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Introduction

Consider observations (X 1 , X 2 , . . . , X n ) arising from a trajectory of the process X t = f * (X t-i ) i∈N * + σ ξ t for any t ∈ Z.

(1.1)

where (ξ t ) t∈Z is a sequence of zero-mean independent identically distributed random variables (i.i.d.r.v) satisfying E(|ξ 0 | 4 ) < ∞ and f * : R N → R is a measurable function and σ > 0 an unknown constant.

The problem is to estimate the function f * using these observations. The process (1.1) is a particular case of the general class of affine causal process studied in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] and [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF]. The study of this type of process more often requires the classical regularity condition on the function f * , which are not restrictive at all and remain valid in various time series models. This condition can be stated as follows:

∞ k=1 sup x∈R ∞ ∂ ∂x k f * (x) < 1, (1.2)
provided that that f * admits partial derivatives on R N . Under (1.2) and if the noise ξ 0 admits r-order moments, [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] showed that there exists a stationary, mixing and ergodic solution to (1.1) admitting r-order moments.

Moreover, [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF] studied the consistency and the asymptotic normality of the Quasi-maximum log-likelihood estimator (QMLE) of θ * = (θ * i ) i∈N in the case f * = f θ * .

In this paper, we will focus only on processes with a linear regression function (f θ * ) with respect to the past and depending on some parameter θ * ∈ R N ; that is

f * (X t-1 , X t-2 , . . .) = f θ * (X t-1 , X t-2 , . . .) = ∞ i=1 θ * i X t-i . (1.3)
For such processes, condition (1.2) becomes A1 :

∞ i=1 |θ * i | < 1.
Even if this condition reduces the set of parameters a bit, the class of AR(∞) processes checking the condition A1 is rich and of practical importance because it contains almost all invertible causal ARMA(p, q) processes and it is very useful for prediction given the past. Moreover, contrary to the autocovariance of ARMA(p, q) processes which decays exponentially fast, AR(∞) are able to model more complex behaviour such as slower decay of the covariance structure.

Henceforth, let observations (X 1 , X 2 , . . . , X n ) be a trajectory of the solution X := (X t ) t∈Z of (1.1) verifying A1. The goal of this paper is to predict the next value X n+1 . In fact, if θ * were known, a simple prediction of X n+1 could be f θ * (X n , X n-1 , . . .) setting X t = 0 for all t < 0. However, θ * is generally unknown and it is impossible to provide a direct estimator since its coordinate are infinite. It is classical to identify a 'good' finite-dimensional model based on the data which can be done by sieve estimation where only a finite number of {θ * i } K i=1 is estimated and letting K grows as the sample size increases. A usual approach to this is model selection and the goal is to provide a model with the prediction error as small as the oracle's one. This question has already been addressed in the literature. [START_REF] Shibata | Asymptotically efficient selection of the order of the model for estimating parameters of a linear process[END_REF] was the first to tackle this issue. He proved that Akaike criterion is asymptotically efficient in the sense that the selected model achieves a smaller one-step mean squared error of prediction when it is fitted to predict an independent realization of the same process. Following Shibata's asymptotically setting, [START_REF] Ing | On same-realization prediction in an infinite-order autoregressive process[END_REF] and [START_REF] Ing | Order selection for same-realization predictions in autoregressive processes[END_REF] extended this result for same realization predictions. Indeed, they argued that the Shibata's idea to fit the model to another independent realization is unrealistic since in practice we only have one data at hand. The common feature of these works is their asymptotic framework. Meanwhile, there were several authors which study this question in non asymptotic regime. [START_REF] Goldenshluger | Nonasymptotic bounds for autoregressive time series modeling[END_REF] in the non parametric framework, studied how well a Gaussian process admitting an AR(∞) representation can be approximated by a finite-order AR model.

In Baraud et al. (2001a) and Baraud et al. (2001b), they analyzed similar question, but a little bit different as observations arise from an auto-regressive model of order k. They proved an oracle inequality under several conditions, for instance the compactly supported base of the regression function. Moreover, they assume that the process is β-mixing which is usually admitted, but quite hard to verify in practice. For linear processes, the τ -mixing is more suitable since its coefficients can be easily computed (see [START_REF] Comte | Adaptive density deconvolution with dependent inputs[END_REF]) and be bounded by a function of the model parameter θ * (see [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF]). In this work, we do not assume any mixing property of the process since the condition A1 implies the τ -mixing property (see [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF]) and we will see that the decreasing rate of τ -mixing coefficients is bounded by the decreasing rate of the coefficients θ * = (θ * i ) i∈N . Based on the above and following a model selection approach, our purpose in this work is to design adaptive penalties in such a way that the selected model mimic the oracle when observations arise form AR(∞) under mild conditions, including the existence of the all order moment of the noise, the decreasing rate of the coefficients of (θ * i ) i∈N so that thanks to a result by [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF], the generating process has nice properties such as stationarity, τ -mixing. The main contribution of this paper is to have proved that the excess risk of the selected estimator enjoys the best bias-variance trade-off over the considered collection. The paper is organized as follows. The model selection approach along with preliminary results are described in Section 2. The main results are presented Section 3. Finally, Section 4 contains the proofs.
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Model Selection Approach and Preliminary Results

Model Selection Approach

Let S m (shortly m) a model for f * be the set of linear function f from R Dm to R such that Given a predictor f θ ∈ S m , its quality is measured by the quadratic loss

f (x 1 , x 2 , . . . , x Dm ) = Dm i=1 θ i x i , ( 2 
R(θ) = E (X n+1 -f n+1 θ ) 2
where f n θ = f θ (X n-1 , . . . , X n-Dm ). According to [START_REF] Bardet | Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes[END_REF], the Bayes predictor which minimizes R(θ) over the set of all predictors is the inaccessible function f θ * . Let then introduce the excess loss of the predictor f θ (with respect to

f θ * ) (θ, θ * ) := R(θ) -R(θ * ) = E (f n+1 θ * -f n+1 θ ) 2 ≥ 0.
Given a model m, we define its best predictor f θ * m by

θ * m = argmin θ∈Θm R(θ).
Its empirical version minimizing the least-squares contrast is

θ m = argmin θ∈Θm γ n (θ) where γ n (θ) = 1 n n t=1 (X t -f t θ ) 2 . (2.2)
In this work, we will consider that the excess loss is measured on the design points, that is to say

( θ, θ * ) = E F θ -F θ * 2 n (2.3)
where

F θ := (f 1 θ , . . . , f n θ ) and x 2 n = 1 n n t=1 x 2 t .
Given that all the models which can be considered must have finite dimensions for fixed n, making all S m wrong models, it is classical to let the dimension of competitive models grow with the number of observations. This will help reduce the excess loss and provide a better approximation of f θ * .

Let M n a countable collection of hierarchical model S m and K n is the dimension of the largest model in M n satisfying |M n | ≤ K n < n. We follow the classical approach of model selection which consists in minimizing the penalized LSE. Let pen: M n → R + be a penalty function, possibly data-dependent, and define

m = argmin m∈Mn {C(m)} with C(m) := γ n θ m + pen(S m ).
(2.4) Thus, the best possible choice over M n is m * the so-called oracle defined as

m * ∈ arg inf m∈Mn ( θ m , θ * ).
(2.5)

The oracle m * is unachievable since it depends on θ * and the distribution P (X 1 ,...,Xn) that are unknowns. However, we hope to select a model m so that

( θ m , θ * ) is closest to ( θ m * , θ * ).
The goal of this paper is to propose a data driven penalty in order to obtain an oracle inequality

( θ m , θ * ) ≤ C 1 inf m∈Mn ( θ m , θ * ) + C 2 n (2.6)
with the leading constant C 1 close to one and C 2 > 0. This goal could rather be to show that that the excess risk of the selected estimator θ m realizes the best bias-variance trade-off, which would make our penalty an ideal choice in terms of excess risk.

( θ m , θ * ) ≤ C 1 inf m∈Mn (θ * m , θ * ) + pen(S m ) + C 2 n (2.7)
with the leading constant C 1 = 1 + δ with δ > 0 (and close to 0) and C 2 > 0.

That is to say that the selected model m will be large enough to reduce its bias, but not too large to avoid high variance.

Notations

We will use the following norms:

• . denotes the usual Euclidean norm on R ν , with ν ≥ 1;

• A op is the operator norm of A as the square root of the largest eigenvalue of A A.

If A is symmetric, then A op is the largest (in absolute value) eigenvalue of A.

• if X is a R ν -random variable and r ≥ 1, we set X r = E X r 1/r ∈ [0, ∞].

Preliminary Results

As we are in dependence setting, we are going to leverage the τ -mixing property of (X t ) t∈Z in order to obtain some exponential inequalities. The τ -mixing coefficients are a measure of the dependence of the process and has been introduced by [START_REF] Dedecker | New dependence coefficients. examples and applications to statistics[END_REF]. This will help us build 'independents' random vectors and apply classical exponential inequalities. Let then introduce some notations. Let (Ω, C, P) be a probability space, M a σ-subalgebra of C and Z a random variable with values in a Banach space E, . E . Assume that E|Z| < ∞ and define

τ (p) (M, Z) = sup f ∈Λ(E) f (x)P Z|M (dx) -f (x)P Z (dx) p where Λ(E) is the set of 1-Lipschitz function, i.e. the functions f from E, . E to R such that |f (x) -f (y)| ≤ x -y E .
Using the definition of τ , we will measure the dependence of the strictly stationary sequence (Z t ) t∈Z thanks to the coefficients defined as follows. For any s ≥ 0, let introduce the norm

x -y R k = (|x 1 -y 1 | + • • • + |x k -y k |) and setting M i = σ(Z t , t ≤ i) and if E(|Z 1 |) < ∞, let τ (p) Z,∞ (s) = sup l>0 max 1≤k≤l 1 k sup τ (p) M i , (Z i 1 , . . . , Z i k ) , i + s ≤ i 1 < • • • < i k .
Finally, the time series

(Z t ) t∈Z is τ (p)
Z,∞ -weakly dependent when its coefficients τ

(p)
Z,∞ tend to 0 as s tends to infinity.

The next Proposition that is a consequence of Theorem 3.1 in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF] gives a link between the τ -mixing coefficients of the process (X t ) t∈Z and the coefficients θ * i of the model (1.3). Proposition 1. Assume A1 holds and if

|θ * t | = O(t -γ
) with γ > 1, there exists a τ -weakly dependent stationary solution of (1.1) and a constant C τ > 0 such that for r > 0

τ (2) X,∞ (r) ≤ C τ log r r γ-1 (2.8) Proof. With G(x, ξ 0 ) = σ ξ 0 + f θ * (x) for any x ∈ R ∞ , it holds G(x, ξ 0 ) -G(y, ξ 0 ) 2 = f θ * (x) -f θ * (y) ≤ ∞ i=1 |θ * i | |x i -y i |.
Therefore (2.8) is a straightforward application of Theorem 3.1 in [START_REF] Doukhan | Weakly dependent chains with infinite memory[END_REF].

As we are going to need independence for block of random variables, let denote for t = 1, . . . , n the random vector X t := (X t-1 , . . . , X t-Kn ) One can see that the process ( X t ) t∈Z is also mixing with τ

(1) X,∞ upper bounded by K n τ

(1)

X,∞ (see Lemma 1). Now, we construct random variables approximating X t 's enjoying the independence by block property. Let s n , q n two integers such that n = 2 s n q n . We are going to build 2 s n blocks of length q n so that the even index blocks are independent and so the odd index blocks. For k = 0, . . . , s n -1 let denote by

A k = X 2kqn+1 , . . . , X (2k+1)qn and B k = X (2k+1)qn+1 , . . . , X (2k+2)qn .
We recall a result of [START_REF] Lerasle | Optimal model selection for density estimation of stationary data under various mixing conditions[END_REF] which is a consequence of the coupling in [START_REF] Dedecker | New dependence coefficients. examples and applications to statistics[END_REF].

Proposition 2. Let (X t ) t∈Z be the stationary mixing process process obtained in Proposition 1. Let also s n , q n , A k , B k defined as above for k = 0, . . . , s n -1. There exist random vectors

A * k = X * 2kqn+1 , . . . , X * (2k+1)qn , B * k = X * (2k+1)qn+1 , . . . , X * (2k+2)qn such that: 1. For k = 0, . . . , s n -1, A *
k has the same law as A k , also B * k and B k . 2. The random vectors (A * k ) 0≤k≤sn-1 are independent and so are the vectors

(B * k ) 0≤k≤sn-1 . 3. A k -A * k 1 ≤ q n K n τ (1) X,∞ (q n ) and B k -B * k 1 ≤ q n K n τ (1) X,∞ (q n ).
To prove the oracle inequality, we will assume some constraints on the observations. A2 X t is sub-Gaussian with variance proxy σ 2 0 > 0 i.e.

E[e λ Xt

] ≤ e λ 2 σ 2 0 /2 for any λ > 0.

Condition A2 implies that the vector Z m t = (X t-1 , . . . , X t-Dm ) which will be prominent in the proofs, is sub-Gaussian with variance proxy D m σ 2 0 . Indeed for any

v ∈ R Dm such that v = 1 , E exp λ v Z m t = E Dm i=1 exp λ v i (X t-i ≤ Dm i=1 exp λ v i (X t-i Dm = Dm i=1 exp λ 2 D m σ 2 0 v 2 i /2 = e λ 2 2 Dm σ 2 0 ,
where the Inequality follows from Hölder's Inequality.

The following assumption provides a sufficient condition to ensure the invertibility of both

Σ m := M m M m and Σ m := E Σ m where M m = X i-1 , . . . , X i-Dm n i=1 . A3: For any f θ ∈ S m , < α, ∂ θ f θ >= 0 a.s. =⇒ α = 0
This condition means that the columns of the matrix M m are linearly independents.

We will also need to bound eigenvalues of the matrices Σ m for any m ∈ M n . To do that, we will leverage the relation between the spectral density of the process and these eigenvalues. Let us denote by r, the covariance function r(h) := E[X t X t+h ] for any integer h. Let also introduce the function g : [-π, π[-→ C such that for any λ,

g(λ) = 1 2 π h∈Z r(h) e -ihλ ,
which exists under A1 with |θ * t | = O(t -γ ) where γ ≥ 1 . Therefore, r is the inverse transform of g and r(h) = π -π e ihλ g(λ)dλ for any h ∈ Z. We will assume that A4: There exists a constant a > 0 such that inf

-π≤λ<π g(λ) ≥ a.
This is a very weak assumption, and we are going to give the value of a for AR(p) process with p ∈ N * . Let denote θ * (z) = 1 -p j=1 θ * j z j , it is well known for such process that

g(λ) = σ 2 2 π θ * (e -iλ ) 2 .
For instance for p equal to one, and

X t = θ * 1 X t-1 + σ ξ t with |θ * 1 | < 1, it follows g(λ) = σ 2 2π 1 -θ * 1 e -iλ 2 = σ 2 2π 1 -2 θ * 1 cos(λ) + (θ * 1 ) 2
, and then it is simple to see that

a := σ 2 2π (1 + |θ * 1 |) 2 ≤ g(λ) ≤ σ 2 2π (1 -|θ * 1 |) 2 . For p ≥ 1 and X t = p j=1 θ * j X t-j + σ ξ t satisfying p j=1 θ * j < 1 and θ * j ≥ 0, we have g(λ) = σ 2 2π 1 -p j=1 θ * j e -ijλ 2 = σ 2 (2π) -1 1 + p j=1 (θ * j ) 2 -2 p j=1 θ * j cos(jλ) + 2 p-1 k=1 θ * k p j=k+1 θ * j cos (j -k)λ -1
.

Thus, using -1 ≤ cos(x) ≤ 1 for any real x, it follows for every λ

σ 2 (2π) -1 1 + p j=1 (θ * j ) 2 + 2 p j=1 θ * j + 2 p-1 k=1 θ * k p j=k+1 θ * j -1 ≤ g(λ) ≤ σ 2 (2π) -1 1 + p j=1 (θ * j ) 2 -2 p j=1 θ * j -2 p-1 k=1 θ * k p j=k+1 θ * j -1
.

For such AR(p) process, one can take the constant a in A4 to be equal to

a = σ 2 (2π) -1 1 + p j=1 (θ * j ) 2 + 2 p j=1 θ * j + 2 p-1 k=1 θ * k p j=k+1 θ * j -1
.

We can now state an important intermediate result which provides uniform lower and upper bound on the spectral norm of the matrices Σ m .

Proposition 3. Under A1 with |θ * t | = O(t -γ ) where γ ≥ 2 , we have for any m ∈ M n Σ m op ≤ π -1 ∞ i=0 E[X 0 X i ] < ∞.
(2.9)

Moreover and under A3-A4, it holds

Σ -1 m op ≤ 1/a. (2.10)
Let us introduce extra important notations. Let denote by µ the law of the vector X t and

Ω n = ω : F θ 2 n F θ 2 µ -1 ≤ 1 2 , ∀F θ ∈ m,m ∈Mn (S m + S m )
where

F θ 2 µ := 1 n E n t=1 (f t θ ) 2 = (f 1 θ ) 2 dµ.
It is common to consider the set Ω n which makes a link between the empirical norm . n and the to L 2 norm (see for instance Baraud et al. (2001b), [START_REF] Hsu | An analysis of random design linear regression[END_REF][START_REF] Sara | On hoeffding's inequality for dependent random variables[END_REF], [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF] among others). We will see that in our framework, Ω n holds with large probability. In all of this work, we assume that q n was chosen to verify

A5 : log q n q n γ-1 ≤ A n , (2.11) 
for some constant A and γ > 1. Also we choose the integer s n such that

A6 : s n 2 min 1 2 7 σ 2 0 K n 2 , 1 2 8 σ 2 0 K n ≥ 3 log n, (2.12) This means that s n is of the form s n = C log n where C ≥ 6 max 2 7 σ 2 0 K n 2 , 2 8 σ 2 0 K n .
Proposition 4. Under assumptions A1, A6 and if |θ * t | = O(t -γ ) with γ ≥ 8, there exists a constant C such that

P(Ω c n ) ≤ C n 3 .
(2.13)

3 Bias-Variance Result

We are now able to state the main result of the paper.

Theorem 3.1. Let consider observations (X 1 , . . . , X n ) arising from a solution of the process (1.1) satisfying A1 with |θ * t | = O(t -γ ) where γ ≥ 8 and also verifying A2 and A4. Let M n be some countable family of AR models satisfying A3 and A5-A6. For any constant x > 2, let a penalty function pen:

M n → R + such that pen(S m ) ≥ 8 x 3 σ 2 D m n . (3.1)
Then, the LSE θ m with m given in (2.4), satisfies

E F θ m -F θ * 2 n I 1 Ωn ≤ C 1 (x) inf m∈Mn E F θ * -F θ * m 2 n +2 pen(S m ) + x(x + 2) x -2 C 2 n (3.2)
where

C 1 (x) = x+2 x-2 2 > 1 and C 2 > 0.
As we can see, this result is almost similar to that of Baraud et al. (2001b) obtained in non parametric framework. However, their result is only valid if we want to estimate the function F θ * on some compact set. This restriction is lifted in our parametric framework.

Proofs

Proof of Theorem 3.1

Proof. We follow the scheme of the proof of Baraud et al. (2001b). Let fix m ∈ M n . From the definition (2.4), we have

γ n θ m + pen(S m ) ≤ γ n θ m + pen(S m ) ≤ γ n (θ * m ) + pen(S m ). (4.1)
Since,

γ n θ m = 1 n n t=1 (X t -f t θm ) 2 = 1 n n t=1 (f t θ * -f t θm ) 2 + σ 2 n n t=1 ξ 2 t - 2 σ n n t=1 ξ t (f t θm -f t θ * ), (4.1) yields to F θ m -F θ * 2 n ≤ F θ * m -F θ * 2 n + 2 σ n n t=1 ξ t (f t θ m -f t θ * m ) + pen(S m ) -pen(S m ). (4.2)
The difficult part of this proof is to handle the inner product

2 n n t=1 σ ξ t (f t θ m -f t θ * m
), which can be rewritten as

2 n n t=1 σ ξ t (f t θ m -f t θ * m ) = 2 n F θ m -F θ * m µ n t=1 σ ξ t (f t θ m -f t θ * m ) F θ m -F θ * m µ ≤ 2 n F θ m -F θ * m µ sup g∈B( m,µ) n t=1 σ ξ t g t θ ≤ x -1 F θ m -F θ * m 2 µ + n -2 x sup g∈B( m,µ) n t=1 σ ξ t g t θ 2
since 2 a b ≤ x -1 a 2 + x b 2 for any x > 0 and where

B(m , µ) = F θ ∈ S m + S m : F θ 2 µ ≤ 1 .
Moreover, on the set Ω n , it holds

F θ m -F θ * m 2 µ ≤ 2 F θ m -F θ * m 2 n ≤ 2 F θ m -F θ * n + F θ * -F θ * m n 2 ≤ 2 (1 + y) F θ m -F θ * 2 n + 2 (1 + y -1 ) F θ * -F θ * m 2 n
for some y > 0. As a result,

2 n n t=1 σ ξ t (f t θ m -f t θ * m ) ≤ 2 (1 + y) x F θ m -F θ * 2 n + 2 (1 + y -1 ) x F θ * -f θ * m 2 n + x n 2 sup g∈B( m,µ) n t=1 σ ξ t g t θ 2 .
Therefore, from (4.2), it holds on

Ω n 1 -2 (1 + y) x F θ m -F θ * 2 n ≤ 1 + 2 (1 + y -1 ) x F θ * -F θ * m 2 n +pen(S m ) -pen(S m ) + x σ 2 n 2 sup g∈B( m,µ) n t=1 ξ t g t θ 2 ≤ 1 + 2 (1 + y -1 ) x F θ * -F θ * m 2 n + pen(S m ) -pen(S m ) +8 x 3 σ 2 D m + D m n + x σ 2 n 2 sup g∈B( m,µ) n t=1 ξ t g t θ 2 -8n x 2 D(S m ) + where D(S m ) = dim(S m + S m ) ≤ D m + D m .
Hence using the condition on the penalty (3.1),

1 -2 (1 + y) x F θ m -F θ * 2 n ≤ 1 + 2 (1 + y -1 ) x F θ * -F θ * m 2 n + 2 pen(S m ) + x σ 2 V m (4.3) with V m = sup g θ ∈B(m ,µ) ν n (g θ ) 2 -8 x 2 n D(S m ) + ,
where ν n (g θ ) := n -1 n t=1 ξ t g t θ . The proof will be established after controling the expectation of V m which involves the supremum of an empirical process. Now we leverage the mixing property in order to apply Talagrand's Inequality (Theorem 5.1) to tackle

E[V m ].
We have

V m = sup g θ ∈B( m,µ) ν n (g θ ) 2 -8 x 2 n D(S m ) + ≤ 2 sup g θ ∈B( m,µ) ν n (g θ ) -ν * n (g θ ) 2 + V * m (4.4)
where

V * m = 2 sup g θ ∈B( m,µ) ν * n (g θ ) 2 -8 x 2 n D(S m ) + and ν * n (g θ ) = 1 n n t=1 ξ t g θ ( X * t ). 1/ Control of E sup g θ ∈B( m,µ) ν n (g θ ) -ν * n (g θ ) 2
. Let m ∈ M n and g θ ∈ B(m , µ). Since the parameter set are compacts and θ → g θ is continuous, there exists

θ 0 ∈ Θ m ∪ Θ m such that sup g θ ∈B(m ,µ) ν n (g θ ) -ν * n (g θ ) 2 = 1 n 2 n t=1 ξ t g θ 0 ( X t ) -g θ 0 ( X * t ) 2 .
As ξ t and F t are independents, it follows that

E sup g θ ∈B(m ,µ) ν n (g θ ) -ν * n (g θ ) 2 = 1 n 2 n t=1 E ξ 2 t g θ 0 ( X t ) -g θ 0 ( X * t ) 2 = 1 n E g θ 0 ( X 0 ) -g θ 0 ( X * 0 ) 2 since E[ξ 2 0 ] = 1. In addition, E g θ 0 ( X 0 ) -g θ 0 ( X * 0 ) 2 = D(S m ) i=1 D(S m ) j=1 θ 0,i θ 0,j E (X -i -X * -i )(X -j -X * -j ) ≤ D(S m ) i=1 θ 0,i X -i -X * -i 2 2
using Cauchy-Schwarz Inequality. It then follows as

D(S m ) i=1 |θ 0,i | < 1 E sup g θ ∈B(m ,µ) ν n (g θ ) -ν * n (g θ ) 2 ≤ 1 n τ (2) (q n ) 2 ≤ C 2 τ n log q n q n 2γ-2
where the last inequality follows from Proposition 1. Thus,

E sup g θ ∈B( m,µ) ν n (g θ ) -ν * n (g θ ) 2 ≤ m ∈Mn E sup g θ ∈B(m ,µ) ν n (g θ ) -ν * n (g θ ) 2 ≤ K n C 2 τ n log q n q n 2γ-2 ≤ A 2 C 2 τ n 2 , using Assumption A5 and since K n ≤ n. 2/ Control of E[V * m ]. First, let us rewrite ν * n (g θ ) for g θ ∈ B(m , µ). Setting X t = (X * t-1 , . . . , X * t-D(S m ) ) , we have ν * n (g θ ) = 1 n n t=1 ξ t g θ ( X * t ) = 1 2 s n q n sn-1 k=0 qn i=1 ξ 2kqn+i g θ ( X * 2kqn+i ) + qn i=1 ξ (2k+1)qn+i g θ ( X * (2k+1)qn+i ) = ν * n,1 (g θ ) + ν * n,2 (g θ ) with ν * n,1 (g θ ) = 1 s n sn-1 k=0 ν * n,1,k (g θ ) and ν * n,2 (g θ ) = 1 s n sn-1 k=0 ν * n,2,k (g θ )
where

ν * n,1,k (g θ ) = 1 2 q n qn i=1 ξ 2kqn+i g θ ( X * 2kqn+i ) and ν * n,2,k (g θ ) = 1 2 q n qn i=1 ξ (2k+1)qn+i g θ ( X * (2k+1)qn+i )
Now let remark that ν * n,1 (g θ ) and ν * n,2 (g θ ) are both sum of s n independent random variables by virtue of Proposition 2. Hence,

V * m ≤ sup g θ ∈B( m,µ) 4 ν * n,1 (g θ ) 2 -4 x 2 n -1 D(S m ) + + sup g θ ∈B( m,µ) 4 ν * n,2 (g θ ) 2 -4 x 2 n -1 D(S m ) + .
As a consequence it is sufficient to study

E * 1 := E sup g∈B( m,µ) 4 ν * n,1 (g θ ) 2 -4 x 2 n -1 D(S m )
+ and the bound for E sup

g θ ∈B( m,µ) 4 ν * n,2 (g θ ) 2 -4 x 2 n -1 D(S m )
+ will follow by using analogous arguments.

Bounding E * 1
Since the noise (ξ t ) is not bounded, the process ν * n,1 is not bounded either. Let's use the technique used in [START_REF] Comte | Regression function estimation as a partly inverse problem[END_REF] to overcome this difficulty. Therefore, we decompose ξ t as

ξ t = η t + t , η t = ξ t I 1 |ξt|≤kn ,
where k n is a deterministic sequence or a constant to be chosen later. We then have

ν * n,1 (g θ ) = υ * n,1 (g θ ) + υ * n,2 (g θ ),
where

υ * n,1 (g θ ) = 1 s n sn-1 k=0 υ * n,1,k (g θ ) with υ * n,1,k (g θ ) = 1 2 q n qn i=1 η 2kqn+i g θ ( X * 2kqn+i ) and υ * n,2 (g θ ) = 1 s n sn-1 k=0 υ * n,2,k (g θ ) with υ * n,2,k (g θ ) = 1 2 q n qn i=1 2kqn+i g θ ( X * 2kqn+i ).
Thus,

E * 1 ≤ 8 E sup g θ ∈B( m,µ) υ * n,1 (g θ ) 2 -0.5 x 2 n -1 D(S m ) + + 2 E sup g θ ∈B( m,µ) υ * n,2 (g θ ) 2 ≤ 8 m ∈Mn E sup g θ ∈B(m ,µ) υ * n,1 (g θ ) 2 -0.5 x 2 n -1 D(S m ) + (4.5) +2 E sup g θ ∈B( m,µ) υ * n,2 (g θ ) 2 . (4.6)
We start by bounding the term in (4.5). Let m ∈ M n . In order to apply Theorem 5.1, one has to find M, H and v such that

sup g θ ∈B(m ,µ) υ * n,1,k (g θ ) ≤ M, E sup g θ ∈B(m ,µ) υ n,1 (g θ ) 2 ≤ H 2 ,
and sup

g∈B(m ,µ) Var υ * n,1,k (g θ )) ≤ v.
• Since the noise is bounded here and from the assumption A1, the process (X t ) is also bounded. Indeed, under A1, there exists (φ * i ) such that

X t = ∞ i=0 φ * i ξ t-i with ∞ i=0 |φ * i | < +∞. Therefore |X t | ≤ Φ 0 k n with Φ 0 := ∞ i=0 |φ * i |.
Moreover, for any g θ ∈ B(m , µ), we have

g θ ( X t ) = D(S m ) i=1 θ i X t-i ≤ Φ 0 k n D(S m ) i=1 |θ i | < Φ 0 k n .
As a result, we have

sup g θ ∈B(m ,µ) υ * n,1,k (g θ ) ≤ 1 2 q n sup g θ ∈B(m ,µ) qn i=1 η 2kqn+i g θ ( X * 2kqn+i ) ≤ Φ 0 k 2 n 2 := M
• Next, since the parameter set are compacts, there exists

θ 0 ∈ Θ m ∪ Θ m such that sup g θ ∈B(m ,µ) υ * n,1 (g θ ) 2 = υ * n,1 (g θ 0 ) 2 .
Moreover,

E υ * n,1 (g θ 0 ) 2 = 1 s n E υ * n,1,0 (g θ 0 ) 2 = 1 4 s n q 2 n qn i,j=1 E η i g θ ( X * i ) η j g θ ( X * j ) = 1 4 s n q 2 n qn i=1 E η i g θ ( X * i ) 2 ≤ Φ 2 0 k 2 n 2 n ≤ Φ 2 0 k 2 n 2 n D(S m ) := H 2 since D(S m ) ≥ 1. • Lastly, as Var [X] ≤ E[X 2 ],
it follows from the previous series of equations

Var υ * n,1,0 (g θ )) ≤ E υ * n,1,0 (g θ 0 ) 2 ≤ Φ 2 0 k 2 n 4 q n := v.
As a consequence from Theorem 5.1 and taking α

= 1 2 ( x 2 2Φ 2 0 k 2 n -1) > 0, we have E sup g θ ∈B(m ,µ) υ * n,1 (g θ ) 2 -0.5 x 2 n -1 D(S m ) + ≤ 2 K Φ 2 0 k 2 n 4q n e -KqnD(S m ) ( x 2 2Φ 2 0 k 2 n -1) + 49Φ 2 0 k 4 n 4n 2 KC 2 (α) e -2 √ 2KC(α) √ n √ D(S m ) kn .
Hence there exists a constant K such that

m ∈Mn E sup g θ ∈B(m ,µ) υ * n,1 (g θ ) 2 -0.5 x 2 n -1 D(S m ) + ≤ K n .
(4.7)

• Now, let us upper bound the term in (4.6). For any m ∈ M n and any g θ ∈ B(m , µ), we have

g θ ( X t ) = D(S m ) i=1 θ i X t-i ≤ sup t-D(S m )≤i<t |X i | D(S m ) i=1 |θ i | < sup t-D(S m )≤i<t |X i |.
Therefore,

υ * n,2,k (g θ ) = 1 2 q n qn i=1 ξ 2kqn+i g θ ( X * 2kqn+i ) < 1 2 q n qn i=1 |ξ 2kqn+i | sup 2kqn+i-Kn≤t<2kqn+i |X * t | := Y * k , (4.8) so that sup g∈B( m,µ) υ * n,2 (g θ ) < 1 s n sn-1 k=0 Y * k .
Let us notice that (Y * k ) k is a family of independent random variables as (υ * n,1,k (g)) k . Thus, it follows

E sup g θ ∈B( m,µ) υ * n,2 (g θ ) 2 < 1 s 2 n sn-1 i,j=0 E Y * i Y * j < 1 s 2 n sn-1 i=0 E Y * 2 i = 1 s n E Y * 2 0 .
Moreover,

E Y * 2 0 = 1 4 q 2 n qn i,j=1 E |ξ i | sup i-Kn≤t<i |X * t | |ξ j | sup j-Kn≤t<j |X * t | = 1 4 q 2 n qn i=1 E sup i-Kn≤t<i |X * t | 2 = µ 2 4 q n , (4.9) 
where µ

2 = E[X 2 t ] < ∞. It follows E sup g θ ∈B( m,µ) ν * n,1 (g θ ) 2 < µ 2 4 s n q n = µ 2 2 n . (4.10)
Inequality (4.7) along with (4.10) yields to

E * 1 ≤ 8 K n + µ 2 n .
We conclude that there exists K > 0

E[V m ] ≤ K n . (4.11)
Returning to (4.3), and taking expectation on both sides, it then follows

1-2 (1 + y) x E f t θ m -f t θ * 2 n ≤ 1+2 (1 + y -1 ) x E f t θ * -f t θ * m 2 n +2 pen(S m )+x K n .
(4.12)

For y = x-2 x+2 > 0, so that 1 + y = 2x x+2 and 1 + y -1 = 2x

x-2 , we obtain For any F θ ∈ S m , using the linearity we can write

f θ ( X t ) 2 = Dm i=1 θ i X t-i 2 = Dm i,j=1 θ i θ j X t-i X t-j = θ Σ m,t θ where θ = (θ 1 , . . . , θ Dm ) , Σ m,t = Z m t (Z m t ) with Z m t = (X t-1 , . . . , X t-Dm ) . So that with Σ m = E Σ m,t , it follows ν * n (F 2 θ ) = 1 n n t=1 θ Σ t -Σ θ = θ ( Σ m -Σ m )θ,
Using Lemma 3 with u = 1/4 and by virtue of A6, it follows

P 2 ≤ 2 exp -3 log n ≤ 2 n 3 . Now let bound P 1 . We know that for a D m × D m matrix A A op ≤ A ∞ := max 1≤i≤Dm Dm j=1 |A ij |
Thus, from Markov's Inequality,

P 1 ≤ 4 E Σ m -Σ * m op ≤ 4 E max 1≤i≤Dm Dm j=1 Σ m -Σ * m i,j ≤ 4 Dm j=1 E Σ m -Σ * m i 0 ,j ≤ 4 Dm j=1 E X t-i 0 X t-j -X * t-i 0 X * t-j . Moreover, X t-i X t-j -X * t-i X * t-j ≤ X t-i X t-j -X * t-j + X * t-j X t-i -X * t-i so that with Cauchy-Schwartz's Inequality, E X t-i X t-j -X * t-i X * t-j ≤ 2 X 0 2 X t-1 -X * t-1 2 ≤ 2 X 0 2 τ (2) (q n ).
Hence using Proposition 1, it follows

P 1 ≤ 8 X 0 2 D m τ (2) (q n ) ≤ 8 X 0 2 D m C τ log q n q n γ-1
.

Moreover, since γ ≥ 8 and from assumption A5, one can find some constant A such that

log q n q n γ-1 ≤ A n 4 .
As a result, with c 0 := 8 X 0 2 C τ A , it holds

P 1 ≤ c 0 n 3 .
As a consequence,

P(Ω c n ) ≤ 2 + c 0 n 3 .

Proof of Proposition 3

Proof. The proof of the will be based on the relation between the spectral density function and the maximum eigenvalues of the variance covariance matrix. Denote by u ∈ R Dm the normalized eigenvector associated to the largest eigenvalue λ max (Σ m ). Hence, 

λ max (Σ m ) = u Σ m u = Dm j,k=1 u j r(j -k) u k = π -π g(λ) Dm j,k=1 u j e i(j-k)λ u k dλ = π -π g(λ) Dm j=1 u j e i jλ 2 dλ ≤ sup -π≤λ<π g(λ) π -π Dm j=1 u j e i jλ
(λ) ≤ 1 2 π h∈Z |r(h)| ≤ C π +∞ h=0 1 (h + 1) γ < ∞. Given that Σ m is symmetric, it follows Σ m op = λ max (Σ m ) ≤ C π +∞ h=0 1 (h + 1) γ ,
which concludes the proof of (2.9). Now we end by the proof of (2.10). Reasoning as above, and by virtue of A4, one can show that

λ min (Σ m ) ≥ inf -π≤λ<π g(λ) ≥ a which yields to Σ -1 m op = 1 λ min (Σ m ) ≤ 1 a ,
so that (2.10) is established.

Technical Lemmas

Lemma 1. Assume A1 holds and (X t ) the mixing stationary solution of (1.1). Then, the process ( X t ) is mixing and τ

(1) X,∞ (r) ≤ K n τ (1)
X,∞ (r -1). (4.13)

Proof. Let set by M i X = σ( X t , t ≤ i) and M i X = σ(X t , t ≤ i) for an integer i. One would like to bound τ (1) M i X , X j 1 , . . . , X j k for j k > . . . > j 1 ≥ i + r. Let assume that the universe Ω is rich enough so that, one can find X * j l = X * j l -1 , . . . , X * j l -Kn

with l = 1, . . . , k verifying 1. X * j 1 , . . . , X * j k is distributed as X j 1 , . . . , X j k and independent of M i X ; 2. X * j 1 -1 , . . . , X * j k -1
is distributed as X j 1 -1 , . . . , X j k -1 and independent of M i X . As a result,

τ (1) M i X , X j 1 , . . . , X j k ≤ k l=1 X j l -X * j l 1 = k l=1 Kn t=1 E |X j l -t -X * j l -t | ≤ K n k l=1 E |X j l -1 -X * j l -1 | = K n X j 1 -1 , . . . , X j k -1 -X * j 1 -1 , . . . , X * j k -1 1 = K n τ (1) M i X , X j 1 -1 , . . . , X j k -1 .
This fact along with the definition of τ Proof. By virtue of A1, the process (X t ) t is causal; that is there exists (φ i ) i∈N such that X t = +∞ i=0 φ i ξ t-i with +∞ i=0 |φ i | < ∞. The sequence (φ i ) i∈N is given by the relation φ(z) = +∞ i=0 φ i z i = 1 θ(z) with θ(z) = 1 -+∞ i=0 θ * i z i . Equating coefficients of z j , j = 0, 1, . . ., we find that φ 0 = 1 and for i ≥ 1

φ i = i j=1 θ * j φ i-j .
This fact allows us to deduce that the sequences (φ i ) i∈N and (θ * i ) i∈N decay at the same rate. Therefore, since |θ * t | = O (t + 1) -γ , there exists h 0 ∈ Z such that for any h ≥ h 0 , it holds |φ t | ≤ C (t + 1) -γ for some constant C > 0. Thus,

r(h) = ∞ j=0 φ j φ j+h ≤ C 2 ∞ j=0 1 (j + 1) γ 1 (j + h + 1) γ ≤ C 2 (h + 1) -γ ∞ j=0 1 (j + 1) γ ≤ C 2 π 2 6 (h + 1) -γ ,
where the last inequality follows from the fact that γ ≥ 2 and that established the Lemma. 

v: v =1 v A v = v 0 A v 0 .
Therefore one can find a vector v 0 ∈ R Dm with v 0 = 1 such that

P Σ * m -Σ m op ≥ u = P v 0 Σ * m -Σ m v 0 ≥ u .
But,

v 0 Σ * m -Σ m v 0 = 1 n n t=1 v 0 Σ * m,t v 0 -v 0 Σ m v 0 = 1 n n t=1 v 0 (Z * m t ) (Z * m t ) v 0 -v 0 Σ m v 0 = 1 n n t=1 Y 2 t -E[Y 2 t ] with Y t = v 0 Z m t = Dm i=1 v i 0 X * t-i . From A2, Y t is SG(D m σ 2 0 )
. Therefore, Y 2 t is SE(256 D 2 m σ 4 0 , 16 D m σ 2 0 ) (where SE stands for Sub-Gaussian and SE for Sub-Exponential).

Moreover, we can write 

v 0 Σ * m -Σ m v 0 = 1 n n t=1 Y 2 t -E[Y 2 t ] = 1

  .1) with θ = (θ 1 , . . . , θ Dm ) ∈ Θ m and Θ m a compact set of R Dm satisfying sup θ∈Θm Dm i=1 |θ i | < 1. S m can be viewed as an AR(D m ) model.

  Under A1 with |θ * t | = O(t -γ ) where γ > 1, we have r(h) = E[X 0 X h ] = O (h + 1) -γ

Lemma 3 .

 3 Under assumptions A2, it holds for any model m ∈ M n , and for all u > 0 P Σ * m -Σ m op ≥ u ≤ 2 exp -One can write for a matrix A A op = max

  k } and {Y 2,k } are independent random vectors by virtue of Proposition 2. Now, let us show that Y i,k are sub-exponentials. For λ such that |λ| <
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where we have used Hölder's Inequality. Hence Y 1,k is SE(64 D 2 m σ 4 0 ,16 D m σ 2 0 ). As a result, using exponential inequalities for SE random variables, it follows

Let show that whenever the equality holds (u Σ m = 0), u = 0. Since ((Z m 0 ) u) 2 ≥ 0, its expectation vanishes if and only if (Z m 0 ) u = 0 a.e. which yields to u = 0 by A3. Hence, Σ m is positive definite and then invertible.

Theoretical Tools

The next Theorem is a Talagrand's Inequality given in [START_REF] Klein | Concentration around the mean for maxima of empirical processes[END_REF].

Theorem 5.1. Let Y 1 , . . . , Y n be independent random variables and let F be a countable class of uniformly bounded measurable functions. Then for all α > 0,

Var (g(Y t )) ≤ v.
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