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Phononic crystals and elastic metamaterials have recently received significant attention due to their10

11 potential for unconventional wave control. Despite this interest, one outstanding issue is that their 

12 band diagram is typically fixed, once the structure designed. To overcome this limitation, periodic 

13 structures with adaptive elastic properties have recently been proposed for Bragg- and local resonance-

14 driven structures.

15 In this context, we report about the effect of an applied external mechanical load on a periodic struc-

16 ture exhibiting band gaps induced by inertial amplification mechanism. If compared to the cases of 

17 Bragg scattering and ordinary local resonant metamaterials, we observe here a more remarkable curve 

18 shift, modulated through large but fully reversible compression(stretch) of the unit cell, eventually 

19 triggering significant (up to two times) enlargement(reduction) of the width of a specific band gap. 

20 An important up(down)-shift of some dispersion branches over specific wavenumber values is also ob-

21 served, showing that this selective variation may lead to negative group velocities over larger(smaller) 

22 wavenumber ranges. In addition, the possibility for a non-monotone trend of the lower limit of the 

23 first BG under the same type of external applied prestrain is found and explained through an an-

24 alytical model, which unequivocally proves that this behaviour derives from the different unit cell 

25 effective mass and stiffness variations as the prestrain level increases. These peculiarities derive from 

26 the hinge-like behaviour of some regions of the unit cell, which is typical of structures exhibiting the 

27 inertial amplification mechanism.

28 The effect of the prestress on the dispersion diagram is investigated through the development of a 2-step 

29 calculation method: first, an Updated Lagrangian scheme, including a static geometrically nonlinear 

30 analysis of a representative unit cell undergoing the action of an applied external load is derived, and 

31 then the Floquet-Bloch decomposition is applied to the linearized equations of the acousto-elasticity 

32 for the unit cell in the deformed configuration.

33 Finally, the most evident consequence on the dispersion curves of the application of an external 

34 prestress, i.e. the band gap shift with respect to the unloaded structure, is demonstrated through 

35 nonlinear transient numerical simulations, clearly proving the capability of the structure to switch 

36 from a pass- to a stop-band behaviour over the same frequency range.

37 The results presented herein provide insights in the behaviour of band gaps induced by inertial am-

38 plification, and suggest new opportunities for real-time tunable wave manipulation.
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I. INTRODUCTION39

Phononic crystals and elastic metamaterials have proved to be powerful platforms to achieve a plethora of unconven-40

tional vibrational behaviours deriving from their peculiar dispersion diagrams, characterized by frequency band gaps41

(BGs) and pass-bands, i.e. frequency regions where the propagation of waves is inhibited or supported, respectively1.42

This allowed to achieve frequency selective wave filtering2, guiding3–5 and splitting6,7, stimulating the conception of43

pioneering applications, such as ultra-sensitive devices8, large scale metamaterials for vibration shielding9–11, sub-44

wavelength imaging12, elastic wave cloaking / lensing13–15, etc.45

In this context, an important issue is that phononic crystal and elastic metamaterial operational frequencies are typi-46

cally fixed once the structure has been designed and fabricated. In contrast, in the majority of practical applications,47

including the ones previously mentioned, it may be desirable to dynamically or adaptively tune the BGs (or some48

of the dispersion branches) in terms of frequency, also after the structure has been fabricated. To overcome this49

limitation, periodic systems with adaptive elastic properties have recently been proposed. For instance, BG tuning50

has been achieved by means of piezoelectric materials16–18, temperature variation19–22, magneto- and light-based ap-51

proaches23–27, as well as by the application of external mechanical loads28. Among them, the latter approach can be52

easily implemented by imposing controlled displacements into specific portions of the structure.53

In this context, Bigoni et al.29 proposed for the first time the prestress as a practical way to reversibly alter the54

dispersion diagram of a periodic structure, including the possibility of shifting the BG position. The feasibility of55

the approach was confirmed formulating a theoretical model for an orthotropic, prestressed (compressible) elastic56

layer vibrating on an elastic half space and assuming long-wave asymptotics for the solution. Gei et al.30 relaxed the57

hypothesis of perfect periodicity and investigated the effect of the prestress in quasi-periodic structures in the case of58

flexural vibrations. Amendola et al.31 studied the band structure of tensegrity mass-spring chains, and the possibility59

to tune the dispersion relation of such systems by suitably varying local and global prestress variables, given their60

remarkable softening / stiffening response under axial or compressive loading32,33.61

Periodic elastomeric structures, thanks to their capacity of repetitively undergoing large strain deformations in a62

fully reversible manner, brought to BG nucleation / annihilation mechanisms triggered by the application of external63

loads radically changing the unit cell geometry34. Deformations in the linear and nonlinear regimes, as well as diverse64

geometrical topologies have been explored35–38.65

Finally, it has been observed that also mechanical instabilities induced, for instance, by the application of external66

loads, may alter the propagation of elastic waves. Slesarenko et al. induced instabilities in soft composite materials67

achieving a significant decrease of the group velocity (up to going negative) of the transverse waves under specific68

micropolar conditions39.69

However, the majority of the aforementioned investigations are limited to the context of (i) Bragg- or (ii) ordinary70

resonance-induced BGs, whereas in the present paper, we report about the effects of an applied prestress on (iii) peri-71

odic structures exhibiting BGs induced by inertial amplification mechanisms. While in (i) the wave scattering derives72

from assemblages of periodic unit cells, requiring thus the wavelength of the incoming wave to be comparable to the73

structural periodicity40, and in (ii) the dynamic behaviour is mainly governed by the eigenfrequencies of resonators74

included in the structure41, in (iii) large inertial forces are generated by amplifying the motion of a mass, which in75

turn increases the inertia of the overall system and lowers its resonance frequency, allowing thus for sub-wavelength76
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and broadband BGs, while keeping the structure lightweight42,43.77

If compared to the cases of Bragg scattering and ordinary local resonant metamaterials44, we show that the inertial am-78

plification allows for a more remarkable curve shift, modulated through large but fully reversible compression(stretch)79

of the unit cell, eventually triggering significant enlargement(reduction) of a specific band gap width. We also observe80

a selective up(down)-shift of some dispersion branches, leading to negative group velocities over specific wavenumber81

ranges. In addition, a non-monotone trend of the lower limit of the first BG under the same type of external applied82

prestrain is found and explained through an analytical model, which shows that this behaviour derives from the differ-83

ent unit cell effective mass and stiffness variations as the prestrain level increases. Examining the deformed geometries84

consequent the application of the prestress highlights how the remarkable band shift is due to the hinge-like behaviour85

of some regions of the unit cell, typical of the inertial amplification mechanism and responsible for a large deformation86

state, i.e. change of the unit cell geometry. We consider the static deformation induced by the prestress to be in the87

linear elastic regime so to have a complete reversibility of the phenomena (tunability). The analysis is performed in88

terms of small amplitude motions superimposed on a deformed state once the desired load has been applied.89

The paper is organized as follows: in section II, the 2-step Updated Lagrangian scheme, including (i) a static geo-90

metrically nonlinear analysis of a representative unit cell undergoing the action of an applied external load and (ii)91

the Floquet-Bloch decomposition applied to the linearized equations of the acousto-elasticity for the unit cell in the92

deformed configuration, is presented. Section III provides evidence for the dispersion band alteration induced by93

the application of the prestress in a periodic structure exhibiting BG induced by inertial amplification mechanism.94

Parametric dispersion curves for different values of prestress are presented and compared to the original structure95

(i.e., without the application of any prestress). Afterwards, a 2-step nonlinear transient numerical simulation confirms96

the BG shift induced by the prestress in a finite structure, proving its ability to switch from a pass- to a stop-band97

behaviour over the same frequency range. The prestress is easily implemented by applying prescribed displacement98

at specific edges of the structure prior to the wave propagation. The full tunability of the structure is guaranteed by99

the possibility of readily applying and removing the imposed deformations. Finally, section IV summarizes the main100

results of the present research and provides future perspectives, shedding light on the possibility of investigating the101

effect of an additional state of prestress, internal, cross-linking the fields of metamaterials and tensegrity structures.102

II. FLOQUET-BLOCH ANALYSIS OF A PRESTRESSED PHONONIC CRYSTAL103

In this work, the band structure diagrams are computed using a Floquet-Bloch finite element method formulated104

within an Updated Lagrangian scheme. As schematically presented in Fig. 1, the procedure consists of two main105

computational steps, namely (i) a nonlinear static analysis involving large strains and displacements, and (ii) a so106

called small-on-large dynamic analysis, in which small vibrations are superimposed on the statically deformed unit107

cell. The main computational aspects of the two steps are outlined in the following.108

A. Static analysis109

Following the application of a static volume load fV 0, or surface load fS0, the unit cell Ω0 identified by the position110

vector x and represented by the lattice vector r0 = {r01, 0}T and its reciprocal vector g0 = {g01, 0}T = {r01/2π, 0}T,111
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undergoes a displacement u0 that results in a change of configuration from the undeformed state C0 to the static112

deformed state C (see Fig. 1). The deformed domain and matrix of the lattice vectors in the (deformed) configuration113

C are identified by Ω and r = {r1, 0}T, respectively. The relation between r0 and r can be expressed as r = FLr0,114

where FL defines the affine component of the deformation gradient such that FL = F−1FP , being F = ∇xu0 + I the115

deformation gradient, FP a periodic non-affine deformation45 and ∇x = {∂/∂x1, ∂/∂x2}T. The equilibrium equations116

with respect to the undeformed configuration C0 can be derived from the variational statement:117 ∫
Ω

(S(x) : δE(x)− fV 0 · δu0) da =

∫
∂Ω

fs0 · δu0ds, (1)

subjected to the Dirichlet boundary conditions:118

u0(x + r0) = u0(x), (2)

in which E = 1
2 (FT)F − I is the Green-Lagrange strain tensor and S = D0 : E the second Piola-Kirchhoff stress119

tensor. The tensor of tangential elastic moduli, D0, is expressed by D0 = 4∂2ψ/(∂C∂C), being C = FTF the right120

Cauchy-Green deformation tensor and ψ the elastic energy density. The material of the unit cell in C0 is specified by121

the density ρ0 while, assuming a hyperelastic material behavior described by the Murnaghan’s model46–49, the elastic122

energy density can be defined as:123

ψ =
1

2
(λ+ 2µ) I2

1 (E)− 2µI2(E) +
1

3
(l + 2m) I3

1 (E)

− 2mI1(E)I2(E) + nI3(E),

(3)

in which λ and µ denote the first and second Lamé parameters, respectively, (l, m, n) the third order Murnaghan124

parameters, and I1(E), I2(E) and I3(E) the first, second and third invariants of the Green-Lagrange strain tensor,125

respectively.126

The application of a standard Galerkin approach to Eq. (1) results in the generalized system of equations:127 [
ΓT

0 K(Q0)Γ0

]
Q0(X) = P0(X), (4)

where K(Q0) is the static stiffness matrix, P0 the global vector of nodal forces, Q0 the global vector of independent128

nodal displacements and Γ0 the mapping operator resulting from Eq. (2) and realizing the condition U0 = Γ0Q0.129

U0 indicates the full vector of nodal displacements. In this work, the solution of Eq. (4) is carried out using Comsol130

Multiphysics 5.350.131

Following the Updated Lagrangian scheme, once the displacements Q0 are obtained, the reference configuration is132

updated from C0 to C by calculating the corresponding nodal coordinates x = x0 + Γ0Q0(x0). The updated material133

properties in C are given by ρ = ρ0(det F)−1 and Dijkl = (detF)−1FiIFjJFkKFlL(D0)IJKL, while the Cauchy stress134

tensor is obtained from the relation σ = (det F)−1FSFT. The geometry of the unit cell in the configuration C is then135

re-meshed and used as the basis for the linear dynamic analysis described in the next section.136

B. Dynamic Analysis Using the Floquet-Bloch Decomposition137

Following the small-on-large analysis approach47,51–54, in which C is the new reference configuration, the position138

vector for the unit cell in the dynamic deformed configuration C ′ (Fig. 1) is approximated as x′ ≈ x while, from the139
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application of the Floquet-Bloch theorem, any small harmonic perturbation u(x) can be expressed as55:140

u(x) = ũ(x)exp(ikx)exp(−iωt), (5)

in which ũ(x) is a Ω-periodic displacement amplitude, t denotes the time, ω the angular frequency, and k ∈ Λ the141

Bloch wavenumber, being Λ the reciprocal unit cell defined in C by the reciprocal lattice vector g = F−T
L g0.142

By defining the k-shifted gradient of a generic Ω-periodic vector field φ̃(x) as:143

∇kφ̃(x) = ∇xφ̃(x) + ikφ̃(x)⊗ (r‖r‖−1), (6)

the solution of the elastodynamic problem for free vibrations of the unit cell in C subjected to an initial stress σ0 can144

be obtained from the variational statement:145

−ω2

∫
Ω

ρ(x)δũ∗(x) · ũ(x)dΩ

+

∫
Ω

δẽ∗k(x, ϑ) : D(x) : ẽk(x)dΩ

+

∫
Ω

σ0(x) :
[
(∇kδũ∗(x))

T∇kũ(x)
]

dΩ = 0,

(7)

subjected to the Dirichlet boundary condition:146

ũ(x + r) = ũ(x) on ∂Ω, (8)

in which (·)∗ stands for the conjugate of a complex vector or tensor field, ẽk(x) = 1
2 [∇kũ(x) + (∇kũ(x))T] follows147

from Eq. (6) and denotes the linearized Green-Lagrange strain tensor.148

The finite element discretization of Eqs. (7) and (8) proceeds by first generating a new mesh for the deformed geometry149

of the unit cell in C and then applying a Galerkin approach56. As a results, the following generalized linear eigenvalue150

problem is obtained:151 {
ΓT
[
k2K3 + ik

(
K2 −KT

2

)
+ K1 − ω2M

]
Γ
}

Q̃(ω) = 0, (9)

in which Γ is a mapping operator implementing the Dirichlet boundary condition in Eq. (8), such that Ũ = ΓQ̃,152

where Ũ is the global vector of nodal displacement amplitudes and Q̃ a subvector of Ũ collecting only its independent153

components. The expressions of K3, K2, K1 and M are given in the Appendix A, for the sake of brevity.154

The band diagrams of the phononic structure can be computed from the eigenvalue problem in Eq. (9) (i) by extracting155

the Bloch wavenumbers k(ω) for any fixed frequency ω, or (ii) by computing the natural frequencies ω(k) of the system156

for any fixed Bloch wavenumber k. Since the focus of the present research does not require the knowledge of the157

spatial attenuation, the latter approach has been used, resulting computationally more convenient, as it does not158

require the transformation of the system into the state space.159

III. RESULTS160

To study the effect of an external mechanical load on a periodic structure exhibiting BGs induced by inertial161

amplification, the numerical method presented in the previous section is here applied to the representative unit cell162

reported in Fig. 2A. The unit cell consists of an epoxy matrix exhibiting elongated cross-like holes, and it was proposed163

for the first time by Acar and Yilmaz43. Its geometrical and material parameters are reported in Tables I, II.164165166
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TABLE I. Material constants for the epoxy44.

ρ0 [kg/m3] λ [GPa] µ [GPa] l [GPa] m [GPa] n [GPa]

Epoxy 1540 2.59 1.34 -18.94 -13.36 -9.81

TABLE II. Geometrical parameters of the unit cell presented in Fig. 2A. All the given parameters are in [mm].

t1 t2 t3 t4 d1 d2 d3 d4

3.2 0.4 3.2 0.4 5.2 2.0 20.0 4.0

A. Band structure analysis167

As discussed in Section II, the first step for the band structure calculation is to extract the deformation induced in the168

unit cell by an initial state of stress / strain applied to the structure. To do this, two different sets of loading conditions169

are applied to the structure in the form of a normal displacement u0(x0) · n0(x0) prescribed to the x02-parallel faces170

of the unit cell (highlighted in purple in Fig. 2A). The out-of-plane degrees of freedom of the unit cell are blocked,171

so to prevent any possible bending deformation during the application of the loading conditions. The first loading172

set induces a state of compression and varies from 0 (no prestrained condition) to −360 µm (maximum compression173

condition) with a step of ∆u0(x0) · n0(x0) = −20 µm, while the second set induces a tensile state and varies from174

0 (no prestrained condition) to +130 µm (maximum traction condition) with a step of ∆u0(x0) · n0(x0) = +10 µm.175

For the sake of brevity, only the deformation of the unit cell under the conditions of maximum compression / traction176

are reported in Figs. 2B,C, respectively. Examining the induced deformation, it is possible to infer that the stress,177

and thus the deformation, is mainly localized into the hinge-like regions, responsible for the activation of the inertial178

amplification mechanism43. The analysis also shows that the maximum Von Mises stress level reached in the structure179

is of 33.1 and 21.2 MPa, for the two types of loading condition, respectively. Given these values of maximum stress,180

and applying the von Mises yield criterion57, the minimum mono-axial tensile strength required for our material to181

have a safety factor ≥ 1 is σmin = 33.1 ·
√

(3) = 56 MPa (if we consider a state of pure shear solicitation), which is182

an acceptable value for epoxy58. Considering that the aforementioned value is obtained in the most strict condition183

of pure shear (which is not the case in the system under consideration), an elastic behaviour of the material, and184

thus of the band diagram, over the full range [−360,+130] µm, modulated by the intensity of the applied prestrain,185

is guaranteed, allowing for a full reversibility of the undeformed configuration (original dispersion diagram), once186

the load is removed. For the sake of completeness, since the small on large theory is considered here, the dynamic187

component of the stress is negligible with respect to the static prestress. For this reason it can be assumed that the188

safety factor does not change between the static and dynamic configuration.189

Once the static analysis performed for the aforementioned sets of prestrain, the deformed geometries are assigned190

as the input unit cells to calculate the dispersion diagrams exploiting the Floquet-Bloch theory (see section II). The191

out-of-plane displacement of the structure is kept blocked also in this phase, in order to limit the dispersion analysis192

to waves belonging to the x1 − x2 plane. The band structures are computed considering the unit cell to infinitely193

duplicate in a periodic linear array, and assuming the epoxy in its linear elastic regime (the hypothesis of small194

displacements is now applied). The unit cell domain is meshed by means of 8-node hexagonal elements of maximum195
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size LFE = 0.2 mm, which is found to provide accurate eigensolutions up to the frequency of interest59. It should be196

noted that, since the applied prestrain applied to each face of the cell induces isotropic deformation in the x1 − x2197

plane in both compression and traction cases, the deformation gradient F and its affine component FL are diagonal198

and, as a consequence, the orientation of the reciprocal lattice vectors g1 in the deformed configurations does not199

change with respect to that in the undeformed configuration. This implies that the orientation of the Bloch wavevector200

also remains unchanged between the undeformed and deformed configurations (see Fig. 1D). Therefore, the resulting201

eigenvalue problem (K − ω2M)u = 0 is solved by varying the non-dimensional wavevector k∗ along the irreducible202

path [Γ−X], with Γ ≡ (0, 0) and X ≡ π/a, 0), being a =
(

2 ·
∑3
i=1 di + d4

)
the lattice parameter.203

Figure 3 reports parametric plots of the dispersion diagrams of the unit cell as a function of the external prestrain204

intensity inducing compression (Fig. 3A) or traction (Fig. 3B) states in the structure. The dispersion curves are205

color-coded on the base of the level of prestrain applied at the boundaries of the unit cell in the pre-loading phase.206

Specifically, the color bar of Fig. 3A varies gradually from −360 µm (blue: maximum compression state) to 0 (green:207

unprestrained condition), respectively. Analysing the band diagrams, it is possible to observe that increasing the208

compressive state in the unit cell induces (i) a general up-shift (curves shading into dark blue) of the dispersion209

branches, as well as (ii) group velocity inversion in the third band when k∗ gets close to the high symmetry point210

X, as indicated by the black arrow. The band inversion is more evident comparing the dispersion curves singularly211

plotted for the −360 µm and 0 µm prestrain cases, as reported in Fig. S1A and Fig. S1B. Further inspection of the212

the dispersion diagram allows to infer that the unprestrained unit cell (green curves) allows for the opening of two213

BGs in the [0 − 3000] Hz frequency range, going from 170 to 470 Hz and 703 to 1180 Hz, respectively (see Fig. 4A214

at 0 µm imposed displacement). The upper and lower bounds for both the first and second BGs shift in frequency215

for increasing values of the prestrain (see Fig. 4A). However, although the global width of the first BG experiences216

a limited variation, both its upper and lower bounds undergo a remarkable frequency shift (they both almost triple217

their frequency). On the contrary, the lower bound of the second BG is rather stable in frequency for increasing values218

of the prestrain, while its upper limit experiences a considerable frequency up-shift. This is responsible for an overall219

enlargement of the BG width (almost doubling with respect to the unprestressed case). Finally, it is possible to notice220

that the lower bound of the second BG experiences a sort of inflection point when no displacement is imposed. The221

different behaviours of the two BGs highlights a selective nature of the prestress in altering the dispersion diagram.222

The aforementioned effects partially apply also for the case of unit cell subjected to an external traction pre-loading,223

i.e. both curve shifting and group velocity inversion are observed (Fig. 3B). However, in this case, group velocity224

inversion involves more bands (the third and fourth ones) and occurs at lower reduced wavenumber values (k∗ '225

π
2a ), as highlighted by the black arrows in Fig. 3B (refer to Fig. S1B and Fig. S1C for a direct comparison of the226

dispersion curves singularly plotted for the 0 µm and +130 µm prestrain cases). This implies that, differently from227

the compression case, when an external state of traction is induced in the pre-loading phase, only few dispersion228

curves clearly shift towards higher frequencies (the first, the second, the fifth and sixth bands) over the full range of229

k∗ (from 0 to π/a), whereas some others (the third and the fourth ones) exhibit both a down- and an up-shift over230

a wide range of k∗. As a consequence, while the first BG is almost kept unaltered in terms of frequency width and231

slightly shifts towards higher frequencies (see Fig. 4B), the second BG experiences a remarkable width decrease (up232

to 3 times less the original BG).233

At this point, it is worth to point out here the different dynamic behaviour of inertially amplified elastic metamaterials234
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with respect to the ordinary ones when subjected to an external state of prestress that emerges from the present235

research. Focusing the attention on the case of prestrain inducing tensile deformation in the structure, in ordinary236

PCs the BGs tend to decrease its frequency regime, being this effect mainly driven by the geometrical changes of237

the unit cell rather then by the effective stiffness and mass alteration introduced by the prestress (see for instance238

Fig. 3A of ref.44 and relevant literature on ordinary PCs presented in section I). On the contrary, in the case of239

inertially amplified elastic metamaterials, where the displacement mechanism is used to amplify the effective inertia240

of small masses60, the state of external solicitation represents an important means to control the effective stiffness /241

effective mass ratio of the structure. This additional degree of freedom may lead to both an increase or decrease of242

the lower limit of the first BG frequency regime, under the same type of applied prestrain (see for instance Figs. 3B243

and 4B, where the lower limit of the first BG increases although a prestress condition inducing tensile solicitation in244

the structure is applied).245

To gain further mechanical insights about this peculiar behaviour, a thorough explanation on the change of the246

effective stiffness / effective mass ratio of the structure as a function of the applied prestrain is provided with the247

help of the model reported in Fig. 5, and proposed for the first time by the research group of Yilmaz61–64. Figure 5A248

shows the rigid link equivalent model, which assumes pin joints at the middle points of the flexural hinges. Lumped249

parameters m, ma and keff are reported along with the principal geometrical parameters ϑ (initial link angle) and250

displacements (δx and δy) consequent the application of a prestrain inducing tensile solicitation in the system. Already251

in the undeformed configuration, an angle ϑ exists between the equivalent rigid links (lines in red) and the ground.252

fp =

(√
keff

meff +m

)
/(2π) =

(√
keff

ma(cot2(ϑ) + 1)/4 +m

)
/(2π) (10)

where ma(cot2(ϑ) + 1)/4 defines the effective mass of the system.253

When a tensile prestress is applied, ϑ decreases to ϑu, and the effective mass increases. If the stiffness keff is left254

unaltered, from Eq. (10) it clearly emerges that the lower limit of the first BG would decrease due to increase of the255

effective mass. However, if the effective stiffness keff increases more than the effective mass meff (the edge mass m256

does not depend on ϑ), then the lower limit of the first BG may also increase (this reasoning also applies to the case257

of prestrain inducing a compression state of solicitation and it may lead to analogous considerations).258

To verify the correctness of the numerical approach proposed in this paper, a comparison of the analytical values of259

fp deriving from Eq. (10) and the numerical solutions is performed and reported in Figs. 5B-D. Figure 5B reports260

the parametric plot of the dispersion curves of the unit cell when an external prestrain ([0− 40] µm range) is applied261

inducing a tensile state in the structure. The [100 − 220] Hz frequency range is considered. The same polarization262

reported in Fig. 3 applies. The values of the frequency of the longitudinal branch responsible for the lower limit of263

the first BG are reported at the X high symmetry point in correspondence of the black arrows. Left panel of Fig. 5C264

reports the direct comparison of the analytical solution (triangular markers connected by the black line) deriving from265

Eq. (10) and the numerical results (magenta square markers). The values of keff introduced in the analytical model are266

directly calculated from the deformed numerical configuration according to standard homogenization procedures65,66.267

Right panel of Fig. 5C shows the variation of the effective stiffness ∆keff and of the effective mass ∆meff . This268

explains why the lower limit of the first BG increases, as shown in Figs. 3B and 4B, even if a tensile prestress is269

applied to the structure. Indeed, the effective mass increase ∆meff (Fig. 5D) is far lower than the stiffness increase270

∆keff (this is due to the chosen geometrical characteristics of the unit cell, including the out-of-plane dimension271
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h = t2 limiting the value of ma). As a consequence, it is possible to conclude that in this case the BG alteration is272

mainly stiffness driven.273

Finally, to clearly show the enhanced potential of inertial amplification PCs with respect to the ordinary ones when274

an external prestrain condition is applied, additional calculations by changing some of the geometrical and mechanical275

parameters of the unit cell are performed. Inspired by the analytical model reported in Fig. 5A, a configuration of276

the unit cell allowing for the lower limit of the first BG to exhibit a non-monotone trend has been found and reported277

in Fig. 6. It is possible to observe that the lower limit of the first BG now first decreases, i.e., the increase of the278

effective mass is dominant - the red curve is above the blue one at low values of prestrain (yellow rectangle) and then279

increases, i.e., the increase in effective stiffness is dominant - the red curve is below the blue one at higher values of280

prestrain (green rectangle). This has been obtained by changing some of the model parameters as follows: d3 = 18.5281

mm, t3 = 18.5 mm, ma = 1 kg/m3 and multiplying by a factor of 10 the Lamè and Murnaghan material parameters.282

These results suggest that a deformation of the unit cell geometry induced by a compressive / tensile prestress state,283

already in the elastic regime, can lead to significant changes in the passband and BG behaviours of a periodic structure,284

especially if the BG nucleation mechanism is lead by IA.285

B. Transient Calculation286

The confirmation of the above mentioned BG tunability is here verified through a nonlinear transient numerical287

simulation of wave propagation conducted on a finite waveguide comprising 50 unit cells disposed in the x1-direction,288

as shown in Fig. 7A. The idea, here, is to pre-load some unit cells of the waveguide before exciting elastic waves at one289

of its edge, in order to locally and reversibly change the dispersion diagram and confirm the ability of the waveguide290

to switch from a pass- to a stop-band behaviour over a specific frequency range.291

After having pre-loaded the array, so to uniformly reach the prestrain condition of −360 µm in 6 unit cells (Fig. 7B),292

elastic waves are excited at the left edge of the waveguide by means of an imposed displacement of 1 µm in the293

x1-direction (red arrow in Fig. 7A). Two input signals are considered: (i) a triangular-like excitation (top-left panel294

of Fig. 7C) and (ii) a Hanning modulated 11 sine cycles centered at 1400 Hz (top-right panel of Fig. 7C), exhibiting295

a rather broadband and narrowband frequency content, respectively (bottom panels of Fig. 7C). Such pulses have296

been chosen according to the band structure shifts reported in Fig. 3 and to highlight the tunable filtering capabilities297

of the designed waveguide under prestressed conditions. In both excitation cases, 20 ms long time transient explicit298

simulations have been performed in order to allow multiple wave reflections to take place at both the edge of the299

waveguide and of the prestressed unit cells.300

In the case of excitation (i), time transient displacements in the x1-direction are recorded at the two acquisition301

points R1 and R2 (Fig. 7B), taken equidistant from the prestressed regions and chosen respectively before (B/f) and302

after (A/t) the prestressed portion of the waveguide. After acquisition, signals are Fourier transformed and compared303

to highlight the differences of the two responses in terms of frequency content. Figure 7D reports the displacement304

along the x1-direction at points R1 and R2 (top panel), as well as their energy content in the frequency domain305

(lower panel). The frequencies of the computed BGs as a function of the applied prestrain are also highlighted as a306

shaded region, where the color scale refers to the level of imposed displacement in the pre-loading phase. Examining307

the energy content it emerges that the Fourier transform of the signal acquired before the prestrained region (B/f308
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- red line), where the diagram reported in Fig. S1B applies, presents component in the 1000 − 1600 Hz frequency309

range, whereas the signal registered after the prestrained region (A/t - black line) has no frequency components in310

this frequency range. On the contrary, for frequencies above ' 1600 Hz, the amplitudes of the frequency contents are311

comparable. This is in agreement with the two different dispersion diagrams and clearly confirms the possibility of312

the waveguide to to switch from a pass- to a stop-band behaviour over the 1000− 1600 Hz frequency range by readily313

applying and removing the imposed deformations, respectively.314

When the second type of excitation (i.e., the Hanning modulated 11 sine cycles centered at 1400 Hz) is applied to315

the left edge of the waveguide, the switch potential is even more evident. Indeed, reconstructing the full wave field316

displacements at specific time instants, it is clearly visible that the pulse is fully supported in the first portion of the317

waveguide (where no prestress is applied), whereas when the prestrained region begins the wave is strongly reflected318

back.319

IV. CONCLUSIONS AND FUTURE PERSPECTIVES320

In conclusion, in this work the effect of the application of an external prestress on the dispersion diagram has been321

investigated. The geometrical deformation of the unit cell consequent the action of an applied external load has been322

determined through a static geometrically nonlinear analysis, representing the first step of a so called Updated La-323

grangian scheme of calculation. A Floquet-Bloch decomposition has then been applied (second step) to the linearized324

equations of the acousto-elasticity for the unit cell in the deformed configuration.325

The effect of the prestress on the the original band structure (i.e., unit cell without any pre-loading phase) has been326

demonstrated through parametric Floquet-Bloch analysis and further confirmed by nonlinear transient numerical sim-327

ulations, proving the capability of the structure to switch from a pass- to a stop-band behaviour in the same frequency328

range ([1000− 1600] Hz).329

The results presented herein provide insights in the behaviour of band gaps induced by inertial amplification, and330

suggest new opportunities for real-time tunable wave manipulation.331

Future investigations will concern the extension of the present study in the direction of a tensegrity-inspired re-332

design67,68 of the unit cell reported in Fig. 1. A self-similar69 reorganization of the structural elements will allow333

the construction of a tensegrity architecture. The design will derive from the D-bar tensegrity systems67,68, equipped334

with longitudinal and transverse cables. The idea will be to recursively divide the longitudinal span of the cell into335

segments of equal length and replace each new segment with a smaller scale unit with equal shape67. Self-equilibrated336

tensile forces in the cables and compressive forces in the struts will give rise to an internal state of prestress. Cables337

and struts will present an offset in the transverse direction in order to prevent material overlapping. The application338

of a self-equilibrated system of forces composed of tensile forces in the cables and compressive forces in the struts339

will give rise to an internal state of prestress, which can superimpose to the external state of prestress, analysed in340

the present work. Such initial states of stress will contribute to the geometric term of the stiffness matrix of the341

structure67, and allow for an extra degree of freedom for the optimal tuning of the dispersion relation of the system31.342
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FIG. 1. Graphic representation of the Updated Lagrangian scheme. (A) The undeformed configuration C0, i.e. the

initial unit cell (delimited by dashed lines) used to calculate the displacement and stress fields introduced by the external

mechanical load. (B) The static deformed configuration C, resulting from the application of the external mechanical load. (C)

The dynamic configuration C′ undergoing a harmonic motion. (D) The reference systems in the direct and reciprocal spaces.
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FIG. 2. Schematic representation of the undeformed unit cell and its deformed conditions under isotropic

compression / traction. (A) Schematic representation of the unit cell exhibiting inertial amplification mechanism, positioned

at x0 with respect to the original reference systems x0i, with i = 1,2,3. The structure is made of epoxy and it was proposed for

the first time by Yilmaz et al. in ref.43. (B, C) Deformed configuration of the unit cell under isotropic u0(x0) ·n0(n0) = 130µm

traction(−360µm compression). The colors denote the Von Mises stress in MPa. A maximum stress of 21.2 (28.6 33.1) MPa is

observed. Deformations are in 1:1 scale.
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FIG. 3. Band diagrams of the unit cell under different values of applied compression / traction. (A) Parametric

plot of the the real part of the reduced wavenumber k∗ along the Γ −X irreducible path as a function of the applied prestrain

inducing a compressive state in the structure. The dispersion curves are color-coded on the basis of the applied prestrain level

at the boundaries of the unit cell in the pre-loading phase. The polarization factor color bar varies gradually from −360 µm

(dark blue: maximum compression) to 0 (green: unprestrained structure). A general up-shift trend of the dispersion curves is

observable (curves fading into dark blue) and a group velocity inversion (highlighted by the black arrow) occurs for the third

band in proximity of the high-symmetry point X. (B) Parametric plot of the the real part of the reduced wavenumber k∗

along the Γ−X irreducible path as a function of the applied prestrain inducing a tensile state in the structure. The dispersion

curves are color-coded on the basis of the applied prestrain level at the boundaries of the unit cell in the pre-loading phase. The

polarization factor color bar varies gradually from 130 µm (dark red) to 0 (green: unprestrain structure). A general down-shift

trend of the dispersion curves could be observed (curves fading into dark red). Group velocity inversions occur, in this case, in

more bands (highlighted by the black arrows) and extend over a larger region of k∗.
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FIG. 4. Upper and lower bounds for the first and second BGs as a function of the applied prestrain inducing

a compressive or tensile state in the structure. (A) In the case of increasing compressive prestrain, the first BG (black

dashed lines delimited by red square markers) experiences a limited width variation, although both its upper and lower bounds

are subjected to a remarkable frequency shift (towards higher frequencies). On the contrary, the lower bound of the second

BG (black dashed lines delimited by blue square markers) is rather stable in frequency, while its upper bound still experiences

a strong shift towards higher frequencies. This is responsible for an important global BG width enlargement (twice the initial

value). (B) In the case of prestrain inducing a state of traction in the unit cell, a similar behaviour is observed for the first BG,

whereas an important width reduction can be deduced for the second BG (up to three times the initial value), as the initial

imposed solicitation is increased to 130 µm.
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examined PC with inertial amplification mechanism62. Lumped parameters m, ma and keff are reported along with the

principal geometrical parameters ϑ (initial link angle) and displacements (δx and δy) consequent the application of a prestrain

inducing tensile solicitation. (B) Parametric plot of the the real part of the reduced wavenumber k∗ along the Γ−X irreducible

path as a function of the applied prestrain inducing a tensile state in the structure in the [100 − 220] Hz frequency range. The

same polarization reported in Fig. 3 applies. The values of the frequency of the longitudinal branch responsible for the lower

limit of the first BG are reported at the X high symmetry point in correspondence of the black arrows. (C) Comparison of the

analytical solution (triangular markers connected by the black line) deriving from Eq. 1 and the numerical values (magenta

square markers) is reported in the left panel. On the right panel, the variation of the effective stiffness ∆keff and of the

effective mass ∆meff explaining the reason of the lower frequency increase of the BG even if a tensile prestress is applied to

the structure. Indeed, the effective mass increase is far lower than the stiffness increase. (D) Magnification of the change of

the effective mass showing its increase.
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FIG. 6. Additional degree of tunability of inertially amplified elastic metamaterials under external prestrain

solicitation state. (Left panel) Lower limit frequency of the first BG as a function of the applied prestrain. (Right panel)

The variation of the normalized effective stiffness and of the normalized effective mass explaining the reason of the decrease

/ increase of the lower limit frequency of the first BG even if the same type of prestress (tension) is applied to the structure.

Yellow and green rectangles determine the mass and stiffness driven regions, respectively.
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FIG. 7. Switch from a pass- to a stop-band behaviour of the waveguide. (A) Schematic representation of the finite

structure implemented for the nonlinear transient simulation. The model comprises 50 unit cells arranged in the x01-direction.

(B) Before exciting the propagation of elastic waves, an external load is applied over 6 internal unit cells of the array, so to

locally induce the uniform prestrained condition of −360 µm. (C) Triangular-like (left panel) and 11 sine cycles centered at

1400 Hz Hanning modulated (right panel) excitations. (D) Signals recorded before (B/f) and after (A/t) the 6 prestressed unit

cells (top panel) and their Fourier Transform (low panel), for the triangular-like excitation signal. The Fourier content clearly

shows how the introduction of the prestress alters the frequency response function of the structure. The tunable BG is reported

as a color-coded rectangle. The green region of the rectangle is the BG corresponding to the unprestrained unit cells (up to

1180 Hz), whereas the one fading to dark blue corresponds to the BG extension (up to 1680 Hz) induced by the introduction

of the external compressive prestrain (up to −360 µm: dark blue). The comparison of the two signals proves that the same

waveguide is capable to support or to inhibit waves having the same frequency content. (E) Snapshots at different time steps,

for the narrowband excitation signal, showing how the unprestrained waveguide is capable of supporting the propagation of

the wave, whereas the stressed region reflect back the majority of the waveform.
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APPENDIX A480

The different operators in Eq. (9) are expressed by:

M =
⋃
e

∫
Ωe

NT(x)ρ(x)N(x)da, (11)

K1 =
⋃
e

∫
Ωe

NT(x)
[
BTD(x)B + BT

0 Σ0(x)B0

]
N(x)da (12)

K2 =
⋃
e

∫
Ωe

NT(x)
[
BTD(x)H + BT

0 Σ0(x)H0

]
N(x)da, (13)

K3 =
⋃
e

∫
Ωe

NT(x)
[
HTD(x)H + HT

0 Σ0(x)H0

]
N(x)da, (14)

where Ωe denotes the domain of the e-th finite element of the mesh,
⋃
e(·) the standard direct stiffness assembling481

procedure, N(x) the matrix of shape functions for the e-th element, and Σ0(x) is a block-diagonal matrix of the form:482

Σ0(x) =

 σ0(x) 0

0 σ0(x)

 , (15)

while the different compatibility operators are expressed as:

B =
∂

∂x1


1 0

0 0

0 1

+
∂

∂x2


0 0

0 1

1 0

 , (16)

B0 =
∂

∂x1


1 0

0 0

0 1

0 0

+
∂

∂x2


0 0

1 0

0 0

0 1

 (17)

H =


1 0

0 0

0 1

 , H0 =


1 0

0 0

0 1

0 0

 . (18)

APPENDIX B483

In this Appendix a direct comparison of the dispersion curves plotted for the specific cases of −360 µm, 0 µm and484

+130 µm prestrain loads are reported as singular diagrams in Fig. S1.485486



22

3000 3000

A B
3000

C
z] z]

2000

z]

2000

z] z]

2000

z]

Fr
eq

ue
nc

y 
[H

z

Fr
eq

ue
nc

y 
[H

z

1000

Fr
eq

ue
nc

y 
[H

z

1000

Fr
eq

ue
nc

y 
[H

z

Fr
eq

ue
nc

y 
[H

z

1000

Fr
eq

ue
nc

y 
[H

z

0

1000

0 0
Γ X

Re(k*)

0
Γ X

Re(k*)

0
Γ X

Re(k*)

0

Applied prestrain [μm]
Compression

Applied prestrain [μm]
Tractionp

-360 0 130

FIG. S1. Plots of dispersion curves for single states of prestress. Comparison of the dispersion curves plotted singularly

for the (A) −360 µm, (B) 0 µm and (C) +130 µm prestrain cases.




