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Motivated by the central role played by rotationally symmetric distributions in directional statistics, we consider the problem of testing rotational symmetry on the hypersphere. We adopt a semiparametric approach and tackle problems where the location of the symmetry axis is either specified or unspecified. For each problem, we define two tests and study their asymptotic properties under very mild conditions. We introduce two new classes of directional distributions that extend the rotationally symmetric class and are of independent interest. We prove that each test is locally asymptotically maximin, in the Le Cam sense, for one kind of the alternatives given by the new classes of distributions, both for specified and unspecified symmetry axis. The tests, aimed to detect location-like and scatter-like alternatives, are combined into convenient hybrid tests that are consistent against both alternatives. We perform Monte Carlo experiments that illustrate the finite-sample performances of the proposed tests and their agreement with the asymptotic results. Finally, the practical relevance of our tests is illustrated on a real data application from astronomy. The R package rotasym implements the proposed tests and allows practitioners to reproduce the data application.

Introduction

Motivation

Directional statistics deals with data belonging to the unit hypersphere S p-1 := {x ∈ R p : x 2 = x T x = 1} of R p . The most popular parametric model in directional statistics, which can be traced back to the beginning of the 20th century, is the von Mises-Fisher (vMF) model characterized by the density x → c M p,κ exp(κ x T θ θ θ) (densities on S p-1 throughout are with respect to the surface area measure σ p-1 on S p-1 ), where θ θ θ ∈ S p-1 is a location parameter (it is the modal location on the sphere), κ > 0 is a concentration parameter (the larger the value of κ, the more the probability mass is concentrated about θ θ θ), and c M p,κ is a normalizing constant. The vMF model belongs to a much broader model characterized by rotationally symmetric densities of the form x → c p,g g(x T θ θ θ), where g is a function from [-1, 1] to [0, ∞) and where c p,g is a normalizing constant. The rotationally symmetric model is indexed by the finite-dimensional parameter θ θ θ and the infinite-dimensional parameter g, hence is of a semiparametric nature. Clearly, the (parametric) vMF submodel is obtained with g(t) = exp(κt), κ > 0. Note that for axial distributions (g(-t) = g(t) for any t), only the pair {±θ θ θ} is identified, whereas non-axial distributions allow identifying θ θ θ under mild conditions (identifiability of θ θ θ is discussed below).

Summary of the main contributions

In this paper, we consider the problem of testing rotational symmetry on the unit hypersphere S p-1 in any dimension p ≥ 3. The methodological contributions are threefold. Firstly, we tackle the specified-θ θ θ problem and propose two tests that aim to detect scatter -like and location-like departures from the null hypothesis. Secondly, we introduce two new classes C 1 and C 2 of distributions on S p-1 that are of independent interest and that may serve as natural alternatives to rotational symmetry. In particular, the class C 1 is an "elliptical" extension of the class of rotationally symmetric distributions based on the angular Gaussian distributions from [START_REF] Tyler | Statistical analysis for the angular central Gaussian distribution on the sphere[END_REF]. We prove that, for the specified-θ θ θ problem, the proposed scatter and location tests are locally asymptotically maximin against alternatives in C 1 and C 2 , respectively. Thirdly, we tackle the more challenging unspecified-θ θ θ problem. We prove that the scatter test is unaffected asymptotically by the estimation of θ θ θ under the null (and therefore also under contiguous alternatives) but that the location test shows a much more involved asymptotic behavior affected by the estimation of θ θ θ. We therefore propose corrected versions of the location test that keep strong optimality properties against alternatives in C 2 . Finally, using the asymptotic independence (under the null) between the location and scatter test statistics, we introduce, both for the specified and unspecified-θ θ θ problems, hybrid tests that asymptotically show power both against alternatives in C 1 and alternatives in C 2 .

The outline of the paper is as follows. In Section 2, we consider the problem of testing rotational symmetry about a specified location θ θ θ. The asymptotic distributions of two tests proposed for that aim are given in Section 2.1. Section 2.2 introduces two non-rotationally symmetric extensions of the class of rotationally symmetric distributions, which are used in Sections 2.3-2.4 to investigate the non-null asymptotic behavior of the proposed tests. In Section 3, our tests are extended to the unspecified-θ θ θ problem. Hybrid tests are introduced in Section 4. Monte Carlo experiments that illustrate the finite-sample performances of the proposed tests and their agreement with the asymptotic results are given in Section 5. We present a real data application in Section 6 and discuss perspectives for future research in Section 7. Supplementary materials collect the proofs of the main results and detail the delicate construction of optimal location tests in the unspecified-θ θ θ problem. The R package rotasym allows practitioners to perform the proposed tests and reproduce the data application.

2 Testing rotational symmetry about a specified θ θ θ A random vector X with values in S p-1 is said to be rotationally symmetric about θ θ θ ∈ S p-1 if and only if OX Note also that u θ θ θ (X) and the cosine v θ θ θ (X) are then mutually independent. This multivariate sign is therefore a quantity that is more appealing than the "projection" Γ Γ Γ T θ θ θ X, that is neither distributionfree nor independent of v θ θ θ (X). If X admits a density, then this density is of the form x → f θ θ θ,g (x) = c p,g g(x T θ θ θ),

where c p,g (> 0) is a normalizing constant and g : [-1, 1] -→ [0, ∞) is henceforth referred to as an angular function. Then, v θ θ θ (X) is absolutely continuous with respect to the Lebesgue measure on [-1, 1] and the corresponding density is

v → gp (v) := ω p-1 c p,g (1 -v 2 ) (p-3)/2 g(v), (5) 
where

ω p-1 := 2π p-1 2 /Γ( p-1
2 ) is the surface area of S p-2 . Application of (5) to the vMF with location θ θ θ and concentration κ (notation:

M p (θ θ θ, κ)), that is, to g(t) = exp(κt), gives c p,g = c M p,κ = κ p-2 2 /((2π) p 2 I p-2 2 (κ))
, where I ν is the order-ν modified Bessel function of the first kind.

The proposed tests

In view of the above considerations, it is natural to test the null of rotational symmetry about θ θ θ by testing that u θ θ θ (X) is uniformly distributed over S p-2 . Since there are extremely diverse alternatives to uniformity on S p-2 , one may first want to consider location alternatives and scatter alternatives, the ones associated with violations of the expectation and the covariance conditions in (3), respectively. The tests we propose in this paper are designed to detect such alternatives.

Let X 1 , . . . , X n be a random sample from a distribution on S p-1 and consider the problem of testing the null H 0,θ θ θ : "X 1 is rotationally symmetric about θ θ θ". Writing U i,θ θ θ := u θ θ θ (X i ), i = 1, . . . , n, the first test we propose rejects the null hypothesis for large values of

Q loc θ θ θ := p -1 n n i,j=1 U T i,θ θ θ U j,θ θ θ = n(p -1) Ūθ θ θ 2 ,
with Ūθ θ θ := 1 n n i=1 U i,θ θ θ . This test statistic coincides with the celebrated [START_REF] Rayleigh | On the problem of random vibrations and random flights in one, two and three dimensions[END_REF] test statistic computed from the U i,θ θ θ 's. Alternatively, if it is assumed that the X i 's are sampled from a rotationally symmetric distribution (about an unspecified location), then the test also coincides with the [START_REF] Paindaveine | Optimal rank-based tests for the location parameter of a rotationally symmetric distribution on the hypersphere[END_REF] sign test for the null that the unknown location is equal to θ θ θ. Since, under the null H 0,θ θ θ , the U i,θ θ θ 's form a random sample from the uniform distribution over S p-2 , the Central Limit Theorem (CLT) readily entails that

√ n Ūθ θ θ D N (0, 1 p-1 I p-1 ), and hence that Q loc θ θ θ D χ 2 p-1 under H 0,θ θ θ
, where D denotes convergence in distribution. The resulting test, φ loc θ θ θ say, then rejects the null hypothesis H 0,θ θ θ at asymptotic level α whenever

Q loc θ θ θ > χ 2 p-1,1-α , where χ 2
,1-α denotes the α-upper quantile of the chi-squared distribution with degrees of freedom. As we will show, this test typically detects the location alternatives violating the expectation condition in (3).

In contrast, the second test we propose is designed to show power against the scatter alternatives that violate the isotropic covariance condition in (3). This second test rejects H 0,θ θ θ for large values of

Q sc θ θ θ := p 2 -1 2n n i,j=1 (U T i,θ θ θ U j,θ θ θ ) 2 - 1 p -1 = n(p 2 -1) 2 tr S 2 θ θ θ - 1 p -1 ,
where we let S θ θ θ :=

1 n n i=1 U i,θ θ θ U T i,θ θ θ .
Using again the fact that, under H 0,θ θ θ , the U i,θ θ θ 's form a random sample from the uniform distribution over S p-2 , it readily follows from Hallin and Paindaveine As explained in the previous section, if X is rotationally symmetric about θ θ θ, then the sign U := u θ θ θ (X) (see (1)) is uniformly distributed over S p-2 and is independent of the cosine V := v θ θ θ (X). Vice versa, it directly follows from the tangent-normal decomposition in (2) that any rotational distribution on S p-1 can be obtained as the distribution of

V θ θ θ + 1 -V 2 Γ Γ Γ θ θ θ U, ( 7 
)
where U is a random vector that is uniformly distributed over S p-2 and where the random variable V with values in [-1, 1] is independent of U. In this section, we introduce natural alternatives to rotational symmetry by relaxing some of the distributional constraints on U in (7). Rather than assuming that U is uniformly distributed over S p-2 , we construct two families of non-rotationally symmetric distributions for which U follows an angular central Gaussian distribution [START_REF] Tyler | Statistical analysis for the angular central Gaussian distribution on the sphere[END_REF] and a vMF distribution.

For the first family, recall that the random (p -1)-vector U has an angular central Gaussian distribution on S p-2 with shape parameter Λ Λ Λ (notation:

U ∼ A p-1 (Λ Λ Λ)) if it admits the density u → c A p-1,Λ Λ Λ (u T Λ Λ Λ -1 u) -(p-1
)/2 with respect to the surface area measure σ p-2 on S p-2 , where

c A p-1,Λ Λ Λ := ω p-1 (det Λ Λ Λ) 1/2 -1 is a normalizing constant.
Here, the scatter parameter Λ Λ Λ is a (p-1)×(p-1) symmetric and positive-definite matrix that is normalized into a shape matrix in the sense that tr[Λ Λ Λ] = p -1 (without this normalization, Λ Λ Λ would be identified up to a positive scalar factor only). Letting G be the set of all cumulative distribution functions G over [-1, 1], and L p-1 be the collection of shape matrices Λ Λ Λ, we then introduce the family of tangent elliptical distributions.

Definition 1. Let θ θ θ ∈ S p-1 , G ∈ G, and Λ Λ Λ ∈ L p-1 . Then the random vector X has a tangent elliptical distribution on S p-1 with location θ θ θ, angular distribution function G, and shape Λ Λ Λ if and only if

X D = V θ θ θ + √ 1 -V 2 Γ Γ Γ θ θ θ U
, where V ∼ G and U ∼ A p-1 (Λ Λ Λ) are mutually independent. If V admits the density (5) involving the angular function g, then we will write X ∼ T E p (θ θ θ, g, Λ Λ Λ).

Clearly, rotationally symmetric distributions are obtained for Λ Λ Λ = I p-1 . Since the distribution A p-1 (Λ Λ Λ) can be obtained by projecting radially on S p-2 a (p -1)-dimensional elliptical distribution with location 0 and scatter Λ Λ Λ, the distributions in Definition 1 form an elliptical extension of the class of the (by nature, spherical) rotationally symmetric distributions, which justifies the terminology. In the absolutely continuous case, the following result provides the density of a tangent elliptical distribution.

Theorem 1. If X ∼ T E p (θ θ θ, g, Λ Λ Λ), then X is absolutely continuous and the corresponding density is

x → f T E θ θ θ,g,Λ Λ Λ (x) = ω p-1 c p,g c A p-1,Λ Λ Λ g(v θ θ θ (x))(u T θ θ θ (x)Λ Λ Λ -1 u θ θ θ (x)) -(p-1)/2 .
As mentioned above, tangent elliptical distributions provide an elliptical extension of the class of rotationally symmetric distributions, hence in particular of vMF distributions. Another elliptical extension of vMF distributions is the [START_REF] Kent | The Fisher-Bingham distribution on the sphere[END_REF] class of Fisher-Bingham distributions. The tangent elliptical distributions show several advantages with respect to the latter: (i) they form a semiparametric class of distributions that contains all rotationally symmetric distributions; (ii) the densities of tangent elliptical distributions involve normalizing constants that are simple to compute (see, e.g., [START_REF] Kume | Saddlepoint approximations for the Bingham and Fisher-Bingham normalising constants[END_REF] for the delicate problem of approximating normalizing constants in the Fisher-Bingham model); (iii) simulation is straightforward. The second class of distributions we introduce, namely the class of tangent vMF distributions, is obtained by assuming that U ∼ M p-1 (µ µ µ, κ). Unlike the tangent elliptical distributions, under which U assumes an axial distribution on S p-2 , the unimodality of M p-1 (µ µ µ, κ) in the tangent space provides a skewed distribution for X about θ θ θ (see the bottom row of Figure 1). Theorem 2 provides the density of the tangent vMF distributions in the absolutely continuous case. Its proof is along the same lines as the proof of Theorem 1, hence is omitted.

Definition 2. Let θ θ θ ∈ S p-1 , G ∈ G, µ µ µ ∈ S p-2 , and κ ≥ 0. Then the random vector X has a tangent vMF distribution on S p-1 with location θ θ θ, angular distribution function G, skewness direction µ µ µ, and skewness intensity κ if and only if

X D = V θ θ θ + √ 1 -V 2 Γ Γ Γ θ θ θ U
, where V ∼ G and U ∼ M p-1 (µ µ µ, κ) are mutually independent. If V admits the density (5) involving the angular function g, then we will write X ∼ T M p (θ θ θ, g, µ µ µ, κ).

Theorem 2. If X ∼ T M p (θ θ θ, g, µ µ µ, κ), then X is absolutely continuous and the corresponding density is

x → f T M θ θ θ,g,µ µ µ,κ (x) = ω p-1 c p,g c M p-1,κ g(v θ θ θ (x)) exp(κµ µ µ T u θ θ θ (x)).
Note that, albeit our framework is p ≥ 3, the distributions of Definitions 1 and 2 are also properly defined for p = 2. In that case, the sign U takes values in S 0 = {-1, 1}, ω 1 = 2, and the angular central Gaussian and the vMF densities become probability mass functions over S 0 . The former, since it is an axial distribution, puts equal mass in ±1. Since I -1 Theorem 3. Fix θ θ θ ∈ S p-1 and g ∈ G a . Let τ τ τ n := (t T n , vech

• (L n ) T ) T
, where (t n ) is a bounded sequence in R p such that θ θ θ n := θ θ θ + n -1/2 t n ∈ S p-1 for any n, and where (L n ) is a bounded sequence of (p -1) × (p -1) matrices such that Λ Λ Λ n := I p-1 + n -1/2 L n ∈ L p-1 for any n. Then, the tangent elliptical log-likelihood ratio associated with local deviations Λ Λ Λ n from Λ Λ Λ = I p-1 satisfies

Γ Γ Γ T M θ θ θ,g;21 Γ Γ Γ T M 22 := Jp(g) p-1 (I p -θ θ θθ θ θ T ) Ip(g) p-1 Γ Γ Γ θ θ θ Ip(g) p-1 Γ Γ Γ T θ θ θ 1 p-1 I p-1 , with I p (g) := 1 -1 ϕ g (t)
with g η (t) := exp(ηt). This vMF test therefore meets the asymptotic level constraint under all rotational symmetric densities and achieves Le Cam optimality against any tangent vMF alternatives involving a vMF angular density g. It is easy to show, however, that this test still has asymptotic power α against the local tangent elliptical alternatives considered in Corollary 1.

Hybrid tests

The location and scatter tests, either in the specified-θ θ θ or unspecified-θ θ θ situations, are based on the empirical checking of the moment conditions in (3). Both are necessary conditions for the uniformity of u θ θ θ (X) over S p-2 , hence for rotational symmetry. For the families of alternatives introduced in Section 2.2, the tests present rather extreme behaviors: either they are optimal (in the Le Cam sense), or they are blind to the contiguous alternatives. While this antithesis is desirable for testing against a specific kind of alternative, it is also a double-edged sword, since knowing the alternative on which rotational symmetry might be violated can be challenging in practice, specially for highdimensional settings. As we explain below, a possible way out is to construct hybrid tests that show non-trivial asymptotic powers against both types of alternatives considered.

say, then rejects the null hypothesis at asymptotic level α whenever

Q hyb θ θ θ > χ 2 (p-1)+(p-2)(p+1)/2,1-α .
In a high-dimensional asymptotic framework where p = p n goes to infinity with n (still at an arbitrary rate), we have that, under the null hypothesis of rotational symmetry about θ θ θ,

Q hyb θ θ θ -pn(pn+1)-4 2 p n (p n + 1) -4 D N (0, 1).
This can be obtained by using the same CLT for martingale differences that was used in Paindaveine and Verdebout (2016); see Section 2.1 for a discussion. Coming back to the low-dimensional setup, this test, as announced, can detect both contiguous tangent elliptical and tangent vMF alternatives.

will be asymptotically χ 2 (p-1)+(p-2)(p+1)/2 . The resulting test, that rejects the null hypothesis at asymptotic level α when Q hyb vMF > χ 2 (p-1)+(p-2)(p+1)/2,1-α , will be denoted as φ hyb vMF in the sequel. It is easy to check that, like the specified-θ θ θ test φ hyb θ θ θ , the test φ hyb vMF can detect both types of alternatives considered.

The aggregation of the test statistics carried out in the hybrid statistic Q hyb θ θ θ can of course be performed in other ways. For instance, one could balance equally the contribution of the location and φ GI θ θ θ into unspecified-θ θ θ ones.

The unspecified-θ θ θ problem on S 2

The first simulation exercise focuses on the unspecified-θ θ θ problem and intends to show, in particular, that using specified-θ θ θ tests with a misspecified value of θ θ θ leads to severe violations of the nominal level constraint. For two sample sizes (n = 100, 200) and two types of alternatives to rotational symmetry (r = 1, 2), we generated N = 5,000 mutually independent random samples of the form

X (r) i; , i = 1, . . . , n, = 0, . . . , 5, r = 1, 2, with values in S 2 . The X (1) i; 's follow a T E 3 (θ θ θ 0 , g 1 , Λ Λ Λ ) with location θ θ θ 0 := (1/ √ 2, -1/ √ 2, 0) T , an-
Due to misspecification, it is expected that only the unspecified-θ θ θ tests will exhibit null rejection frequencies close to 5%. This is confirmed in Figure 2, that shows that all (mis)specified-θ θ θ tests are severely liberal. For the two samples sizes and the two types of alternatives considered, Figure 3 plots the empirical powers of the three unspecified-θ θ θ tests (a power comparison involving the specifiedθ θ θ tests would be meaningless since these tests do not meet the level constraint). Inspection of Figure 3 reveals that (i) as expected, φ sc † dominates φ loc vMF under tangent elliptical alternatives while the opposite occurs under tangent vMF alternatives; (ii) the hybrid test detects both types of alternatives and performs particularly well against tangent vMF ones. 

The specified-θ θ θ problem on S 2

The second simulation exercise focuses on the specified-θ θ θ problem on S 2 , with θ θ θ := (1, 0, 0) T . We generated N = 5,000 mutually independent random samples of the form X (r) i; , i = 1, . . . , n, = 0, . . . , 5, r = 1, 2, 3, with values in S 2 . The X (1) i; 's follow a T E 3 (θ θ θ, g 2 , Λ Λ Λ ) with angular function t → g 2 (t) := exp(5t) and with Λ Λ Λ as in Section 5.1, whereas the X (2) i; 's follow a T M 3 (θ θ θ, g 2 , µ µ µ, κ ) with skewness direction µ µ µ := (1, 0) T and skewness intensity κ := /6. The X (3) i; 's have a Fisher-Bingham distribution with location θ θ θ, concentration 2, and shape matrix A := diag(0, /2, -/2); we refer to Mardia and Jupp (2000) for details on Fisher-Bingham distributions, which, for the zero shape matrix, reduce to a vMF distribution. For r = 1, 2, 3, thus, the value = 0 corresponds noted that φ sc θ θ θ and φ hyb θ θ θ perform well under Fisher-Bingham alternatives, which was expected since, parallel to tangent elliptical alternatives, Fisher-Bingham alternatives are of an elliptical nature. It may be surprising at first that, under tangent vMF alternatives, the (optimal) unspecified-θ θ θ test φ loc vMF shows little power compared to the specified-θ θ θ test φ loc θ θ θ . This, however, only reflects the fact that the cost of the unspecification of θ θ θ is high for the (vMF) angular function considered. Actually, the results of the previous sections allow us to quantify this cost theoretically. Under the sequence of alternatives considered in Corollary 3, the Asymptotic Relative Efficiency (ARE) of the unspecified-θ θ θ test φ loc vMF with respect to the specified-θ θ θ test φ loc θ θ θ is obtained as the usual ratio of the corresponding non-centrality parameters in the asymptotic non-null chi-squared distributions of the corresponding statistics. It follows from (17) in the supplementary material and from Corollary 3 that, at the vMF with concentration η,

ARE(η) = 1 -I 2 p (g η )/J p (g η ) = 1 -2Γ p 2 2 I p-1 2 (η) 2 (p -1)Γ p-1 2 2 I p-2 2 (η)I p 2 (η)
, still with g η (r) = exp(ηr). Figure 5 provides plots of this ARE as a function of η, for various values of p. For the tangent vMF alternatives considered in the present simulation exercise (for which η = 5 and p = 3), the ARE is 0.171, which explains the poor performance of φ loc vMF compared to φ loc θ θ θ . This, of course, is not incompatible with the optimality of φ loc vMF in the unspecified-θ θ θ problem. 

Real data application

We illustrate in this section the practical relevance of the proposed tests with a novel case study. The data we analyze is based on the Debrecen Photoheliographic Data (DPD) sunspot catalogue [START_REF] Baranyi | On-line tools for solar data compiled at the Debrecen observatory and their extensions with the Greenwich sunspot data[END_REF][START_REF] Győri | Comparative analysis of Debrecen sunspot catalogues[END_REF]. It contains observations of sunspots locations since 1974 and is a continuation of the Greenwich Photoheliographic Results (GPR) catalogue, which spanned 1872-1976. Sunspots are darker, cooler regions on the Sun's photosphere that correspond to solar magnetic field concentrations. They are temporary phenomena that experience continuous change, lasting for hours to days, and with their shapes and areas varying notably along their lifespans. Prototypical sunspots come in pairs with opposite magnetic polarity, forming the so-called Bipolar Magnetic Regions (BMR), and they are usually clustered in groups that evolve with time. Sunspots are widely used to study and measure solar activity, whose effects, among others, may affect Earth's long-term climate (see, e.g., [START_REF] Haigh | The Sun and the Earth's Climate[END_REF].

As it can be seen in the left panel of Figure 6, sunspots originate following a nearly rotationally symmetric pattern. An explanation for this phenomenon is given by the [START_REF] Babcock | The topology of the sun's magnetic field and the 22-year cycle[END_REF] model for solar dynamics. It describes how the force lines of an initial rotationally symmetric dipolar field are twisted by the Sun's differential rotation (solar plasma rotates slower near the poles than at the equator) to produce a spiral wrapping of the magnetic field, with an amplification of the field strength that depends on the latitude. The magnetic buoyancy of locally intense concentrations of the field pushes inner magnetic flux tubes up to the solar surface, forming BMR and producing sunspots as the result of the intersection of BMR with the solar surface. The (magnetic) field intensity required for producing BMR is reached at progressively lower latitudes as the twisting of the initial field advances, a phenomenon known as the Spörer's law. After about 11 years, the magnetic field behaves as a dipolar field of reversed polarity. This period constitutes a solar cycle. The process repeats itself, attaining the initial conditions after a 22-year cycle. Further details on sunspots and their origin can be consulted in [START_REF] Babcock | The topology of the sun's magnetic field and the 22-year cycle[END_REF] and [START_REF] Solanki | The solar magnetic field[END_REF].

Even though the main driving force generating sunspots is of a rotational symmetric nature (intense magnetic field concentrations at equal latitudes due to the Sun's differential rotation), Babcock (1961, pages 574 and 581) points out that sunspots tend to emerge in "preferred zones of occurrence" associated to longitudes where there has been prior activity. Hence, this phenomenon may trigger non-rotational symmetric patterns, of unclear significance, in the emergence of sunspots. We offer a quantification of this significance via the proposed tests. To that aim, we analyze the rotational symmetry of the appeared sunspots during the 23rd solar cycle (August 1996 -December 2008), currently the last fully-observed cycle with curated measurements. The corresponding data X 1 , . . . , X n , shown in the left panel of Figure 6, consists of n = 5,373 central positions of groups of sunspots, understood as the first-ever observations of each group. The DPD catalogue delimits the central position of a group of sunspots through an area-weighted average of the sunspots within the group. Note that, within this setting, both the temporal (observations belong to a single cycle that aggregates the different latitude-appearance regimes) and spatial (clusters of related sunspots are treated as a single observation) dependency of the data is mitigated, therefore better accommodating the independent and identically distributed framework considered in the paper. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q Cosines (latitude angles) Visual inspection reveals that rotational symmetry about the north pole θ θ θ 0 = (0, 0, 1) T (or equivalently, about the south pole -θ θ θ 0 ) may be suspected. The tests φ sc θ θ θ 0 (s-sc), φ loc θ θ θ 0 (s-loc), and φ hyb θ θ θ 0 (s-hyb) for rotational symmetry about θ θ θ 0 yield p-values equal to 0.1656, 0.4571, and 0.2711, respectively. Therefore, rotational symmetry about θ θ θ 0 is not rejected at any usual significance level and a rotationally symmetric model is suitable for the data at hand. As explained in Section 2, this greatly simplifies inference. In particular, to estimate the density f = f θ θ θ 0 ,g of the sunspot groups on S 2 , one only needs to estimate the common, univariate, density gp of the cosines v θ θ θ 0 (X i ) = X T i θ θ θ 0 , i = 1, . . . , n; see (4)-( 5). The left panel in Figure 6 provides a plot of the kernel density estimator (kde) ĝp based on Gaussian kernel and the direct plug-in bandwidth selector [START_REF] Sheather | A reliable data-based bandwidth selection method for kernel density estimation[END_REF]. Note that, since the sample stays away from the endpoints of [-1, 1], it is not required considering a kde that would specifically address issues associated with boundary effects. Then, from (4)-( 5) and since p = 3, the final estimator for the density is then f (x) = ω -1 p-1 ĝp (x T θ θ θ 0 ).

Given the large sample size and the fact that only a univariate density was estimated nonparametrically, one may be confident that f is a good estimate of f . The kde ĝp can be applied for further quantitative description of the data (see [START_REF] Chacón | Multivariate Kernel Smoothing and its Applications[END_REF] for a survey of applications).

In particular, it provides an estimate of the shortest set of latitudes containing at least 90% of the probability of an emergence of a sunspot group; in the present example, this shortest set, namely (-29.48 Remarkably, however, when performed on the 22nd cycle data, the tests φ sc θ θ θ 0 , φ loc θ θ θ 0 , and φ hyb θ θ θ 0 for rotational symmetry about θ θ θ 0 provide p-values 0.1077, 0.0125, and 0.0103, respectively. Consequently, the location and hybrid tests flag a departure from rotational symmetry about θ θ θ 0 , which evidences a significant non-rotational symmetric emergence pattern during that cycle and points to the need of a more complex modeling. The analysis for both cycles were performed for the unspecified-θ θ θ case through the tests φ sc † , φ loc vMF , and φ loc vMF , reaching exactly the same conclusions.

Perspective for future research

As explained in Section 2.1, the random vector X with values on S p-1 is rotationally symmetric about θ θ θ if and only if, using the notation introduced in (1), (i) the random vector u θ θ θ (X) is uniformly distributed over S p-2 and (ii) u θ θ θ (X) is independent of v θ θ θ (X). The tests proposed in this paper are designed to detect deviations from rotational symmetry by testing that (i) holds. As a consequence, they will be blind to alternatives of rotational symmetry for which (i) holds but (ii) does not. This could be fixed by testing that the covariance between u θ θ θ (X) and v θ θ θ (X) is zero, which can be based on a statistic like

∆ ∆ ∆ cov(n) θ θ θ := 1 √ n n i=1 v θ θ θ (X i )u θ θ θ (X i ). Since ∆ ∆ ∆ cov(n) θ θ θ
is asymptotically normal with mean zero and covariance matrix (p -1) -1 E θ θ θ,g [v 2 θ θ θ (X 1 )] I p-1 under P (n) θ θ θ,g , the resulting test would, at asymptotic level α, reject the null hypothesis of rotational symmetry about θ θ θ whenever

p -1 n i=1 v 2 θ θ θ (X i ) n i,j=1 v θ θ θ (X i )v θ θ θ (X j )u T θ θ θ (X i )u θ θ θ (X j ) > χ 2 p-1,1-α .
Such a test of course would detect violations of (ii) only and it is natural to design a test that would be able to detect deviations from both (i) and (ii) by considering test statistics that are quadratic forms in ∆ ∆ ∆ follows from the asymptotic covariance matrix in the (null) joint asymptotic normal distribution of these random vectors.

Another perspective for future research is the following. In Section 2.2, we proposed new distributions on the unit sphere S p-1 , namely tangent vMF distributions, by imposing that u θ θ θ (X) = u θ θ θ 1 ;p-2 (X) follows its own vMF distribution over S p-2 with location µ µ µ = θ θ θ 2 ∈ S p-2 . In turn, one could specify that u θ θ θ 2 ;p-3 (X) follows a vMF distribution over S p-3 with location θ θ θ 3 . Iterating this construction will provide "nested" tangent vMF distributions that are associated with mutually orthogonal directions θ θ θ i , i = 1, . . . , p (strictly speaking, θ θ θ i ∈ S p-i but they can all be considered embedded in the original unit sphere S p-1 ). Such distributions provide flexible models on the sphere that are likely to be relevant in various applications of directional statistics.

) is asymptotically χ 2 p-1 (λ) with non-centrality parameter λ given by m T f ;g Γ Γ Γ 

Now, since the test statistic ( 16) still depends on the unknown underlying angular function g, turning this pseudo-test into a genuine test requires estimating consistently the quantities I p (g), J p (f ; g), H p (f ; g), and K p (f ; g). To that aim, we express them as

I p (g) = (p -2) E θ θ θ,g V 1,θ θ θ (1 -V 2 1,θ θ θ ) 1/2 , J p (f ; g) = (p -1) E θ θ θ,g [ϕ f (V 1,θ θ θ )V 1,θ θ θ ] -E θ θ θ,g [ϕ f (V 1,θ θ θ )(1 -V 2 1,θ θ θ )], H p (f ; g) := E θ θ θ,g [ϕ f (V 1,θ θ θ )(1 -V 2 1,θ θ θ ) 1/2 ], K p (f ; g) := E θ θ θ,g [ϕ 2 f (V 1,θ θ θ )(1 -V 2 1,θ θ θ )]
(the fist two identities are obtained from integration by parts, assuming that ϕ f is differentiable). Natural estimators of these quantities are Îp (g) := p -2 n

= ω p-1 c A p-1,Λ Λ Λ c p,g g(v θ θ θ (x)) u T θ θ θ (x)Λ Λ Λ -1 u θ θ θ (x) -(p-1)/2 , as was to be proved.

log U T i,θ θ θn Λ Λ Λ -1 n U i,θ θ θn =: L n,1 + L n,2 , (20) 
say. Since log(det(I p-1 + A)) = tr[A] -1 2 tr[A 2 ] + o( A 2 ) as A → 0, we have that Using ( 9)-( 10) in pages 218-219 from [START_REF] Magnus | Matrix Differential Calculus with Applications in Statistics and Econometrics[END_REF], we obtain that T i,n = -n -1/2 U T i,θ θ θn L n U i,θ θ θn +n -1 U T i,θ θ θn L 2 n U i,θ θ θn +R i,n , where (due to the uniform boundedness of the U i,θ θ θn 's) max i=1,...,n R i,n = O P (n -3/2 ) as n → ∞ under P (n) θ θ θ,g . Using the fact that log(1 + x) = x -1 2 x 2 + o(x 2 ) as x → 0, it follows that

L n,1 = - n 2 log det(I p-1 + n -1/2 L n ) = 1 4 tr[L 2 n ] + o(1) (21) 
L n,2 = - p -1 2 n i=1 log 1 - 1 √ n U T i,θ θ θn L n U i,θ θ θn + 1 n U T i,θ θ θn L 2 n U i,θ θ θn + R i,n = - p -1 2 n i=1 - 1 √ n U T i,θ θ θn L n U i,θ θ θn + 1 n U T i,θ θ θn L 2 n U i,θ θ θn - 1 2n (U T i,θ θ θn L n U i,θ θ θn ) 2 + o P (1)
as n → ∞ under P 

Since

E[U 1,θ θ θn ] 2 = E[U 1,θ θ θn -U 1,θ θ θ ] 2 ≤ E[ U 1,θ θ θn -U 1,θ θ θ ] 2 ≤ E[ U 1,θ θ θn -U 1,θ θ θ 2 ]
, the result then follows from (i) in Lemma 1. For proving (ii), we have that, since (ii) in Lemma 1 entails that vec E[U 1,θ θ θn U T 1,θ θ θn ] -Now, by using Lemma 2, the CLT for triangular arrays shows that, still under P 

Figure 1 :

 1 Figure 1: Contour plots of tangent elliptical and tangent vMF densities, both with g(z) = exp(3z). Top row: from left to right, tangent elliptical with shape matrices Λ Λ Λ = 1+a 0 0 1-a , a = 0 (rotationally symmetric), a = 0.15, and a = 0.45. Bottom row: from left to right, tangent vMF densities with skewness intensities κ = 0.25, 0.50, and 0.75.

Figure 2 :

 2 Figure 2: Null rejection frequencies, for sample sizes n = 100 and n = 200, of the unspecified-θ θ θ tests φ sc †

Figure 3 :

 3 Figure 3: Rejection frequencies, under tangent elliptical alternatives (top row) and tangent vMF ones (bottom row), of the unspecified-θ θ θ tests φ sc † , φ loc vMF , and φ hyb vMF for n = 100 (left column) and n = 200 (right column). Both tests are performed at asymptotic level 5%; see Section 5.1 for details.
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 45 Figure 4: Rejection frequencies, under tangent elliptical alternatives (top row), tangent vMF alternatives (middle row), and Fisher-Bingham alternatives (bottom row), of the specified-θ θ θ tests φ sc θ θ θ (s-sc), φ loc θ θ θ (s-loc), φ hyb θ θ θ (s-hyb), φ LV θ θ θ (LV), and φ KU θ θ θ (KU), as well as the unspecified-θ θ θ tests φ sc † (u-sc), φ loc vMF (u-loc), and φ hyb vMF (u-hyb). Sample sizes are n = 100 (left column) and n = 200 (right column). All tests are performed at asymptotic level 5%; see Section 5.2 for details.

Figure 6 :

 6 Figure6: Left: emerging locations of sunspot groups during the 23rd solar cycle. The locations are colored with a blue-yellow gradient according to the relative position of the sunspot appearance date within the solar cycle in order to visualize the Spörer's law. Right: the kernel density estimator of the cosines v θ θ θ0 (x i ), i = 1, . . . , n, for the full cycle and for the data in the initial and final 25% cycle duration. Recall how the hemisphere asymmetry of the initial and final regimes balances out in the full cycle density.

  as n → ∞ (recall that tr[L n ] = 0). Now, write L n,2 = -T i,n .

  ,g . Using Lemma 2, the law of large numbers for triangular arrays then yieldsL n,2 = pθ θn L n U i,θ θ θn -p -1 2 E U T 1,θ θ θn L 2 n U 1,θ θ θn -1 2 (U T 1,θ θ θn L n U 1,θ θ θn ) 2 + o P (1) = p -1 2 √ n (vec L n ) T n i=1 vec (U i,θ θ θn U T i,θ θ θn ) p-1) 2 + K p-1 + J p-1 ) (vec L n ) + o P (1)as n → ∞ under P (n) θ θ θ,g . Applying Part (iii T E ) of Lemma 4, and using the identitiesK p-1 (vec A) = vec (A T ) and (vec A) T (vec B) = tr[A T B] (this second identity provides (vec I p-1 ) T (vec L n ) = tr[L n ] = 0, hence J p-1 (vec L n ) = 0), we obtain L nE[U 1,θ θ θn U T 1,θ θ θn ] = 1 p-1 I p-1 + o(1), (iii) E[vec (U 1,θ θ θn U T 1,θ θ θn )vec (U 1,θ θ θn U T 1,θ θ θn ) T ] = 1 p 2 -1 (I (p-1) 2 + K p-1 + J p-1 ) + o(1).Proof of Lemma 2. All expectations in this proof are under P (n) θ θ θ,g and all convergences are as n → ∞. For (i) first note that, letting Z 1,θ θ θ := Γ Γ Γ T θ θ θ X 1 and d 1,θ θ θ := Z 1,θ θ θ , we haveU 1,θ θ θn -U 1,θ θ θ ≤ Z 1,θ θ θn d 1,θ θ θn θ θ θn -Z 1,θ θ θ ≤ |d 1,θ θ θn -d 1,θ θ θ | d 1,θ θ θ + 1 d 1,θ θ θ Z 1,θ θ θn -Z 1,θ θ θ ≤ 2 Z 1,θ θ θn -Z 1,θ θ θ d 1,θ θ θ , which implies that U 1,θ θ θn -U 1,θ θ θ = o P(1). Uniform integrability follows because U 1,θ θ θn -U 1,θ θ θ ≤ 2 almost surely, hence E[ U 1,θ θ θn -U 1,θ θ θ 2 ] = o(1).

  ,θ θ θn -E[U i,θ θ θn ]) D N 0, Σ Σ Σ T M ,

  • , -2.51 • ) ∪ (2.56 • , 28.10 • ), contains the latitudes for which ĝp exceeds 0.4812. Analysis of ĝp also reveals two modes at latitudes -13.69 • and 16.49 • .

√ n n i=1 U i,θ θ θ is, still under P (n) θ θ θ,g , asymptotically normal with mean zero and covariance matrix Γ Γ Γ T M θ θ θ,g := Γ Γ Γ θ θ θ,g;11 Γ Γ Γ T M θ θ θ,g;12

T E(n) θ θ θ;2 D N 0 0 , Γ Γ Γ T M

θ θ θ , φ LV θ θ θ , and φ KU θ θ θ , all based on the misspecified location value θ θ θ := (1, 0, 0) T , and the unspecified-θ θ θ tests φ sc † , φ loc vMF , and φ hyb vMF , all computed with the spherical mean to estimate θ θ θ.

θ θ θ,f * whenever f is the true angular function (which will ensure asymptotic optimality of the resulting test at angular function f ); (ii)

-(p-1)/2
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Supplement

The supplement details the delicate construction of Le Cam optimal location tests in the unspecifiedθ θ θ problem, provides the proofs of the main results, and presents additional simulations. and φ hyb vMF . As expected due to their construction, the Fisher-aggregated tests dominate their hybrid counterparts under tangent vMF alternatives, while they are dominated by the latter under tangent elliptical alternatives. The rest of the power curves, that are provided in Figure 7, lead to conclusions that are very similar to those reported in the simulation exercise conducted in Section 5.2.

D.2 Mixtures in the specified-θ θ θ case on S 2

For the last simulation exercise, we consider two types of mixture distributions on S 2 : mixtures of vMF distributions (r = 1) and mixtures of tangent vMF and tangent elliptical distributions (r = 2). For sample sizes n = 100 and n = 200 and for both types of mixtures, we generated N = 5,000 mutually independent random samples of the form X (r) i; , i = 1, . . . , n, = 0, . . . , 5, r = 1, 2, with values on S 2 . The X (1) i; 's are distributed as the mixture 1 2 Y + 1 2 Z , where Y and Z are independent vMF random vectors with respective locations θ θ θ = (1, 0, 0) T and θ θ θ = (cos( /40), sin( /40), 0) T and common concentration κ = 5. The X (2) i; 's are distributed as the mixture 1 2 Z 1, + 1 2 Z 2, , where Z 1, ∼ T M 3 (θ θ θ, exp(5u), µ µ µ, κ ) and Z 2, ∼ T E 3 (θ θ θ, exp(5u), Λ Λ Λ ) are independent, with θ θ θ = (1, 0, 0) T , µ µ µ = (1, 0) T , κ = /6, and Λ Λ Λ = 2diag(1 + /2, 1)/(2 + /2), = 0, . . . , 5. For r = 1, 2, the value = 0 corresponds to the null hypothesis of rotational symmetry about θ θ θ, whereas = 1, . . . , 5 provide increasingly severe alternatives. For each replication, we performed, at asymptotic level α = 5%, 1.0 comparison, we also considered the unspecified-θ θ θ tests φ sc † , φ loc vMF , and φ hyb vMF , based on the spherical mean. Figure 8 plots the resulting empirical power curves for sample sizes n = 100 and n = 200 and for both types of mixtures. Inspection of Figure 8 reveals that the Ley and Verdebout (2017) test performs well against mixtures of vMF distributions, while, as we might have guessed, the (specified-θ θ θ) hybrid test dominates the other tests for mixtures of tangent vMF and tangent elliptical distributions. The location and hybrid tests perform well overall.