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In this paper, the acoustic wave motion characteristics of Lamb and SH waves in functionally graded (FG)

anisotropic micro/nano-plates are studied based on the modified couple stress theory. A higher efficient

computational approach, the extended Legendre orthogonal polynomial method (LOPM) is utilized to deduce

solving process. This polynomial method does not need to solve the FG micro/nano-plates hierarchically, which

provides a more realistic analysis model for FG micro/nano-plates and has high computational efficiency.

Simultaneously, the solutions based on the global matrix method (GMM) are also deduced to verify the cor-

rectness of the polynomial method. Furthermore, the effects of size and material gradient are studied in detail.

Numerical results show that the size effect causes wrinkles in Lamb wave dispersion curves, and the material

gradient characteristic changes the amplitude and range of wrinkles. For SH waves, the length scale parameter Lx
increases the cut-off frequency but does not change the overall trend of the dispersion curve; on the contrary, Lz
does not change the cut-off frequency but causes the dispersion curve to show an upward trend.

1. Introduction

Recently, the nanoelectromechanical (NEMS) and micro-

electromechanical systems (MEMS) have promoted intensive researches

of small-scale structures. The scale effect of mechanical properties is one

of the most important issues in the application of micro/nano-structures.

Due to this effect, the classical mechanics theory and numerical methods

have been greatly challenged in the study of mechanical properties (such

as wave motion, vibration, buckling, etc.). The couple stress theory is one

of the continuum mechanics theories which can capture the size-

dependency of small-scale structures. The indeterminate couple stress

theory with uncertain spherical part of couple stress tensor and two

additional constants is developed by Mindlin and Tiersten [1]. Subse-

quently, by extracting the couple stress moment tensor symmetrically,

Yang et al. [2] proposed a modified couple stress theory that involves

only one material length scale parameter. Chen and Li [3] presented a

modified couple stress theory for anisotropic micro-structures with the

length scale parameters in three different directions considered. In this

theory, the new constitutive relationships are established by setting the

couple stress moment tensor to be symmetric. The couple stress curvature

tensor is asymmetric, but the couple stress moment tensor is symmetric.

The modified couple stress theory for anisotropic micro-structures has

been used to solve the bending, free vibration and buckling of anisotropic

layered micro-plates [4] and the buckling of anisotropic piezoelectric

cylindrical shells [5]. It pointed out that there is no evidence to limit this

theory to the specific crystal shape of the materials in open literatures,

but it may be realized in the future and further research.

Micro/nano-plates, micro/nano-shafts and micro/nano-beams of

different complexity are the basis for designing the MEMS and NEMS.

These micro/nano-structures are often subjected to dynamic working

loads as elastic waves, and their dynamic response can be evaluated by

analyzing the elastic wave propagation characteristics. Recently, the

couple stress theory has been widely used to study the size effect of

bendingwave [6], Lambwave [7,8], and Rayleigh waves [9]. In addition,

many works have also studied the size effect of elastic wave propagation

based on nonlocal theory [10,11], surface effect theory [12,13], nonlocal

strain gradient theory [14], and micropolar theory [15].

Functionally graded materials (FGM) are known as the newborn

category of composites, and their material properties change continu-

ously from one face to the other. Their main advantage is that high stress

concentrations at the layer interfaces can be eliminated [16,17]. Func-

tionally graded (FG) micro/nano-structures (such as micro/nano-films,

micro/nano-plates) have also shown great application potential in

micro/nano-electromechanical, micro/nano-electronics, physics and
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biology fields. In recent years, the size-dependent continuum models for

FG structures have been the focuses of many scientific studies. The

thermal and mechanical buckling analysis of FG graphene nanoplatelets

(GNPs) was studied based on modified strain gradient theory [18].

Sahmani and Safaei [19] investigated the nonlinear free vibrations of

bi-directional functionally graded micro/nano-beams. In addition, the

wave motion in FG structures has also received sufficient attention. Based

on the nonlocal strain gradient theory, the flexural wave propagation

analysis for FG micro-beam was studied by Li et al. [20]. Considering the

rectangular cross-section, wave propagation analysis for FG nano-beam

was investigated via nonlocal elasticity theory [21]. The

size-dependent guided wave propagation in porous FG nanoplates was

studied with considering nonlocal elasticity theory [22].

Recently, the modified couple stress theory has been used to inves-

tigate the new mechanical behaviors of FG structures [23,24]. Beside, as

an important group of material, anisotropic micro/nano-structures have

attracted many researcher’s attention [25]. The wave dispersion in

anisotropic doubly-curved shells was studied based on a new nonlocal

strain gradient higher order shell theory [26]. Liu et al. [27] studied the

reflection behavior of the elastic waves in orthotropic
couple-stressed materials. Guo et al. [28] studied the size-dependent

behavior of FG anisotropic composite plates using the couple stress

theory. For FG anisotropic micro/nano-structures with great application

potential, the study of the wave propagation characteristics can provide a

theoretical basis for its design and performance prediction. It can be seen

from the literature review that the wave propagation in typical

micro/nano-structures have been extensively studied. However, there

seems a lack of investigation on the Lamb and SH wave propagation

characteristics in FG anisotropic micro/nano-plates employing the

couple stress theory.

As a series of common methods for solving wave propagation in

composite structures, the traditional matrix methods (such as transfer

matrix method (TMM) and global matrix method (GMM)) are particu-

larly difficult to solve the wave propagation problem with considering

the size effect, anisotropy and FG structure characteristics at the same

time. For the first point, the displacement solutions and boundary con-

ditions in the context of the couple stress theory are much more

complicated than those in the context of classical elastic theory. For the

second point, the Christoffel equation must be solved to determine the

wave propagation vectors in the anisotropic micro/nano structure. For

the third point, it needs to use the multi-layer model to approximate the

FG micro/nano-structure. The above points bring great difficulties to

numerical calculations. This motivates the authors to extend the Legen-

dre orthogonal polynomial method (LOPM) to investigate the dispersion

relations of Lamb and SH waves in FG micro/nano-plates. Since LOPM

does not need to solve the FG structure hierarchically, it has been widely

utilized to study guide wave propagation in various FG macro-structures

[29–31]. Considering the couple stress effect, Liu et al. [32] developed

LOPM to calculate the reflection and transmission coefficients of FG

micro-plates immersed in liquid. Different from the previous work, this

paper extends the LOPM to study guided wave propagation in

micro/nano-structures by introducing the couple stress theory.

Table 1

Phase velocity of the first-order Lamb wave mode obtained using LOPM.

M kh ¼ 10 kh ¼ 20 kh ¼ 30 kh ¼ 40 kh ¼ 50 kh ¼ 60

9 3.00285 2.86923 2.76619 2.70451 2.66754 2.64858

10 3.00285 2.86906 2.76598 2.70400 2.66338 2.63720

11 3.00284 2.86903 2.76584 2.70394 2.66272 2.63390

12 3.00284 2.86901 2.76579 2.70389 2.66264 2.63321

13 3.00284 2.86899 2.76578 2.70386 2.66262 2.63308

Fig. 1. Dispersion curves in skew-symmetric modes of Lamb waves in a plate of

aluminum nitride. Solid lines: the results from Ref. [8]; dot lines: the results

obtained using LOPM.

Fig. 2. Dispersion curves of the first Lamb wave modes for an FG anisotropic

couple-stressed plate; solid lines: the results obtained using LOPM; dot lines: the

results obtained using GMM.

Table 2

Material constants of PZT-4 and PZT-5A (Cij in 109 N/m2) [36].

C11 C22 C33 C44 C55 C66 C12 C13 C23

PZT-4 139.0 139.0 115.0 25.6 25.6 30.6 77.8 74.3 74.3

PZT-5A 99.201 99.201 86.856 21.1 21.1 22.593 7.95 6.10 6.92
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Fig. 3. The Lamb wave dispersion curves for homogeneous and FG plates without considering the effect of couple stress; (a) FGM plate, (b) homogeneous plate.

Fig. 4. Dispersion curves of Lamb waves in an FG micro/nano-plate made of BaTiO3 and human tibia with the couple stress. (a): Ly ¼ 0.1 (b):Ly ¼ 0.2 (c): Ly ¼ 0.4 (d):

Ly ¼ 0.8.

Table 3

Material constants of BaTiO3 and Human tibia (ρ in 103 kg/m3 and Cij in 109 N/m2).

C11 C22 C33 C44 C55 C66 C12 C13 C23 ρ

BaTiO3 166 166 162 43 43 44.5 77 78 78 5.8

Human tibia 11.6 14.4 22.5 4.91 3.56 2.41 7.95 6.10 6.92 1.8
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2. Problem statement and mathematical formulation

2.1. Basic equations

According to the modified couple stress theory proposed by Chen

et al., the constitutive relations and governing equations of the aniso-

tropic elastic material are given by Refs. [3,4].

σsli;l þ
1

2
ξijkμlk;lj ¼ ρ::ui;

σsij ¼ Cijklεkl;

εij ¼
1

2

�

ui;j þ uj;i
�

;

μji ¼ l2i Giωi;j þ l2j Gjωj;i;

ωi ¼
1

2
ξijkuk;j;

(1)

where comma indicates partial differentiation, and the double dot (..)

represents the second derivative with respect to time; ui, εij and σsji

represent the displacements, strain components and symmetric portions

of the stress, respectively; ωi and μji represent the rotation and couple

stress vectors; Cijkl and ρ are the material elastic constants and mass

density, respectively. Gi (i ¼ x, y, z) and li (i¼ x, y, z) are the shear elastic

constants and length scale parameters in different directions.

An FG plate with thickness h is considered. It is composed of two

single materials whose volume content changes in the z direction. Using

the Voigt-type model [33], the effective material constant P(z) can be

expressed as:

PðzÞ¼P1V1ðzÞ þ P2V2ðzÞ; (2)

The effective material constant P(z) can represent functions of elastic

constants and density: ρ(z) and Cijkl(z). P1 and P2 are the material con-

stants of the two materials respectively. V1(z) and V2(z) represent the

Fig. 5. Dispersion curves of Lamb waves in a homogeneous micro/nano-plate made of BaTiO3 and human tibia with the couple stress. (a): Ly ¼ 0.1 (b):Ly ¼ 0.2 (c): Ly
¼ 0.4 (d): Ly ¼ 0.8.

Fig. 6. Dispersion curves of SH waves in an FG plate made of BaTio3and human

tibia without considering the effect of couple stress.
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volume fraction of two materials respectively, where V1(z) þ V2(z) ¼ 1.

Taking the power-law function distribution into consideration, P(z) can

be shown as:

PðzÞ¼P2 þ ðP1 �P2ÞV1ðzÞ; V1ðzÞ ¼
�z

h

�n

; 0 � z � h; (3)

2.2. Formulation of the problem

The position-dependent physical constants can easily incorporate the

boundary conditions into the equations of motion. The theoretical bases

for how position-dependent physical constants fulfil this role has been

detailed in Ref. [34].

By introducing the rectangular window function π (z) given by the

position-dependent physical constants:

πðzÞ¼

�

1; 0 � z � h

0; elsewhere
(4)

The stress-free and couple stress-free boundary condition (σzz ¼ σzx ¼

μzy ¼ 0 at z ¼ 0 and z ¼ h) are automatically incorporated in the

constitutive relations of the anisotropic couple stress plate:

σsij ¼ CijklðzÞεklπðzÞ;

μji ¼
�

l2i GiðzÞωi;j þ l2j GjðzÞωj;i

�

πðzÞ;
(5)

For guided waves propagating in a plate along the x direction, the

displacement components can be in the following form:

ux ¼UðzÞexp½iðkx�ωtÞ�; (6a)

uy ¼VðzÞexp½iðkx�ωtÞ�; (6b)

uz ¼WðzÞexp½iðkx�ωtÞ�; (6c)

where k is the wave number, and ω is the angular frequency.

For orthotropic materials, substituting Eqs. (5) and (6) into Eq. (1),

the governing equations become:

where the superscript ()’ indicates the partial derivative for z.

Eq. (7c) is independent of Eqs. (7a) and (7b), and Eq. (7a) is coupled

with Eq. (7b). In fact, Eq. (7c) controls SHwaves, while Eqs. (7a) and (7b)

control Lamb-type waves. The results of Lamb waves are only associated

to the length scale parameter ly. The results of SH wave are associated to

the length scale parameters lx and lz.

To resolve the equations, the U(z), V(z) andW(z) are expanded to the

Legendre orthogonal polynomial series [35]:

UðzÞ¼
X

∞

m¼0

p1mQmðzÞ;VðzÞ¼
X

∞

m¼0

p2mQmðzÞ;WðzÞ¼
X

∞

m¼0

p3mQmðzÞ; (8)

where p1m;p2m and p3m represent the undetermined polynomial coefficients

and:

QmðzÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mþ 1

h

r

Pm

�

2z� h

h

	

: (9)

where Pm is the Legendre polynomials of order m. The value of m should

reach infinity theoretically. In the calculation process, when the influ-

ence of high-order polynomial terms can be ignored, the value of m is

taken to the cut-off order value M.

Substituting Eqs. (8) and (9) into Eq. (7), and multiplying by Qj(z)

with j running from 0 to M, then integrating over z from 0 to h, give the

following equations:

A
j;m
11 p

1
m þA

j;m
12 p

2
m þ A

j;m
13 p

3
m ¼ �ω2M j

mp
1
m (10a)

A
j;m
21 p

1
m þA

j;m
22 p

2
m þ A

j;m
23 p

3
m ¼ �ω2M j

mp
2
m (10b)

A
j;m

31 p
1
m þA

j;m

32 p
2
m þ A

j;m

33 p
2
m ¼ �ω2M j

mp
3
m (10c)

Eq. (10) can be written in a matrix form as:

2

6

6

4

A
j;m
11 A

j;m
12 A

j;m
13

A
j;m
21 A

j;m
22 A

j;m
23

A
j;m
31 A

j;m
32 A

j;m
33

3

7

7

5

2

6

6

4

p1m

p2m

p3m

3

7

7

5

¼ � ω2

2

6

6

4

M j
m 0 0

0 Mj
m 0

0 0 Mj
m

3

7

7

5

2

6

6

4

p1m

p2m

p3m

3

7

7

5

(11)

�

�k2C11

�

z
�

U
�

z
�

þ
�

1þ0:25k2l2y

�

C
0

55

�

z
�

U
0
�

z
�

þ
�

1þ0:25k2l2y

�

C55

�
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�

U00
�
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�

�0:25l2yC
00
55ðzÞU

00ðzÞ�0:5l2yC
0

55ðzÞU
000

ðzÞ�0:25l2yC55ðzÞU
0000

ðzÞþik
�

1�0:25k2l2y

�

C
0

55ðzÞWðzÞþikðC13ðzÞþC55ðzÞÞW
0

ðzÞ�0:25ik3l2yC55ðzÞW
0

ðzÞþ0:25ikl2yC
00
55ðzÞ

W
0

ðzÞþ0:5ikl2yC
0

55ðzÞW
00ðzÞþ0:25ikl2yC55ðzÞW

000

ðzÞ
�

πðzÞþ
��

1þ0:25k2l2y

�

C55ðzÞ

U
0
�

z
�

�0:5l2y

�

C55

�

z
�

U00
�

z
��0

þik
�

1�0:25k2l2y

�

C55

�

z
�

W
�

z
�

þ0:5ikl2y

�

C55

�

z
�

W
0

ðzÞÞ
0
�

π
0

ðzÞþ
�

�0:25l2yC55ðzÞU
00ðzÞþ0:25ikl2yC55ðzÞW

0

ðzÞ
�

π00ðzÞ¼�ρðzÞω2UðzÞ

(7a)

�

� k2
�

1þ 0:25k2l2y

�

C55

�

z
�

W
�

z
�

þ
�

C33

�

z
�

W
0
�

z
��0

þ 0:25k2l2y

�

C55

�

z
�

W
0

ðzÞÞ
0

þ ik

ðC13ðzÞUðzÞÞ
0

þ ik
�

1� 0:25k2l2y

�

C55

�

z
�

U
0
�

z
�

þ 0:25ikl2y

�

C55

�

z
�

U00ðzÞÞ
0
�

π
�

z
�

þ
�

ikC13ðzÞUðzÞ þ 0:25ikl2yC55ðzÞU
00ðzÞ þ C33ðzÞW

0

ðzÞ þ 0:25k2l2yC55ðzÞW
0

ðzÞ
�

π
0

ðzÞ ¼ �ρðzÞω2WðzÞ

(7b)

�

� k2
�

1þ 0:25k2l2z
�

C66

�

z
�
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�

z
�
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�

C44

�
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�
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��
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0
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�
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�
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C00
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00
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000

ðzÞ � 0:25l2xC44ðzÞV
0000
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�
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0
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�

1þ 0:5k2l2x
�

�0:5k2l2zC
0
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00ðzÞÞ

0
�

π
0
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�

0:25k2l2zC66

�

z
�
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þ0:25l2xC44

�

z
�

V 00
�

z
��

π00
�

z
�
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�
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�

ω2V
�
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�

(7c)
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Eq. (11) can be transformed into an eigenvalue problem. The eigen-

value is ω2, and the eigenvector p1m; p2m; p3m will give the wave

displacement distributions. For Eqs. (11) and (3) (Mþ 1) eigenvalues will

be returned. As M increases, the numerically converged eigenvalues are

the solutions of the wave dispersion modes.

3. Numerical result and discussion

3.1. Convergence analysis

The convergence of LOPM depends on the cut-off order value M.

Before performing the method verifications, the value of M must be

determined. The necessary error analysis is presented in Table 1. The FG

plate made of human tibia and BaTiO3 is consider. It can be seen from

Table 1 that for a larger product of wavenumber and thickness kh, a

larger value of M is required to ensure the convergence of LOPM.

In the present paper, if the relative error:

Δ ¼ ðResult ðM þ 1Þ � ResultðMÞ Þ



ResultðMÞ � 10�4 (12)

It can be considered that the LOPM has reached convergence.

Accordingly, the present method converges in the range of kh ¼ 0–60

when M ¼ 12. Theoretically, the larger the value of M, the closer the

results are to the exact solution, but this will also increase the dimensions

of the matrix, thus reducing the computational speed. In the subsequent

examples, the adopted M value ensures the convergence of LOPM.

3.2. Method verifications

In the following calculation, the parameters li (for i ¼ x, y, z) which

characterize the material couple stress effect are taken in their normal-

ized form as Li ¼ li/h. At present, rare references about guide waves in FG

anisotropic couple-stressed plates are available. To validate the LOPM, a

homogeneous aluminum nitride couple-stressed plate is solved and

compared with the results from Ref. [8]. The longitudinal and transverse

wave velocities used are CL ¼ 11,225 m/s and CT ¼ 6220 m/s, respec-

tively. A good agreement between our results and those of Ref. [8] is

reached, as shown in Fig. 1.

Then, the solutions of an FG anisotropic plate are deduced by both the

Fig. 7. Dispersion curves of SH waves in an FG plate made of BaTio3and human tibia with considering the effect of couple stress. (a): Lx ¼ 0.05 (b): Lx ¼ 0.1(c): Lx ¼

0.2 (d): Lx ¼ 1.
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LOPM and GMM to verify the correctness of LOPM. The GMM solving

process is attached at Appendix. The FG plate is composed of transversely

isotropic materials PZT-4 and PZT-5A, in which their piezoelectric

properties are ignored. The FG plate has a linearly gradient function n ¼

1. The material constants are listed in Table 2. The GMMmethod divides

the FG plate into 25-layer multi-layer models. A good agreement between

LOPM and GMM is reached, as shown in Fig. 2.

3.3. Lamb waves

In the case of an anisotropic material, firstly, Lamb waves are taken

into consideration. The FG plate is made of two materials. The surfaces of

z ¼ 0 and z ¼ h are human tibia and BaTiO3, respectively. The material

constants are listed in Table 3 [37].

The influence of length scale parameters on the wave propagation

behaviors is the focus of this section. Fig. 3 shows the Lamb wave

dispersion curves for a homogeneous plate and for an FG plate by setting

Ly ¼ 0, equivalent to the classical theory of elasticity. The homogeneous

plate is made by mixing two materials uniformly with the same volume

fraction. The FG plate is mixed according to the law of power function

with n ¼ 1. The volume fractions of the materials in the two plates are

equal. It can be observed that as the frequency increases, the Lamb wave

modes for the homogeneous plates converge together rapidly, while the

modes for the FG plates converge relatively slowly. Fig. 4 shows the Lamb

wave dispersion curves with the values of Ly taken as: 0.1, 0.2, 0.4, and

0.8, respectively. It can be seen from the dispersion curves that for the FG

plate without the couple stress, the wave velocity is usually a decreasing

function that changes with the frequency (except for the first mode), and

converges to the Rayleigh-type surface mode as the frequency increases

to the infinite. For the couple-stressed plate, a rising stage on the

dispersion curves appears from low frequency and the phase velocities

converge to higher surface ones. The rising stage is even significant
when the couple stress parameter Ly becomes large. The couple

stress introduces a rotational gradient tensor, and the FG plate
shows higher stiffness [38]. This can explain that the couple stress ef-

fect increases the Lamb wave velocity and strengthens their dispersion

degree.

From Fig. 4, a second effect on the dispersion curves by the couple

stress for the FG plate is their wrinkle behavior. The larger the Ly is, the

lower the frequency is at which the wrinkle appears, the higher the

wrinkle amplitude becomes, and the occurrence range of the wrinkle

phenomenon involves the higher-order lamb wave mode to the lower-

order lamb wave mode. The wrinkle on the dispersion curves is man-

ifested by the exchange of the phase velocity branches between two

neighboring modes, and such exchange and separation are reproduced

successively as the frequency increases or decreases. This phenomenon

often exists for Lamb-type modes in the cases of material anisotropy,

viscosity, material discontinuity (multilayer), wave leaky or absorption.

It does the case here owning to the couple stress effect.

In order to illustrate the effect of material gradient characteristics on

the Lamb waves in micro/nano-plates, Fig. 5 shows the Lamb wave

dispersion curves in a homogeneous micro/nano-plate. It can be seen that

the gradient characteristics make the Lambwave phase velocity changing

relatively gentle. Therefore, the amplitude of wrinkle in FG micro/nano-

Fig. 8. Dispersion curves of SH waves in an FG plate made of BaTio3and human tibia with considering the effect of couple stress. (a): Lz ¼ 0.05 (b): Lz ¼ 0.1 (c): Lz ¼

0.2 (d): Lz ¼ 1.
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plates is smaller than that of homogeneous micro/nano-plates, and the

wrinkled range involved becomes larger.

3.4. SH wave

Fig. 6 shows the dispersion curves of SH waves in the FG plate ob-

tained by using the classical theory of elasticity. Figs. 7 and 8 are the

cases by using the couple stress theory. Lx and Lz are taken as: 0.05, 0.1,

0.2 and 1, respectively.

By comparing Figs. 6–8, it can be noticed that increasing the

dimensionless length Lx and Lz can strengthen the degree of SH wave

dispersion and increase the wave velocity in FG plates. The Lx does not

change the overall trend of the dispersion curve, while Lz makes the

dispersion curve of the SH wave show an upward trend. The larger the

value of Lz, the faster the rise rate.

Figs. 9 and 10 show the dispersion relationship between the angular

frequencies ω and kh. For easy observation, only the first few modes are

given. It can be seen that the dimensionless length Lx increases the cut-off

frequency of the SHwave, while Lz does not change the cut-off frequency.

4. Conclusions

The propagating characteristics of Lamb and SH waves in FG

anisotropic micro/nano-plates are studied by using the extended LOPM.

Different from the traditional matrix method, the polynomial method

expands the displacement components into Legendre orthogonal poly-

nomial series and automatically incorporates the boundary conditions. It

does not need to solve the FG micro-structure hierarchically, nor does it

need to solve the Christoffel equations to determine the wave propaga-

tion vectors in the anisotropic micro/nano-structure. It provides a more

realistic analysis model for FG micro/nano-plates and has high compu-

tational efficiency. The main conclusions can be drawn based on the

above numerical results:

(1) The Lamb wave dispersion curves of couple-stressed plates have a

significant rising stage before convergence. The couple stress ef-

fect strengthens the degree of Lamb and SH wave dispersion, and

improves the wave velocity.

(2) The couple stress effect causes wrinkles in the Lamb wave

dispersion curves. As the length scale parameter increases, the

wrinkling degree becomes stronger, and the wrinkled area move

toward lower frequencies and higher phase velocities.

(3) The material gradient characteristics weaken the amplitude of

wrinkles and widen the range of wrinkles in the Lamb wave

dispersion curves.

Fig. 9. Dispersion relationship between angular frequency ω and kh of SH wave in an FG plate. (a): Classical elasticity theory (b): Lx ¼ 0.1 (c): Lx ¼ 0.2 (d): Lx ¼ 1.
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(4) The length scale parameter Lx increases the cut-off frequency but

does not change the overall trend of the dispersion curve; Lz does

not change the cut-off frequency but causes the dispersion curve to

show an upward trend.
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Appendix

The harmonic solutions of the mechanical displacements can be written as:

�

uðiÞx ; uðiÞz
�

¼
�

AðiÞ
;BðiÞ

�

expðikðxþQðiÞzÞ� iωtÞi ¼ 1; 2:::N (A1)

where the superscript (i) represents the i-th layer; A(i) and B(i) are the amplitude vectors of the mechanical displacements; and k and kQ(i) are the wave

vectors in x- and z-directions, respectively. Substituting Eq. (A1) into governing equations, the linear algebraic equations can be obtained as:

Fig. 10. Dispersion relationship between angular frequency ω and kh of SH wave in FG plate. (a): Classical elasticity theory (b): Lz ¼ 0.1 (c): Lz ¼ 0.2 (d): Lz ¼ 1.
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AðiÞ

BðiÞ

�

¼ 0 (A2)

In order to have nontrivial solutions of Eq. (A2), the determinant of the coefficient matrix must be equal to zero. There are six roots of Q (i) can be

obtained, and the mechanical displacements can be reconstructed as linear combinations:

uðiÞx ¼
X

6

j¼1

A
ðiÞ
j exp

�

ik
�

xþQ
ðiÞ
j z

�

� iωt
�

(A3)

uðiÞz ¼
X

6

j¼1

f
ðiÞ
j A

ðiÞ
j exp

�

ik
�

xþ Q
ðiÞ
j z

�

� iωt
�

f
ðiÞ
j ¼

C
ðiÞ
11k

2 þ C
ðiÞ
55k

2
�

Q
ðiÞ
j

�2

þ 0:25 C
ðiÞ
55k

4l2y

�

Q
ðiÞ
j

�2

þ 0:25C
ðiÞ
55k

4l2y

�

Q
ðiÞ
j

�4

� ω2ρðiÞ

�C
ðiÞ
13k

2Q
ðiÞ
j � C

ðiÞ
55k

2Q
ðiÞ
j þ 0:25 C

ðiÞ
55k

4l2yQ
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j þ 0:25 C

ðiÞ
55k

4l2y

�

Q
ðiÞ
j

�3

(A4)

Substituting Eq. (A3) and (A4) into constitutive relations, the stress, couple stress, rotation can be also reconstructed as linear combinations:

σðiÞ
zz ¼

X

6

j¼1

A
ðiÞ
j

�

ikC
ðiÞ
13 þ ikf

ðiÞ
j C

ðiÞ
33Q

ðiÞ
j

�

exp
�

ik
�

xþQ
ðiÞ
j z

�

� iωt
�

(A5)

σðiÞ
zx ¼

X

6

j¼1

A
ðiÞ
j C

ðiÞ
55

�

ik� 0:25ik3l2y � 0:25ik3l2y

�

Q
ðiÞ
j

�2�

f
ðiÞ
j exp ik xþQ

ðiÞ
j z

!

� iωt

!

þ
X

6

j¼1

A
ðiÞ
j C

ðiÞ
55

��
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(A6)

μðiÞzy ¼
1

2

X

6

j¼1

A
ðiÞ
j C

ðiÞ
55 l

2
y

�

k2f
ðiÞ
j Q

ðiÞ
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�

Q
ðiÞ
j

�2�

exp ik xþQ
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� iωt
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(A7)

ωðiÞ
y ¼

1

2
ik
X

6

j¼1

A
ðiÞ
j

�

� f
ðiÞ
j þQ

ðiÞ
j

�

exp ik xþQ
ðiÞ
j z

!

� iωt

!

(A8)

The boundary conditions can be expressed as:

At z ¼ 0:

σ1
zz ¼ 0; σ1

zx ¼ 0; μ1zy ¼ 0: (A9)

At z ¼ h:

σN
zz ¼ 0; σN

zx ¼ 0; μNzy ¼ 0: (A10)

At z ¼ hi, for i ¼ 1, 2 … N-1:

uiþ1
x ¼ uix; u

iþ1
z ¼ uiz; σ

iþ1
zx ¼ σizx; σ

iþ1
zz ¼ σi

zz; μ
iþ1
zy ¼ μizy;ω

iþ1
y ¼ ωi

y: (A11)

Substitution of Eqs. (A3-A8) into Eqs. (A9-A11) yields the following linear equations:

h

B
in

A
ðiÞ
j

o

T¼ 0
�

i¼ 1; 2…N; j¼ 1; 2…6
�

(A12)

where [B] is a 6 N � 6 N matrix whose elements contain h, ω, k and material parameters. Then the dispersion relation can be obtained by solving |B| ¼

0 numerically.
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