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Abstract

We consider spin-flip dynamics of configurations in {−1, 1}Zd

, and
study the time evolution of concentration inequalities. For “weakly
interacting” dynamics we show that the Gaussian concentration bound
is conserved in the course of time and it is satisfied by the unique
stationary Gibbs measure. Next we show that, for a general class
of translation-invariant spin-flip dynamics, it is impossible to evolve
in finite time from a low-temperature Gibbs state towards a measure
satisfying the Gaussian concentration bound. Finally, we consider the
time evolution of the weaker uniform variance bound, and show that
this bound is conserved under a general class of spin-flip dynamics.
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1 Introduction

Concentration inequalities are important tools to understand the fluctua-
tion properties of general observables f(σ1, . . . , σn) of n random variables
(σ1, . . . , σn), where n is large but finite. For bounded random variables
which are independent (or weakly dependent) typically one can obtain so-
called Gaussian concentration bounds for the fluctuations of f(σ1, . . . , σn)
about its expectation. In the context of lattice spin systems, one has, e.g.,
σi ∈ {−1,+1}, with i ∈ [−n, n]d ∩ Zd, and these random variables are
distributed according to a Gibbs measure. The “weak dependence” be-
tween them means for instance that we are in the Dobrushin uniqueness
regime, which is for instance the case at “high enough” temperature for
every finite-range potential, or for low temperature with a “high enough”
external magnetic field. In this case a Gaussian concentration bound holds
[9]. In contrast, regimes of non-uniqueness are known in which weaker con-
centration bounds, such as moment bounds, hold [5]. In [6] it is shown
that the Gaussian concentration bound implies uniqueness of equilibrium
states (translation-invariant Gibbs measures). In [2], many applications of
these concentration bounds are given (speed of convergence of the empir-
ical measure in the sense of Kantorovich distance, fluctuation bounds in
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the Shannon-McMillan-Breiman theorem, fluctuation bounds for the first
occurrence of a pattern, etc).

In this paper we are interested in the time evolution of the Gaussian
concentration bound under a stochastic evolution. More precisely we study
the following questions in the context of spin-flip dynamics of lattice spin
systems:

1. When started from a probability measure satisfying the Gaussian con-
centration bound, do we have this bound at later times?

2. When started from a probability measure which does not satisfy the
Gaussian concentration bound, can this bound be obtained at finite
times?

This is motivated on one hand by the phenomenon of Gibbs-non-Gibbs tran-
sitions [7], and on the other by previous study of similar questions in the
context of finite-dimensional diffusion processes [4].

In the context of time evolution of Gibbs measures, one has generically
two scenarios. In the high-temperature regime, i.e., high-temperature initial
Gibbs measure, and high-temperature dynamics, the time evolved measure
is generically high-temperature Gibbs, and results of this type are proved via
some form of high-temperature (cluster, polymer) expansion, see [7], [12].
In the regime where the dynamics is high-temperature and the initial mea-
sure is low-temperature, one typically has Gibbs-non-Gibbs transitions, i.e.,
after a finite time the time-evolved measure is no longer a Gibbs measure,
and sometimes (e.g. for independent spin-flip dynamics starting from a low-
temperature Ising state with positive small magnetic field) the measure can
become Gibbs again. In the context of time-evolution of concentration in-
equalities, in [4] results are restricted to dynamics of diffusive type, in finite
dimensional context. Here we are interested in the setting of translation-
invariant spin-flip dynamics in infinite volume, which is precisely the context
of Gibbs-non-Gibbs transitions in [7]. Guided by the intuition coming from
this context, one expects that a high-temperature dynamics should con-
serve the Gaussian concentration bound. We prove this result in the present
paper, using the expansion in [12], i.e., under the condition that the flip
rates are sufficiently close to the rates of an independent spin-flip dynamics.
Next we show that whenever one starts from a low-temperature initial state,
i.e., in the non-uniqueness regime, then for any local spin-flip dynamics, at
any later time the distribution cannot satisfy the Gaussian concentration
bound. This can be thought of as a result showing that in finite time one
cannot obtain “high-temperature properties” when initially started from a
“low-temperature state”. This result is shown via an analyticity argument,
which shows that two different initial measures can never coincide in finite
time, together with the fact that if a measure satisfies the Gaussian concen-
tration bound, then its lower relative entropy density with respect to any
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other translation-invariant measure is strictly positive. I.e., the existence of
two time evolved measures with zero relative entropy density excludes the
possibility that one of them satisfies the Gaussian concentration bound.

The rest of our paper is organized as follows. We start with introducing
the basic context on Gibbs measures and spin-flip dynamics in Section 2.
In Sections 3 and 4 we treat the weakly interacting dynamics. In Section
5 we prove that the Gaussian concentration bound cannot be obtained in
finite time if one starts from an initial Gibbs measure in a non-uniqueness
(“low-temperature”) regime. In this section we also prove a non-degeneracy
result, based on analyticity, which is of independent interest.

2 Setting: lattice spin systems, Gibbs measures,
Markovian dynamics

We consider the state space of Ising spins on the lattice Zd, i.e., Ω =
{−1, 1}Zd . For elements σ ∈ Ω, called “spin-configurations”, we denote
σi ∈ {−1, 1} the value of the spin at lattice site i ∈ Zd. When we say “a
probability measure µ on Ω”, we mean a probability measure on the Borel-σ-
field of Ω, equipped with the standard product of discrete topologies, which
makes Ω into a compact metric space. For η ∈ Ω we denote τiη the shifted or
translated configuration is defined via (τiη)j = ηi+j . A function f : Ω→ R

is called local if it depends only on a finite number of coordinates. By the
Stone-Weierstrass theorem, the set of local functions is dense in the Banach
space of continuous functions C (Ω), equipped with the supremum norm.
For f : Ω→ R we denote τif the function defined via τif(η) = f(τiη).

For a function f : Ω→ R we denote the discrete gradient

∇if(σ) = f(σi)− f(σ)

where σi denotes the configuration obtained from σ by flipping the symbol
at lattice site i ∈ Zd. We further denote

δif = sup
σ∈Ω
∇if(σ).

We think of δif as “the Lipschitz constant in the coordinate σi”. The
symbol δf means the collection of δif, i ∈ Zd, i.e., the “vector” of Lipschitz
constants. For p ≥ 1 we define

‖δf‖p =

∑
i∈Zd

(δif)p

 1
p

.

For a continuous function f : Ω → R and a probability measure µ on Ω,
we will write either Eµ(f) or

∫
f dµ for the integral of f with respect to µ.

We can now define what we mean by a Gaussian concentration for a given
probability measure on Ω.
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DEFINITION 2.1 (Gaussian Concentration Bound).
A probability measure µ on Ω is said to satisfy the Gaussian concentration
bound with constant C > 0, abbreviated GCB(C), if for all continuous f :
Ω→ R we have

Eµ

(
ef−Eµ(f)

)
≤ eC‖δf‖

2
2 . (1)

Observe that ‖δf‖2 is always finite for local functions. Note that a
function f : Ω → R is local if and only if there exists a finite subset of Zd

(depending of course on f) such that δif = 0 for all i outside of that subset.
For non-local continuous functions, inequality (1) is meaningful only when
‖δf‖2 < +∞. By a standard argument (exponential Chebyshev inequality
applied to λf , λ > 0, and then optimization over λ), the bound (1) implies
the “sub-gaussian” concentration inequality

µ
(
f − Eµ(f) ≥ u

)
≤ e
− u2

4C‖δf‖22

for all u > 0.

2.1 Gibbs measures

In the context of Gibbs measures, the Gaussian concentration bound is
satisfied in the so-called high-temperature regime, and more generally in
regimes where the unique Gibbs measure is sufficiently close to a product
measure such as the Dobrushin uniqueness regime. In this subsection we
provide some basic background material on Gibbs measures which we need
in the sequel. We refer to [8] for more details and further background. Let
S denote the set of finite subsets of Zd. For Λ ⊂ Zd, we denote by FΛ the
σ-field generated by {σi, i ∈ Λ}.

DEFINITION 2.2. A uniformly absolutely summable potential is a map U :
S × Ω→ R with the following properties:

1. U(A, ·) only depends on σi, i ∈ A.

2. Uniform absolute summability:

sup
i∈Zd

∑
A∈S
A3i

sup
σ∈Ω
|U(A, σ)| < +∞.

A potential is called translation invariant if U(A+ i, σ) = U(A, τiσ) for
all A ∈ S , σ ∈ Ω, i ∈ Zd.

Given a uniformly absolutely summable potential U , and Λ ∈ S , we
denote the finite-volume Hamiltonian with boundary condition η ∈ Ω:

Hη
Λ(σΛ) =

∑
A∩Λ 6=∅

U(A, σΛηΛc)
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and the corresponding finite-volume Gibbs measure with boundary condition
η

µηΛ(σΛ) =
e−H

η
Λ(σΛ)

ZηΛ

where ZηΛ =
∑

σΛ∈ΩΛ
e−H

η
Λ(σΛ), the partition function with boundary condi-

tion η, is the normalizing constant (and where ΩΛ is the restriction of Ω to
Λ).

DEFINITION 2.3. Let U be a uniformly absolutely summable potential. A
measure µ is called a Gibbs measure with potential U if its conditional prob-
abilities satisfy

µ
(
σΛ|FΛc

)
(η) = µηΛ(σΛ)

for all Λ ∈ S , for all σ, and for µ-almost every η. We will write µ ∈ G (U)
to mean that µ is a Gibbs measure for U .

We say that U satisfies the strong uniqueness condition if

c(U) := sup
i∈Zd

1

2

∑
A3i

(|A| − 1) sup
σ,η ∈Ω

|U(A, σ)− U(A, η)| < 1. (2)

If U satisfies (2) then the set of Gibbs measures G (U) is a singleton (unique
Gibbs measure, no phase transition). The condition (2) implies the well-
known Dobrushin uniqueness condition (cf. [8] chapter 8).

If U is translation invariant then G (U) contains at least one translation-
invariant Gibbs measure.

The following result is a particular case of the main theorem in [9] which
states that, under the Dobrushin uniqueness condition, one has the Gaussian
concentration bound (1).

THEOREM 2.1 ([9]). If U satisfies (2) then µ ∈ G (U) satisfies GCB(C)
with C = 1

2(1−c(U))2 .

From the proof, one easily infers that also all the finite-volume Gibbs
measures µηΛ satisfy GCB(C) whenever U satisfies (2), with a constant C
that neither depend on the boundary condition η nor on the volume Λ.

2.2 Relative entropy density and large deviations

Translation-invariant Gibbs measures with a translation-invariant uniformly
absolutely summable potential satisfy a level-3 large deviation principle with
the relative entropy density as rate function [8, Chapter 15]. Let U be
a translation-invariant uniformly absolutely summable potential, and µ ∈
G (U) be a translation-invariant Gibbs measure. Let ν be a translation-
invariant probability measure on Ω. The relative entropy density is defined
to be the limit

h(ν|µ) = lim
n→∞

hΛn(ν|µ)

|Λn|
(3)
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with Λn = [−n, n]d ∩Zd, |Λn| = (2n+ 1)d, and

hΛn(ν|µ) =
∑

σΛn∈ΩΛn

ν(σΛn) log
ν(σΛn)

µ(σΛn)
.

The relative entropy density exists for any µ ∈ G (U) translation-invariant
Gibbs measure, and ν any translation-invariant probability measure. More-
over, the relative entropy density is the rate function of the so-called level
3 large deviation principle, i.e., in the sense of the large deviation principle,
it holds that

µ

(
1

|Λn|
∑
i∈Λn

δτiσ ≈ ν

)
� e−|Λn|h(ν|µ) .

(This is of course an informal statement where “≈ ν” means a neighborhood
of ν in weak topology, and “�” means asymptotic equivalence after taking
the logarithm and dividing out by |Λn|.) In general, i.e., if µ is not a Gibbs
measure, the limit defining (3) might not exist, in that case we define the
lower relative entropy density as

h∗(ν|µ) = lim inf
n→∞

hΛn(ν|µ)

|Λn|
.

The following elementary lemma, which we formulate in the context of a
finite set, with a Markov transition matrix, shows that the relative entropy
is decreasing under the action of a Markov kernel.

LEMMA 2.1. Let P (x, y) be a Markov transition function on a finite set S,
x, y ∈ S, i.e., P (x, y) ≥ 0,

∑
y∈S P (x, y) = 1 for all x ∈ S. Let µ, ν be two

probability measures on S and let

H(µ|ν) =
∑
x∈S

µ(x) log
µ(x)

ν(x)

denote their relative entropy. Define µP (y) =
∑

x∈S µ(x)P (x, y) and simi-
larly νP . Then we have

H(µP |νP ) ≤ H(µ|ν).

PROOF. Define µ12(x, y) = µ(x)P (x, y) and similarly ν12(x, y) = ν(x)P (x, y).
These define two joint distributions of a random variable (X,Y ) on S × S.
Then the first marginals of µ12, ν12 are µ, resp. ν, and the second marginals
are µP , resp. νP . Moreover, because

∑
y∈S P (x, y) = 1, we get

H(µ12|ν12) =
∑

(x,y)∈S×S

µ(x)P (x, y) log
µ(x)P (x, y)

ν(x)P (x, y)
=
∑
x∈S

µ(x) log
µ(x)

ν(x)

= H(µ|ν).
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Therefore, by the chain rule for relative entropy (see e.g. Lemma 4.18 in
[10]) we obtain

H(µ|ν) = H(µP |νP ) +D

where D is the conditional divergence of X “knowing” Y , i.e.,

D =
∑
y∈S

µP (y)
∑
x∈S

µ12(x|y) log
µ12(x|y)

ν12(x|y)
.

Because D is non-negative, we obtain the desired inequality.

2.3 Dynamics: definitions and basic inequalities

2.3.1 Dynamics and generator

The basic question we are interested in is how the inequality GCB(C) is
affected by applying a Markovian dynamics to the probability measure µ.
For this dynamics, we consider spin-flip dynamics with flip rates c(i, σ) at
site i ∈ Zd satisfying the following assumptions.

Condition A:

1. Strict positivity: infi∈Zd, σ∈Ω c(i, σ) > 0.

2. Locality:

sup
i∈Zd

∑
j∈Zd

sup
σ∈Ω

(
c(i, σj)− c(i, σ)

)
< +∞.

This condition ensures existence of the dynamics with generator L defined
below in (4).

In section 3 we will consider weakly interacting dynamics and need more
stringent conditions:

Condition C:

1. Strict positivity: infi∈Zd, σ∈Ω c(i, σ) > 0.

2. Finite-range property: There exists R > 0 such that c(i, σ) depends
only on σj , for j such that |j − i| ≤ R.

If c(i, σ) = c(0, τiσ), σ ∈ Ω, i ∈ Zd, then we say that the flip rates are
translation invariant where we remind the notation (τiσ)j = σi+j .

The dynamics is defined via the Markov pre-generator L acting on local
functions via

Lf(σ) =
∑
i∈Zd

c(i, σ)
(
f(σi)− f(σ)

)
. (4)
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As proved in [11, Chapter 1], under Condition A, the closure of L (in
C (Ω) equipped with the supremum norm) generates a unique Feller process.
This process generated by L is denoted {σ(t), t ≥ 0}, and σi(t) denotes the
spin at time t at lattice site i. We denote Eσ expectation in the process
{σ(t), t ≥ 0} starting from σ, and Pσ the corresponding path-space measure.
We denote the semigroup S(t)f(σ) = Eσ[f(σ(t))], which acts as a Markov
semigroup of contractions on C (Ω). Via duality, S(t) acts on probability
measures, and for µ a probability measure on Ω, we denote by µS(t) the
time-evolved measure, determined by the equation∫

f dµS(t) =

∫
S(t)f dµ.

We also introduce the non-linear semigroup V (t)f = logS(t) ef , which
is a family of non-linear operators satisfying the semigroup property, i.e.,
V (t+ s) = V (t)V (s), s, t ≥ 0. This non-linear semigroup appears naturally
in the context of time-evolution of the Gaussian concentration bound.

Finally, notice that(
eV (t)f

)
(σ) =

∫
ef(ξ) δσS(t)(dξ) (5)

whereas

S(t)f(σ) =

∫
f(ξ) δσS(t)(dξ). (6)

2.3.2 Some basic facts for spin-flip dynamics

In the study of existence and ergodicity properties of the Markovian dynam-
ics {σ(t) : t ≥ 0} an important role is played by the matrix indexed by sites
i, j ∈ Zd and defined by

Γij = sup
σ∈Ω

(
c(i, σj)− c(i, σ)

)
.

We have the pointwise estimate (see [11, Chapter 1])

δiS(t)f ≤ (etΓ δf)i, i ∈ Zd, t ≥ 0

where etΓ δf denotes the bounded operator (in `1(Zd)) etΓ working on the
“column vector” δf . If the rates are translation invariant, i.e., then we have
Γij = γ(j − i), i.e., Γ acts as a convolution operator:

(Γδf)i = (γ ∗ δf)i =
∑
j∈Zd

γ(i− j) δjf

and as a consequence

(etΓ δf)i =
∑
j∈Zd

γt(i− j) δjf.
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The so-called uniform ergodic regime, or “M < ε regime” (see [11]), is the
regime where the dynamics admits a unique invariant measure to which
every initial measure converges exponentially fast in the course of time. In
that case there exists α > 0 such that

‖δS(t)f‖22 ≤ ‖ etΓ δf‖22 ≤ e−αt ‖δf‖22 (7)

see [3, Theorem 3.3]. In general, for a spin-flip dynamics generated by (4),
we have that Γ is a bounded operator in `2(Zd), i.e.,

‖δS(t)f‖22 ≤ K(t)‖δf‖22 (8)

for some time dependent constant K(t) > 0. Finally, we mention a useful
fact about the relative entropy density. Using the elementary Lemma 2.1,
and finite-volume approximations, one obtains the following implication for
a translation invariant spin-flip dynamics with rates satisfying condition A

h(ν|µ) = 0 ⇒ h
(
νS(t)

∣∣µS(t)
)

= 0, ∀t > 0.

This will be used later on, in Section 4.

3 Time evolution of the Gaussian concentration
bound

In this section we show conservation of the Gaussian concentration bound
under weakly interacting spin-flip dynamics, i.e., dynamics sufficiently close
to independent spin-flip dynamics.

More precisely if we start the process {σ(t) : t ≥ 0} from a probabil-
ity measure µ satisfying GCB(C), then we are interested in the following
questions:

1. Is it the case that under the time evolution {σ(t), t ≥ 0}, the time-
evolved measure µS(t) still satisfies GCB(Ct), and if yes, how does the
constant Ct evolve?

2. If the dynamics admits a unique stationary measure ν, does this mea-
sure satisfy GCB(C)?

3.1 A general result and conservation of GCB for indepen-
dent dynamics

We start with the following general result.

THEOREM 3.1. Let {σ(t), t ≥ 0} be such that for all σ ∈ Ω the probability
measure δσS(t) satisfies GCB(Dt) where the constant Dt does not depend
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on σ. Let µ be a probability measure satisfying GCB(Cµ). Then, for all local
functions f we have

log

∫
ef−

∫
f dµS(t) dµS(t) ≤ Dt‖δf‖22 + Cµ‖δ(S(t)f)‖22. (9)

As a consequence, we obtain the following results:

1. µS(t) satisfies GCB(C(µ, t)) with C(µ, t) ≤ Dt +K(t)Cµ, where K(t)
is defined in (8).

2. In the uniformly ergodic case (M < ε regime, cf. (7)), there exists
α > 0 such that µS(t) satisfies GCB(C(µ, t)) with

C(µ, t) ≤ Dt + Cµ e−αt .

If furthermore, suptDt <∞, then also the unique stationary measure
ν satisfies GCB(Cν) with Cν ≤ suptDt < +∞.

PROOF. Start from the left-hand side of (9). Use that (5), (6) to rewrite∫
ef−

∫
f dµS(t) dµS(t)

=

(∫ (
S(t) ef

)
(σ) dµ(σ)

)
e−

∫
f dµS(t)

=

∫ [(∫
ef(ξ)−

∫
f(ζ) δσS(t)(dζ) δσS(t)(dξ)

)
eS(t)f(σ)−

∫
S(t)f(ζ) dµ(ζ)

]
dµ(σ)

≤ eDt‖δf‖
2
2

∫
eS(t)f(σ)−

∫
S(t)f(ζ) dµ(ζ) dµ(σ)

≤ eDt‖δf‖
2
2 eCµ‖δS(t)f‖22 .

In the two last steps we first used that δσS(t) satisfies GCB(Dt), i.e., we
have the inequality∫

ef(ξ)−
∫
f(ξ) δσS(t)(dξ) δσS(t)(dξ) ≤ eDt‖δf‖

2
2

for all σ. Second, we used the fact that µ satisfies GCB(Cµ). The conse-
quences (1) and (2) now follow immediately.
The following corollary shows that for independent spin-flip dynamics, Gaus-
sian concentration is conserved.

COROLLARY 3.1. Assume that in the process {σ(t), t ≥ 0} the coordinates
{σi(t) : t ≥ 0} evolve independently. If µ satisfies GCB(Cµ), then there
exists α > 0 such that at any later time, µS(t) satisfies GCB(C(µ, t)), with

C(µ, t) = e−αtCµ +Dt (10)

with suptDt < +∞.
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PROOF. First notice that if P is a product measure on {−1, 1}Zd then P
satisfies GCB(C) with a constant C that is not depending on the marginal
distributions, see [1]. For independent spin-flip dynamics, δσS(t) is a prod-
uct measure. Therefore, for that case, the assumption of Theorem 3.1 is
satisfied, with Dt uniformly bounded as a function of t. Furthermore, be-
cause the flip rates are assumed to be bounded from below, the process
{σ(t), t ≥ 0} is uniformly ergodic, and as a consequence we obtain (10).

3.2 Weakly interacting spin-flip dynamics

The result for independent spin-flip dynamics (i.e., Corollary 3.1) can be
generalized to a setting of weakly interacting dynamics, which was studied
before in [12] in the context of time-evolution of Gibbs measures. The setting
is such that the rates are sufficiently close to the rates of independent rate 1
spin-flip dynamics, such that a space-time cluster expansion can be set up.
In particular, these conditions imply that there exists a unique invariant
measure which is a Gibbs measure in the Dobrushin uniqueness regime.

More precisely, the assumptions on the rates are those of condition C,
with one extra assumption forcing the rates to be close to a constant:

c(i, σ) = 1 + ε(i, σ), with sup
σ∈Ω
|ε(i, σ)| < ε0 (11)

where ε0 ∈ (0, 1) is a constant depending on the dimension, specified in [12].
The important implication of the space-time cluster expansion developed

in [12] which we need in our context is the following. The measure δσS(t)
is a Gibbs measure which is in the Dobrushin uniqueness regime, uniformly
in t > 0 and σ. More precisely, δσS(t) is a Gibbs measure with uniformly
absolutely summable potential U tσ satisfying

sup
i∈Zd

∑
A∈S
A3i

|A| sup
σ,η ∈Ω,t≥0

∣∣U tσ(A, η)
∣∣ < 1. (12)

More precisely, in [12] an exponential norm

sup
i∈Zd

∑
A∈S
A3i

ea|A| sup
σ,η ∈Ω,t≥0

∣∣U tσ(A, η)
∣∣

where a > 0 is small enough, is shown to be finite, and going to zero when
ε0 → 0, which is stronger than (12).

Using Theorem 3.1, combined with Theorem 2.1, we obtain the following
result.

THEOREM 3.2. Let {σ(t), t ≥ 0} be a spin-flip dynamics satisfying the
conditions C, and the extra weak interaction condition (11). Then we have
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1. If µ satisfies GCB(Cµ), then there exists C(µ, t) <∞ such that µS(t)
satisfies GCB(C(µ, t)).

2. The unique stationary measure ν satisfies GCB(Cν) for some Cν <∞.

4 No-go from low-temperature Gibbs measures to
Gaussian concentration bound

In this section we consider the other regime, i.e., starting from an initial
distribution where GCB is not satisfied, such as a translation-invariant Gibbs
measure in the non-uniqueness regime. we prove some results showing that
it is impossible to go from such a Gibbs measure in the non-uniqueness
regime towards a probability measure which satisfies GCB(C) in finite time.
One can interpret this result as the fact that one cannot acquire in finite
time strong “high-temperature” properties from a low-temperature initial
state.

We start with an abstract “non-degeneracy” condition on the Markov
semigroup.

DEFINITION 4.1 (Non-degenerate Markov semigroup).
We say that the Markov semigroup (St)t≥0 of a spin-flip dynamics is non-
degenerate if for every pair of probability measures µ 6= ν, we have µS(t) 6=
νS(t) for all t > 0.

Then we have the following general result which shows that under the
evolution of a non-degenerate semigroup one cannot go from “low tempera-
ture” to “high temperature” in finite time.

THEOREM 4.1. Let µ+ 6= µ− denote two translation-invariant Gibbs mea-
sures for the same translation-invariant potential. Assume that the Markov
semigroup is non-degenerate. Then for all t > 0, µ+S(t) cannot satisfy
GCB(C).

PROOF. Because µ+ 6= µ− are two translation-invariant Gibbs measures
for the same translation-invariant potential, we conclude that h(µ−|µ+) = 0
and, as a consequence, h(µ−S(t)|µ+S(t)) = 0, for all t > 0. By non-
degeneracy, µ−S(t) 6= µ+S(t). By [6], we have that if µ+S(t) satisfies
GCB(C), then for all ν translation invariant h∗(ν|µS(t)) > 0, which contra-
dicts h(µ−S(t)|µ+S(t)) = 0.

The following lemma shows that independent spin-flip is non-degenerate.

LEMMA 4.1. Let µ, ν be two different probability measures on Ω. If S(t)
denotes the semigroup of independent rate one spin-flip dynamics, then at
any later time t > 0, µS(t) 6= νS(t).

13



PROOF. Define, for A ∈ S , σA =
∏
i∈A σi. Then we have LσA = −2|A|σA

and as a consequence,
S(t)σA = e−2|A|t σA. (13)

If µS(t) = νS(t) for some t > 0 then it follows from (13) that

e−2|A|t
∫
σA dµ = e−2|A|t

∫
σA dν

and therefore
∫
σA dµ =

∫
σA dν. Because linear combinations of the func-

tions σA are uniformly dense in C (Ω), we conclude that µ = ν, which leads
to a contradiction.

In the next subsection, we use analyticity arguments to show non-degeneracy
for general translation-invariant local spin-flip dynamics.

4.1 Analyticity and non-degeneracy of local spin-flip dynam-
ics

In this section we show that for general local translation-invariant spin-flip
dynamics, for µ a probability measure on Ω, and for a (uniformly) dense
set of continuous functions f the map t 7→

∫
S(t)f dµ can be analytically

extended to a strip in the complex plane of which the width does not depend
on µ. This implies non-degeneracy in the sense of Definition 4.1. We start
with setting up the necessary notation.

We remind the notation σB =
∏
i∈B σi for B a finite subset of Zd. For a

finite set B ⊂ Zd we define the associated translation-invariant operator

LB =
∑
i∈Zd

σB+i∇i.

In case B = ∅ we make the convention σB = 1, i.e., L∅ =
∑

i∈Zd ∇i is the
generator of rate 1 independent spin flips.

A general local translation-invariant spin-flip generator can then be writ-
ten in terms of these “building block” operators as follows

LB :=
∑
B∈B

λ(B)LB (14)

where B is a finite collection of finite subsets of Zd, and where λ : B → R.
For notational simplicity, we suppressed the dependence on the coefficient
λ(·) in (14). In the following lemma we produce a uniform estimate for
LBnLBn−1 · · ·LB1σA.

LEMMA 4.2. We have the uniform estimate

‖LBnLBn−1 · · ·LB1σA‖∞
≤ 2n|A|(|A|+ |B1|)(|A|+ |B1|+ |B2|) · · · (|A|+ |B1|+ · · ·+ |Bn−1|). (15)
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PROOF. First notice that the bound holds when A = ∅ because in that
case LBnLBn−1 · · ·LB1σA = 0. So we consider A 6= ∅. Let us first deal with
n = 1. Notice that

∇i σA = −2σA1(i ∈ A)

where 1(·) denotes the indicator function. Next notice that σGσF = σG∆F

for G,F finite subsets of Zd and G∆F = (G∩F c)∪ (F ∩Gc) the symmetric
difference. Then we compute

LB1σA = −2
∑
i∈A

σ(B1+i)∆A.

As a consequence
‖LB1σA‖∞ ≤ 2 |A|.

Let us denote for n sets C1, . . . , Cn

∆n
i=1Ci = C1∆C2∆ · · ·∆Cn.

Then, by iteration, using ‖σA‖∞ = 1, we obtain

LBnLBn−1 · · ·LB1σA

= (−2)n
∑
i1∈A

∑
i2∈(B1+i1)∆A

. . .
∑

in∈A∆(∆n−1
k=1 (Bk+ik))

σA∆(∆n
k=1(Bk+ik)).

Now use that |C∆D| ≤ |C|+ |D|, and ‖σA∆(∆n
k=1(Bk+ik))‖∞ = 1, to further

estimate∥∥∥∥∥∥∥
∑
i1∈A

∑
i2∈(B1+i1)∆A

. . .
∑

in∈A∆(∆n−1
k=1 (Bk+ik))

σA∆(∆n
k=1(Bk+ik))

∥∥∥∥∥∥∥
∞

≤ |A|(|A|+ |B1|) · · · (|A|+ |B1|+ · · ·+ |Bn−1|).

The lemma is proved.

We can then estimate L n
B σA.

LEMMA 4.3. Let B ∈ 2Z
d

denote a finite set consisting of finite subsets
of Zd, and let LB as in (14). Denote K := maxB∈B |B| and M :=
maxB∈B |λ(B)|. Then we have

‖(L n
B σA)‖∞ ≤ 2nMn|B|n(|A|+K)nn!. (16)

As a consequence
∞∑
n=0

tn

n!
(L n

B σA)

is a uniformly convergent series for t < t0 with t0 = 1
2M |B|(|A|+K) .
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PROOF. We have

L n
B σA =

∑
Bn∈B

. . .
∑
B1∈B

(
n∏
i=1

λ(Bi)

)
LBn · · ·LB1(σA).

The result then follows via (15) using that |B| ≤ K for B ∈ B via the
inequality

|A|(|A|+ |B1|) · · · (|A|+ |B1|+ · · ·+ |Bn−1|)
≤ |A|(|A|+K) · · · (|A|+ (n− 1)K)) ≤ (|A|+K)nn!.

The consequence is immediate from (16).

PROPOSITION 4.1. Let LB denote a local translation-invariant spin-flip
generator as in (14). The set of analytic vectors is uniformly dense in the
set of continuous functions.

PROOF. The set of analytic vectors is by definition the set of functions
such that there exists t > 0 such that

∞∑
n=0

tn

n!
‖L n

Bf‖∞

is a convergent series. Let us denote by A the set of analytic vectors. Notice
that A is a vector space.

By Lemma 4.3 it follows that σA ∈ A for all finite A ⊂ Zd. As a conse-
quence, A contains all local functions and as we saw before, the set of local
functions is uniformly dense in C (Ω).

PROPOSITION 4.2. Let µ and ν denote two probability measures on the con-
figuration space Ω. Let LB denote the generator of a translation-invariant
local spin-flip dynamics as in (14). Let S(t) denote the corresponding semi-
group. Let A denote the set of analytic vectors. Then for every f ∈ A , the
map

ψf (t) : t 7→
∫
S(t)f dµ−

∫
S(t)f dν

extends analytically to the set

Σr := {z ∈ C : dist(z,R+) ≤ r}

for some r > 0 which depends on f (but not on µ, ν).

PROOF. By assumption, there exists r > 0 such that

∞∑
n=0

tn

n!
‖L n

Bf‖∞
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converges for t ≤ r, which implies that ψf (z) can be extended analytically
in

B(0, r) = {z ∈ C : |z| ≤ r} ⊂ C.

Now notice that the same holds when we replace f by S(s)f , by the con-
traction property:

∞∑
n=0

tn

n!
‖L n

B(S(s)f)‖∞ =
∞∑
n=0

tn

n!
‖S(s)(L n

Bf)‖∞ ≤
∞∑
n=0

tn

n!
‖L n

Bf‖∞.

More precisely, for all s, ψS(s)f (·) can be extended analytically in

B(0, r) = {z ∈ C : |z| ≤ r} ⊂ C

where r does not depend on s. This implies the statement of the proposition,
because, via the semigroup property

ψS(s)f (t) = ψf (s+ t).

The proof is finished.

COROLLARY 4.1. Let µ and ν denote two probability measures on the con-
figuration space Ω. Let LB denote the generator of a translation-invariant
local spin-flip dynamics as in (14). Let S(t) denote the corresponding semi-
group. If µ 6= ν then µS(t) 6= νS(t) for all t > 0.

PROOF. Assume on the contrary that µS(t) = νS(t) for some t > 0, then
by the semigroup property µS(s) = νS(s) for all s ≥ t. Let f ∈ A be an
analytic vector such that

∫
f dµ 6=

∫
f dν. Then it follows that the function

ψf (s) =
∫
S(s)f dµ −

∫
S(s)f dν satisfies ψf (0) 6= 0. On the other hand,

because µS(s) = νS(s) for all s ≥ t, it follows ψf (s) = 0 for all s ≥ t. This
contradicts the analyticity of ψf .

4.2 Generalization to a class of infinite-range dynamics

The assumption of finite range for the translation-invariant flip rates can be
replaced by an appropriate decay condition on the rates. This is specified
below. We assume now that the generator is of the form

LB =
∑
B∈B

λ(B)σBLB

where as before LB =
∑

i∈Zd σB+i∇i. We assume now that B is an infinite
set of finite subsets of Zd and that we have the bound∑

B∈B:|B|=k

|λ(B)| ≤ c ψ(k) (17)
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where c ∈ (0,+∞) is a constant and where ψ(k) is a positive measure on
the natural numbers such that for some u > 0

∞∑
k=0

euk ψ(k) = F (u) < +∞. (18)

In the following lemma we obtain a bound which allows us to estimate
‖L n

B σA‖∞.

LEMMA 4.4. Let ψ be a positive measure on N such that (18) holds for
some u > 0. Then for any positive integer n we have

∑
0≤ k1, ... , 0≤ kn

n∏
j=1

(
1 +

j∑
`=1

k`

)
n∏

m=1

ψ
(
km
)
≤ eu n! u−nF (u)n.

PROOF. We have

∑
0≤ k1, ... , 0≤ kn

n∏
j=1

(
1 +

j∑
`=1

k`

)
n∏

m=1

ψ
(
km
)

≤
∑

0≤ k1, ... , 0≤ kn

(
1 +

n∑
`=1

k`

)n n∏
m=1

ψ
(
km
)

= eu
∑

0≤ k1, ... , 0≤ kn

e−u
(

1+
∑n
j=1 kj

) (
1 +

n∑
`=1

k`

)n n∏
m=1

(
eu km ψ

(
km
))

≤ eu n!u−nF (u)n

where we used that vn e−v/n! < 1, for all v > 0 and n.

We can then show that the bound of Lemma (15) still holds.

PROPOSITION 4.3. Under (17) and (18), we have the bound

‖L n
B σA‖∞ ≤ n!κn, n ≥ 1,

for some κ > 0. As a consequence, local functions are analytic vectors, and
the Markovian dynamics generated by LB is non-degenerate.

PROOF. We estimate as in the proof of Lemma 4.3, using (18). Let u > 0
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be as in (18), and A 6= ∅. Then

‖L n
B σA‖∞

≤ 2n
∑
B1∈B

· · ·
∑

Bn∈Bn

×
∑
i1∈A

∑
i2∈(B1+i1)∆A

· · ·
∑

in∈A∆(∆n−1
k=1 (Bk+ik))

‖σA∆(∆n
k=1(Bk+ik))‖∞

n∏
i=1

|λ(Bi)|

≤ 2n
∞∑
k1=0

· · ·
∞∑

kn=0

∑
B1∈B,|B1|=k1

· · ·
∑

Bn∈B,|Bn|=kn

|A|(|A|+ k1) · · ·

× (|A|+ k1 + k2 + · · ·+ kn)
n∏
i=1

|λ(Bi)|

≤ 2ncn
∞∑
k1=0

· · ·
∞∑

kn=0

|A|(|A|+ k1) · · · (|A|+ k1 + k2 + · · ·+ kn)

n∏
i=1

ψ(ki)

≤ |A|n 2ncn eu n!u−nF (u)n

≤ n!κn

for some 0 < κ < +∞. With this bound, we can proceed as in the proof of
the local case (Lemma 4.3, Propositions 4.1, 4.2).

5 Uniform variance bound

In this section we consider the time dependent behavior of a weaker con-
centration inequality, which we call the “uniform variance bound”. In the
context of Gibbs measures, contrarily to GCB, this inequality can still hold
in the non-uniqueness regime (for the ergodic equilibrium states), see [5] for
a proof of this inequality for the low-temperature pure phases of the Ising
model.

DEFINITION 5.1 (Uniform Variance Bound).
We say that µ satisfies the uniform variance bound with constant C (abbre-
viation UVB(C)) if for all f : Ω→ R continuous

Eµ
[
(f − Eµ(f))2

]
≤ C‖δf‖22. (19)

Notice that, in contrast with the Gaussian concentration bound, the in-
equality (19) is homogeneous, i.e., if (19) holds for f then for all λ ∈ R,
it also holds for λf . Furthermore, if (19) holds for a subset of continuous
functions which is uniformly dense in C (Ω) (such as the set of local func-
tions), then it holds for all f ∈ C (Ω) by standard approximation arguments.
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This implies that if we can show the validity of (19) for a set of functions
D ⊂ C (Ω) such that ∪λ∈[0,+∞)λD contains all local functions, we obtain the
validity of (19) for all f ∈ C (Ω).

The following proposition shows that a weak form of Gaussian concen-
tration is equivalent with the uniform variance bound.

DEFINITION 5.2 (Weak Gaussian Concentration Bound).
We say that a probability measure µ satisfies the weak Gaussian concentra-
tion bound with constant C if for every f : Ω → R continuous there exists
λ0 = λ0(f) > 0 such that for all λ ≤ λ0

Eµ

(
eλ(f−Eµ(f))

)
≤ eCλ

2‖δf‖22 . (20)

PROPOSITION 5.1. A probability measure µ satisfies the weak Gaussian
concentration bound with constant C if and only if it satisfies the uniform
variance bound.

PROOF. Assume that µ satisfies the weak Gaussian concentration bound
with constant C. From (20) we derive, for f : Ω→ R continuous,

Varµ(f) = lim
λ→0

Eµ
(
eλ(f−Eµ(f))

)
− 1

λ2
≤ lim

λ→0

eCλ
2‖δf‖22 −1

λ2
= C‖δf‖22.

which is the uniform variance bound. Conversely, assume that the uniform
variance bound holds, and let f : Ω → R be a continuous function. Then
use the elementary inequality eλx−1−λx ≤ λ2ex2

2 , valid for for 0 ≤ λx ≤ 1,
together with ex ≥ 1 + x, to conclude that for λ ≤ 1

2‖f‖∞+1 , we have

Eµ

(
eλ(f−Eµ(f))

)
≤ 1 +

λ2eVarµ(f)

2
≤ 1 +

λ2 e

2
C‖δf‖22 ≤ e

λ2e
2 C‖δf‖22 .

The following theorem is the analogue of Theorem 3.1 for the uniform vari-
ance bound.

THEOREM 5.1. Assume that for all σ, the probability measure δσS(t) satis-
fies UVB(C(σ, t)). If µ satisfies UVB(C) and is such that

∫
C(σ, t) dµ(σ) <

+∞, then also µS(t) satisfies UVB(C(µ, t)) with

C(µ, t) ≤ CK(t) +

∫
C(σ, t) dµ(σ)

where K(t) is as in (8).
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PROOF. Let f : Ω→ R be a continuous function. Then we compute, using
(8):

VarµS(t)(f) =

∫
f2 dµS(t)−

(∫
f dµS(t)

)2

=

∫ (
S(t)(f2)− (S(t)f)2

)
dµ+ Varµ(S(t)f)

=

∫
VarδσS(t)(f) dµ(σ) + C‖δS(t)f‖22

≤
(∫

C(σ, t) dµ(σ)

)
‖δf‖22 + CK(t)2‖δf‖22.

The theorem is proved.

COROLLARY 5.1. Assume that the spin-flip rates satisfy the weak inter-
action condition of Section 3.2, then the dynamics conserves the uniform
variance bound.

PROOF. Under the weak interaction condition, δσS(t) satisfies GCB(C)
with a constant that does not depend on σ. By Proposition 5.1 δσS(t) sat-
isfies UVB(C) with a constant that does not depend on σ. The conclusion
follows from Theorem 5.1.

The following theorem shows that the high-temperature condition of
corollary 5.1 is not necessary, and in fact, the uniform variance inequality
is robust under any local spin-flip dynamics, i.e., under the condition C of
Section 2.3.

THEOREM 5.2. Assume that µ satisfies the uniform variance inequality
(19). Let S(t) denote the semigroup of a spin-flip dynamics condition A
of Section 2.3. Then µS(t) satisfies the uniform variance inequality for all
t > 0.

PROOF. Let us denote the time-dependent quadratic form

ψ(t; f, g) = S(t)(fg)− (S(t)f)(S(t)g)

as well as the usual carré du champ quadratic form

Γ(f, g) = L(fg)− gLf − fLg.

Notice that
VarδσS(t)(f) = ψ(t; f, f)(σ). (21)

An simple explicit computation shows that

Γ(f, f) =
∑
i∈Zd

c(i, σ)(f(σi)− f(σ))2
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which by the boundedness of the rates implies the estimate

‖Γ(f, f)‖∞ ≤ ĉ ‖δf‖22 (22)

with ĉ = supσ∈Ω,i∈Zd c(i, σ). We then compute

d

dt
(ψ(t; f, f)) = L(S(t)f2)− 2S(t)fLS(t)f

= L
[
S(t)f2 − (S(t)f)(S(t)f)

]
+ 2Γ(S(t)f, S(t)f).

As a consequence, using ψ(0; f, f) = 0, by the variation of constants method
we obtain

ψ(t; f, f) = 2

∫ t

0
S(t− s) Γ(S(s)f, S(s)f) ds.

Therefore, using (22) combined with the contraction property of the semi-
group, we obtain, via (8)

‖ψ(t; f, f)‖∞ ≤ 2 ĉ

∫ t

0
‖δS(s)f‖22 ds ≤ 2 ĉ

(∫ t

0
K(s)2 ds

)
‖δf‖22.

Now use (21) to conclude

VarδσS(t)(f) ≤ C‖δf‖22

with C = 2 ĉ
(∫ t

0 K(s)2 ds
)

not depending on σ.

Via Theorem 5.1, we obtain the statement of the theorem.

REMARK 5.1. Remark that we did not use the finite range character of
the spin-flip rates, neither the translation invariance. I.e., as soon as the
flip rates are uniformly bounded, and are such that the Markovian dynamics
with these rates can be defined, we obtain that the uniform variance bound
is conserved in the course of time.

Finally, we show the analogue of Theorem 3.1 for more general inequal-
ities including moment inequalities.

DEFINITION 5.3. Let F : R → R be a convex function, J : [0,∞) → R a
continuous increasing function, and C > 0 a constant. Then we say that
µ satisfies the (F, J, C) inequality if for all continuous f : Ω → R with
‖δf‖2 < +∞ we have∫

F(f − Eµ(f)) dµ ≤ J(C‖δf‖2).
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To fit the examples we saw so far: we have UVB(a) corresponds to
F(x) = x2, J(x) = x2, C =

√
a, whereas GCB(a) corresponds to F(x) =

ex, J(x) = ex
2
, C =

√
a. More general moment inequalities correspond to

F(x) = |x|p, J(x) = |x|p.
The following theorem is then the analogue of Theorem 3.1 for the

(F, J, C) inequality.

THEOREM 5.3. Assume that δσS(t) satisfies the (F, J, C) inequality with
constant C that does not depend on σ. Then if µ satisfies the (F, J, Cµ)
inequality, so does µS(t) for all t > 0.

PROOF. We write, using pt(σ, dη) for the transition probability measure
starting from σ, and abbreviating

∫
f dµS(t) =: µ(t, f)∫

F(f − µ(t, f)) dµS(t)

=

∫
pt(σ, dη)F

(
f(η)−

∫
f(ξ) pt(σ, dξ) +

∫
f(ξ) pt(σ, dξ)− µ(t, f)

)
dµ(σ)

≤ 1

2

∫
pt(σ, dη)F

(
2

(
f(η)−

∫
f(ξ) pt(σ, dξ)

))
dµ(σ)

+
1

2

∫
F

(
2

(
S(t)f −

∫
S(t)f dµ

))
dµ(σ)

≤ 1

2
J(2C‖δf‖2) +

1

2
J(2Cµ‖δS(t)f‖2)

≤ 1

2
J(2C‖δf‖2) +

1

2
J
(
2Cµ

√
K(t) ‖δf‖2

)
≤ J
((

2C + 2Cµ
√
K(t)

)
‖δf‖2

)
.

Here in the last two steps we used (8), combined with the fact that J is
increasing.
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[5] J.-R. Chazottes, P. Collet, C. Külske, F. Redig, Concentration inequal-
ities for random fields via coupling. Probab. Theory Related Fields 137
(2007), no. 1-2, 201–225.

[6] J.-R. Chazottes, J. Moles, F. Redig, E. Ugalde, Gaussian concentra-
tion and uniqueness of equilibrium states in lattice systems. J. Stat.
Phys.181 (2020), no.6, 2131–2149. Available at https://arxiv.org/

abs/2006.05320.

[7] A.C.D. van Enter, R. Fernández, F. den Hollander, F. Redig, Possible
loss and recovery of Gibbsianness during the stochastic evolution of
Gibbs measures. Comm. Math. Phys. 226 (2002), no. 1, 101–130.

[8] H.O. Georgii,Gibbs measures and phase transitions, second edition, De
Gruyter, (2011).
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