] conducted an experimental failure analysis of 13 corroded RC beams and found 

that these beams could fail by shear when the corrosion level of stirrups reaches a critical 

value. Experiments could provide reliable and intuitive findings for model validation and/or 

lifetime modeling but are usually time-consuming and costly. Thus, many scholars proposed 

analytical models to perform the failure analysis for corroded RC structures. For instance, 

Recupero et al. [7] developed an analytical model to predict the shear and flexural capacity of 

RC elements and validated it with a data set of experimental results. However, due to the 

difficulty in depicting the complex mechanisms of reinforcement corrosion and structural 
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behavior, the analytical models generally deviate significantly from the experimental results. 

Owing to the rapid development of computing technology, FEM has also been applied to 

simulate and evaluate the structural performance in time with high accuracy [10]. For 

example, Kallias et al. [8] applied FEM for sensitivity analysis (SA) to investigate the effects 

of concrete strength and bond deterioration on the performance of corroded RC beams. Thus, 

deterministic analysis has been successfully adopted in the performance evaluation and 

failure analysis of corroded RC structures. 

Considering the uncertainties and spatial variability inherent to the surrounding 

environmental conditions, deterioration processes, models, and material properties, it is a 

requirement to conduct a comprehensive failure/performance analysis of corroded RC 

structures [11,12]. Therefore, the probabilistic analysis methods applied to corroded RC 

structures attracted the attention of scholars and engineers [13]. Many scholars applied 

analytical models and/or Monte Carlo simulation (MCS) to carry out probabilistic analyses 

[14,15]. For instance, Li and Melchers [16] utilized a probabilistic analytical model to carry 

out a SA to determine the critical parameters for the corroded RC beam. Other studies [15,17] 

considered pitting corrosion and performed reliability analysis with respect to the spatial 

variability of a corroded RC beam. However, the models mentioned above might neglect 

some critical information, such as the bond behavior of corroded reinforcement [18], 

deflection, cracking patterns on RC beam [19]. Many scholars adopted probabilistic 

FEM-based approaches [18,20] to address the above issues. Bergmeister et al. [21] proposed 

a probabilistic assessment framework based on Latin hypercube sampling and non-linear 

FEM to perform sensitivity and reliability analysis. Zhang et al. [18] carried out a reliability 

estimation of a corroded RC beam by using FEM and X-ray photographs to account for the 

spatial variability of corroded steel bars.  

The FEM-based probabilistic analysis could provide reliable and comprehensive lifetime 

assessments; however, a realistic prediction might also impose a significant computational 

burden due to the complexity of the numerical models, including a set of non-linear and 

coupled differential equations, resolutions in space and time, and a large number of 
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parameters. Thus, surrogate models are useful tools for alleviating computational costs in 

FEM-based probabilistic analysis. Among these models, statistical methods, such as the 

response surface method (RSM), were intended to establish a surrogate model for a RC beam 

to reduce the cost of MCS [18] and conduct SA [22]. However, studies have shown that RSM 

may not be feasible for analyzing global sensitivity due to its limited accuracy [23]. 

Polynomial chaos expansion (PCE) based probabilistic analysis methods have received 

extensive attention due to their high accuracy and efficiency in establishing surrogate models 

[24,25]. In addition, PCE-based methods allow the SA of random variables, i.e., global SA, 

by integrating full randomness and variability of input and output variables. However, few 

studies have been done in PCE-based probabilistic analysis for corroded RC structures. For 

instance, Bastidas-Arteaga et al. [25] developed a PCE-based probabilistic model for global 

SA of RC structures suffering from chloride-induced corrosion, but their study focused on the 

initiation period (Serviceability limit state, SLS) rather than the propagation period (Ultimate 

limit state, ULS). Thus, it is of vital importance to conduct a complete analysis of structural 

performance, considering both SLS and ULS.  

In this study, we propose a comprehensive framework for probabilistic failure analysis, 

performance assessment, and sensitivity analysis of corroded RC structures. It combines 

experimental data, FEM, and PCE. We particularly focus on existing corroded RC structures 

where the current corrosion condition of rebars and the presence of cracks provide more 

uncertainties to the performance assessment at the moment of the inspection and/or the 

evaluation of the remaining capacity. The basic concepts and algorithms of the proposed 

framework are introduced in Section 2. Then, in Section 3, using a corroded RC beam as one 

example, the FEM model is established in detail. The principles and algorithms of PCE are 

introduced in Section 4. Section 5 presents the results associated with the illustrative example. 

The first subsection in Section 5 verifies the feasibility and accuracy of the proposed FEM 

model based on a study of a 26-year-old corroded RC beam. The second subsection focuses 

on the development of the PCE and its application for sensitivity and failure analyses. 
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2 Performance assessment and failure analysis of corroded RC structures 

In this study, the performance assessment of corroded reinforced concrete (RC) structures 

focuses on different components of the structural response, such as the curves of external 

loads versus deformations, the distribution of reinforcement stresses, and concrete strains, 

and cracking patterns. Based on the structural response, the evolution of the RC structures 

under external loads can be studied; the limit states of RC structures, including the 

serviceability limit state (SLS) and ultimate limit state (ULS), can be determined; and more 

importantly, the potential failure mode and pattern could be deduced.  

The general computational framework of performance assessment is presented in Fig. 1. 

As indicated, the proposed framework consists of ten steps. The first two steps are the 

determination of geometric and mechanical information of the RC structure (e.g., remaining 

cross-sectional section of rebars and the presence of cracks, among others.), which depends 

on the investigated example. In this paper, the information is obtained from experiments to 

validate the numerical results. Due to the experimental costs, it is not feasible to conduct a 

large number of experiments, so that numerical analysis is needed to perform failure analysis 

by considering different scenarios. The main inputs of this numerical analysis are the 

geometry information, constitutive models of concrete, corroded steel bars, and bond-slip, 

boundary conditions, among others. The third step is to perform finite element method (FEM) 

simulation using commercial FEM software, DIANA 10.3 [26], to account for the 

above-mentioned parameters. Other software could also be adopted within the structural 

analysis process. Detailed processes associated with FEM, including geometry modeling and 

material constitutive models, are introduced in Section 3.  
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Fig. 1. General framework for performance assessment of corroded RC structures 

 

The third to sixth steps are devoted to perform deterministic analysis, and the primary 

goal is to demonstrate the applicability and accuracy of numerical models by comparing them 

with experimental data, i.e., the fourth step. The information on the geometry and mechanical 

parameters of the corroded RC beam is mainly derived from the first and second steps, i.e., 

experimental studies on existing structures. Apart from the experimental verification in the 

fourth step, different assumptions (e.g., corrosion degree of reinforcement and constitutive 

models of materials) are made and assessed. The fifth step (failure analysis) is conducted to 

investigate the failure mechanisms. Subsequently, the sixth step, i.e., local sensitivity analysis 

(SA), is performed to study different parameters on structural performance (e.g., the effect of 

corrosion degree on structural behavior and the spatial effect on stress and crack distribution).  

On the other hand, probabilistic analysis (the seventh to tenth steps) is needed to account 

for the uncertainties associated with different variables. For instance, in the seventh step, 

some geometrical parameters (e.g., the geometry of corroded rebar) are represented by 

probabilistic models (Section 3.1.2). In this study, a low discrepancy sequence-based Monte 

Experiment

① Geometric information

② Mechanical information

Deterministic analysis

③ FEM modeling

④ Computation verification

Probabilistic analysis

⑤ Deterministic failure analysis

⑦ Probabilistic modeling

⑧ Surrogate modeling

⑩ Global sensitivity analysis

⑥ Local sensitivity analysis

⑨ Probabilistic failure analysis
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Carlo simulation (MCS) (e.g., Sobol sequences) is conducted to generate critical information 

of the FEM model and perform the FEM analysis. However, brute MCS is computationally 

expensive, and global SA is not easy to be conducted. To tackle this problem, a surrogate 

model (Section 4) is established in the eighth step. In this study, polynomial chaos expansion 

(PCE) is employed for the surrogate modeling due to its high accuracy and efficiency in 

global SA as the sensitivity factors could be computed directly through the coefficients of 

PCE. Then, the built surrogate model is employed in the ninth and tenth steps for 

probabilistic failure analyses and global SA, respectively.  

3 FEM model of a corroded RC beam 

3.1 Spatial variability of corroded rebars 

In this study, a corroded reinforced concrete (RC) beam is used as an example to illustrate the 

proposed methodology. As shown in Fig. 2, the length and cover thickness of the beam are L 

and c, respectively, and the cross-sectional width and height are denoted as b and h, 

respectively. The reinforcement layout of this RC beam is: nt tension bars, nc compression 

bars, and n+1 stirrup bars with nsv vertical legs and sv stirrup spacing. Deterministic and 

probabilistic approaches could be implemented to consider the spatial variability of corroded 

rebars. Both approaches are summarized in the following sections.  

 

Fig. 2. Geometry schematic of the RC beam 
 

3.1.1 Deterministic modeling  

Deterministic modeling is commonly used in experimental validations [9,27]. In previous 

studies, the geometry of corroded steel bars is represented by a cylinder with a reduced 

diameter. Also, based on the assumption of uniform corrosion, the corrosion degree is 

L 

sv

b 

h 

nt tension bars

nc compression bars

nsv vertical legs

c
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quantified by an average corrosion degree ηave [28]. However, non-uniform and pitting 

corrosion are common phenomena in practice, which would induce spatial variability and the 

local corrosion degree ηs [15]. Thus, it is necessary to establish a spatial variability model of 

non-uniform corrosion accounting for the previously mentioned effects.  

Characterizing the spatial variability of corroded rebars is not an easy task. To date, at 

least three methods, based on experimental procedures, have been used to achieve this goal, 

as follows: 

(1) to cut the entire corroded steel bar into several segments along its axis, then to measure 

the mass of each segment and finally obtain the distribution of mass loss ratio along the 

axis [29]; 

(2) to measure the residual diameter of steel bar along the axis using a Vernier caliper, then to 

compute the distribution of diameter loss along the axis [30]; and 

(3) to employ a three-dimensional light scanner [31] or X-ray photograph [18] to obtain a 

2D/3D geometry model of corroded steel bars directly and then analyze the distribution of 

cross-sectional areas. 

The first method could reflect the gravimetric loss of steel bars but damages the 

specimen. The third method could reveal the complete geometry information of the steel bar 

with relatively high accuracy; however, the used measurement devices are relatively 

expensive, and advanced numerical methods are required to analyze the output. In order to 

balance measurement accuracy and experimental cost, the second method is usually regarded 

as a compromise choice, which is convenient to be used in practical engineering. Also, the 

Vernier caliper is a cheaper tool than the devices in the third method, and it causes less 

damage to the structure compared with the first method. 

Once the spatial geometry of the corroded steel bar is obtained, the spatial variability of 

longitudinal (tension and compression) bars would be simplified to a series of bar elements 

with different circular cross-sections as the input for the finite element method (FEM) model. 

For the nt tension bars and nc compression bars, the first step is to divide each longitudinal 

bar into n zones. Then, at the i-zone, the maximum diameter loss of j-th tension bar, pt, max,i,j 
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and k-th compressive bar, pc, max,i,k are measured and then used to calculate the minimum 

cross-sectional areas by Eqs. (1) and (2). Thus, the cross-sectional areas of the bar elements 

within each zone and longitudinal bar, i.e., cross-sectional area of tension bars, At,i,j (i = 1, 

2,…, n and j = 1, 2, ..., nt) and compression bars, Ac,i,k (i = 1, 2,…, n and k = 1, 2, …, nc), are 

represented by their minimum cross-sectional area. For the n+1 stirrup bars, each stirrup bar 

is divided into nsv vertical legs. Next, at the l-th vertical leg, the maximum diameter loss 

psv,max,m,l at the m-th stirrup bar is also measured to compute the minimum cross-sectional area 

Asv,m,l (m = 1, 2, …, n+1, l = 1, 2, …, nsv) by Eq.(3).  

  (1) 

  (2) 

  (3) 

in which Dt0, Dc0, and Dsv0 are the expected diameters of uncorroded tension bar, 

compression bar, and stirrup, respectively. Also, local corrosion degree ηs could be quantified 

by the difference ratio between the original and the minimum cross-sectional area from 

Eqs.(1)-(3).  

Besides, to evaluate the bond strength between the steel-concrete interface, the surface 

area of steel bar Asurf of the corroded steel bar can be computed as 

   (4) 

where p, D0, and Lbar, denote the diameter loss due to corrosion, initial diameter, and 

longitudinal length, respectively. 

3.1.2 Probabilistic modeling  

A probabilistic approach is more suitable to account for the spatial variability of corroded 

rebars geometry in a more realistic way. The corroded geometry could be defined by the 

pitting factor, which is the ratio of the maximum pit depth to the average pit depth of the 

corroded steel bar [32]. By employing the Type-I extreme distribution, Stewart and Alharthy 

[15] developed the probabilistic model of pitting factor to conduct reliability analysis. 

Besides, Darmawan [33] improved the model of pitting factor by considering time parameters 

( )2, , 0 ,max, ,4t i j t t i jA D pp
= -

( )2, , 0 ,max, ,4c i k c c i kA D pp
= -

( )2, , 0 ,max, ,4sv m l sv sv m lA D pp
= -

( )0surf barA D p Lp= -
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and corrosion rates. However, the pitting factor-based probabilistic model assumes one-single 

pit. Later, some scholars have made some improvements in the stochastic modeling of the 

corroded steel bar. For instance, Tang et al. [34] proposed to use a mixed normal distribution 

to model the cross-sectional area, but it neglects longitudinal correlations. 

On the other hand, considering the complex geometry and random distribution of pits in 

the cross-section of a corroded steel bar, Gu et al. [12] proposed the corrosion non-uniformity 

factor, R, defined as the ratio of the average cross-sectional area to the minimum 

cross-sectional area, i.e., 

  (5) 

in which Aav and Amin are the average cross-sectional area and the minimum cross-sectional 

area, respectively; ηave is the average corrosion ratio of the steel bar; and D0 is the initial 

diameter of the rebar. Factor R also follows the Type-I extreme distribution, and distribution 

parameters μ and σ could be computed by [11,12] 

   (6) 

   (7) 

where icorr (μA/cm2) is the corrosion current density; and As (mm2) and As0 (mm2) are the 

surface areas of the Lbar and 50 mm length of steel bar. 

  (8) 

For tension and compression bars, Lbar can be determined by the length of each zone, 

while for stirrup bars, the Lbar can be determined by the vertical height of the stirrup leg. The 

factor R and the minimum cross-sectional area of each element are statistically independent 

of the others. Given the samples of factor R and other parameters, e.g., icorr and nave, the 

minimum cross-sectional areas of corroded steel bars could be computed through Eq. (5), and 

assigned into different elements of steel bars.  

2
min 0 min(1 )av aveR A A AD hp= = -

( )s s 03.35 exp 0.236 0.12 ln( / ) 1.01corr s si A Aµ h h s= - + + +

0.3371 0.0006ss h= +

0 0 0,  50s bar sA L D A Dp p= =
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3.2 Constitutive model of materials 

3.2.1 Concrete 

The total strain-based crack model is applied for the constitutive model of concrete, which is 

based on total strain and the modified compression field theory [35]. In this model, the 

stress-strain relationship is evaluated in the principal directions of the strain vector, i.e., the 

coaxial stress-strain concept. In terms of the relationship between the directions of crack and 

principal stress, two types of crack models are presented: 

(1) Fixed crack model, in which the crack direction would not change with the principal 

stress once cracking happens.  

(2) Rotating crack model, in which the crack direction would keep changing with the 

principal stress. 

In the fixed crack model, the shear resistance of the cracks is modeled by the shear 

retention factor, reflecting the aggregate interlock effect caused by cracked concrete. In the 

rotating crack model, there exist no shear stresses on the crack plane, which simplifies the 

analysis and receives a large scale of application [36,37]. This study applies the rotating crack 

model.  

Tensile and compressive behaviors of concrete are illustrated in Fig. 3. For the tensile 

behavior of concrete, the stress increases linearly before reaching the ultimate tensile strength. 

Then, it drops following a tension softening model developed by Hordijk [38]. For the 

compressive behavior of concrete, the stress increases/decreases following parabolic curves 

[39], as shown in Fig. 3.  

 
Notation: 

ft

fc

εtu

Gft/hel

Gfc/hel

εcu
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Gft: tensile fracture energy; 
Gfc: compressive fracture energy; 
ft: ultimate tensile stress; 

fc: ultimate compression stress; 

𝜀tu: ultimate tensile strain; 
𝜀cu: ultimate compression strain; 
hel: ‘equivalent length’ relating to 
element type and element size, among 
others. [39] 

Fig. 3. Schematic of the constitutive model of concrete 
 

The ultimate tensile and compression strains are computed by the tensile and 

compressive fracture energies Gft and Gfc (kN/m), respectively. Gft can be calculated by a 

formula proposed by FIB Model Code 2010 [40]  

  (9)  

In this study, the compressive fracture energy Gfc is supposed to be about 100 times of 

Gft [39]. A reduction factor is proposed to consider the influence of cracking on the 

compressive strength [41], and the lower bound of the reduction factor is assumed as 0.6 in 

this study.  

3.2.2 Corroded reinforcement  

In general, the corrosion of a RC beam affects not only the geometry but also the constitutive 

model of the steel bars. In most of the available studies, the constitutive models of steel bars 

supposed that yield and ultimate strengths would reduce with corrosion degree [2,8]. 

However, previous studies proved that corroded reinforcement might fail at the location of 

the minimum cross-sectional area, and its actual strength does not change if the stress at the 

broken section is taken to measure its strength [12]. Besides, in previous studies related to the 

FEM analysis of corroded RC structures, reinforcement is usually modeled by bilinear/ideal 

elastoplastic constitutive models to simplify the stress-strain relationship [8,42]. However, 

the deformation ability and nominal strength of corroded reinforcement (nominal strength is 

the yield/ultimate tensile force divided by the uncorroded cross-sectional area or average 

cross-sectional area) decreases significantly with corrosion degree [43,44]. Studies showed 

that the failure mode of corroded steel bar would change from ductile failure to brittle failure 

once its corrosion degree ηs exceeds about 20 ~ 30% [45,46].  

In this study, by combining the existing studies in [12,45], a new trilinear constitutive 

model of corroded steel bars is proposed, as depicted in Fig. 4. Given that the elastic modulus 

0.180.073ft cG f=
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Es0, actual yield strength fy0, and ultimate strength of corroded steel bar fu0 remain unchanged, 

the harden strain and ultimate strain decrease with the corrosion degree. The evolution of the 

constitutive relationship of a corroded steel bar subjected to tension is described by Eqs. (10) 

and (11) [47]. For reinforcement, the Von Mises plasticity model is used, assuming isotropic 

hardening.  

   (10) 

   (11) 

where ηs,cr is the critical corrosion degree (20 ~ 30% [45]); εsh0 and εsu0 are the harden strain 

and ultimate strain of non-corroded steel bar; εshc and εsuc are the harden strain and ultimate 

strain of corroded steel bar; and βδ	= 2.093 and 2.501 for salt spray induced corrosion and 

natural corrosion (corroded steel bars obtained under real environmental conditions), 

respectively [48].  

 
Fig. 4. Constitutive models of corroded steel bars. 

 

3.2.3 Bond-slip  

If a RC beam is well-anchored and no corrosion happens, the reinforcement could be 

supposed to be well embedded inside the concrete. Otherwise, bond-slip behavior must be 

considered in the FEM. The bond-slip relationship could be assigned to the interface between 
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the steel bar and concrete directly. Employing the bond-slip model proposed by Kallas and 

Rafiq [8], the bond stress τ versus slip s could be described as follows 

  (12) 

where α and β denote the factors of the bond model (i.e., α = 0.7 and β = 0.3); l0, l1, and s2 are 

0.4 mm, 0.15c0, and 0.35c0 (c0 is the rib spacing, e.g., 8 mm [8]), respectively; and 𝜏max is the 

maximum bond strength of concrete beam with deformed rebars. In this study, 𝜏max is 

evaluated by an empirical model [49]: 

   (13) 

where c is the cover thickness of concrete; db is the diameter of the deformed tension rebar; 

Asv is the cross-sectional area of stirrup bars; sv is the stirrup spacing; and k1 and k2 are the 

empirical factors accounting for the reduced contribution of concrete towards bond strength, 

relating to the corrosion current density of steel bar. For the corrosion current density of 40 

µA/cm2, k1 and k2 are 1.003 and -0.037 [50], respectively; For the corrosion current density of 

90 µA/cm2, k1 and k2 are 1.104 and -0.024 [50], respectively.  

4 Surrogate model and global sensitivity analysis 

4.1 General description 

To conduct the global sensitivity analysis (SA), the finite element method (FEM) is combined 

with polynomial chaos expansion (PCE) surrogate modeling using the MATLAB® software. 

Fig. 5 describes the methodology used to create the surrogate models. Monte Carlo 

simulation (MCS) is used to propagate uncertainty in FEM and generate N input and output 

variables necessary to build the PCE surrogate model presented in Section 4.2. In this process, 

it is necessary to determine the distributions of random input variables (e.g., material 

mechanical parameters, the cross-sectional area of steel bar), output variables (e.g., ultimate 

( )
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and serviceability capacity indicators). Meanwhile, a type of low discrepancy sequence, 

Sobol nets [51], is employed to improve the sampling efficiency. Once the PCE model is 

established, SA could be carried out through the approaches described in Sections 4.3, 

respectively.  

 

Fig. 5. Establishment processes of PCE  
 

4.2 Surrogate modeling: polynomial chaos expansion 

The idea of PCE is to establish a surrogate model ΓPCE by expanding the target response onto 

the basis of the probability space from input variables. All uncertain input variables x = 

{x1,…, xN} should be represented by a marginal probability density function (PDF) [52]. 

Meanwhile, the system response g(x) could be approximately replaced by an orthogonal 

polynomial basis ΓPCE [53] 

  (14) 

where Ii1,…,iM denotes the set of non-zero indices (i1,…, iM); aj and p are the coefficient and 

order of PCE, respectively; and Ψj(x) is the product of one-dimensional polynomials ϕaj. 
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Supposing the random variables within x follow independent standard normal distributions, 

Ψj(x) in Eq. (14) could be written as a multi-dimensional Hermite polynomial: 

  (15) 

where ϕaj(xj) is the one-dimensional Hermite polynomial. The unknown coefficients in Eqs. 

(14) and (15) could be determined by the regression approaches [23], e.g., Ordinary Least 

Squares (OLS) and Orthogonal Matching Pursuit (OMP) [54], among others. The PCE is 

founded on the regression approaches and a training set generated by MCS. More detailed 

information on the algorithm is available in [54]. The accuracy of the established PCE could 

be quantified by R2 or leave-one-out coefficient. Herein, a test set is used to evaluate the R2 of 

the proposed PCE: 

  (16) 

where Ntest is the size of the test set, and Γ denotes the system response of MCS. Once the R2 

of PCE satisfies a given requirement, the PCE could be further used in SA. 

4.3 PCE-based global sensitivity analysis 

In this study, SA is conducted by estimating the Sobol’ indices Si1,…,is, which could determine 

the contribution of random input variables (e.g., geometry and mechanical factors) to the 

variability of the system response [55] 

   (17) 

where D and Di1,…,is are the total and partial variances of g(x), which can be computed by Eq. 

(18) and (19), respectively. 
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where g0 is the expected value of g(x) and the integral of each summand gi1..., is is equal to 0. 

   (20) 

where the notation ∼ means the excluded variables and x~i denotes 

   (21) 

According to Eq.(18), there exists  

   (22) 

where Si are the first-order indices only containing the influence of every single parameter. 

To consider the interaction effects of different parameters, total sensitivity indices STi could 

be computed as [56] 

   (23) 

in which S~i is the sum of Si1,…,is without i. In general, it is challenging to calculate Sobol’ 

indices analytically, especially when using complex non-linear deterioration models such as 

the described in section 3. Then, MCS could usually be applied to compute Sobol’ indices 

with a high computational cost. However, once PCE is set up, Sobol’ indices could be easily 

obtained by the coefficients of PCE directly[53]. Based on the definition of Sobol index (Eq. 

(17)), Si1,…,is could be rewritten as [23] 

  (24) 

where E(∙) denotes the expectation of (∙). Moreover, Si and STi could be calculated by 

  (25) 

where I*i denotes the set of all indices in the i-th element. 
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5 Illustrative examples 

5.1 Study case description 

In this study, the developed finite element method (FEM) model is verified using the 

experimental data associated with 26-year old corroded and uncorroded reinforced concrete 

(RC) beams [30]. Accordingly, the corroded RC beam was subjected to a salt spray 

environment (35 g/l NaCl solution) and extern loading for six years. The uncorroded RC 

beam was under an environment with 50 % relative humidity and 20°C temperature [30]. The 

beams were tested through three-point tests. More detailed information regarding the 

experimental studies can be found in [30]. Fig. 6a shows the schematic of the RC beam with 

a dimension of 3000 mm × 150 mm × 280 mm and a cover thickness of 10 mm. The 

reinforcement layout is 2ϕ12 longitudinal bars, 2ϕ6 hanger bars, and 14 ϕ6@220 stirrups. 

The beam is subjected to a concentrated load at its mid-span. Fig. 6b shows the FEM model 

of the RC beam with a mesh size of 15 mm. In the 2D model of the beam, the concrete and 

reinforcement are discretized by 2D plane stress CQ16M and truss elements, respectively 

[26]. The geometry and materials parameters are summarized in Table 1 and Table 2, 

respectively. Other parameters related to the load step and equilibrium iteration procedure are 

listed in Table 3, where the load increments are 100 steps for the corroded case and 200 steps 

for the uncorroded case. 
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Fig. 6. (a) Schematic of RC beam in [30] and (b) layout of FEM model of RC beam in 
DIANA (mesh size = 15 mm) 

 

To account for spatial variability of corroded rebars, the beam is divided into 13 zones 

through the spacing of stirrups (220 mm), as shown in Fig. 6. Reinforcement corrosion is 

quantified by diameter loss [30], and all values of diameter loss are supposed to be zero for 

the uncorroded RC beam. Fig. 7 summarizes the distribution and maximum values of 

diameter loss of longitudinal bars at both sides of the beam and maximum diameter losses of 

stirrups at the left and right legs.  

Comparing Fig. 7a with Fig. 7b, it seems that compression bars suffer more severe 

corrosion than tension bars. Zhu et al. [30] attributed this phenomenon to the poor quality of 

the interface between the compression bars and the concrete, which is related to the “top-bar” 

effect. The cross-sectional area of each zone is denoted as the sum of all minimum 

cross-sectional areas, e.g., At, i, Ac, i, and Asv, m 

   (26) 

where At,i,j, Ac,i,k and Asv,m,l refer to Eq. (1). For the uncorroded scenario, At, i, Ac, i, and Asv, m 

are 226.20 mm2, 56.55 mm2, and 56.55 mm2, respectively, while for the corroded scenario, 

the relevant values are listed in Table 4. 

 
Table 1 Parameters of model geometry 

Geometry Length (mm) Width (mm) Height (mm) Cover thickness (mm) 
Beam 3000 150 280 10 
Load plate 100 150 35 - 
Support plate 70 150 35 - 

 
Table 2 Parameters of material properties in [30] 

Concrete Reinforcement 
Ec (MPa) 25600 Es (MPa) 273000 

Poisson ratio 0.2 Poisson ratio 0.3 
Tensile strength ft (MPa) 1.88 Yield strength fy (MPa) 600 

Compressive strength fc (MPa) 56 Ultimate strength fu (MPa) 800 
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Table 3 Parameters of load step and equilibrium iteration procedure 

Items Option Value 
Load 

Preset point load Y direction -0.1 mm 
Scale factor - 5 
increments - 100 (200) 
Step control Arc length Default 

Iterative method 
Maximum number - 200 

Method Newton-Raphson Default 
Speed up method Line search Default 

Convergence norm 
Tolerance Energy 0.001 
Tolerance Force 0.01 

Abort criterion Energy 
10000 

Abort criterion Force 
 

 
Fig. 7. (a) Comparison between the distribution of actual and maximum diameter loss for (a) 

tensile bars; (b) compressive bars; and (c) maximum diameter loss of stirrup bars 
Note: pt,max,F and pt,max,B are the maximum diameter loss of tension bars in the front and back sides;  
pc,max,F and pc,max,B are the maximum diameter loss of compression bars in the front and back sides;  
and psvmax, i, L and psvmax, i,R are the maximum diameter loss of stirrup legs.  
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Table 4 Cross-sectional area of each zone of corroded steel bar (mm2) 
Asv,1 Asv,2 Asv,3 Asv,4 Asv,5 Asv,6 Asv,7 Asv,8 Asv,9 Asv,10 Asv,11 Asv,12 Asv,13 Asv,14 

8.53 28.35 25.76 11.61 28.27 16.63 13.43 12.77 42.43 15.37 22.97 28.92 23.43 8.84 

Ac,1 Ac,2 Ac,3 Ac,4 Ac,5 Ac,6 Ac,7 Ac,8 Ac,9 Ac,10 Ac,11 Ac,12 Ac,13 
 

35.23 12.76 23.45 20.93 40.15 18.64 12.23 4.3 6.84 19.86 21.79 18.93 2.32 
 

At,1 At,2 At,3 At,4 At,5 At,6 At,7 At,8 At,9 At,10 At,11 At,12 At,13 
 

143.76 128.4 168.01 194.2 158.57 137.09 165.42 171.95 159.31 166.95 155.37 154.62 157.69 
 

 

Regarding the bond behaviors between steel bars and concrete, two scenarios are 

considered: ‘perfect bond’ and ‘poor bond’. The former assumes no slip at the interface 

between reinforcement and concrete, and the latter considers the constitutive model of 

bond-slip given in Section 3.2.3.  

 

5.2 Comparison with experimental data 

5.2.1 Comparisons of P-δ curves 

The calculation results of load P versus the mid-span deflection δ are obtained and compared 

with experimental results, as indicated in Fig. 8. In general, it is observed that the P-δ curves 

of FEM are consistent with the experimental ones. The P-δ curves are similar at the initial 

stage but gradually become different with different corrosion conditions and bond 

assumptions. Besides, the upward slope of the P-δ curves for the FEM of the corroded 

scenario is close to that of the uncorroded scenario in the initial stage before concrete 

cracking in the tensile zone. The reason is that the corrosion-induced damage on concrete is 

not considered, but it does not influence the subsequent development of the P-δ curve after 

concrete cracking. Also, the bond condition could affect the stress and strain distribution of 

concrete and reinforcement and further affect the deflection at the beam mid-span.  

Furthermore, the effect of the constitutive model of reinforcement on the P-δ curve is 

illustrated by employing the traditional bilinear constitutive model (only elastic and 

hardening phases) with or without corrosion-induced strain descent. The initial phase of the 

P-δ curve from the bilinear constitutive model agrees well with the other curves, but the 
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critical loads such as Py and Pu are higher, and the ultimate deformation is lower than other 

scenarios. Besides, Pu of the scenario without the strain descent is higher than other cases, 

and its ultimate deformation is slightly higher than the experimental result and the ‘poor bond’ 

scenario. For the uncorroded RC beam, the effect of the constitutive model of reinforcement 

on the P-δ curve appears to be insignificant, whereas it is larger for the corroded RC beam. 

Therefore, the bilinear constitutive model of reinforcement seems inappropriate, while the 

proposed constitutive model yields a P-δ curve that is closer to the experimental results.  

 

 
Fig. 8 P-δ curves of FEM and experimental data 

(Dotted black line denotes the serviceability limit deflection Ls = beam length / 500) 

 

In the following analysis, Ps is the load for the serviceability limit deflection (Ls = beam 

length/500); the yield load Py and deflection δy indicate the inflection point of the P-δ curve; 

and the ultimate load Pu and deflection δu are related to the peak point of the P-δ curve. It is 

noted in Fig. 9 that Py, δy, Pu and δu decrease with corrosion. These values are extracted from 

P-δ curves and listed in Table 5. It can be noticed that Pu and Py fit well within experimental 

and numerical results, but Ps does not fit well with the experiment for the uncorroded RC 

beam. Also, for the mid-span deflection, it can be noticed that δy and δu have a relatively large 

deviation, especially for δy of the uncorroded beam. The potential cause of this difference is 

that the employed constitutive model of concrete underestimates the stiffness of the actual 

concrete material, which further underestimates the rigidity of the beam. 
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Concerning the scenario without corrosion, the values for ‘poor bond’ are close to that 

of ‘perfect bond’. It demonstrates that it is acceptable to suppose ‘perfect bond’ for the 

uncorroded RC beam; although the values of δy of both ‘poor bond’ and ‘perfect bond’ do not 

fit well with the experiment. However, for the scenario with corrosion, it is noted that the 

condition of ‘poor bond’ fits better with the experiment than that of ‘perfect bond’ except for 

Ps, which also indicates the ‘poor bond’ might cause the underestimation of beam stiffness.  

 
Table 5 Comparisons of mechanical information of experimental data and FEM simulation 

Case 
Ps δy Py δu Pu 

Value 
(kN) ∆dev 

Value 
(mm) ∆dev 

Value 
(kN) ∆dev 

Value 
(mm) ∆dev 

Value 
(kN) ∆dev 

Exp & no corr 38.7 - 7.6 - 44 - 81.9 - 49.2 - 

Poor bond & no corr 32.1 17.2% 11.5 51.3% 46.31 5.3% 97.8 18.4% 49.6 0.8% 

Perfect bond & no corr 33.0 14.8% 11.5 51.3% 47 6.8% 102 23.5% 49.6 0.8% 

Exp & corr 27.2 - 7.8 - 30 - 35.9 - 37.6 - 

Poor bond & corr 26.0 4.5% 8.4 7.7% 30.8 2.7% 40.2 12.0% 39 3.7% 

Perfect bond & corr 27.0 0.8% 8.4 7.7% 32 6.7% 43.8 22.0% 39.2 4.3% 

Note: ∆dev denotes the |1-computational value/experiment value| × 100%; Exp denotes experimental value 

 

5.2.2 Comparisons of crack patterns 

Fig. 9 compares the crack patterns of RC beams when achieved the Pu, i.e., ULS, under both 

experimental and numerical investigations. For the numerical simulation, cracks are 

generated only by loading. Therefore, numerical crack patterns are not reproducing horizontal 

cracks that are mainly due to corrosion (Fig. 9c and d).  

Comparing uncorroded (Fig. 9a and b) with corroded (Fig. 9c and d) results, it could be 

noticed that the crack patterns, including the crack number, location, and spacing, change 

significantly due to the reinforcement corrosion. In the investigated example, the crack width 

of the uncorroded scenario is larger than that of the corroded scenario. The primary reason is 

that the crack width of ULS is related to the deformation capacity of the RC beam, e.g., δu. 

Both ‘poor bond’ and reinforcement corrosion could impair the δu of the RC beam and reduce 

the crack width in the investigated case.  

On the other hand, for the uncorroded RC beam, the crack pattern under ‘perfect bond’ 

case is symmetric (Fig. 9b), but it is asymmetric for ‘poor bond’. This phenomenon may be 
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due to the difference in strain between the tension bar and concrete in the tensile zone. Under 

the assumption of ‘perfect bond’, the strains of tension bars and concrete at the same node are 

supposed to be strictly consistent, so their strain and stress distribution are symmetrical on 

both sides. However, for ‘poor bond’, without such a strict condition, the strains at the same 

node might have some differences. To balance the force matrix and coordinate the element 

deformation, the stress and strain distribution on both sides of the beam could be different in 

the FEM calculation. Without considering the corrosion effect, this difference has a much 

more significant effect on the crack pattern. Besides, for the corroded RC beam, the crack 

pattern is also asymmetric (Figs. 9c and d), and its asymmetry seems much severe than that 

of the uncorroded RC beam (Figs. 9a and b). Comparing Fig. 9c with d, the bond condition 

does not influence much the crack pattern. Thus, being different from the uncorroded 

scenario, the asymmetry of the crack pattern is more due to corrosion non-uniformity than the 

bond condition.  

(a) 

(b) 

(c) 

(d) 

Fig. 9. Comparisons of crack patterns between experiment and simulation results of different 
scenarios: (a) poor bond & no corr; (b) perfect bond & no corr; (c) poor bond & corr; and (d) 

perfect bond & corr  
(Ecw1 denotes the principal crack width; Black lines are experimental results [30], and red 
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lines are simulation results)  
 

5.2.3 Effect of corrosion degree 

In order to investigate the effects of reinforcement corrosion on the simulation results, three 

corrosion scenarios are supposed:  

(1) original corrosion degree (ηs) in Fig. 7;  

(2) 1.1 times the corrosion degree (1.1ηs) for all steel bar elements; and 

(3) 1.25 times the corrosion degree (1.25ηs) for all steel bar.  

Table 6 presents the results on the effect of bond condition for the above-mentioned 

corrosion degrees. It is noted that the bond condition slightly affects Ps, Py, and δy and does 

not affect δy and Pu of the uncorroded RC beam, as the bond condition of the uncorroded RC 

beam is close to ‘perfect bond’. For the corroded RC beam, the effect of bond condition on 

the deflection δ (δu and δy) and load P (Pu and Py) increases with the corrosion degree, while 

the effect of bond condition on Ps slightly decreases with corrosion degree. Since it is 

essential to consider the bond conditions for the mechanical evaluation of corroded RC 

beams, the constitutive model of bond-slip (Eqs. (12) and (13)) would be employed for the 

sensitivity and reliability analysis. 

 
Table 6 Comparisons of mechanical information between ‘perfect bond’ and ‘poor bond’ 

Case 
Ps δy Py δu Pu 

Value 
(kN) ∆dev 

Value 
(mm) ∆dev 

Value 
(kN) ∆dev 

Value 
(mm) ∆dev 

Value 
(kN) ∆dev 

Perfect bond & no corr 33.0 - 11.5 - 47 - 102 - 49.6 - 

Poor bond & no corr 32.1 2.8% 11.5 0.0% 46.31 1.5% 97.8 4.1% 49.6 0.0% 

Perfect bond & ηs 27.0 - 8.4 - 32 - 43.8 - 39.2 - 

Poor bond & ηs 26.0 3.7% 8.4 0.0% 30.8 3.8% 40.2 8.2% 39 0.5% 

Perfect bond & 1.1ηs 26.2 - 9.0 - 30.6 - 38.2 - 36.4 - 

Poor bond & 1.1ηs 25.4 3.1% 8.4 6.3% 30 2.0% 27.7 27.5% 35.8 1.6% 

Perfect bond & 1.25ηs 24.9 - 9.6 - 28.4 - 39.5 - 32.2 - 

Poor bond & 1.25ηs 24.2 2.8% 7.9 17.9% 29.2 2.8% 24.3 38.5% 31.8 1.2% 

Note: ∆dev denotes the |1- value of ‘Poor bond’/ value of ‘perfect bond’| × 100%  

 

In order to study the failure mode of a RC beam, the δ values of critical events until 

reaching δu, are computed and drawn from the results of FEM simulations, as illustrated in 

Fig. 10. Seven critical failure events, such as concrete crushing, tension bar yielding, and 
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breaking, among others., are investigated and plotted in Fig. 10, showing their sequence and 

corresponding failure modes. In Fig. 10, δu decreases rapidly with the corrosion degree, and 

the chronological order of events varies with the corrosion degrees and bond condition. Given 

no corrosion, tension bar yields first, then compression bar yields, followed by stirrup 

yielding, and finally, concrete crushes.  

For the corroded RC beam with the original corrosion degree ηs, the tension bar breaks 

before the concrete crushing, which corresponds with the failure mode reported in [30]. Also, 

the event of stirrup bar yielding brings forward; for the 1.25 times of corrosion degree, the 

event of stirrup bar yielding even happens earlier than tension bar yielding. Comparing Fig. 

10a with Fig. 10b, for the original corrosion degree case ηs, the stirrup bar breaks after δu 

under poor bond condition but before the tension bar under perfect bond condition. The 

probable cause is the poor bond between the tension bar and concrete, making it easier to 

concentrate stress on the tension bar and move its breaking sequence forward. However, after 

1.1ηs, stirrup bars are severely corroded, leading to the stirrup bar breaking before the tension 

bar under both poor and perfect bond conditions. Thus, the failure mode of the RC beam 

might vary from ductile failure to brittle failure and even from flexural failure to shear failure 

with corrosion development. Besides, the bond condition might influence the failure mode of 

the corroded RC beam. 

 
Fig. 10. Deflection for various critical events 
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5.2.4 Spatial distribution of cracks and stresses  

The spatial distribution of concrete crack width and the stress of steel bars under ultimate 

load Pu are investigated in Fig. 11. Fig. 11a presents the distributions of crack width at the 

bottom of the beam. Due to the large deformation development of the uncorroded RC beam, 

its maximum crack width is larger than that of the corroded RC beam. From Fig. 11a, it could 

be noticed that the maximum crack width is not significantly influenced by the corrosion 

degree. However, the maximum crack width is affected by the bond condition because poor 

bond results in the deformation between concrete and longitudinal bar and simultaneously 

increase the crack width of concrete. Therefore, ignoring the bond strength loss might 

underestimate the crack width evaluation of the RC beam.  

On the other hand, Fig. 11b shows the stress distribution of longitudinal bars under Pu, 

in which the stresses of the longitudinal bar within the location from 1,170 mm to 1,390 mm 

reach the ultimate stress. This result is expected as this zone is mostly affected by the 

corrosion of compressive and tensile bars (Fig. 7). Excepting this critical zone, the stress 

distribution under load Pu slightly decreases with the corrosion degree.  

In addition, Fig. 11c presents the maximum stress within each stirrup bar under Pu, in 

which only the stirrup bar in the mid-span of the corroded RC beam reaches the ultimate 

stress. It is noted that the bond condition influences the stress distribution of stirrup bars. As 

corrosion progresses, more stirrup bars approach ultimate strength. For 1.25ηs, the perfect 

bond concentrates the stress on the stirrup bars in the mid-span of the beam (m = 6, 7, and 8), 

but poor bond distributes the stress of stirrup bars discretely (m = 4, 7, and 8). 
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Fig. 11. (a) Crack width distribution at beam bottom; (b) stress distribution of longitudinal 

bars; and (c) stress distribution of stirrup bars under Pu 

Due to the spatial effects of non-uniform corrosion, the cracking pattern and stress of 

steel bars are non-uniformly distributed along the RC beam. Corrosion degree mainly 

influences the deflection and load capacity of the RC beam, the distribution of concrete 

cracks, and the stress of steel bars. Also, the bond condition affects the distribution of crack 

and steel bar stress and the deflection and load capacity of corroded RC beam. Thus, realistic 

modeling of deterioration processes in corroded rebars that considers the spatial variability of 

corrosion and the bond strength loss of both longitudinal bars and stirrups is paramount for 

comprehensive condition, lifetime assessment, and failure analysis.  

5.3 PCE-based global sensitivity analysis of RC beams 

5.3.1 Problem description 

Based on the geometry model and loading mode described in Sections 5.1 and 5.2, the 

uncertainties of geometry parameters (L, b, h, and c of the beam, and cross-sectional area of 
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corroded steel bar) and mechanical parameters (fy, fc, and Es) on the serviceability and 

ultimate capacity are investigated. One deterministic FEM analysis of the RC beam costs 

around 10 to 15 minutes by using a PC (CPU: Intel® Core™ i5-8400, 6 Cores; Memory: 16 

GB). Thus, MCS, which need a large scale of computations, are costly and not feasible.  

In this subsection, a surrogate model based on polynomial chaos expansion (PCE) is 

established. The input variables are given in the following random vector X = [L, b, h, c, fy, fc, 

Es, Asv, At, Ac], where Asv, At, and Ac are the vectors of minimum cross-sectional areas of 

stirrup bars [Asv,1, Asv,2, …, Asv,n+1], tension bars [At,1, At,2,…, At,n], and compression bars [Ac,1, 

Ac,2,…, Ac,n], respectively. Probability distributions of geometry and mechanical parameters 

are listed in Table 7 and those for the cross-sectional area of corroded steel bars are based on 

the distribution of factor R (Eqs.(6) and (7)). In this study, all random variables are supposed 

to be independent. 

 
Table 7 Distribution type and values of the parameters 

Parameter Distribution Mean COV Parameter Distribution Mean COV 

L (mm) Normal 3000 0.01[57] fy (MPa) Lognormal 600 0.10[58] 
b (mm) Normal 150 0.01[57] fc (MPa) Normal 42 0.15[59] 
h (mm) Normal 280 0.01[57] Es (MPa) Normal 200000 0.02[60] 
c (mm) Lognormal 10 0.10[58]     

Note: all Normal distributions are truncated at 0. 

The main outputs are the external load P and deflection δ under different limit states, 

including serviceability limit state (SLS) and ultimate limit state (ULS). In general, the SLS 

can be expressed through crack width and deflection. In this case, three levels of SLSs are 

investigated: SLS1 (crack width = 0.05 mm [61]), SLS2 (δ = L/500 [62]), and SLS3 (crack 

width = 1 mm [63]), and three corresponding loads are denoted as Ps1, Ps2, and Ps3. For the 

ULS, the ultimate load Pu of the P-δ curve is collected, and the corresponding failure mode 

can be determined according to the occurrence order of critical events, i.e., the increasing 

sequence of δ under critical events. Based on different corrosion current density icorr and 

average corrosion degree of steel bars ηave, 16 scenarios are investigated, as shown in Table 8. 

For each scenario of icorr and ηave (Table 8), the cross-sectional area distribution is calculated 

by Eqs. (5) and (26).  
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Table 8 icorr and ηave of different cases 

No icorr ηave No icorr ηave No icorr ηave No icorr ηave 
(μA/cm2) (μA/cm2) (μA/cm2) (μA/cm2) 

1 

0.1 

0 5 

0.5 

0 9 

1 

0 13 

3 

0 
2 10% 6 10% 10 10% 14 10% 
3 30% 7 30% 11 30% 15 30% 
4 50% 8 50% 12 50% 16 50% 

 

5.3.2 Comparison between PCE and numerical simulations 

For each case in Table 8, Monte Carlo simulation (MCS) is performed to create 500 samples; 

relevant details such as P-δ curves, reinforcement stress, and concrete strain in the 

compression zone are obtained for further analysis. Taking the icorr of 1 μA/cm2 and ηave of 10% 

as one example, Fig. 12a compares the simulated P-δ curves with the experimental P-δ curve 

of corroded RC beam. It can be found that the simulation results are close at the elastic stage, 

but their variations increase significantly after the yielding stage. In addition, Fig. 12b shows 

the histogram of ultimate load Pu from simulated results, and its probability density curve is 

obtained by the kernel density estimation [64], as well as the mean, maximum and minimum 

value of P at different δ. Also, the experimental Pu, 2.5 %, and 97.5 % quantile values of 

simulated Pu and their corresponding PDF values are marked in Fig. 12b. The experimental 

Pu is within the 95 % confidence interval of simulated Pu and close to the simulated peak 

value. 

 

 
Fig. 12. (a) PDF contour of simulated P-δ curves and experimental P-δ curves; (b) Histogram 

of simulated ultimate load Pu and experimental ultimate load Pu 
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Furthermore, 400 numerical samples are used to establish the PCE (training set), and the 

other 100 are collected to test the developed PCE (testing set). As shown in Fig. 13, the 

predicted PCE values of Ps1, Ps2, Ps3, and Pu are compared with the actual values by using icorr 

= 0.5 μA/cm2 as an example. In Fig. 13, the R2 of the PCEs for Ps1 and Ps2 range from 0.73 to 

0.99, while the R2 of the PCEs for Ps3 and Pu range from 0.84 to 0.96, in which the R2 of most 

scenarios are higher than 0.8.  

On the other hand, regarding the minimum and maximum icorr (0.1 and 3 μA/cm2), Fig. 

14 compares the predictions and actual values of Ps1 and Pu. In Fig. 14, it can be found that 

icorr does not influence Ps1 and Pu in the case of ηave = 0, but icorr affects Ps1 and Pu with the 

degree of corrosion. Besides, the R2 values of Ps1 and Pu are higher than 0.73 and are not 

widely influenced by icorr. The estimated values of R2 as well as the ability of the PCE 

approximations to deal with different corrosion scenarios and limit state functions 

demonstrate that this approximation could be used for lifetime assessment and sensitivity 

analysis (SA).  

 

 
Fig. 13. Comparison between the predictions and actual values under icorr = 0.5 μA/cm2: (a) 

Ps1, (b) Ps2, (c) Ps3, and (d) Pu 
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Fig. 14. Comparison between the predictions and actual values of Ps1 and Pu:  

(a) Ps1, icorr = 0.1 μA/cm2, (b) Ps1, icorr=3 μA/cm2,  
(c) Pu, icorr= 0.1 μA/cm2, and (d) Pu, icorr = 3 μA/cm2 

The random distribution of the target physical variables could be easily obtained through 

a MCS with 106 simulations from the PCE model. For instance, Fig. 15 depicts the PDF of 

the original simulations and PCE for icorr = 3 μA/cm2. As seen in Fig. 15, the PDFs of PCE 

obtained by the training set fit well with the discrete PDF of 500 simulations. These results 

are useful for computing the reliability under different limit states of a corroded beam 

subjected to a given external load and different corrosion degrees. 
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Fig. 15. Comparison between PDF of actual and PCE values for icorr = 3 μA/cm2: (a) Ps1, (b) 

Ps2, (c) Ps3, and (d) Pu 

 

5.3.3 Failure probability with respect to different failure modes 

The comprehensive numerical model allows establishing the occurrence of critical events for 

different corrosion levels, as illustrated in Fig. 10. PCE enables the development of surrogate 

models for the external loads associated with the three failure modes, i.e., stirrup breaking, 

longitudinal bar breaking, and concrete crushing. Given the input information, the values of 

three loads can be evaluated and compared to determine the failure mode by the method 

described in Section 5.2.3. In addition, by combining with MCS, these surrogate models can 

be used to evaluate the probability of occurrence of these three failure modes Pf1 (stirrup 

breaking), Pf2 (tension bar breaking), and Pf3 (concrete crushing).  

Based on the failure events for each mode, Fig. 16 illustrates the contribution of each 

failure mode for different corrosion scenarios. It is found that the failure mode of an 

uncorroded RC beam is dominated by concrete crushing. Besides, the failure mode of a 

corroded RC beam varies with the corrosion degree and corrosion rate, which could be 

summarized as follows: 

(1) For ηave = 10%, the failure mode is dominated by tension bar breaking (Pf2 = 53% to 

72%). Besides, Pf2 decreases with icorr, while Pf1 increases with icorr, and Pf3 remains basically 

unchanged; 
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(2) For ηave = 30 %, the failure mode is still dominated by tension bar breaking (Pf2 = 86% 

to 89 %) is much higher than the scenario of ηs = 10%. The values of Pf1, Pf2, and Pf3 are 

literally unchanged with icorr; and 

(3) For ηave = 50 %, Pf2 is still the largest (Pf2 = 66% to 82%), but Pf1 becomes higher 

than the scenario of ηave = 30%. Meanwhile, Pf2 increases with icorr, while Pf1 decreases with 

icorr, and Pf3 changes a few. 

 
icorr  ηave 

(μA/cm2) 
0 0.1 0.3 0.5 

0.1 

    

0.5 

    

1 

    

3 
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Fig. 16. Contribution of failure modes under different icorr and ηave 

 

In general, for the corroded RC beam, the possible failure mode is tension bar breaking, 

which is consistent with the failure mode of experimental results in [30]. Also, the 

deterministic analysis in Section 5.2.3 proves that stirrup breaking may happen with 

corrosion development. Furthermore, considering the uncertainties of geometry and 

mechanical parameters, it can be found that the probability of stirrup breaking increases with 

corrosion degree under a low corrosion rate, while the probability of stirrup breaking 

decreases with corrosion degree under a high corrosion rate. Thus, compared with 

experimental study and deterministic analysis, more comprehensive knowledge of failure 

analysis could be conducted through the PCE-based probabilistic analysis. 

5.3.4 Global sensitivity analysis 

By performing SA, the total sensitivity factors STi of all components of vector X are 

estimated. With icorr = 3 μA/cm2, the highest five STi are presented in Table 9, which shows 

that the relationship between STi versus ηave differs among different limit states. For Ps1, the 

STi of Asv, At, and Ac have the most significant effect, and its order of importance depends on 

ηave. At has the larger STi values when ηave ≥ 0.1. Geometrical and strength parameters had 

minor importance for Ps1. For Ps2, the STi of fc and geometrical parameters are the largest 

when ηave = 0 to 0.1, but that of At becomes the largest when ηave = 0.5. For Ps3, the STi of Asv, 

At, and Ac are the most critical ones when ηave = 0, while the STi of fy and At rise significantly 

when ηave ≥ 0.1. Moreover, for Pu, the STi of fy is the largest when ηave ≤ 0.1, but that of 

At exceeds fy and becomes the largest one when ηave ≥ 0.3. In addition, the STi of Asv 

decreases with ηave. Such a result is consistent with the analysis of Section 5.3.3 where it was 

found that at a high corrosion rate, the contribution and failure probability of tension bars 

increase with corrosion development. In summary, for this level of corrosion rate, the 

remaining steel areas are the main influencing parameters for the appearance of hairline 

cracks in the concrete (Ps1). For reaching a larger crack width (Ps3), the strength parameters 

also become essential. Concerning deflection (Ps2), the strength and geometry parameters 
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have a more significant role. Moreover, for failure (Pu), a combination of strength and 

remaining steel areas is critical.  

 

Table 9 Comparisons of STi for various limit states under icorr = 3 μA/cm2 
 ηave Ps1 (crack width = 0.05 mm)  Ps2 (δ = L /500) 

Parameter 
0 

Ac At Asv L fc fc L h Asv Es 

STi 0.495 0.482 0.384 0.122 0.064 0.263  0.219  0.197  0.135  0.133  

Parameter 
0.1 

At Asv Ac fc Es fc L h At Es 

STi 0.454 0.368 0.317 0.144 0.105 0.266  0.224  0.195  0.144  0.113  

Parameter 
0.3 

At Asv Ac fc h fc At h Asv L 

STi 0.652 0.21 0.168 0.108 0.067 0.336  0.289  0.154  0.135  0.113  

Parameter 
0.5 

At Asv Ac fc h At Asv Ac fy h 

STi 0.455 0.353 0.32 0.319 0.044 0.655 0.317 0.223 0.078 0.072 
 ηave Ps3 (crack width = 1 mm) Pu (failure) 

Parameter 
0 

Ac Asv At fy fc fy Asv At Ac h 

STi 0.461 0.418 0.259 0.196 0.114 0.817  0.088  0.051  0.050  0.032  

Parameter 
0.1 

fy At Ac Asv L fy At Asv Ac h 

STi 0.784 0.111 0.058 0.052 0.035 0.730  0.103  0.085  0.071  0.041  

Parameter 
0.3 

At fy Ac Asv h At fy Asv Ac h 

STi 0.496 0.475 0.052 0.051 0.013 0.503  0.480  0.036  0.035  0.009  

Parameter 
0.5 

At fy Asv Ac c At fy Ac Asv h 

STi 0.606 0.367 0.063 0.049 0.01 0.617  0.351  0.058  0.057  0.019  

 

For other values of icorr and ηave and all considered limit states, the results given in Table 

A1 (Appendix) indicate that for a small corrosion degree (ηave = 0.1), a variation of icorr does 

not significantly affect the order of the more influencing parameters as well as the 

corresponding STi values; however, for the most pessimistic scenario (icorr = 0.1 μA/cm2, ηave 

= 0.1), At becomes the more critical parameter. It demonstrates that rising corrosion rate 

could increase the contribution of tension bars at a high corrosion degree, which is consistent 

with the analysis in Section 5.3.3 that high corrosion degree and rate increase the probability 

of tension bar breaking. 

The STi of Asv, Ac, and At are presented in Fig. 17 to further investigate the spatial 

effects of corrosion non-uniformity. Given the icorr of 3 μA/cm2 and the ηave of 0.5, the STi of 

Asv and Ac under Ps1 and Ps2 are higher than those of Ps3 and Pu, while the STi of At under Ps1 
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is basically lower than Ps2, Ps3, and Pu. Also, being different from Fig. 17a and b, the STi in 

Fig. 17c is principally concentrated among At,5, At,6, At,7, and At,8. Besides, Fig. 17d shows 

that the STi of At mostly concentrates on At,5, At,6, At,7, and At,8; the STi of At under Ps1 and the 

ηave of 0.1 is higher than other limit states. Thus, it could be found that the tension bar 

presents the most significant non-stationary spatial effects with maximum values in the center 

of the beam span. This is related to a larger presence of open cracks in this central area (Fig. 

9) that could accelerate corrosion-induced deterioration. Besides, the sensitivity factors 

increase with the average corrosion degree. 

 
Fig. 17. Comparisons of STi of Asv, Ac , and At under different scenarios: 

(a) Asv, icorr = 3 μA/cm2, ηave = 0.5; (b) Ac, icorr = 3 μA/cm2, ηave = 0.5;  
(c) At, icorr = 3 μA/cm2, ηave = 0.5; and (d) At, icorr = 3 μA/cm2, ηave = 0.1 

 

Finally, for other values of icorr and ηave and Pu, results in Fig. A1 (Appendix) indicated 

that a high corrosion current density might induce a failure that happened at critical 

cross-sections, i.e., close to the mid-span, but a low corrosion current density might cause a 

failure that occurred at non-critical cross-sections. In other words, a low corrosion current 

density might induce a higher spatial variation. 
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6 Conclusions 

In this paper, a probabilistic analysis framework for the corroded RC beams integrating 

experiments, FEM, and PCE is established to perform performance assessment, failure 

analysis, and global SA. On this basis, a series of numerical cases are undertaken to present 

the feasibility of the developed framework, and the following conclusions are drawn: 

1) Comparing the FEM simulations with experimental results, it can be concluded that the 

proposed FEM based modeling strategies are feasible and efficient. In addition, the 

numerical results indicate that the corrosion degree mainly influences the deflection, load 

capacity, distributions of concrete crack and reinforcement stress, and failure modes of 

corroding RC structures, which is consistent with experimental studies. Also, the bond 

condition may have little effect on the crack pattern and the external load of ULS. 

However, it may affect the deformation of the RC structure, the mechanical behavior of 

SLS, the stress distribution of the steel bar, and the failure mode.  

2) Based on MCS and the verified FEM model, PCE-based surrogate models for different 

critical loads in various limit states and scenarios are established. Results demonstrate 

that the deviation of PCE is relatively small, and the capacity distribution of PCE fits 

well with MCS. Also, probabilistic failure analysis shows that the concrete crushing 

dominates the failure mode of the uncorroded RC beam. For the corroded RC beam, 

tension bar breaking becomes the principal failure mode. At low corrosion rates, the 

probability of stirrup breaking increases with average corrosion degree and vice versa at 

high corrosion rates.  

3) On the other hand, the results of global SA indicate that sensitivity factors of all input 

variables may vary with average corrosion degree and corrosion current density. Besides, 

the spatial variability from non-uniform corrosion is reflected in the sensitivity factors of 

the cross-sectional distribution of the tension bars. Results also show that a high average 

corrosion degree and corrosion current density increase the probability of failure at the 

mid-span of the RC beam. For all limit states, the sensitivity factors concentrate on the 

mid-span of the RC beam and increase with an average corrosion degree. 
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In summary, this study provides an efficient and feasible framework for the probabilistic 

performance and failure analyses of corroded RC structures. Such a framework integrates the 

merits of the experimental study, FEM simulation, and statistical analysis and could be 

further used for optimizing life-cycle design and maintenance operations. In the future, more 

advanced configuration models should be developed to obtain more accurate and detailed 

results, such as crack width estimation, to update and improve the developed framework. 
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Appendix: Supplementary results for the sensitivity analysis 

In order to consider the effects of icorr and ηave on the SA analysis, four scenarios are selected: 

(a) icorr = 0.1 μA/cm2, ηave = 0.1, (b) icorr = 0.1 μA/cm2, ηave = 0.5, (c) icorr = 3 μA/cm2, ηave = 

0.1, and (d) icorr = 3 μA/cm2, ηave = 0.5. The SA analysis results are listed in Table A1. 

Comparing scenarios (a) with (c), when ηave = 0.1, At and Ac are the most influencing factors 

for Ps1; fc and L are the most significant factors for Ps2; and for Ps3 and Pu, the sensitivities of 

fy and At become the greatest. It can be noticed in Table A1a and c that the rank of input 

variables remains unchanged, and the corresponding values do not change much, indicating 

that the corrosion rate does not influence much the STi of input variables at the low corrosion 

degree. Thus, the contribution of the cross-sectional distribution of steel bars is not only 

affected by corrosion current density, corrosion degree but also limit states. High corrosion 

current density and corrosion degree can increase the STi of the cross-sectional distribution of 

steel bars. However, for scenarios (b) and (d), the STi of input variables are quite different. In 

scenario (b), the STi of Asv is the top one for Ps1 and Ps2; the STi of At and fc are the largest for 

Ps3 and Pu, respectively. Meanwhile, in scenario (d), the STi of At is much higher than other 

input variables for all critical loads.  

Concerning the influences of icorr and ηave on the spatial effect of cross-sectional areas, 

Fig. A1 shows the sensitivity factors of At for Pu under the icorr of 0.1 and 3 μA/cm2. Most 

sensitivity factors concentrate among At,6, At,7, and At,8, like Fig. 17c. As indicated in Fig. A1a, 

when the ηave is below 0.5, the sensitivity factor of At,7 is the largest, followed by At,6 and At,8, 

but the sensitivity factor of At,8 becomes the largest when the ηave reaches 0.5. In Fig. A1b, 

the sensitivity factor of At,8 is always the largest. Besides, when the ηave reaches 0.5, 

comparing Fig. A1a with b, although the sensitivity factors of At,6, At,7 and At,8 are lower, the 

sensitivity factors within all At,i distributed more uniformly in Fig. A1a.  
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Table A1 Comparisons of STi among different corrosion scenarios 
Scenario Limit state (a) icorr=0.1 μA/cm2, ηave = 0.1 (b) icorr=0.1 μA/cm2, ηave = 0.5 

Parameter 
Ps1 

At Ac fc Asv Es Asv At fc Ac fy 

STi 0.313 0.299 0.280 0.275 0.087 0.368 0.328 0.307 0.273 0.085 

Parameter 
Ps2 

fc L h At Es Asv Ac At c fy 

STi 0.270 0.220 0.189 0.140 0.117 0.509 0.417 0.408 0.139 0.092 

Parameter 
Ps3 

fy At Ac Asv L At fy Asv Ac L 

STi 0.766 0.110 0.070 0.062 0.036 0.541 0.335 0.210 0.193 0.024 

Parameter 
Pu 

fy At Asv Ac h fc fy At Ac Asv 

STi 0.781 0.108 0.049 0.046 0.035 0.306 0.301 0.299 0.122 0.119 

Scenario Limit state (c) icorr=3 μA/cm2, ηave = 0.1 (d) icorr=3 μA/cm2, ηave = 0.5 

Parameter 
Ps1 

At Asv Ac fc Es At Asv Ac fc h 

STi 0.454 0.368 0.317 0.144 0.105 0.455 0.353 0.320 0.319 0.044 

Parameter 
Ps2 

fc L h At Es At Asv Ac fy h 

STi 0.266 0.224 0.195 0.144 0.113 0.655 0.317 0.223 0.078 0.072 

Parameter 
Ps3 

fy At Ac Asv L At fy Asv Ac c 

STi 0.784 0.111 0.058 0.052 0.035 0.606 0.367 0.063 0.049 0.010 

Parameter 
Pu 

fy At Asv Ac h At fy Ac Asv h 

STi 0.730 0.103 0.085 0.071 0.041 0.617 0.351 0.058 0.057 0.019 

 
 

 

Fig. A1. Comparisons of STi of At for Pu: (a) icorr=0.1 μA/cm2 and (b) icorr = 3 μA/cm2 
 


