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Abstract

In this article, we provide a general framework for analyzing the optimal harvest of a renewable resource
(i.e. fish, shrimp) assuming that the price and biomass evolve stochastically and harvesters have a constant
relative risk aversion (CRRA) . In order to take into account the impact of a sudden change in the environ-
ment linked to the ecosystem, we assume that the biomass are governed by a stochastic differential equation
of the ‘Gilpin-Ayala’ type, with regime change in the parameters of the drift and variance. Under the above
assumptions, we find the optimal effort to be deployed by the collector (fishery for example) in order to
maximize the expected utility of its profit function. To do this, we give the proof of the existence and
uniqueness of the value function, which is derived from the Hamilton-Jacobi-Bellman equations associated
with this problem, by resorting to a definition of the viscosity solution.
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1 Introduction
Throughout the world, renewable resources have catapulted to the forefront of the environmental issues and
economic developments. Many researchers have taken a particular interest in fishery fields. They used some
stochastic biological production functions for resource growth for purposes of sustainable development. Some
stochastic models that account for sudden, unforeseeable events are quite similar in most resource problems
such as forestry, fishery, and so on. In general, these problems involve finding an optimal sustainable economic
policy in continuous time with stochastic price or biomass growth.

Evolutionary ecology can be viewed as a branch of biology. She is particularly interested in describing
and understanding the variability of ecological systems (e.g. fisheries or forestry), through biodemographic
processes. It also allows the study or identification of the distribution of abundance of different types of
organisms or species in an ecological system. As a corollary, it involves understanding the evolutionary
properties of species and their interactions, depending on abiotic or biotic factors of their environment. The
environment of a fish species, for example, includes both physical properties dependent on insolation, climate,
geology, human activities exploiting ecosystem services, as well as other organisms that share its habitat. In
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particular, population ecology allows the study of how the size of populations of species living together in
groups changes over time or space ([1]).

Sustainable development comes down to considering how best to manage, on the basis of very long-term
objectives, interactions between natural and social sources of variability. From an economic point of view,
the behavior of an entrepreneur will be different depending on whether its investment cycle is shorter or
longer than that of the ecosystem it operates. Economic or environmental decisions should be taken under
constraint of maintaining the viability of ecosystems, in order to sustain the ecosystem services (forestry,
fisheries, etc.) by economic agents.

In the early 1970s, economists were interested in renewable resources and the environment, over-exploitation
of open access fisheries, pollution etc., long after pioneering work such as that of [2], [3]. In economics, the
literature considers resources as stocks to be exploited rationally. The problem is therefore the optimal rate
of extraction. Since [4] considered more difficult by the existence of a renewal ([5]). A fortiori, this living
resource depends on others with which it interacts within an ecosystem. The evolution over time of their
exploitation is a logic of both flow and variability. Authors such as Voltera in the 1930’s, [6], among others,
extended Hotelling’s work in the case of resources renewable. Against all evidence, the assumptions of the
model of [7], lead to hold the fishermen solely responsible for fluctuations in abundance. Such a model does
not take into account the possible impact on the stock, of marine pollution, a tsunami, drastic climate change
or an epidemic. Indeed, as indicated above, a living organism modifies the environment in which it lives, and
adapts to exogenous modifications (i.e. natural disasters, extreme pollution, climate, etc.) impacting this
environment. In the living world, the viability of a complex organism, a tree, a fish, relies on the combination
of many and different rhythms (microorganisms, cells and certain functions). Organisms are alive when they
have the faculties to reproduce, to modify the environment in which they evolve and to adapt to exogenous
modifications of this environment. These organisms interact, exchange matter, energy, information. They
confront each other, cooperate, coexist. They fluctuate in complex ways, at multiple spatial and temporal
scales, as their interactions also fluctuate.

Based on the work of [7], scientific research has proposed several alternative models capable of taking
into account exogenous environmental factors. Among these models, the stochastic version of the Gilpin-
Ayala differential equation ([8]) is increasingly used. However, this equation considers constant drift and
variance. Like other authors, to characterize the stochastic dynamics of the stock, we consider in our article,
a stochastic differential equation of the ‘Gilpin-Ayala’ type, with a jump component, and with a drift and
a variance liable to change according to the regime. The model considered makes it possible to take into
account the impact of possible extreme events (exogenous or not), liable to significantly reduce the stock of
resources.

In general, the authors are concerned with the question of how to maximize profit, which is just the
difference between revenues and costs. More recently, it is recognized that fishers are risk averse. We
introduced in the commonly used model the economic notion of utility function to take into account the
fisher’s risk attitude. This has made economic model more complex, but richer.

Even though, economics has enhanced our understanding of the problems of resources management,
the biological dynamics of the fishery resource that underline the optimization problem make the fisheries
more difficult than forestry problems or others. There is a wide variety of population growth models in the
literature. In this work, we focus on Gilpin-Ayala growth model for fishery resources, our results may be
easily adapted to many other fields.

The model that has been traditionally considered by many authors is the logistic model described by the
ordinary differential equation:

dXt = Xt [r − aXt] dt, (1)
where Xt stands for the population size at time t, r > 0 represents the growth rate of the species while a > 0
is the environmental carrying capacity. Many authors ([9], [10], [11]) claimed that a little more complicated
model was needed and proposed their following model:

dXt = Xt

[
r − aXλ

t

]
dt, (2)

where λ > 0 denotes the parameter to modify the classical deterministic logistic model, which is often called
GA parameter.
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The stochastic nature of renewable resource should be considered in the modeling process. To this end,
stochastic versions Gilpin-Ayala model have been studied by many authors ([12], [8], [13], [14]):

dXt = Xt

[
r − aXλ

t

]
dt+ σXtdW (t), (3)

where σ is volatility and W (t) is the standard Brownian motion.
The rest of the paper is organized as follows. Section 2 briefly describes the stochastic dynamics of the

fishing population and prices, specifies the decision rule and the model is formulated. Having derived the
stochastic dynamic programming related to our problem, we show in section 3 that the value function is
viscosity solution, while section 4 concludes the paper.

2 The model setup
Throughout this paper we let (Ω,F, {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0
satisfying the usual conditions (i.e. it is increasing and right continuous while F0 contains all P-null sets).
Let W (t) and WY (t), t ≥ 0, be two standard Brownian motions defined on this probability space which are
supposed to be indepedent.
Let α(t) be a right-continuous-time Markov chain, Ft-adapted with finite state space S = {1, 2} and generator
Q = (qij) ∈ R2×R2. We consider in this paper that the Markov chain α(t) is irreducible, which is equivalent
to the condition that qij > 0 for i 6= j. We assume that the Markov chain α(.) is independent of the Brownian
motions WY (.) and W (.), t is time, t ∈ [0, T ] and T is finite-horizon of time.

2.1 Switching jump-diffusion Gilpin-Ayala population model
We set an SDE under regime switching of the form:

dXt = Xt

[
rα(t) − aα(t)Xλ

t − qEα(t)(t)
]
dt+ σα(t)XtdW (t); α(t) = 1, 2 (4)

where rα(t) intrinsic rate of growth in regime α(t), Eα(t) is the fishing effort exerted on the population
at time which depends on the current regime α(t), q > 0 is the catchability coefficient, λ > 0 denotes
the parameter to modify the classical deterministic logistic model, which is often called GA parameter,
aα(t) = rα(t)/Kα(t) > 0, Kα(t) is the environmental carrying capacity and σα(t) is volatility in regime α(t).
With initial value X0 = x0 ∈ (0,K), α(t) = i.

As said above, population equations may suffer abrupt environmental shocks. Introducing Levy jump
into equations, we have extended Eq. (4) to consider the effect of bio-disaster in optimal exploitation of
fishing resources. Therefore, the corresponding equations may be expressed as follows

dXt = Xt−
[
ri − aiXλ

t− − qEi(t)
]
dt+ σiXt−dW (t) +

∫
R\{0}

η(t,Xt−, i, z)Ñi(dt, dz); i = 1, 2 (5)

where Xt− is the left limits of Xt, Ñi(dt, dz) = Ni(dt, dz) − dtνi(dz) denotes the compensated Poisson
measure which is independent of W (t). Ni(dt, dz) is a stationary Poisson random measure on [0, T ]×R\{0}
with intensity measure dtνi(dz). νi(dz) is the Lévy Measure for the jump size when the Markov chain α(t)

is in state i, i.e. a σ-finite Borel measure on R\{0} with the property
∫

R\{0}
min(1, z2)νi(dz) < +∞.

And η : [0, T ] × R × S × R → R is a continuous function with respect to ν and is measurable satisfying the

following assumption: there exist ρ : R → R+ with
∫

R\{0}
ρ2(z)νi(dz) < +∞, such that for all t, s ∈ [0, T ],

x, y ∈ R and i ∈ S,

|η(t, x, i, z)− η(t, y, i, z)| < ρ(z)|x− y| (6)

|η(t, x, i, z)| < ρ(z)(1 + |x|). (7)
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Readers are referred to [15] for more precise properties of random measures.

When consider η(t, i, z) = 0 for all (t, i, z) ∈ [0, T ]× S× R, i.e there is no jump, many authors (see [16],
[17], [12], [8] showed that Eq. (5) has a unique global positive solution for any given positive initial value
and represented by

Xλ
t,i =

exp

{
λ

(∫ t

0

[
ri − qEi(s)−

1

2
σ2
i

]
ds+

∫ t

0

σidW (s)

)}
1/Xλ

0,i + λai

∫ t

0

exp

{
λ

(∫ s

0

[
ri − qEi(τ)− 1

2
σ2
i

]
dτ +

∫ s

0

σidW (τ)

)}
ds

, t ≥ 0.

2.2 Mean - reverting price
The unit price of fish, Yt, will depend on the mean (or long-term) price Ȳi. Further, let the unit price evolve
as the geometric mean-reverting stochastic process

dYt = θi(Ȳ0 − Yt)dt+ σY YtdWY (t) (8)

with initial condition Y (0) = y0, where the parameters are positve constants, θ is the reversion speed, p̄0 is
a maximum price, σY is the volatility of the price. WY (t) is standardized Brownian motion as set before.
Model (8) is a generalization of the Orstein-Uhlenbeck process, where we use the level-dependent volatility
instead of the constant volatilty. The mean price, Ȳ0, attracts the prices in its direction. In others words,
when Yt > Ȳ0 the trend term θ(Ȳ0−Yt) < 0 and therefore Yt decreases and when Yt < Ȳ0 a similar argument
establishes that Yt grows.

2.3 Specifying the Decision Problem
The mostly used cost function in fishery management is the quadratic cost function (see [18], [19], [20], [21]).
It can be written as

c(Et) = (c1 + c2Et)Et

where c1, c2 > 0 are constants.
The profit is the difference between revenue and cost. Here π(t) is the instantaneous profit from the harvest
of the stock biomass and is given as:

π(t) = qEtXtYt − (c1 + c2Et)Et (9)

where, qEtXt denotes the volume of harvest and Yt the actual price of the harvest at the time of decision
making.
We consider, as [21], that the fisher is risk-averse and we define the power utility function as

U(x) = (x1−γ)/(1− γ), (10)

where γ is the constant relative risk aversion (CRRA) coefficient, γ = 0 denotes risk neutrality, γ < 0 and
γ > 0 implies risk loving and risk aversion, respectively. When γ = 1, U(x) = ln(x).

For a time t in the horizon [0, T ], our problem is to maximize the present value Vi(t, x, y) for each i ∈ S

defined as:

Vi(t, x, y) =Ex,y,i

[∫ T

t

e−β(s−t)
π(Xs, Ys, Es, i)

1−γ

1− γ
ds+ e−β(T−t)Vi(XT )

]
. (11)

Here Ex,y,i is the conditional expectation given X(t) = x, Y (t) = y and α(t) = i under P, where T is the
finite time horizon β > 0 is a discount factor.

We say that the control process E(t) is admissible if the following three conditions are satisfied:
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1. the SDE (5) for the state process X(t) has a unique strong solution;

2. the SDE (8) for the state process Y (t) has a unique strong solution;

3. Ex,y,i

[∫ T

t

∣∣∣∣e−β(s−t)π(Xx
t , Y

y
t , Et, i)

1−γ

1− γ

∣∣∣∣ dt+
∣∣∣e−β(T−t)V (XT )

∣∣∣] <∞.

The effort is bounded then A, the set of admissible control, is bounded. The fisher strives to maximize
total expected discounted utility of both profit and terminal biomass. Therefore, the value function can be
written as:

vi(t, x, y) = sup
E∈Ai

Vi(t, x, y). (12)

3 Dynamic Programming and Viscosity Solutions
In this section, we need to prove existence of the viscosity solution starting to prove some properties of the
value function, which will be the viscosity solution.

We shall make the following assumptions: there exists ρ > 0 such that for all s, t ∈ [0, T ], x, x′ ∈ R+, y,
y′ ∈ R+ and E ∈ A

|l(t, x, y, E)− l(s, x′, y′, E)|+ |m(x, y)−m(x′, y′)| ≤ ρ [|t− s|+ |x− x′|+ |y − y′|] , (13)

and the global linear growth conditions:

|l(t, x, y, E)|+ |m(x, y)| ≤ ρ [1 + |x|+ |y|] . (14)

Here l(t, x, y, E) =
π(Xx

t , Y
y
t , Et, i)

1−γ

1− γ
, and m(x, y) = V (Xx

T ).

Let’s consider the following two functions f and g defined by:

f(t,Xt−, Ei(t)) = Xt−
(
ri − aiXλ

t− − qEi(t)
)
and g(t,Xt−, Ei(t)) = σiXt−.

Let us define the operator I1, I2 and I3 of the value function

I1(t, x, y,D(x,y)vi, D
2
(x,y)vi) =θ(Ȳ0 − y)

∂vi
∂y

+ f(t, x, Ei(t))
∂vi
∂x

+
1

2
σ2
y

∂2vi
∂y2

+
1

2
g2(t, x, Ei(t))

∂2vi
∂x2

.

=
(
f(t, x, Ei(t)), θ(Ȳ0 − y)

)
.D(x,y)vi +

1

2
Tr

[(
σ2
y 0

0 σ2
i x

2

)
.D2

(x,y)vi

]
I2(t, x, y, vi) =qij(vj(t, x, y)− vi(t, x, y)).

I3(t, x, y,D(x,y)vi) =

∫
R\{0}

[
vi(t, x+ η(t, x, i, z), y)− vi(t, x, y)− η(t, x, i, z)

∂vi(t, x, y)

∂x

]
νi(dz)

=

∫
R\{0}

[
vi(t, x+ η(t, x, i, z), y)− vi(t, x, y)− (η(t, x, i, z), 0).D(x,y)vi

]
νi(dz).

The Hamilton-Jacobi-Bellman equations associated with the problem (12) is:

∂vi
∂t

+ sup
E∈Ai

{
−βvi +

π(x, y, Ei(t))
1−γ

1− γ
+ I1(t, x, y,D(x,y)vi, D

2
(x,y)vi) + I2(t, x, y, vi) + I3(t, x, y,D(x,y)vi)

}
= 0,

(15)

vi(T, x, y) = κ(x, y)
x1−γ

1− γ
for i, j ∈ {0, 1} κ > 0. (16)

To the best of our knowledge, there is not in general a smooth solution of Eq. (15). Consequently, these
should be interpreted in a weaker sense, notably in the framework of viscosity solutions introduced by [22].
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3.1 Regularity of value functions
In this section, we study the growth and continuity properties of the value functions. First, we need some
estimates on the moments of the price and population processes.

Lemma 3.1. For any k ∈ [0, 2] there exists C = C(k,K, T ) > 0 such that for all h, t ∈ [0, T ], x, y, x′, y′ ∈ R+:

E|Xt,x
h |

k ≤ C(1 + |x|k); E|Y t,yh |
k ≤ C(1 + |y|k).

E|Xt,x
h − x|

k ≤ C(1 + |x|k)h
k
2 ; E|Y t,yh − y|k ≤ C(1 + |y|k)h

k
2 .

E|Xt,x
h −X

t,x′

h |k ≤ C|x− x′|2; E|Y t,yh − Y t,y
′

h |k ≤ C|y − y′|2.

E
[

sup
0≤s≤h

|Xt,x
h |
]k ≤ C(1 + |x|k)h

k
2 ; E

[
sup

0≤s≤h
|Y t,yh |

]k ≤ C(1 + |y|k)h
k
2 .

Proof of Lemma 3.1 see Appendix A.

Proposition 3.1. For any i ∈ S, the value function denoted by vi(t, x, y) satisfies a linear growth condition
and is also Lipschitz in couple (x, y) uniformly in t. There exists a constant C > 0, such that

0 ≤ vi(s, xs, ys) ≤ C(1 + |xs|+ |ys|), ∀(s, xs, ys) ∈ [0, T ]× R+ × R+.

|vi(s, xs, ys)− vi(s, x′s, y′s)| ≤ C(|xs − x′s|+ |ys − y′s|), ∀s ∈ [0, T ], xs, x
′
s ∈ R+, ys, y

′
s ∈ R+.

Proposition 3.2. Under assumptions (13) and (14) the value function v ∈ C0([0, T ] × R+ × R+). More
precisely, there exists a constant C > 0 such that for all t, s ∈ [0, T ], x, xs ∈ R+, y, ys ∈ R+,

|vi(t, x, y)− vi(s, xs, ys)| ≤ C
[
(1 + |x|+ |y|)|s− t| 12 + |x− xs|+ |y − ys|

]
.

Proofs of proposition 3.1 and proposition 3.2 are rejected in appendices B and C.

3.2 The Value Function, Viscosity Solution of Hamilton-Jacobi-Bellman equa-
tion

In this section, we will first define what we mean by viscosity solutions. Then we will prove that the value
function is a viscosity solution.

We consider the Hamilton-Jacobi-Bellman equations as follows:

∂vi
∂t

(t, x, y) + sup
E∈Ai

{
− βvi(t, x, y) +

π1−γ

1− γ
+ θ(ȳ0 − y)

∂vi
∂y

(t, x, y) + x
[
ri − aixλ − qEi(t)

]∂vi
∂x

(t, x, y)

+
1

2
σ2
Y

∂2vi
∂y2

(t, x, y) +
1

2
σ2x2

∂2vi
∂x2

(t, x, y) + qij [vj(t, x, y)− vi(t, x, y)]

+

∫
R\{0}

[
vi(t, x+ η(t, x, i, z), y)− vi(t, x, y)− η(t, x, i, z)

∂vi(t, x, y)

∂x

]
νi(dz)

}
= 0. (17)

And the related systems:
∂ui
∂t

+ supE∈Ai

{
−βui + l + I1(s, xs, ys, D(x,y)ui, D

2
(x,y)ui) + I2(s, xs, ys, ui) + I3(s, xs, ys, D(x,y)ui)

}
= 0,

ui(T, xs, ys) = κγ
x1−γ
s

1−γ for i, j ∈ {0, 1} κ > 0 (i, s, xs, ys) ∈ S× [0, Ti]× R+ × R+.

(18)
Using a notion of viscosity solution introduced by [22], we prove below the existence and uniqueness of a
solution of (18). To do this, we define the set of measurable functions on [0, T ]× R+ × R+ with polynomial
growth of degree q ≥ 0 as,

Cq([0, T ]× R+ × R+) = {φ : [0, T ]× R+ × R+,measurable | ∃C > 0, |φ(t, x, y)| ≤ C(1 + |x|q + |y|q)}.
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Definition 3.1. We say that ui ∈ C0([0, T ]× R+ × R+) is called

i. a viscosity subsolution of (18) if for any i ∈ S, ui(T, x, y) ≤ κγ x
1−γ

1−γ , for all x ∈ R+, p ∈ R+ and for
all functions φ ∈ C1,2,2([0, T ]× R+ × R+) ∩ C2([0, T ]× R+ × R+) and (t̄, x̄, ȳ) such that ui − φ attains
its local maximum at (t̄, x̄, ȳ),

∂φ

∂s
+ sup
E∈Ai

{
−βui + l + I1(t̄, x̄, ȳ, D(x,y)ui, D

2
(x,y)ui) + I2(t̄, x̄, ȳ, ui) + I3(t̄, x̄, ȳ, D(x,y)ui)

}
≥ 0, (19)

ii. a viscosity supersolution of (18) if for any i ∈ S, ui(T, x, y) ≥ κγ x
1−γ

1−γ , for all x ∈ R+, y ∈ R+ and if
for all functions φ ∈ C1,2,2([0, T ]×R+×R+)∩C2([0, T ]×R+×R+) and (t, x, y) such that ui−φ attains
its local minimum at (t, x, y),

∂φ

∂s
+ sup
E∈Ai

{
−βui + l + I1(t, x, y,D(x,y)ui, D

2
(x,y)ui) + I2(t, x, y, ui) + I3(t, x, y,D(x,y)ui)

}
≤ 0, (20)

iii. a viscosity solution of (18) if it is both a viscosity sub- and a supersolution of equation (18).

Theorem 3.1. Under assumption (13), the value function v is a viscosity solution of Eq. (17).

Proof of Theorem 3.1. See Appendix D.

3.3 Uniqueness, Comparison Principle
In this section, we will use the notion of parabolic superjet and subjet defined by Crandall, Ishii and Lions
[22]. We state comparison principles, from which we obtain the uniqueness of the solution of the coupled
system of partial differential equations.

Definition 3.2. Given v ∈ Co([0, T ]×R×R× S) and (t, x, y, i) ∈ [0, T )×R×R× S, we define the parabolic
superjet:

P2,+v(t, x, y, i) =

{
(c, q,M) ∈ R× R2 × S2 : v(s, x′, y′, i) ≤ v(t, x, y, i) + c(s− t) + q.((x′ − x), (y′ − y))

+
1

2
((x′ − x), (y′ − y)).M((x′ − x), (y′ − y)) + o(|((x′ − x), (y′ − y))|2) as (s, x′, y′)→ (t, x, y)

}
and its closure:

P̄2,+v(t, x, y, i) =

{
(c, q,M) = lim

n→∞
(cn, qn,Mn) with (cn, qn,Mn) ∈ P2,+v(tn, xn, yn, i) and

lim
n→∞

(tn, xn, yn, v(tn, xn, yn, i)) = (t, x, y, v(t, x, y, i))

}
.

Similarly, we define the parabolic subjet P̄2,−v(t, x, y, i) = −P̄2,+(−v)(t, x, y, i) and its closure P̄2,−v(t, x, y, i) =
−P̄2,+(−v)(t, x, y, i).

It is proved in [23] that

P2,+(−)v(t, x, y, i) =

{(
φ

∂t
(t, x, y, i), D(x,y)φ(t, x, y, i), D2

(x,y)φ(t, x, y, i)

)
and v − φ has a global maximum (minimum) at (t, x, y, i)

}
.

The previous notions lead to new definition of viscosity solutions.

7



Definition 3.3. ui ∈ C0([0, T ]×R∗+ ×R∗+) satisfying the polynomial growth condition is a viscosity solution
of (18) if

(1) for any test-function φ ∈ C1,2,2([0, T ]×R∗+×R∗+), if (t, x, y) is a local maximum point of ui(., ., .)−φ(., ., .)
and if (c, q, L1) ∈ P̄2,+u(t, x, y, i) with c = ∂φ(t, x, y)/∂t, q = D(x,y)φ(t, x, y) and L1 ≤ D2

(x,y)φ(t, x, y),
then

c+ sup
E∈Ai

{−βvi + l(x, y, Ei) + I1(t, x, y, q, L1) + I2(t, x, y, φ) + I3(t, x, y, q)} ≤ 0,

in this case u is a viscosity subsolution;

(2) for any test-function φ ∈ C1,2,2([0, T ]×R∗+×R∗+), if (t, x, y) is a local minimum point of ui(., ., .)−φ(., ., .)
and if (c, q, L2) ∈ P̄2,−u(t, x, y, i) with c = ∂φ(t, x, y)/∂t, q = D(x,y)φ(t, x, y) and L2 ≥ D2

(x,y)φ(t, x, y),
then

c+ sup
E∈Ai

{−βvi + l(x, y, Ei) + I1(t, x, y, q, L2) + I2(t, x, y, φ) + I3(t, x, y, q)} ≥ 0,

in this case u is a viscosity supersolution.

The authors [24] proved that definitions 3.2 and 3.3 are equivalent. The second definition is particular
suitable for the discussion of a maximum principle which is the backbone of the uniqueness problem for the
viscosity solutions theory.

Before state next lemma, we first introduce the inf and sup-convolution operations we are going to use.

Definition 3.4. For any usc (upper semi-continuous) function U : Rm → R and any lsc (lower semi-
continuous) function V : Rm → R, we set

Rα[U ](z, r) = sup
|Z−z|≤1

{
U(Z)− r · (Z − z)− |Z − z|

2α

}

Rα[V ](z, r) = inf
|Z−z|≤1

{
V (Z) + r · (Z − z) +

|Z − z|
2α

}
Rα[U ](z, r) is called the modified sup-convolution and Rα[V ](z, r) the modified inf-convolution. Notice that
Rα[V ](z, r) = −Rα[−U ](z, r).

Lemma 3.2. (nonlocal Jensen-Ishii’s lemma [24])
For any i ∈ S, let ui(., ., .) and vi(., ., .) be, respectively, a usc and lsc function defined on [0, T ]×R+×R+

and φ ∈ C1,2,2([0, T ] × R2
+ × R2

+) ∩ C2([0, T ] × R2
+ × R2

+) if (t̂, (b̂1, p̂1), (b̂2, p̂2)) ∈ [0, T ] × R2
+ × R2

+ is a zero
global maximum point of ui(t, x, y)− vi(t, x′, y′)−φ(t, (x, y), (x′, y′)) and if c− d := Dtφ(t̂, (x̂1, ŷ1), (x̂2, ŷ2)),
q := D(x,y)φ(t̂, (x̂1, ŷ1), (x̂2, ŷ2)), r := −D(x′,y′)φ(t̂, (x̂1, ŷ1), (x̂2, ŷ2)) , then for any K > 0, there exists
α(K) > 0 such that, for any 0 < α < α(K), we have: there exist sequences tk → t̂, (xk, yk) → (x̂1, ŷ1),
(x′k, y

′
k) → (x̂2, ŷ2), qk → q, rk → r, matrices Mk, Nk and a sequence of functions φk, converging to the

function φα := Rα[φ](((x, y), (x′, y′)), (q, r)) uniformly in R2
+ × R2

+ and in C2(B((t̂, (x̂1, ŷ1), (x̂2, ŷ2)),K)),
such that

ui(tk, (xk, yk))→ ui(t̂, (x̂1, ŷ1)), vi(tk, (x
′
k, y
′
k))→ vi(t̂, (x̂2, ŷ2))

(tk, (xk, yk), (x′k, y
′
k)) is a global maximum of ui(., (., .))− vi(., (., .))− φ(., (., .), (., .))

(ck, qk,Mk) ∈ P̄2,+ui(tk, (xk, yk)); (−dk, rk, Nk) ∈ P̄2,−vi(tk, (x
′
k, y
′
k))

− 1

α

(
I 0
0 I

)
≤
(
Mk 0
0 −Nk

)
≤ D2

(x,y),(x′,y′)φ(tk, (xk, yk), (x′k, y
′
k)).

Here ck−dk = ∇tφ(tk, (xk, yk), (x′k, y
′
k)), qk = ∇(x,y)φ(tk, (xk, yk), (x′k, y

′
k)), rk = ∇(x′,y′)φ(tk, (xk, yk), (x′k, y

′
k))

and φα(t̂, (x̂1, ŷ1), (x̂2, ŷ2)) = φ(t̂, (x̂1, ŷ1), (x̂2, ŷ2)), ∇φα(t̂, (x̂1, ŷ1), (x̂2, ŷ2)) = ∇φ(t̂, (x̂1, ŷ1), (x̂2, ŷ2)).
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We refer the reader to the mentioned paper for a proof. Now we can state our comparison result.

Theorem 3.2. (comparison principle): If ui(t, x, y) and vi(t, x, y) are continuous in (t, x, y) and are, re-
spectively, viscosity subsolution and supersolution of the HJB system (17) with at most linear growth, then

ui(t, x, y) ≤ vi(t, x, y) for all (t, x, y, i) ∈ [0, T ]× R+ × R+ × S.

Proof of Theorem 3.2. See E.

The following corollary follows from Theorems 3.1 and 3.2.

Corollary 3.1. The value function v is a uniques viscosity solution of Eq. (17) that has at most a linear
growth.

4 Conclusion
In this paper we have from a theoretical point of view, analyzed the expected utility profit maximizing.
The main contribution of this paper is related to the risk aversion of the fisher with the assumption of a
regime switching environment where the dynamic of stock resource is dependent and therefore affected by
season. Given that these assumptions also are valid in other types of renewable resources, the model here
may have wider applications. Possible examples include forestry resources. The numerical simulations will
be examined in further research.

A Proof of Lemma 3.1
1. Let k ∈ [0, 2] and h = s− t.

According to Hölder inequality Eηk ≤
[
Eη2

]k/2 for ∀k ≥ 0,

E|Xt,x
h |

k ≤
[
E|Xt,x

h |
2
]k/2

. (21)

Given that

dXt = f(t,Xt−, Ei(t), Xt)dt+ g(t,Xt−, Ei(t))dw(t) +

∫
R\{0}

η(t,Xt−, i, z)Ñi(dt, dz); i = 1, 2.

According to the elementary inequality
∣∣∣∑M

i=1 ai

∣∣∣2 ≤M∑M
i=1 |ai|2,

|Xt,x
h |

2 ≤ 4

[
|x|2 +

∣∣∣ ∫ h

0

f(u+ t,Xt,x
u , i)du

∣∣∣2 +
∣∣∣ ∫ h

0

g(u+ t,Xt,x
u , i)dwu

∣∣∣2
+
∣∣∣ ∫ h

0

∫
R\{0}

η(t,Xt−, i, z)Ñi(dt, dz)
∣∣∣2].

Using Itô-isometry and Fubini’s theorem

E|Xt,x
h |

2 ≤ 4

∣∣∣∣x|2 +

∫ h

0

E
∣∣∣f(u+ t,Xt,x

u , i)
∣∣∣2du+

∫ h

0

E
∣∣∣g(u+ t,Xt,x

u , i)
∣∣∣2du

+

∫ h

0

∫
R\{0}

∣∣∣η(t,Xt−, i, z)
∣∣∣2νi(dz)du],
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Using the growth condition on f , g and η, there exists C1 ∈ R such that

E|Xt,x
h |

2 ≤ C1

{
1 + |x|2 +

∫ h

0

E
∣∣∣Xt,x

u

∣∣∣2du} .
Applying Gronwall’s inequality we obtain

E|Xt,x
h |

2 ≤ C1e
C1h
[
1 + |x|2

]
i.e

E|Xt,x
h |

2 ≤ C
[
1 + |x|2

]
. (22)

Using (21) and elementary inequalities (a1+a2)k ≤ 2k−1(|a1|k+|a2|k) and (
√
|a1 + a2| ≤

√
|a1|+

√
|a2|)

we deduce
E|Xt,x

h |
k ≤ C

[
1 + |x|k

]
.

The same reasoning gives us
E|Y t,yh |

k ≤ C
[
1 + |y|k

]
.

2. We have

|Xt,x
h − x|

2 ≤ 3

[∣∣∣ ∫ h

0

f(u+ t, P t,xu , i)du
∣∣∣2 +

∣∣∣ ∫ h

0

g(u+ t,Xt,x
u , i)dwu

∣∣∣2
+
∣∣∣ ∫ h

0

∫
R\{0}

η(t,Xt−, i, z)Ñi(dt, dz)
∣∣∣2].

Similar arguments as above we obtain

E|Xt,x
h − x|

2 ≤ C1

∫ h

0

[
1 + E

∣∣∣Xt,x
u

∣∣∣2]du,
using (22) we deduce

E|Xt,x
h − x|

2 ≤ C
(
1 + |x|2

)
h.

Hence
E|Xt,x

h − x|
k ≤ C

(
1 + |x|k

)
hk/2.

3. Let us define the process Xt,x
s −Xt,x′

s . Put f̄(u+ t,Xt,x
u , Xt,x′

u , i) = f(u+ t,Xt,x
u , i)− f(u+ t,Xt,x′

u , i),
ḡ(u+ t,Xt,x

u , Xt,x′

u , i) = g(u+ t,Xt,x
u , i)− g(u+ t,Xt,x′

u , i) and η̄(t,Xt,x
u , Xt,x′

u , i, z) = η(t,Xt,x
u , i, z)−

η(t,Xt,x′

u , i, z). Then Applying Itô’s formula, we have

E|Xt,x
h −X

t,x′

h |2 ≤ 4

(
|x−x′|2 +E

∣∣∣ ∫ h

0

f̄(u+ t,Xt,x
u , Xt,x′

u , i)du
∣∣∣2 +E

∣∣∣ ∫ h

0

ḡ(u+ t,Xt,x
u , Xt,x′

u , i)dwu

∣∣∣2
+
∣∣∣ ∫ h

0

∫
R\{0}

η̄(t,Xt,x
u , Xt,x′

u , i, z)Ñi(dt, dz)
∣∣∣2).

E|Xt,x
h −X

t,x′

h |2 ≤ C
(
|x− x′|2 +

∫ h

0

E
∣∣∣Xt,x

u −Xt,x′

u

∣∣∣2du).
Hence

E|Xt,x
h −X

t,x′

h |2 ≤ C|x− x′|2.
Similar arguments as above we deduce

E|Xt,x
h −X

t,x′

h |2 ≤ C|x− x′|2; E|Y t,yh − Y t,y
′

h |k ≤ C|y − y′|2.

4. Using Doob’s inequality for martingale. We get

E
[

sup
0≤s≤h

|Xt,x
h h|

]k ≤ C(1 + |x|k)h
k
2 ; E

[
sup

0≤s≤h
|Y t,yh |

]k ≤ C(1 + |y|k)h
k
2 .
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B Proof of Proposition 3.1
We first show that v is Lipschitz in (x, y), uniformly in t and its linear growth condition.

vi(s, xs, ys) = sup
E∈Ai

E

[∫ T

s

e−β(u−s)l(i, u,Xs,xs
u , Y s,ysu , Eu)du+ e−β(T−s)m(Xs,xs

T , Y s,ysT )

]
.

1. Using elementary inequality | supA− supB| ≤ sup |A−B|, from Lipschitz condition (13) of the article
on l, m, and from estimates (Lemma 3.1), with k=1, we have

|vi(s, xs, ys)− vi(s, x′s, y′s)|

≤ sup
E∈Ai

∣∣∣∣∣E
[ ∫ T

s

e−β(u−s)
(
l(i, u,Xs,xs

u , Y s,ysu , Eu)− l(i, u,Xs,x′s
u , Y

s,y′s
u , Eu)

)
du

+ e−β(T−s)
(
m(Xs,xs

T , Y s,ysT )−m(X
s,x′s
T , Y

s,y′s
T )

)]∣∣∣∣∣
≤ sup
E∈Ai

E

[ ∫ T

s

∣∣∣∣(l(i, u,Xs,xs
u , Y s,ysu , Eu)− l(i, u,Xs,x′s

u , Y
s,y′s
u , Eu)

)∣∣∣∣du
+

∣∣∣∣(m(Xs,xs
T , Y s,ysT )−m(X

s,x′s
T , Y

s,y′s
T )

)∣∣∣∣]
≤ sup
E∈Ai

E

[ ∫ T

s

(
|Xs,xs

u −Xs,x′s
u |+ |Y s,ysu − Y s,y

′
s

u |
)
du+

(
|Xs,bs

T −Xs,x′s
T |+ |Y s,ysT − Y s,y

′
s

T |
)]

≤ sup
E∈Ai

[ ∫ T

s

E
(
|Xs,xs

u −Xs,x′s
u |+ E|Y s,ysu − Y s,y

′
s

u |
)
du+

(
E|Xs,xs

T −Xs,x′s
T |+ E|Y s,ysT − Y s,y

′
s

T |
)]

|vi(s, xs, ys)− vi(s, x′s, y′s)| ≤ C
(
|xs − x′s|+ |ys − y′s|

)
.

2. From linear growth condition (14) on l, m, and from estimates (Lemma 3.1), with k=1, we obtain

|vi(s, xs, ys)| ≤ sup
E∈Ai

E

[∫ T

s

∣∣∣l(i, u,Xs,xs
u , Y s,ysu , Eu)

∣∣∣du+
∣∣∣m(Xs,xs

T , Y s,ysT )
∣∣∣]

|vi(s, xs, ys)| ≤ ρ sup
E∈Ai

E

[∫ T

s

(
1 + |Xs,xs

u |+ |Y s,ysu |
)
du+ (1 + |Xs,xs

T |+ |YT |)

]

|vi(s, xs, ys)| ≤ ρ sup
E∈Ai

[∫ T

s

(
1 + E|Xs,xs

u |+ E|Y s,ysu |
)
du+ (1 + E|Xs,xs

T |+ E|Y s,ysT |)

]
|vi(s, xs, ys)| ≤ C (1 + |xs|+ |ys|) .

C Proof of Proposition 3.2
Let 0 ≤ t < s ≤ T . To prove continuity property in time t, we use the dynamic programming principle.

vi(t, x, y) = sup
E∈Ai

E

[∫ T

t

e−β(u−t)l(i, u,Xt,x
u , Y t,yu , Eu)du+ e−β(T−t)m(Xt,x

T , Y t,yT )

]

= sup
E∈Ai

E

[∫ s

t

e−β(u−t)l(i, u,Xt,x
u , Y t,yu , Eu)du+ e−β(s−t)v(s,Xt,x

s , Y t,ys , i)

]
= sup
E∈Ai

E

[∫ s−t

o

e−βul(i, t+ u,Xt,x
t+u, Y

t,y
t+u, Et+u)du+ e−β(s−t)v(s,Xt,x

s−t, Y
t,y
s−t, i)

]
.
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0 ≤ vi(t, x, y)− vi(s, xs, ys) = sup
E∈Ai

E

[ ∫ s−t

0

e−β(u)l(i, u,Xt,x
u , Y t,ptu , Eu)du

+ e−β(s−t)
(
v(s,Xt,x

s−t, Y
t,y
s−t, i)− v(s, xs, ys, i)

)
+
(
e−β(s−t) − 1

)
v(s, xs, ys, i)

]
.

Applying linear growth condition (13) of the article on l, noting that 0 ≤ 1− e−β(s−t) ≤ β(s− t) and v
satisfies proposition (3.1) of the article, we deduce that:

|vi(t, x, y)− vi(s, xs, ys)|

≤ sup
E∈Ai

E

[ ∫ s−t

0

∣∣l(i, u,Xt,x
u , Y t,yu , Eu)

∣∣du+
∣∣∣e−β(s−t)(v(s,Xt,x

s−t, Y
t,x
s−t, i)− v(s, xs, ys, i)

)∣∣∣
+
∣∣∣(e−β(s−t) − 1

)
v(s, xs, ys, i)

∣∣∣]
≤ (s−t) 1

2

(∫ s−t

0

sup
E∈Ai

E
∣∣l(i, u,Xt,x

u , Y t,yu , Eu)
∣∣2 du) 1

2

+ sup
E∈Ai

E
∣∣∣e−β(s−t) (v(s,Xt,x

s−t, Y
t,y
s−t, i)− v(s, xs, ys, i)

) ∣∣∣
+ sup
E∈Ai

E
∣∣∣(e−β(s−t) − 1

)
v(s, xs, ys, i)

∣∣∣
≤ (s− t) 1

2

(∫ s−t

0

ρ2 sup
E∈Ai

(
1 + E|Xt,x

u |+ E|pt,yu |
)2
du

) 1
2

+ sup
E∈Ai

E
∣∣∣ (v(s,Xt,x

s−t, Y
t,y
s−t, i)− v(s, xs, ys, i)

) ∣∣∣
+ β|s− t| sup

E∈Ai
E
∣∣v(s, xs, ys, i)

∣∣
≤ |s− t| 12

(∫ s−t

0

ρ sup
E∈Ai

(
1 + E|Xt,x

u |+ E|Y t,yu |
)
du

)
+ sup
E∈Ai

E
∣∣∣(v(s,Xt,x

s−t, Y
t,y
s−t, i)− v(s, xs, ys, i)

)∣∣∣
+ β|s− t| sup

E∈Ai
E
∣∣∣v(s, xs, ys, i)

∣∣∣
≤ C ′

(
|s− t| 12

∫ s−t

0

(1 + E|Bt,xu |+ E|P t,yu |)du+ (|x− xs|+ |y − ys|) + β(1 + |xs|+ |ys|)|s− t|
)

≤ C
[
(1 + |x|+ |y|)|s− t| 12 + |x− xs|+ |y − ys|

]
.

D Proof of Theorem 3.1
We establish the viscosity super- and sub-solution properties, respectively in the following two steps.

Step 1. vi(t, x, y), i = 1, 2 is a viscosity super-solution of Eq. (17).
We already know that v ∈ C0([0, T ] × R+ × R+). We first note that vi(T, x, y) = κγ x

1−γ

1−γ so, the
boundary condition at time t = T is clearly satisfied. Let (s, xs, ys) ∈ [0, T ] × R+ × R+, i ∈ S and
φ ∈ C1,2,2([0, T ]×R+×R+)∩C2([0, T ]×R+×R+) such that vi(., ., .)−φ(., ., .) has a local minimum at
(s, xs, ys). Let N(xs, ys) to be a neighborhood of (s, xs, ys) where vi(., ., .)− φ(., ., .) take its minimum,
we introduce a new test-function ψ as follows:

ψ(., ., ., j) =

{
φ(., ., .) + [vi(s, xs, ys)− φ(s, xs, ys)], if j = i,

vi(., ., .), if j 6= i.
(23)
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This helps us to suppose without any loss of generality that this minimum is equal to 0.

Let τα be the first jump time of α(t)
(

= α(t)xs,ys,i
)
, i.e. τα = min{t ≥ s : α(t) 6= i}. Then τα > s,

a.s. Let θs ∈ (s, τα) be such that the state (Xxs,i
t , Y ys,it ) starts at (xs, ys) and stays in N(xs, ys)

for s ≤ t ≤ θs. Applying the generalized Itô’s formula to the switching process e−βtψ(t,Xt, Yt, α(t)),
taking integral from t = s to t = θs∧h, where h > 0 is a positive constant, and then taking expectation
we have

Exs,ys,i

[
e−βθs∧hψ(θs ∧ h,Xθs∧h, Yθs∧h, α(θs ∧ h))

]
= e−βsψ(s,Xs, Ys, i) + Exs,ys,i

[∫ θs∧h

s

e−βt
{
− βψ(t,Xt, Yt, α(t)) +

∂ψ(t,Xt, Yt, α(t))

∂t

+Xt

[
ri − aiXλ

t − qEi(t)
]∂ψ(t,Xt, Yt, α(t))

∂x
+ θ(Ȳ0 − Yt)

∂ψ(t,Xt, Yt, α(t))

∂y

+
1

2
σ2X2

t

∂2ψ(t,Xt, Yt, α(t))

∂x2
+

1

2
σ2
Y

∂2ψ(t,Xt, Yt, α(t))

∂y2
+ qα(t)j(ψ(t,Xt, Yt, j)− ψ(t,Xt, Yt, α(t)))

+

∫
R\{0}

(
ψ(t,Xt + η(t,Xt, Yt, α(t), z), Yt)− ψ(t,Xt, Yt, α(t))

− η(t,Xt, Yt, α(t), z)
∂ψ(t,Xt, Yt, α(t))

∂x

)
νi(dz)

}
dt

]
, α(t) 6= j. (24)

From hypothesis, for any t ∈ [s, θs ∧ h]

vi(t,X
xs
t , Y yst ) ≥ φ(t,Xxs

t , Y yst ) + vi(s, xs, ys)− φ(s, xs, ys) ≥ ψ(t,Xxs
t , Y yst , i). (25)

Moreover, we have qij(vj(t,Xt, Yt)− vi(t,Xt, Yt)) ≤ qij(ψ(t,Xt, Yt, j)−ψ(t,Xt, Yt, i)), by definition of
ψ. Recalling that (Xys

s , Y
ys
s ) = (xs, ys) and using Eq. (23) and Eq. (25) we have

Exs,ys,i

[
e−βθs∧hψ(θs ∧ h,Xθs∧h, Yθs∧h, α(θs ∧ h))

]
≥

+ e−βsvi(s, xs, ys) + Exs,ys,i

[∫ θs∧h

s

e−βt
{
− βvi(t,Xt, Yt) +

∂ψ(t,Xt, Yt, α(t))

∂t

+Xt

[
ri − aiXλ

t − qEi(t)
]∂ψ(t,Xt, Yt, α(t))

∂x
+ θ(Ȳ0 − Yt)

∂ψ(t,Xt, Yt, α(t))

∂y

+
1

2
σ2X2

t

∂2ψ(t,Xt, Yt, α(t))

∂x2
+

1

2
σ2
Y

∂2ψ(t,Xt, Yt, α(t))

∂x2

+ qij(vj(t,Xt, Yt)− vi(t,Xt, Yt))

+

∫
R\{0}

(
ψ(t,Xt + η(t,Xt, Yt, α(t), z), Yt)− ψ(t,Xt, Yt, α(t))

− η(t,Xt, Yt, α(t), z)
∂ψ(t,Xt, Yt, α(t))

∂x

)
νi(dz)

}
dt

]
. (26)
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By Bellman’s principle

e−βsψ(s, xs, ys, i) = e−βsvi(s, xs, ys) = sup
E∈Ai

Exs,ys,i

[ ∫ θs∧h

s

e−βtl(i, t,Xs,xs
t , Y s,yst , Et)dt

+ e−β(θs∧h)vi(θs ∧ h,Xs,xs
θs∧h, Y

s,ys
θs∧h)

]
≥ sup
E∈Ai

Exs,ys,i

[ ∫ θs∧h

s

e−βtl(i, t,Xs,xs
t , Y s,yst , Et)dt

+ e−β(θs∧h)ψ(θs ∧ h,Xs,xs
θs∧h, Y

s,ys
θs∧h, i)

]
. (27)

Setting τ = E(θs ∧ h) combining (26) and (27) and multiplying both sides by 1/(τ − s) > 0, we obtain

sup
E∈Ai

Exs,ys,i

[
1

τ − s

∫ θs∧h

s

e−βt
{
βvi(t,Xt, Yt)−

∂ψ(t,Xt, Yt, α(t))

∂t

−Xt

[
ri − aiXλ

t − qEi(t)
]∂ψ(t,Xt, Yt, α(t))

∂x
− θ(Ȳ0 − Yt)

∂ψ(t,Xt, Yt, α(t))

∂y

− 1

2
σ2X2

t

∂2ψ(t,Xt, Yt, α(t))

∂x2
− 1

2
σ2
Y

∂2ψ(t,Xt, Yt, α(t))

∂x2

− qij [vj(t,Xt, Yt)− vi(t,Xt, Yt)]

−
∫

R\{0}

(
ψ(t,Xt + η(t,Xt, Yt, α(t), z), Yt)− ψ(t,Xt, Yt, α(t))

− η(t,Xt, Yt, α(t), z)
∂ψ(t,Xt, Yt, α(t))

∂x

)
νi(dz)− l(i, t,Xt, Yt, Et)

}
dt

]
≥ 0. (28)

Letting τ ↓ s and using the dominated convergence theorem, it turns out that

e−βs

[
− ∂ψ(s, xs, ys, i)

∂t
+ inf
E∈Ai

{
βvi(s, xs, ys)−

xs

[
ri − aixλs − qEi(s)

]∂ψ(s, xs, ys, i)

∂x
− θ(Ȳ0 − ys)

∂ψ(s, xs, ys, i)

∂y

− 1

2
σ2x2s

∂2ψ(s, xs, ys, i)

∂b2
− 1

2
σ2
Y

∂2ψ(s, xs, ys, i)

∂y2

− qij [vj(s, xs, ys)− vi(s, xs, ys)]

−
∫

R\{0}

(
ψ(s, xs + η(s, xs, ys, i, z), ys)− ψ(s, xs, ys, i)

− η(s, xs, ys, i, z)
∂ψ(s, xs, ys, i)

∂x

)
νi(dz)− l(i, s, xs, ys, Es)

}]
≥ 0. (29)

This shows that the value function vi(t, x, y), i = 1, 2, satisfies the viscosity super-solution property
(20).

Step 2. vi(t, x, y), i = 1, 2, is a viscosity sub-solution of (17).
We argue by contradiction. Assume that there exist an i0 ∈ S, a point (s, xs, ys) ∈ [0, T ]×R∗+×R∗+ and
a testing function φi0 ∈ C1,2,2([0, T ]× R∗+ × R∗+) ∩ C2([0, T ]× R∗+ × R∗+) such that vi0(., ., .)− φi0(., ., .)
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has a local maximum at (s, xs, ys) in a bounded neighborhood N(xs, ys), vi0(s, xs, ys) = φi0(s, xs, ys),
and

min

[
− ∂φi0(s, xs, ys)

∂t
+ inf
E∈Ai0

{
βvi0(s, xs, ys)−

xs

[
ri0 − aixλs − qEi0(s)

]∂φi0(s, xs, ys)

∂x
− θ(Ȳ0 − ys)

∂φi0(s, xs, ys)

∂y

− 1

2
σ2x2s

∂2φi0(s, xs, ys)

∂x2
− 1

2
σ2
Y

∂2φi0(s, xs, ys)

∂y2
− qi0j [vj(s, xs, ys)− vi0(s, xs, ys)]

−
∫

R\{0}

(
φi0(s, xs + η(s, xs, ys, i0, z), ys)− φi0(s, xs, ys)

−η(s, xs, ys, i0, z)
∂φi0(s, xs, ys)

∂x

)
νi0(dz)−l(i0 , s, xs, ys, Es)

}
, vi0(T, xs, ys)−κγ

x1−γs

1− γ

]
> 0, i0 6= j.

(30)

By the continuity of all functions involved in (30) (vi0 ,
∂φi0
∂x ,

∂2φi0
∂x2 , qij , l, ...), there exists a δ > 0 and

an open ball Bδ(xs, ys) ⊂ N(xs, ys) such that,

− ∂φi0(t, x, y)

∂t
+ inf
E∈Ai0

{
βvi0(t, x, y)−

x
[
ri0 − aixλ − qEi0(t)

]∂φi0(t, x, y)

∂x
− θ(Ȳ0 − y)

∂φi0(t, x, y)

∂y

− 1

2
σ2x2

∂2φi0(t, x, y)

∂x2
− 1

2
σ2
Y

∂2φi0(t, x, y)

∂y2
− qi0j [vj(t, x, y)− vi0(t, x, y)]

−
∫

R\{0}

(
φi0(t, x+ η(t, x, y, i0, z), ys)− φi0(t, x, y)

− η(t, x, y, i0, z)
∂φi0(t, x, y)

∂x

)
νi0(dz)− l(i0 , t, x, y, Et)

}
> δ, i0 6= j, (t, x, y) ∈ Bδ(xs, ys) (31)

and

vi0(T, x, y)− κγ x
1−γ

1− γ
> δ (t, x, y) ∈ Bδ(xs, ys).

Let θδ = min{t ≥ s : (t,Xt, Yt) 6∈ Bδ(xs, ys)} be the first exit time of (t,Xt, Yt) (= (t,Xs,xs
t , Y s,yst ))

from Bδ(xs, ys). Let θs = θδ ∧ τα where τα is the first stopping time of α(t)xs,ys,i0 . Then θs > 0, a.s..
For 0 ≤ t ≤ θs, we have

βvi0(t,Xt, Yt)−
∂φi0(t,Xt, Yt)

∂t

−Xt

[
ri0 − aiXλ

t − qEi0(t)
]∂φi0(t,Xt, Yt)

∂x
− θ(Ȳ0 − Yt)

∂φi0(t,Xt, Yt)

∂y

− 1

2
σ2x2s

∂2φi0(t,Xt, Yt)

∂x2
− 1

2
σ2
Y

∂2φi0(t,Xt, Yt)

∂y2
− qi0j [vj(t,Xt, Yt)− vi0(t,Xt, Yt)]

−
∫

R\{0}

(
φi0(t,Xt + η(t,Xt, Yt, i0, z), ys)− φi0(t,Xt, Yt)

− η(t,Xt, Yt, i0, z)
∂φi0(t,Xt, Yt)

∂x

)
νi0(dz)− l(i0 , t,Xt, Yt, Et) > δ, i0 6= j, (t,Xt, Yt) ∈ Bδ(xs, ys)

(32)
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and

vi0(T, x, y)− κγ x
1−γ

1− γ
> δ (t, x, y) ∈ Bδ(xs, ys). (33)

As previously, we can replace φi0 by a new test-function ψ defined as follows:

ψ(., ., ., j) =

{
φi0(., ., .), if j = i0,

vi0(., ., .), if j 6= i0.
(34)

For any first exit time τ ∈ [s, T ]. Applying Itô’s formula to the switching process e−βtψ(t,Xt, Yt, α(t)),
taking integral from t = s to t = (θs ∧ τ)− and then taking expectation yield

Exs,ys,i

[
e−βθ∧τψ(θs ∧ τ,Xθs∧τ , Yθs∧τ , α(θs ∧ τ))

]
= e−βsvi(s, xs, ys) + Exs,ys,i

[∫ (θs∧τ)−

s

e−βt
{
− βψ(t,Xt, Yt, α(t)) +

∂ψ(t,Xt, Yt, α(t))

∂t

+Xt

[
ri − aiXλ

t − qEi(t)
]∂ψ(t,Xt, Yt, α(t))

∂x
+ θ(Ȳ0 − Yt)

∂ψ(t,Xt, Yt, α(t))

∂y

+
1

2
σ2X2

t

∂2ψ(t,Xt, Yt, α(t))

∂x2
+

1

2
σ2
Y

∂2ψ(t,Xt, Yt, α(t))

∂y2

+ qα(t)j(ψ(t,Xt, Yt, j)− ψ(t,Xt, Yt, α(t)))

+

∫
R\{0}

(
ψ(t,Xt + η(t,Xt, Yt, α(t), z), Yt)− ψ(t,Xt, Yt, α(t))

− η(t,Xt, Yt, α(t), z)
∂ψ(t,Xt, Yt, α(t))

∂x

)
νi(dz)

}
dt

]
, α(t) 6= j. (35)

in which we used Exs,ys,i

[
e−βθs∧τψ(θs∧τ,Xθs∧τ , Yθs∧τ , α(θs∧τ))

]
= Exs,ys,i

[
e−βθs∧τψ(θs∧τ,Xθs∧τ , Yθs∧τ , α(θs∧

τ)−)

]
due to continuity. Noting that the integrand in the RHS of (35) is continuous in t. Using (32),

(33) and that vi0(t,Xt, Yt) ≤ φi0(t,Xt, Yt) in (35). Also noting that α(t) = i0 for 0 ≤ t ≤ θs, it follows

e−βsvi0(s, xs, ys)

≥ Exs,ys,i0

[
e−βθs∧τφi0(θs ∧ τ,Xθs∧τ , Yθs∧τ , α(θs ∧ τ))

+

∫ (θs∧τ)

s

e−βt
{
βvi0(t,Xt, Yt)−

∂φi0(t,Xt, Yt)

∂t

−Xt

[
ri0 − aiXλ

t − qEi0(t)
]∂φi0(t,Xt, Yt)

∂x
− θ(Ȳ0 − Yt)

∂φi0(t,Xt, Yt)

∂y

− 1

2
σ2X2

t

∂2φi0(t,Xt, Yt)

∂x2
− 1

2
σ2
Y

∂2φi0(t,Xt, Yt)

∂y2

− qi0j [vj(t,Xt, Yt)− vi0(t,Xt, Yt)]

−
∫

R\{0}

(
ψ(t,Xt + η(t,Xt, Yt, i0, z), Yt)− ψ(t,Xt, Yt, i0)

− η(t,Xt, Yt, i0, z)
∂ψ(t,Xt, Yt, i0)

∂x

)
νi(dz)

}
dt

]
, i0 6= j (36)
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i.e

e−βsvi0(s, xs, ys)

≥ Exs,ys,i0

[
e−βτvi0(τ,Xτ , Yτ , α(τ))1{τ<θs} + e−βθsvi0(θ,Xθs , Yθs , α(θs))1{τ≥θs}

+

∫ (θs∧τ)

s

e−βt
{
l(i0 , t,Xt, Yt, Et) + δ

}
dt

]
≥ Exs,ys,i0

[
e−βτ [κγ

X1−γ
τ

1− γ
+ δ])1{τ<θs} + e−βθsvi0(θs, Xθs , Yθs , α(θs))1{τ≥θs}

+

∫ (θs∧τ)

s

e−βt
{
l(i0 , t,Xt, Yt, Et) + δ

}
dt

]
≥ Exs,ys,i0

[
+

∫ (θs∧τ)

s

e−βt
{
l(i0 , t,Xt, Yt, Et)

}
dt+ e−βθvi0(θs, Xθs , Yθs , α(θs))1{τ≥θs}

+ e−βτ [κγ
X1−γ
τ

1− γ
]1{τ<θs}

]
+ δExs,ys,i0

[ ∫ (θs∧τ)

s

e−βtdt+ e−βτ1{τ<θs}

]
. (37)

Now considering the estimate of the term Exs,ys,i0

[ ∫ (θs∧τ)
s

e−βtdt+e−βτ1{τ<θs}

]
, there exists a positive

constant C0 such that,

Exs,ys,i0

[ ∫ (θs∧τ)

s

e−βtdt+ e−βτ1{τ<θs}

]
≥ C0

(
1− Exs,ys,i0

[
e−βτα

])
.

It follows that

vi0(s, xs, ys)

≥ sup
τ∈[s,T ],E∈A

Exs,ys,i0

[
+

∫ (θ∧τ)

s

e−βt
{
l(i0 , t,Xt, Yt, Et)

}
dt

+ e−βθvi0(θ,Xθ, Yθ, α(θ))1{τ≥θ} + e−βτ [κγ
X1−γ
τ

1− γ
]1{τ<θs}

]
+ C0δ

(
1− Exs,ys,i0

[
e−βτα

])
(38)

which is a contradiction to the DP principle since Exs,ys,i0

[
e−βτα

]
< 1. Therefore the value function

vi(t, x, y), i = 1, 2, is a viscosity sub-solution of the system (18).

This completes the proof of Theorem 3.1.

E Proof of Theorem 3.2
For %, ε, δ, λ > 0, we define the auxiliary functions φ : (0, T ]× R2

+ × R2
+ → R and Ξ: [0;T ]× R2

+ × R2
+ × S by

φ(t, (x, y), (x′, y′)) =
%

t
+

1

2ε
|(x, y)− (x′, y′)|2 + δeλ(T−t)(|(x, y)|2 + |(x′, y′)|2)

and
Ξ(t, (x, y), (x′, y′), i) = vi(t, x, y)− ui(t, x′, y′)− φ(t, (x, y), (x′, y′)).

By using the linear growth of vi and ui, we have for each i ∈ S

lim
|(x,y)|+|(x′,y′)|→∞

Ξ(t, (x, y), (x′, y′), i) = −∞.

17



Then, since vi and ui are uniformly continuous with respect to (t, x, y) on each compact subset of [0, T ]×R+×
R+×S and that S is a finite set, Ξ attains its global maximum at some finite point belonging to a compactK ⊂
[0, T ]×R2

+×R2
+×S say, (tδε, (x1δε, y1δε), (x2δε, y2δε), αδε). Observing that 2Ξ

(
tδε, (x1δε, y1δε), (x2δε, y2δε), αδε

)
≥

Ξ
(
tδε, (x1δε, y1δε), (x2δε, y2δε), αδε

)
+ Ξ

(
tδε, (x1δε, y1δε), (x2δε, y2δε), αδε

)
and using the uniform continuity of vi and ui on K we have

1

ε
|(x1δε, y1δε)− (x2δε, y2δε)|2

≤ vi (tδε, (x1δε, y1δε))− vi
(
tδε, (x2δε, y2δε)

)
+ ui (tδε, (x1δε, y1δε))− ui (tδε, (x2δε, y2δε))

≤ 2C|(x1δε, y1δε)− (x2δε, y2δε)|.

Thus,
|(x1δε, y1δε)− (x2δε, y2δε)| ≤ 2Cε (39)

where C is a positive constant independent of %, ε, δ, λ. From the inequality,

2Ξ (T, (0, 0), (0, 0), αδε) ≤ 2Ξ (tδε, (x1δε, y1δε), (x2δε, y2δε), αδε)

and the linear growth for vi and ui, we have:

δ (|(x1δε, y1δε)) |2 + |
(
x2δε, y2δε|2

)
≤ e−λ(T−tδε)

[
vi (tδε, x1δε, y1δε)− vi (T, 0, 0)

+ ui
(
T, 0, 0

)
− ui (tδε, x2δε, y2δε)

]
≤ e−λ(T−tδε)C2 (1 + |(x1δε, y1δε)|+ |(x2δε, y2δε)|) . (40)

It follows that
δ
(
|(x1δε, y1δε)

)
|2 + |(x2δε, y2δε|2

)
(1 + |(x1δε, y1δε)|+ |(x2δε, y2δε)|

) ≤ C2.

Consequently, there exists Cδ > 0 such that,

|(x1δε, y1δε)|+ |(x2δε, y2δε)| ≤ Cδ. (41)

This inequality implies that for any fixed δ ∈ (0, 1), the sets {(x1δε, y1δε), ε > 0} and {(x2δε, y2δε), ε > 0} are
bounded by Cδ independent of ε. It follows from inequalities (40) and (41) that, possibly if necessary along a
subsequence, named again

(
tδε, (x1δε, y1δε), (x2δε, y2δε), αδε

)
that there exists (x1δ0, y1δ0) ∈ R2

+, tδε0 ∈ (0, T ]
and αδε0 ∈ S such that: lim

ε↓0
(x1δε, y1δε) = (x1δ0, y1δ0) = lim

ε↓0
(x1δε, y1δε), lim

ε↓0
tδε = tδ0, lim

ε↓0
αδε = αδ0.

If tδε = T then writing that Ξ
(
t, (x, y), (x, y), αδε

)
≤ Ξ

(
T, (x1δε, y1δε), (x2δε, y2δε), αδε

)
, we have

ui(t, x, y)− vi(t, x, y)− %

t
− 2δeλ(T−t)(|(x, y)|2)

≤ ui(T, (x1δε, y1δε))− vi(T, (x2δε, y2δε))−
%

T

− 1

2ε
|(x1δε, y1δε)− (x2δε, y2δε)|2 − δ(|(x1δε, y1δε)|2 + |(x2δε, y2δε)|2)

≤ ui(T, (x1δε, y1δε))− vi(T, (x2δε, y2δε))
= [ui(T, (x1δε, y1δε))− vi(T, (x1δε, y1δε))]
+ [vi(T, (x1δε, y1δε))− vi(T, (x2δε, y2δε))]

≤ C1|(x1δε, y1δε)− (x2δε, y2δε)|

where the last inequality follows from the uniform continuity of vi and by assumption that ui(T, (x1δε, y1δε)) =

κγ
x1−γ
1δε

1−γ = vi(T, (x1δε, y1δε)). Sending %, ε, δ ↓ 0 and using estimate (39), we have: ui(t, x, y) ≤ vi(t, x, y).
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Assume now that tδε < T .
Applying Lemma 3.2 with ui, vi and φ(t, (x, y), (x′, y′)) at the point (tδε, (x1δε, y1δε), (x2δε, y2δε), αδε) ∈
(0, T )× R2

+ × R2
+ × S, for any ζ ∈ (0, 1) there are d ∈ R,Mδε, Nδε ∈ S2 such that:(

d− %

t2δε
− λδeλ(T−tδε)(|(xδε, yδε)|2 + |(x′δε, y′δε)|2),

1

ε
((xδε, yδε)− (x′δε, y

′
δε))

+ 2δeλ(T−tδε)(xδε, yδε),Mδε + 2δeλ(T−tδε)I

)
∈ P̄2,+u(tδε, xδε, yδε, i)(

d,
1

ε
((xδε, yδε)− (x′δε, y

′
δε))− 2δeλ(T−tδε)(x′δε, y

′
δε), Nδε − 2δeλ(T−tδε)I

)
∈ P̄2,−v(tδε, x

′
δε, y

′
δε, i)

and

− 1

ζ

(
I 0
0 I

)
≤
(
Mδε 0

0 −Nδε

)
≤ D2

(x,y),(x′,y′)φ(tδε, (xδε, yδε), (x
′
δε, y

′
δε))

+ ζ
(
D2

(x,y),(x′,y′)φ(tδε, (xδε, yδε), (x
′
δε, y

′
δε))
)2

≤ ε+ ζ(2 + 4δεeλ(T−t))

ε2

(
I −I
−I I

)
+ (2δ + 4ζδ2εeλ(T−t))eλ(T−t)

(
I 0
0 I

)
.

Letting δ ↓ 0 and taking ζ =
ε

2
, we obtain

− 1

ε

(
I 0
0 I

)
≤

(
Mδε 0

0 −Nδε

)
≤ 2

ε

(
I −I
−I I

)
.

It follows that

(xδε, yδε)Mδε

(
xδε
yδε

)
− (x′δε, y

′
δε)Nδε

(
x′δε
y′δε

)

= ((xδε, yδε), (x
′
δε, y

′
δε))

(
Mδε 0

0 −Nδε

)
(
xδε
yδε

)
(
x′δε
y′δε

)


≤ ((xδε, yδε), (x
′
δε, y

′
δε))

[
2

ε

(
I −I
−I I

)]
(
xδε
yδε

)
(
x′δε
y′δε

)


≤ 2

ε
|(xδε, yδε)− (x′δε, y

′
δε)|2.
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Furthermore, the definition of the viscosity subsolution ui and supersolution vi implies that

min

[
βui0(tδε, xδε, yδε)−

(
d− %

t2δε
− λδeλ(T−tδε)(|(xδε, yδε)|2 + |(x′δε, y′δε)|2)

)
+ inf
E∈Ai0

{
− xδε

[
ri0 − aixλδε − qEi(s)

](1

ε
(xδε − x′δε) + 2δeλ(T−t)xδε

)
− θ(Ȳ0 − yδε)

(1

ε
(xδε − y′δε) + 2δeλ(T−t)yδε

)
− 1

2
(σxδε, σy)(Mδε + 2δeλ(T−t)I)

(
σxδε
σy

)
− qi0j [uj(tδε, xδε, yδε)− ui0(tδε, xδε, yδε)]

− l(i0 , tδε, xδε, yδε, Etδε)
}
, ui0(T, xδε, yδε)− κγ

x1−γδε

1− γ

]
≤ 0, i0 6= j

and

min

[
βvi0(tδε, xδε, yδε)− d+ inf

E∈Ai0

{
− xδε

[
ri0 − aixλδε − qEi(s)

](1

ε
(xδε − x′δε) + 2δeλ(T−t)x′δε

)
− θ(Ȳ0 − yδε)

(1

ε
(yδε − y′δε) + 2δeλ(T−t)y′δε

)
− 1

2
(σx′δε;σP )(Nδε − 2δeλ(T−t)I)

(
σx′δε
σY

)
− qi0j [vj(tδε, x′δε, y′δε)− vi0(tδε, x

′
δε, y

′
δε)]

− l(i0 , tδε, x′δε, y′δε, Etδε)
}
, vi0(T, xδε, yδε)− κγ

x1−γδε

1− γ

]
≥ 0, i0 6= j.

Let us define operators AE(x, v, φ,X,Z) and BE(x, v).

AE(t, x, y, w,X, Y Z) = x
[
ri0 − aixλ − qEi(t)

]
X + θ(Ȳ0 − y)Y +

1

2
wZw′

BE(t, x, y, v) = qi0j [vj(t, x, y)− vi0(t, x, y)].

By subtracting these last two inequalities and remarking that min(x; y)−min(z; t) ≤ 0 implies either x−z ≤ 0
or y − t ≤ 0, we divide our consideration into two cases:

Case 1

β
[
ui0(tδε, xδε, yδε)− vi0(tδε, xδε, yδε)

]
+

%

t2δε
+ λδeλ(T−tδε)(|(xδε, yδε)|2 + |(x′δε, y′δε)|2)

≤ sup
E∈Ai0

{
l(i0 , tδε, xδε, yδε, Etδε)− l(i0 , tδε, x′δε, y′δε, Etδε)

}
+ sup
E∈Ai0

{
AE
(
tδε, xδε, yδε, (σxδε;σP ),

1

ε
(xδε − x′δε) + 2δeλ(T−tδε)xδε,

1

ε
(yδε − y′δε) + 2δeλ(T−tδε)yδε,Mδε + 2δeλ(T−tδε)I

)
−AE

(
tδε, x

′
δε, y

′
δε, (σb

′
δε;σP ),

1

ε
(xδε − x′δε) + 2δeλ(T−t)x′δε,

1

ε
(yδε − y′δε) + 2δeλ(T−tδε)y′δε,

Nδε − 2δeλ(T−tδε)I
)}

+ sup
E∈Ai0

{
BE(tδε, xδε, yδεu)−BE(tδε, x

′
δε, y

′
δεv)]

}
≡ I1 + I2 + I3. (42)
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In view of condition (13) on l and from estimate (??), we have the classical estimates of I1 and I2:

I1 ≤C|(xδε, yδε)− (x′δε, y
′
δε)|

I2 ≤C(
1

ε
|(xδε, yδε)− (x′δε, y

′
δε)|2 + 2δeλ(T−tδε)(1 + |(xδε, yδε)|2 + |(x′δε, y′δε)|2).

Using the Lipschitz condition for u and v, we have

I3 ≤ 2C|(xδε, yδε)− (x′δε, y
′
δε)|.

Writing that Ξ(t, (x, y), (x, y), i) ≤ Ξ(tδε, (xδε, yδε), (xδε, yδε), i) for i ∈ S and using the inequality (42),

ui(t, x, y)− vi(t, x, y)− %

t
− 2δeλ(T−t)|(x, y)|2 ≤

vi(tδε, xδε, yδε)− ui(tδε, xδε, yδε)−
%

tδε
− 2δeλ(T−t)|(xδε, yδε)|2 ≤

1

β

[
I1 + I2 + I3

]
− %

βt2δε
− λ

β
δeλ(T−tδε)(|(xδε, yδε)|2 + |(x′δε, y′δε)|2)

this implies

ui(t, x, y)− vi(t, x, y)− %

t
− 2δeλ(T−t)|(x, y)|2 ≤

1

β

[
I1 + I2 + I3

]
− λ

β
δeλ(T−tδε)(|(xδε, yδε)|2 + |(x′δε, y′δε)|2).

Sending ε ↓ 0, with the above estimates of (I1)− (I2)− (I3), we obtain:

ui(t, x, y)− vi(t, x, y)− %

t
− 2δeλ(T−t)|(x, y)|2 ≤ 2δ

β
eλ(T−t0)

[
C(1 + 2|(x0, y0)|2)− λ|(x0, y0)|2

]
.

Choose λ sufficiently large positive (λ ≥ 2C) and send %, δ → 0+ to conclude that ui(t, x, y) ≤ vi(t, x, y).

Case 2 The second case occurs if
ui0(T, xδε, yδε)− vi0(T, xδε, yδε) ≤ 0

and finally that ui(t, x, y) ≤ vi(t, x, y).

This completes the proof.
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