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Biological composites offer self-healing properties, biocompatibility, high re-

sponsivity to external stimuli, and multifunctionality, due, in part, to their com-

plex, hierarchical microstructure. Such materials can be inexpensively grown,

and self-assembled from the bottom up, enabling democratized, sustainable ma-

nufacturing routes for micro- and nano-devices. While biological composites

have been shown to incorporate rich photonic structures, their phononic pro-

perties have hitherto remained unexplored. In this study, we demonstrate that

biological composites in the form of micron-thick decellularized onion cell scaf-

folds behave as an organic phononic material, with the presence of band gaps

forbidding the propagation of elastic waves in select frequency ranges. We show

that the onion cells’ phononic properties can be phenotypically tuned, and anti-

cipate these findings will yield new biologically-derived, “green,” and genetically

tailorable phononic materials.

From a sustainability perspective, it is critical that existing technologies incorporating

inorganic compounds, such as rare earth metals, be replaced with biodegradable and re-

cyclable organic materials.1 Because of this, the development of biological composites has

become a societal necessity.2,3 As an added value, biological composites also offer self-healing

properties,4 biocompatibility,5 high responsivity to external stimuli for applications such as

sensing and soft robotics,6,7 and multifunctionality (for instance, as is exemplified by but-

terfly wings having both structural coloration8 and superhydrophibicity9). In contrast to

inorganic systems, which are typically fabricated using non-scalable top-down approaches

(where the fabrication time scales cubically with the system to microstructure size ratio),

biological composites exhibiting complex structural hierarchy can be grown, and scalably

self-assembled from the bottom up.10,11 Such naturally-occurring structural hierarchy makes

biological composites a class of uniquely transformative materials for bridging functional

nanocomposites to macroscale integrated devices in a green manner.12

Within the context of biological composites, a wide array of systems with rich functionali-

ties have been implemented, such as cellulose-based flexible electronics,13 plasmonic wood,14

wool-based nano-patterns,15 lasers,16 and DNA-based mechanical metamaterials.17 Yet har-

nessing the power of biological composites to control elastic waves has remained an unmet

challenge, partly because, in contrast with visible photons, there has been no observation of

phonon-based biological function at the supramolecular scale. In the past decade, the use
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of inorganic, man-made composites, often referred to as phononic materials,18 have enabled

manipulation of elastic waves across frequencies ranging from tens of Hz to a few THz, with

applications ranging from seismology to thermal transport, respectively.19 As a result of

their structural features, inorganic phononic materials have been shown to exhibit unique

properties such as negative Young’s modulus, mass density, and refraction.20 Integration

of these materials in ultrasonic biosensors has provided sensitivity enhancements21,22 and

enabled diagnostic applications.23 Miniaturized lab-on-a-chip devices for fluid shaping,24,25

nebulization,26 tweezing,27 and streaming and sorting28 have all shown benefit from the in-

troduction of phononic microstructures. The use of phononic materials in ultrasonic signal

processing, such as the SAW filters which are ubiquitous in modern communication devices,21

has been shown to reduce device size and enable functionalities such as wave guiding and

logic.29

However, these inorganic phononic materials operating at high frequencies (MHz and

above) are subject to several major limitations, namely manufacturing scalability,30 fragi-

lity, sustainability, and biocompatibility. Leveraging the ability of biological composites

to be grown rapidly, inexpensively, en masse from renewable resources would allow buil-

ding biodegradable and recyclable phononic materials, and facilitate the democratization

of state-of-the-art technologies in the areas of sensing, microfluidic control, acoustic signal

processing, and potentially even thermal control materials. Moreover, in contrast to their

inorganic counterparts, biological materials are soft, stretchable, and inherently biocompati-

ble, making them uniquely suited to translate the above-mentioned applications into weara-

ble sensors,31,32 health-care devices,33 and human augmentation devices.34 We also envision

these biocompatible phononic materials could be used in ultrasonic biomedical imaging35

and wave-assisted regenerative medicine applications36 as integrated signal focusing and lo-

calization devices37 or acoustically-encoded reporters.38 In this paper, we demonstrate that

biological composites in the form of decellularized plant cell scaffolds can behave as phononic

materials, including forbidding the propagation of elastic waves in select frequency ranges

(i.e. band gaps). Our discovery of phononic behavior in biological composites, in particular,

plants, shows how biology can be directly used to transfer the existing physics of phono-

nic materials into scalably manufacturable, biocompatible, sustainable, and democratizable

forms.

Our biological composite is composed of a micron-thick onion cell epidermis with slender
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cell walls extruding up from it that resemble blind bore beehive structures, and is adhered

to a glass substrate. We measure the dispersion of sub-GHz surface acoustic waves (SAWs)

in the onion composite, and reveal their interaction with compressional and flexural reso-

nances of the wall structure, which open deep and wide band gaps. We also demonstrate

that the SAW dispersion can be phenotypically controlled by selecting plants at different

developmental stages. We thus foresee that, in the long-term, synthetic biology, whereby

artificial devices are built from biological parts (cells, DNA strands...),39 and the ability

to tailor the genome by controlled mutations or gene editing,40 could provide a plausible,

scalable manufacturing route for future phononic materials design. This is a clear advantage

compared over previously studied biological systems that have limited potential for genetic

tailoring and mass production.41

Fresh onion scales were selected from different depths of an onion bulb, as is shown in

Fig. 1a. The outer half of selected layers was peeled off and dehydrated over 1-2 days at 4◦C

prior to testing (Supplementary note 1). Figure 1b shows optical microscope images

of the peeled organic layers, which show different phenotypes corresponding to different

developmental stages (indexed as a function of consecutive layer number, starting from the

outermost epidermis). The scales were placed onto a photoacoustic transducer composed of

a 150 nm layer of gold coated onto a thick 1 mm glass substrate, as is illustrated in Fig. 1c.

The remaining cell walls, constituting the bottom of the onion scale and the vertically

protruding walls, resemble a borehole beehive structure. We show a 3D profilometry image

of a representative sample surface in Fig. 1d, as well as typical line profiles recorded along

the minor and major axes of the cavities in Fig. 1e (which corresponds to the sample shown

in Fig. 1d). The surface topography of the decellularized epidermal layers reveals that the

vertical portions of the cell walls decrease in size (height and full width at half maximum)

as a function of the age of the layer, ranging from about 16 µm × 30 µm for the oldest layer

to 3 µm ×10 µm for the youngest layer, as is shown in Fig. 1f.

To analyze the sub-GHz acoustic properties of this organic structure, we illuminate the

bottom of the metal film with a pulsed laser (400 ps pulse duration, 532 nm wavelength,

and 1.0 mW average power) focused to a ∼ 10 µm diameter spot (Fig. 1c and Supple-

mentary note 2). The subsequent rapid thermoelastic expansion in the metal generates

propagating SAWs with a broad frequency spectrum extending up to 400 MHz. We use the

time-dependent deflection of a continuous probe beam (577 nm wavelength, 12 mW average
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FIG. 1: (a) Sample preparation. Epidermal layers were obtained from different depths of an onion

bulb, going from the outermost (oldest) to the innermost scale (youngest), shown in the inset. (b)

Optical microscope images of the peeled organic layers showing different morphogenetic profiles as a

function of their developmental stage. Scale bar is 100 µm. The diagrams show profiles of the pillar-

like structure of the wall as a function of the developmental stage (index denotes layer number). (c)

Opto-acoustic setup used to generate and detect sub-GHz SAWs in the sample. (d) Profilometry

image of the onion epidermal surface with a superimposed illustration of the propagating SAWs.

(e) Representative profiles along the minor and major axis of the cells, respectively. (f) Variation

of the height and width of the wall’s vertical portions as a function of the developmental stage of

the plant.(g) Snapshots at different times showing the propagation of SAWs on a bare substrate.

Scale bar is 100 µm.

power) by the acoustic-induced surface ripples (sketched in Fig. 1d) to monitor the pro-

pagation of the SAWs (Supplementary note 2). By scanning the probe beam across the

bottom of the metal film over a 300 × 300 µm2 area, we obtain movies of the propagating

SAWs. These animated maps reveal largely circular wavefronts, as is shown in Fig. 1g,

which depicts SAWs propagating along a substrate without a cell layer on top (hereafter

referred to as “bare”).
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FIG. 2: (a) Snapshots at t = 40 ns, filtered to display wave propagation in limited frequency

ranges. Scale bar is 100 µm. (b) Acoustic power calculated at each frequency for the bare (black)

and for the onion epidermis (red). Dispersion curve measured on (c) the bare substrate and (d) the

organic layer in the -136◦ direction. The black lines in (c) correspond to the dispersion of surface

and longitudinal wave speeds calculated using a layered-half-space model. The black dashed line

corresponds to the transverse wave speed in the bare substrate. (e) Dispersion curve obtained

from the numerical analysis using the wall dimensions of the onion layer with index number 8.

The dispersion curve was computed by evaluating the spatio-temporal diagram at the gold-glass

interface. The horizontal red and green lines are the compressional and flexural resonant modes of

the wall respectively. The mode shapes of the resonant modes are illustrated on top of dispersion

curve. The figure on the right side of the dispersion curve shows the frequency response calculated

by summing the kr-components of the dispersion maps. The red region shows the phononic band

gap evaluated at 70% of the maximum amplitude.

During its propagation, the SAW sets the onion epidermis atop in motion, and this

coupled movement alters the SAW dispersion. To show this, we plot snapshots of the

traveling SAWs in Fig. 2a, filtered to display wave propagation in three limited frequency

ranges (Supplementary note 3). We observe very low acoustic amplitude uf
i (x, y) in

the 160-180 MHz range, compared to the other two frequency ranges. Such frequency
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dependence is not present for SAWs propagating across the bare substrate. In Fig. 2b, we

plot the acoustic power P f
i =

∑
x,y |u

f
i (x, y)|

2 calculated at each frequency fi, for the bare

substrate (black) and for the onion epidermis characterized in Fig. 2a (dashed red line)

at a time t ∼ 50 ns. This plot indicates the presence of a phonon stop band, or resonant

attenuation zone, in the 160-180 MHz range with 94% extinction compared to the bare

substrate caused by the presence of the organic layer.

To better understand this observation, we calculate the acoustic dispersion curves

|ũ(kr, θ, f)| using a 2D Fast Fourier Transform (FFT) in the radial wavevector-frequency

domain kr-f for each angular direction θ (see Fig. 1g and Supplementary note 3).

Figure 2c shows a dispersion curve measured on the bare substrate for one wavevector

direction. We observe two distinct modes, corresponding to surface skimming longitudinal

and Rayleigh SAW modes. We calculate analytical dispersion curves using a slow-on-fast

layered-half-space model for the bare substrate (dotted red lines in Fig. 2c),42 with typical

acoustic properties for silica (vsL = 5700 m/s, vsT = 3400 m/s, and ρs = 2500 kg/m3)43 and

gold (vgL = 3200 m/s, vgT = 1200 m/s, and ρg = 19320 kg/m3),44 and find good agreement

with the experimentally identified branches.

The dispersion curve (Fig. 2d) corresponding to a location containing an epidermal layer

shows a starkly different behavior. We observe avoided crossing behavior due to the coupling

of Rayleigh waves with local resonances in the organic layer, that opens a wide gap (likely

aided by resonant attenuation effects) around 170 MHz. The lower branch starts as a Ray-

leigh wave at low-kr values (red dotted line) and approaches a horizontal asymptote near the

resonance frequency. The upper branch tends to the Rayleigh wave speed at high wavenum-

bers, but deviates from the Rayleigh line near the gap frequency and vanishes beyond the vsT

threshold (white dotted line), below which it becomes evanescent.45 Such dispersion curves

are characteristic of locally resonant metamaterials, and have previously been observed at

the geophysics scale,46 wherein trees in a forest were used as local resonators, and down

to the microscale via the interaction of SAWs with the contact resonances of microsphere

monolayers.47

By analogy with observations made on inorganic, man-made phononic metamaterials,48,49

we suspect the slender vertical portions of the wall may serve as the local resonators that cou-

ple to the SAWs. To verify this assumption, we conduct 2D finite element (FE) analysis using

COMSOL Multiphysics. We model SAWs propagating on a gold-coated glass substrate by
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applying a point-like load with a step-like excitation in the time domain (Supplementary

note 4). To mimic the response of the organic layer, we add a uniform onion layer of 3

µm thick on top of the substrate with rectangular ridges extruding up from it, and equally

spaced by the measured average walls’ periodicity (Supplementary note 1) as is illus-

trated in the schematic of Fig. 2e. The ridges have a height of 6 µm and a width of 16

µm (thus mimicking the onion layer with index number 8). The ridges and the onion layer

underneath are given the effective elasticity of dry cell walls (Supplementary note 4).50

From our simulated spatiotemporal diagrams, we plot the dispersion curve of the SAWs

using a 2D FFT, as is shown in Fig. 2e. We plot the frequency response averaged over

all k-values on the right side of the dispersion curve. The red region denotes the width of

the phononic band gap evaluated at 70% of the maximum amplitude. Our computational

analysis reveals a wide gap in a good agreement with our observations.

In order to reveal the origin of the observed band gaps, we computed the first five eigen-

modes of the ridges and plotted their mode shapes in Fig. 2e. We denoted the flexural and

compressional modes by green and red lines, respectively. We observe that both the first

compressional mode and the second flexural mode fall within the range of the gap. Although

this observation suggests that the width of the gap is due to the interaction of the SAW

with both compressional and flexural resonances, we note that SAWs have previously been

observed to hybridize predominantly with compressional resonances46, which may suggest

here that the second flexural resonance plays a marginal role in the formation of the gap.

This can also explain the absence of hybridization with the first flexural mode at a lower

frequency. We note that the periodicity of the wall structures (on the order of a = 50 µm)

in the samples can open Bragg gaps at k ∼ π/a ∼ 0.06 µm−1, that is f ∼ 30 MHz, however

this is significantly below our acoustic measured frequency.

The structure of plants, which is one element of their phenotype, can be controlled by

environmental or genetic cues. Such modifications, which have enabled crop optimization,

are also at the core of plant synthetic biology.51 To illustrate the ability to control the

structure of the organic resonators without any physical or chemical intervention, we select

epidermises at different developmental stages. As the plant grows, the phenotype changes

and the ridges become thicker and higher and further spaced, as observed in the profilometry

images (Fig. 1f). In Fig. 3a, we plot the spatial average of the displacement amplitude

ũav(f) =
∑

kr,θ
ũ(kr, θ, f) calculated at each frequency, normalized by the response of the
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FIG. 3: (a) Spatial average of the frequency response normalized by the response of the bare

substrate for seven layers of increasing age. Red dots indicate the center of the gap, also reported

in Fig. 3b (b) Variation of the center frequency of the gap as a function of the cell growth stage.

The dashed line shows the variation of the first compressional mode (fixed-free organ-pipe mode)

of a continuous onion pillar as a function of the normalized height. The red circles indicate the

simulated frequency of the gap. (c) Variation of the resonator spacing with the developmental

stage of the cells. (d) Simulated (red) and measured (blue) band gap width as a function of the

developmental stage. As a guide to the eye, the simulated results are fitted to a linear curve (dashed

line) (e) Snapshot at t = 60 ns taken from an acoustic movie filtered between 120-140 MHz, that

shows directionality in the SAW propagation. As a guide to the eye, we indicate with a dashed

line the major axis of the cells (at ∼ 40◦). f − θ maps corresponding to (f) the bare substrate and

(g) the onion epidermis.
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bare substrate for seven layers of increasing age from the same onion bulb (Supplementary

note 3). We observe a gap whose center frequency decreases with the age of the epidermis

by up to a factor of two, from ∼230 MHz to ∼120 MHz (also plotted in Fig. 3b with blue

squares).

Among the different parameters that can influence the gap tunability, let us first discuss

the influence of the geometry of the cell wall (resonators) and consider a simple analyti-

cal description. Rayleigh waves, having an elliptical polarization, are known to hybridize

strongly with compressional resonances.47 We thus estimate the frequency f = vLL/4h of the

first out-of-plane compressional mode (organ-pipe mode) of a continuous onion pillar, where

vLL = 3400 m/s is the average longitudinal sound speed measured in onion cells at high

frequencies52 and h is the height of the ridges measured by profilometry. We plot in Fig. 3b

the frequency of this mode as a function of normalized ridge height and developmental stage

(dotted red line). We observe a qualitative agreement in the frequency range and trend of

the measured gaps as a function of ridge height, illustrating that the increase in the height

of the vertical portions of the wall, as a result of tissue growth, correlates to a decrease

in the gap frequency. Similarly, a decrease in the average stiffness of the epidermis could

also result in a decrease in the gap frequency. The plant cell wall is mainly composed of

highly oriented cellulose microfibrils cross-linked by hemicelluloses, embedded in a hydrated

gel-like matrix of pectins.53–55 To regulate cell growth, new layers of cellulose are deposited

with highly oriented microfibrils, which result in older cell walls being stiffer. We suggest

that this change in elasticity may partially counteract the ridge-height-induced decrease in

band gap frequency with increasing cell age.

We also quantify the width of the band gap (whose edges are defined as 70% of the

average amplitude level outside of the gap) and plot it as a function of the developmental

stage (indexed as the normalized height of the organic layers’s vertical portions), plotted

as blue markers in Fig. 3d. We see that the gap becomes narrower as the organic layer

ages. To investigate this, we consider the spatial density of the resonators. We estimate the

averaged spacing Λ between the cells by counting the number of vertical wall portions along

the minor axis of the cell on the profilometry images. In Fig. 3c, we plot 1/Λ as a function

of normalized ridge height. We see that 1/Λ decreases with the age of the organic layers,

i.e. the spatial density of the resonators decreases, which is consistent with the observed

narrowing of the band gap with increased age. We also compared in Fig. 3d the observed
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widths (blue squares) to the simulated ones (red circles) by accounting for the increased

resonator spacing in our time-domain analysis. As a guide to the eye, we added a linear fit

to the numerical results (dotted line). Our simulations show an increase in the gap width

as a function of the normalized cell wall height, in agreement with our measurements. Our

observations show that geometry, stiffness and number of resonators are key in adjusting

the features —center frequency and width— of this phenotype-controlled band gap. These

parameters of the biological composite could be manipulated by selecting the developmental

stage (as we did), or by mutations or gene editing to tune phonon dispersion precisely,

opening sustainable routes to engineer scalably manufacturable metamaterials from grown

plants.

The sample has in-plane anisotropy due to the preferential orientation of the cells (which

can be described by stripes aligned with the major axis of the cells), but also due to the

anisotropy of the cell wall material itself. Both anisotropies are linked because the growth

of oriented microfibrils contributes to cell elongation, and thus a transition from isotropic to

orthotropic structure.50,56 In a perfect stripped system such as the one we modelled above,

the gap should completely close along the stripes. In most of the samples we discussed, we

did not observe any strong dependence of the center frequency of the gap, partly because the

cell walls are interconnected by T-junctions. In some of our samples, we observed direction-

dependence of the band gap. We plot in Fig. 3d a snapshot of propagating SAWs in the first

onion layer (i.e. the oldest), filtered in the 120-140 MHz range. In the lower left quadrant,

we see that acoustic energy propagates around -120◦, while no acoustic energy remains

after -150◦. To explain this, for each angle θ, which denotes the direction of the radial wave

vector, we project the f−k dispersion maps on the f -axis to obtain the average displacement

amplitude as a function of angle, as is shown in Figs. 3e, 3f (see Supplementary note

3). For the bare substrate (Fig. 3e), we observe two regions with low energy around 100◦

and −80◦ that are due to a lower sensivity of the laser-deflection probe. This artifact was

visible on all the epidermises we probed, as well as on the bare substrate (Fig. 3e). In

contrast, in Fig. 3f, which corresponds to the oldest onion layer we probed, we observe a

gap extending almost over all the f − θ map that has a clear θ-dependence. We highlight in

Fig. 3f with a white square a region corresponding to the lower left quadrant in Fig. 3d

(between -180 and -90◦). There, we observe that the gap opens and closes successively in the

120-140 MHz range, supporting the observation we made in the filtered image (Fig. 3d).
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While natural anisotropy of the plant epidermis can lead to such directional band gaps, we

note that microfibril reorientation can also be forced by repeated loading cycles (making the

epidermis stiffer in the direction of the applied strain.57) Such conditioning may offer yet

another means to control plant-based metamaterials. By leveraging the multiple advantages

provided by biological composites, we anticipate our advances will lead to a wide range of

new green and sustainable microdevices with tailored functionalities.

We have shown the repeatable occurrence of phononic band gaps in wild type onion

epidermises, with extinction ratios comparable to those obtained in pillar-based locally re-

sonant metamaterials.46,58,59 These results suggest a significant potential for acoustic mani-

pulation of SAWs using organic surfaces. Most of micro- or nano-structured materials, such

as cantilever-shaped MEMS or pillar-based resonators, are fragile and are thus designed in

such a way that they do not support static load and remain sensitive. Conversely, organic

layers, as well as many other plant samples, are stiff cellulose-based composites, wherein

individual fibers have a rigidity comparable to steel60 that confer a high resistance to tensile

stresses.61 For demanding applications, one can even envisage to preserve the structure of the

plant samples, by drying the samples for long term storage, fixation or boiling to inactivate

endogenous enzymes. At the same time their structure is dynamic, in that it can be modi-

fied when the plant is alive, for instance by stretching the epidermis to align the cellulose

fibers, and it is conformable, meaning that they can be shaped to follow the corrugation of

a substrate. This ability paves the way to soft metamaterial with an increased robustness

compared to their inorganic counterparts. In addition, altering the cell structure in plants

with high reproducibility (e.g. changing the shape of the cell walls) is quite standard using

known genetic mutations, as is classically done in Arabidopsis, for instance.62 Based on more

recent works, one could also use bio-hybrid approaches,63 such as chemical infiltration, to

endow new or augmented properties in the plant-derived structures.
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