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DATA DRIVEN MODEL SELECTION FOR
SAME-REALIZATION PREDICTIONS IN

AUTOREGRESSIVE PROCESSES

BY Kare KAMILA∗

SAMM, Université Paris 1 Panthéon-Sorbonne, FRANCE

Abstract

This paper is about the one-step ahead prediction of the future of observations
drawn from an infinite-order autoregressive AR(∞) process. It aims to design penalties
(fully data driven) ensuring that the selected model verifies the efficiency property
but in the non asymptotic framework. We show that the excess risk of the selected
estimator enjoys the best bias-variance trade-off over the considered collection. To
achieve these results, we needed to overcome the dependence difficulties by following a
classical approach which consists in restricting to a set where the empirical covariance
matrix is equivalent to the theoretical one. We show that this event happens with
probability larger than 1− c0/n2 with c0 > 0. The proposed data driven criteria are
based on the minimization of the penalized criterion akin to the Mallows’s Cp.

Key words: Model selection, oracle inequality, efficiency, autoregressive process, data
driven.

1 Introduction

Consider observations (X1, X2, . . . , Xn) arising from a trajectory of the process

Xt = f∗
(
(Xt−i)i∈N∗

)
+ σ ξt for any t ∈ Z. (1.1)

where (ξt)t∈Z is a sequence of zero-mean independent identically distributed random vari-
ables (i.i.d.r.v) satisfying E(|ξ0|4) < ∞ and f∗ : RN → R is a measurable function and
σ > 0 an unknown constant.

The problem is to estimate the function f∗ using these observations. The process (1.1)
is a particular case of the general class of affine causal process studied in Doukhan and
Wintenberger (2008) and Bardet and Wintenberger (2009). The study of this type of pro-
cess more often requires the classical regularity condition on the function f∗, which are
not restrictive at all and remain valid in various time series models. This condition can be
stated as follows:

∞∑
k=1

(
sup
x∈R∞

∣∣∣ ∂
∂xk

f∗(x)
∣∣∣) < 1, (1.2)

provided that that f∗ admits partial derivatives on RN. Under (1.2) and if the noise ξ0

admits r-order moments, Doukhan and Wintenberger (2008) showed that there exists a
stationary, mixing and ergodic solution to (1.1) admitting r-order moments.

∗ This author has received funding from the European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie grant agreement No 754362.
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Moreover, Bardet and Wintenberger (2009) studied the consistency and the asymptotic
normality of the Quasi-maximum log-likelihood estimator (QMLE) of θ∗ = (θ∗i )i∈N in the
case f∗ = fθ∗ .

In this paper, we will focus only on processes with a linear regression function (fθ∗) with
respect to the past and depending on some parameter θ∗ ∈ RN ; that is

f∗(Xt−1, Xt−2, . . .) = fθ∗(Xt−1, Xt−2, . . .) =

∞∑
i=1

θ∗iXt−i. (1.3)

For such processes, condition (1.2) becomes

A1 :

∞∑
i=1

|θ∗i | < 1.

Even if this condition reduces the set of parameters a bit, the class of AR(∞) processes
checking the condition A1 is rich and of practical importance because it contains almost
all invertible causal ARMA(p, q) processes and it is very useful for prediction given the
past. Moreover, contrary to the autocovariance of ARMA(p, q) processes which decays ex-
ponentially fast, AR(∞) are able to model more complex behaviour such as slower decay
of the covariance structure.

Henceforth, let observations (X1, X2, . . . , Xn) be a trajectory of the solution X := (Xt)t∈Z
of (1.1) verifying A1. The goal of this paper is to predict the next value Xn+1. In fact, if θ∗

were known, a simple prediction of Xn+1 could be fθ∗(Xn, Xn−1, . . .) setting Xt = 0 for all
t < 0. However, θ∗ is generally unknown and it is impossible to provide a direct estimator
since its coordinate are infinite. It is classical to identify a ’good’ finite-dimensional model
based on the data which can be done by sieve estimation where only a finite number of
{θ∗i }Ki=1 is estimated and letting K grows as the sample size increases. A usual approach
to this is model selection and the goal is to provide a model with the prediction error as
small as the oracle’s one.

This question has already been addressed in the literature. Shibata (1980) was the first to
tackle this issue. He proved that Akaike criterion is asymptotically efficient in the sense
that the selected model achieves a smaller one-step mean squared error of prediction when
it is fitted to predict an independent realization of the same process. Following Shibata’s
asymptotically setting, Ing and Wei (2003) and Ing et al. (2005) extended this result for
same realization predictions. Indeed, they argued that the Shibata’s idea to fit the model
to another independent realization is unrealistic since in practice we only have one data at
hand. The common feature of these works is their asymptotic framework.
Meanwhile, there were several authors which study this question in non asymptotic regime.
Goldenshluger and Zeevi (2001) in the non parametric framework, studied how well a Gaus-
sian process admitting an AR(∞) representation can be approximated by a finite-order AR
model.

In Baraud et al. (2001a) and Baraud et al. (2001b), they analyzed similar question, but
a little bit different as observations arise from an auto-regressive model of order k. They
proved an oracle inequality under several conditions, for instance the compactly supported
base of the regression function. Moreover, they assume that the process is β-mixing which
is usually admitted, but quite hard to verify in practice. For linear processes, the τ -mixing
is more suitable since its coefficients can be easily computed (see Comte et al. (2008))
and be bounded by a function of the model parameter θ∗ (see Doukhan and Wintenberger
(2008)). In this work, we do not assume any mixing property of the process since the
condition A1 implies the τ -mixing property (see Doukhan and Wintenberger (2008)) and
we will see that the decreasing rate of τ -mixing coefficients is bounded by the decreasing
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rate of the coefficients θ∗ = (θ∗i )i∈N.
Based on the above and following a model selection approach, our purpose in this work
is to design adaptive penalties in such a way that the selected model mimic the oracle
when observations arise form AR(∞) under mild conditions, including the existence of the
all order moment of the noise, the decreasing rate of the coefficients of (θ∗i )i∈N so that
thanks to a result by Doukhan and Wintenberger (2008), the generating process has nice
properties such as stationarity, τ -mixing.
The main contribution of this paper is to have proved that the excess risk of the selected
estimator enjoys the best bias-variance trade-off over the considered collection.
The paper is organized as follows. The model selection approach along with preliminary
results are described in Section 2. The main results are presented Section 3. Finally,
Section 4 contains the proofs.

2 Model Selection Approach and Preliminary Re-
sults

2.1 Model Selection Approach

Let Sm (shortly m) a model for f∗ be the set of linear function f from RDm to R such that

f(x1, x2, . . . , xDm) =

Dm∑
i=1

θi xi, (2.1)

with θ = (θ1, . . . , θDm) ∈ Θm and Θm a compact set of RDm satisfying sup
θ∈Θm

∑Dm
i=1 |θi| < 1.

Sm can be viewed as an AR(Dm) model.

Given a predictor fθ ∈ Sm, its quality is measured by the quadratic loss

R(θ) = E
[
(Xn+1 − fn+1

θ )2
]

where fnθ = fθ(Xn−1, . . . , Xn−Dm). According to Bardet and Wintenberger (2009), the
Bayes predictor which minimizes R(θ) over the set of all predictors is the inaccessible
function fθ∗ . Let then introduce the excess loss of the predictor fθ (with respect to fθ∗)

`(θ, θ∗) := R(θ)−R(θ∗) = E
[
(fn+1
θ∗ − fn+1

θ )2
]
≥ 0.

Given a model m, we define its best predictor fθ∗m by

θ∗m = argmin
θ∈Θm

R(θ).

Its empirical version minimizing the least-squares contrast is

θ̂m = argmin
θ∈Θm

γn(θ) where γn(θ) =
1

n

n∑
t=1

(Xt − f tθ)2. (2.2)

In this work, we will consider that the excess loss is measured on the design points, that
is to say

`(θ̂, θ∗) = E
[∥∥F

θ̂
− Fθ∗

∥∥2

n

]
(2.3)

where Fθ := (f1
θ , . . . , f

n
θ )> and ‖x‖2n = 1

n

∑n
t=1 x

2
t .

Given that all the models which can be considered must have finite dimensions for fixed
n, making all Sm wrong models, it is classical to let the dimension of competitive models
grow with the number of observations. This will help reduce the excess loss and provide a
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better approximation of fθ∗ .

Let Mn a countable collection of hierarchical model Sm and Kn is the dimension of the
largest model inMn satisfying |Mn| ≤ Kn < n. We follow the classical approach of model
selection which consists in minimizing the penalized LSE. Let pen: Mn → R+ be a penalty
function, possibly data-dependent, and define

m̂ = argmin
m∈Mn

{C(m)} with C(m) := γn
(
θ̂m
)

+ pen(Sm). (2.4)

Thus, the best possible choice overMn is m∗ the so-called oracle defined as

m∗ ∈ arg inf
m∈Mn

`(θ̂m, θ
∗). (2.5)

The oracle m∗ is unachievable since it depends on θ∗ and the distribution P(X1,...,Xn) that
are unknowns. However, we hope to select a model m̂ so that `(θ̂m̂, θ∗) is closest to
`(θ̂m∗ , θ

∗).
The goal of this paper is to propose a data driven penalty in order to obtain an oracle
inequality

`(θ̂m̂, θ
∗) ≤ C1 inf

m∈Mn

{
`(θ̂m, θ

∗)
}

+
C2

n
(2.6)

with the leading constant C1 close to one and C2 > 0. This goal could rather be to
show that that the excess risk of the selected estimator θ̂m̂ realizes the best bias-variance
trade-off, which would make our penalty an ideal choice in terms of excess risk.

`(θ̂m̂, θ
∗) ≤ C ′1 inf

m∈Mn

{
`(θ∗m, θ

∗) + pen(Sm)

}
+
C ′2
n

(2.7)

with the leading constant C ′1 = 1 + δ with δ > 0 (and close to 0) and C ′2 > 0.
That is to say that the selected model m̂ will be large enough to reduce its bias, but

not too large to avoid high variance.

2.2 Notations

We will use the following norms:

• ‖.‖ denotes the usual Euclidean norm on Rν , with ν ≥ 1;

• ‖A‖op is the operator norm of A as the square root of the largest eigenvalue of A>A.
If A is symmetric, then ‖A‖op is the largest (in absolute value) eigenvalue of A.

• if X is a Rν-random variable and r ≥ 1, we set ‖X‖r =
(
E
[
‖X‖r

])1/r ∈ [0,∞].

2.3 Preliminary Results

As we are in dependence setting, we are going to leverage the τ -mixing property of (Xt)t∈Z
in order to obtain some exponential inequalities. The τ -mixing coefficients are a measure
of the dependence of the process and has been introduced by Dedecker and Prieur (2005).
This will help us build ’independents’ random vectors and apply classical exponential
inequalities. Let then introduce some notations.

Let (Ω, C,P) be a probability space,M a σ-subalgebra of C and Z a random variable
with values in a Banach space

(
E, ‖.‖E

)
. Assume that E|Z| <∞ and define

τ (p)(M, Z) =
∥∥∥ sup
f∈Λ(E)

{∣∣∣ ∫ f(x)PZ|M(dx)−
∫
f(x)PZ(dx)

∣∣∣}∥∥∥
p
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where Λ(E) is the set of 1-Lipschitz function, i.e. the functions f from
(
E, ‖.‖E

)
to R

such that |f(x)− f(y)| ≤ ‖x− y‖E .
Using the definition of τ , we will measure the dependence of the strictly stationary sequence
(Zt)t∈Z thanks to the coefficients defined as follows. For any s ≥ 0, let introduce the norm
‖x− y‖Rk = (|x1− y1|+ · · ·+ |xk − yk|) and settingMi = σ(Zt, t ≤ i) and if E(|Z1|) <∞,
let

τ
(p)
Z,∞(s) = sup

l>0

{
max
1≤k≤l

1

k
sup

{
τ (p)

(
Mi, (Zi1 , . . . , Zik)

)
, i+ s ≤ i1 < · · · < ik

}}
.

Finally, the time series (Zt)t∈Z is τ (p)
Z,∞-weakly dependent when its coefficients τ (p)

Z,∞ tend to
0 as s tends to infinity.

The next Proposition that is a consequence of Theorem 3.1 in Doukhan and Winten-
berger (2008) gives a link between the τ -mixing coefficients of the process (Xt)t∈Z and the
coefficients θ∗i of the model (1.3).

Proposition 1. Assume A1 holds and if |θ∗t | = O(t−γ) with γ > 1, there exists a τ -weakly
dependent stationary solution of (1.1) and a constant Cτ > 0 such that for r > 0

τ
(2)
X,∞(r) ≤ Cτ

( log r

r

)γ−1
(2.8)

Proof. With G(x, ξ0) = σ ξ0 + fθ∗(x) for any x ∈ R∞, it holds

∥∥G(x, ξ0)−G(y, ξ0)
∥∥

2
=
∣∣fθ∗(x)− fθ∗(y)

∣∣ ≤ ∞∑
i=1

|θ∗i | |xi − yi|.

Therefore (2.8) is a straightforward application of Theorem 3.1 in Doukhan and Winten-
berger (2008). �

As we are going to need independence for block of random variables, let denote for t =
1, . . . , n the random vector ~Xt := (Xt−1, . . . , Xt−Kn)> One can see that the process ( ~Xt)t∈Z

is also mixing with τ (1)
~X,∞

upper bounded by Kn τ
(1)
X,∞ (see Lemma 1).

Now, we construct random variables approximating ~Xt’s enjoying the independence by
block property. Let sn, qn two integers such that n = 2 sn qn. We are going to build 2 sn
blocks of length qn so that the even index blocks are independent and so the odd index
blocks.
For k = 0, . . . , sn − 1 let denote by

Ak =
(
~X2kqn+1, . . . , ~X(2k+1)qn

)
and Bk =

(
~X(2k+1)qn+1, . . . , ~X(2k+2)qn

)
.

We recall a result of Lerasle et al. (2011) which is a consequence of the coupling in Dedecker
and Prieur (2005).

Proposition 2. Let (Xt)t∈Z be the stationary mixing process process obtained in Proposi-
tion 1. Let also sn, qn, Ak, Bk defined as above for k = 0, . . . , sn − 1. There exist random
vectors A∗k =

(
~X∗2kqn+1, . . . ,

~X∗(2k+1)qn

)
, B∗k =

(
~X∗(2k+1)qn+1, . . . ,

~X∗(2k+2)qn

)
such that:

1. For k = 0, . . . , sn − 1, A∗k has the same law as Ak, also B∗k and Bk.

2. The random vectors (A∗k)0≤k≤sn−1 are independent and so are the vectors (B∗k)0≤k≤sn−1.

3. ∥∥Ak −A∗k∥∥1
≤ qnKn τ

(1)
X,∞(qn)

and
∥∥Bk −B∗k∥∥1

≤ qnKn τ
(1)
X,∞(qn).

5



To prove the oracle inequality, we will assume some constraints on the observations.

A2 Xt is sub-Gaussian with variance proxy σ2
0 > 0 i.e.

E[eλXt ] ≤ eλ2 σ2
0/2 for any λ > 0.

Condition A2 implies that the vector Zmt = (Xt−1, . . . , Xt−Dm)> which will be prominent
in the proofs, is sub-Gaussian with variance proxy Dm σ

2
0. Indeed for any v ∈ RDm such

that ‖v‖ = 1 ,

E
[

exp
(
λ v>Zmt

)]
= E

[
Dm∏
i=1

exp
(
λ vi(Xt−i

)]

≤
Dm∏
i=1

∥∥∥ exp
(
λ vi(Xt−i

)∥∥∥
Dm

=

Dm∏
i=1

exp
(
λ2Dm σ

2
0 v

2
i /2
)

= e
λ2

2
Dm σ2

0 ,

where the Inequality follows from Hölder’s Inequality.

The following assumption provides a sufficient condition to ensure the invertibility of
both Σ̂m := M>mMm and Σm := E

[
Σ̂m

]
where Mm =

[
Xi−1, . . . , Xi−Dm

]n
i=1

.

A3: For any fθ ∈ Sm, < α, ∂θfθ >= 0 a.s. =⇒ α = 0
This condition means that the columns of the matrix Mm are linearly independents.

We will also need to bound eigenvalues of the matrices Σm for any m ∈ Mn. To do
that, we will leverage the relation between the spectral density of the process and these
eigenvalues. Let us denote by r, the covariance function r(h) := E[XtXt+h] for any integer
h. Let also introduce the function g : [−π, π[−→ C such that for any λ,

g(λ) =
1

2π

∑
h∈Z

r(h) e−ihλ,

which exists under A1 with |θ∗t | = O(t−γ) where γ ≥ 1 . Therefore, r is the inverse trans-
form of g and r(h) =

∫ π
−π e

ihλ g(λ)dλ for any h ∈ Z. We will assume that

A4: There exists a constant a > 0 such that inf
−π≤λ<π

g(λ) ≥ a.

This is a very weak assumption, and we are going to give the value of a for AR(p)
process with p ∈ N∗. Let denote θ∗(z) = 1−

∑p
j=1 θ

∗
j z
j , it is well known for such process

that

g(λ) =
σ2

2π
∣∣θ∗(e−iλ)

∣∣2 .
For instance for p equal to one, and Xt = θ∗1Xt−1 + σ ξt with |θ∗1| < 1, it follows

g(λ) =
σ2

2π
∣∣1− θ∗1 e−iλ∣∣2

=
σ2

2π
(

1− 2 θ∗1 cos(λ) + (θ∗1)2
) ,
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and then it is simple to see that

a :=
σ2

2π (1 + |θ∗1|)2
≤ g(λ) ≤ σ2

2π (1− |θ∗1|)2
.

For p ≥ 1 and Xt =
∑p

j=1 θ
∗
jXt−j + σ ξt satisfying

∑p
j=1 θ

∗
j < 1 and θ∗j ≥ 0, we have

g(λ) =
σ2

2π
∣∣1−∑p

j=1 θ
∗
j e
−ijλ

∣∣2
= σ2 (2π)−1

(
1 +

p∑
j=1

(θ∗j )
2 − 2

p∑
j=1

θ∗j cos(jλ) + 2

p−1∑
k=1

θ∗k

{ p∑
j=k+1

θ∗j cos
(
(j − k)λ

)})−1

.

Thus, using −1 ≤ cos(x) ≤ 1 for any real x, it follows for every λ

σ2 (2π)−1

(
1 +

p∑
j=1

(θ∗j )
2 + 2

p∑
j=1

θ∗j + 2

p−1∑
k=1

θ∗k

{ p∑
j=k+1

θ∗j

})−1

≤ g(λ)

≤ σ2 (2π)−1

(
1 +

p∑
j=1

(θ∗j )
2 − 2

p∑
j=1

θ∗j − 2

p−1∑
k=1

θ∗k

{ p∑
j=k+1

θ∗j

})−1

.

For such AR(p) process, one can take the constant a in A4 to be equal to

a = σ2 (2π)−1

(
1 +

p∑
j=1

(θ∗j )
2 + 2

p∑
j=1

θ∗j + 2

p−1∑
k=1

θ∗k

{ p∑
j=k+1

θ∗j

})−1

.

We can now state an important intermediate result which provides uniform lower and
upper bound on the spectral norm of the matrices Σm.

Proposition 3. Under A1 with |θ∗t | = O(t−γ) where γ ≥ 2 , we have for any m ∈Mn∥∥Σm

∥∥
op ≤ π

−1
∞∑
i=0

∣∣E[X0Xi]
∣∣ <∞. (2.9)

Moreover and under A3-A4, it holds∥∥Σ−1
m

∥∥
op ≤ 1/a. (2.10)

Let us introduce extra important notations. Let denote by µ the law of the vector ~Xt

and

Ωn =

{
ω :

∣∣∣∣∣‖Fθ‖2n‖Fθ‖2µ
− 1

∣∣∣∣∣ ≤ 1

2
, ∀Fθ ∈

⋃
m,m′∈Mn

(Sm + Sm′)

}

where ‖Fθ‖2µ := 1
n E
[∑n

t=1(f tθ)
2
]

=
∫

(f1
θ )2dµ. It is common to consider the set Ωn which

makes a link between the empirical norm ‖.‖n and the to L2 norm (see for instance Baraud
et al. (2001b), Hsu et al. (2011), van de Geer (2002), Comte and Genon-Catalot (2020)
among others). We will see that in our framework, Ωn holds with large probability.
In all of this work, we assume that qn was chosen to verify

A5 :
( log qn

qn

)γ−1
≤ A

n
, (2.11)

for some constant A and γ > 1. Also we choose the integer sn such that

A6 :
sn
2

min

{(
1

27 σ2
0 Kn

)2

,
1

28 σ2
0 Kn

}
≥ 3 log n, (2.12)

This means that sn is of the form sn = C log n where C ≥ 6 max
{(

27 σ2
0 Kn

)2
, 28 σ2

0 Kn

}
.
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Proposition 4. Under assumptions A1, A6 and if |θ∗t | = O(t−γ) with γ ≥ 8, there exists
a constant C such that

P(Ωc
n) ≤ C

n3
. (2.13)

3 Bias-Variance Result

We are now able to state the main result of the paper.

Theorem 3.1. Let consider observations (X1, . . . , Xn) arising from a solution of the pro-
cess (1.1) satisfying A1 with |θ∗t | = O(t−γ) where γ ≥ 8 and also verifying A2 and A4. Let
Mn be some countable family of AR models satisfying A3 and A5-A6. For any constant
x > 2, let a penalty function pen: Mn → R+ such that

pen(Sm) ≥ 8x3σ2 Dm

n
. (3.1)

Then, the LSE θ̂m̂ with m̂ given in (2.4), satisfies

E
[∥∥F

θ̂m̂
−Fθ∗

∥∥2

n
I1Ωn

]
≤ C1(x) inf

m∈Mn

{
E
[∥∥Fθ∗−Fθ∗m∥∥2

n

]
+2 pen(Sm)

}
+
x(x+ 2)

x− 2

C2

n
(3.2)

where C1(x) =
(
x+2
x−2

)2
> 1 and C2 > 0.

As we can see, this result is almost similar to that of Baraud et al. (2001b) obtained in
non parametric framework. However, their result is only valid if we want to estimate the
function Fθ∗ on some compact set. This restriction is lifted in our parametric framework.

4 Proofs

4.1 Proof of Theorem 3.1

Proof. We follow the scheme of the proof of Baraud et al. (2001b). Let fix m ∈Mn.
From the definition (2.4), we have

γn
(
θ̂m̂
)

+ pen(Sm̂) ≤ γn
(
θ̂m
)

+ pen(Sm) ≤ γn(θ∗m) + pen(Sm). (4.1)

Since,

γn
(
θ̂m
)

=
1

n

n∑
t=1

(Xt − f tθ̂m)2 =
1

n

n∑
t=1

(f tθ∗ − f tθ̂m)2 +
σ2

n

n∑
t=1

ξ2
t −

2σ

n

n∑
t=1

ξt(f
t
θ̂m
− f tθ∗),

(4.1) yields to∥∥F
θ̂m̂
− Fθ∗

∥∥2

n
≤
∥∥Fθ∗m − Fθ∗∥∥2

n

+
2σ

n

n∑
t=1

ξt(f
t
θ̂m̂
− f tθ∗m) + pen(Sm)− pen(Sm̂). (4.2)

The difficult part of this proof is to handle the inner product 2
n

∑n
t=1 σ ξt(f

t
θ̂m̂
− f tθ∗m),

which can be rewritten as

2

n

n∑
t=1

σ ξt(f
t
θ̂m̂
− f tθ∗m) =

2

n

∥∥F
θ̂m̂
− Fθ∗m

∥∥
µ

n∑
t=1

σ ξt
(f t
θ̂m̂
− f tθ∗m)∥∥F

θ̂m̂
− Fθ∗m

∥∥
µ

≤ 2

n

∥∥F
θ̂m̂
− Fθ∗m

∥∥
µ

sup
g∈B(m̂,µ)

n∑
t=1

σ ξt g
t
θ

≤ x−1
∥∥F

θ̂m̂
− Fθ∗m

∥∥2

µ
+ n−2 x

(
sup

g∈B(m̂,µ)

n∑
t=1

σ ξt g
t
θ

)2

8



since 2 a b ≤ x−1 a2 + x b2 for any x > 0 and where

B(m′, µ) =
{
Fθ ∈ Sm + Sm′ : ‖Fθ‖2µ ≤ 1

}
.

Moreover, on the set Ωn, it holds∥∥F
θ̂m̂
− Fθ∗m

∥∥2

µ
≤ 2

∥∥F
θ̂m̂
− Fθ∗m

∥∥2

n

≤ 2
(∥∥F

θ̂m̂
− Fθ∗

∥∥
n

+
∥∥Fθ∗ − Fθ∗m∥∥n)2

≤ 2 (1 + y)
∥∥F

θ̂m̂
− Fθ∗

∥∥2

n
+ 2 (1 + y−1)

∥∥Fθ∗ − Fθ∗m∥∥2

n

for some y > 0. As a result,

2

n

n∑
t=1

σ ξt(f
t
θ̂m̂
− f tθ∗m) ≤ 2

(1 + y)

x

∥∥F
θ̂m̂
− Fθ∗

∥∥2

n
+ 2

(1 + y−1)

x

∥∥Fθ∗ − fθ∗m∥∥2

n

+
x

n2

(
sup

g∈B(m̂,µ)

n∑
t=1

σ ξt g
t
θ

)2
.

Therefore, from (4.2), it holds on Ωn(
1− 2

(1 + y)

x

)∥∥F
θ̂m̂
− Fθ∗

∥∥2

n
≤

(
1 + 2

(1 + y−1)

x

)∥∥Fθ∗ − Fθ∗m∥∥2

n

+pen(Sm)− pen(Sm̂) +
xσ2

n2

(
sup

g∈B(m̂,µ)

n∑
t=1

ξt g
t
θ

)2

≤
(

1 + 2
(1 + y−1)

x

)∥∥Fθ∗ − Fθ∗m∥∥2

n
+ pen(Sm)− pen(Sm̂)

+8x3σ2 Dm +Dm̂

n
+
xσ2

n2

[(
sup

g∈B(m̂,µ)

n∑
t=1

ξt g
t
θ

)2
− 8nx2D(Sm̂)

]
+

where D(Sm̂) = dim(Sm + Sm̂) ≤ Dm + Dm̂. Hence using the condition on the penalty
(3.1),(

1−2
(1 + y)

x

)∥∥F
θ̂m̂
−Fθ∗

∥∥2

n
≤
(

1+2
(1 + y−1)

x

)∥∥Fθ∗−Fθ∗m∥∥2

n
+2 pen(Sm)+xσ2 Vm̂

(4.3)

with

Vm′ =

[(
sup

gθ∈B(m′,µ)
νn(gθ)

)2
− 8

x2

n
D(Sm′)

]
+

,

where νn(gθ) := n−1
∑n

t=1 ξt g
t
θ.

The proof will be established after controling the expectation of Vm̂ which involves the
supremum of an empirical process.

Now we leverage the mixing property in order to apply Talagrand’s Inequality (Theo-
rem 5.1) to tackle E[Vm̂].

We have

Vm̂ =

[
sup

gθ∈B(m̂,µ)

(
νn(gθ)

)2 − 8
x2

n
D(Sm̂)

]
+

≤ 2 sup
gθ∈B(m̂,µ)

(
νn(gθ)− ν∗n(gθ)

)2
+ V ∗m̂ (4.4)

where

V ∗m̂ =

[
2 sup
gθ∈B(m̂,µ)

(
ν∗n(gθ)

)2 − 8
x2

n
D(Sm̂)

]
+

and ν∗n(gθ) =
1

n

n∑
t=1

ξt gθ( ~X
∗
t ).

9



1/ Control of E
[

sup
gθ∈B(m̂,µ)

(
νn(gθ) − ν∗n(gθ)

)2]
. Let m′ ∈ Mn and gθ ∈ B(m′, µ). Since

the parameter set are compacts and θ 7→ gθ is continuous, there exists θ0 ∈ Θm∪Θm′ such
that

sup
gθ∈B(m′,µ)

(
νn(gθ)− ν∗n(gθ)

)2
=

1

n2

( n∑
t=1

ξt
(
gθ0( ~Xt)− gθ0( ~X∗t )

))2
.

As ξt and Ft are independents, it follows that

E
[

sup
gθ∈B(m′,µ)

(
νn(gθ)− ν∗n(gθ)

)2]
=

1

n2

n∑
t=1

E
[
ξ2
t

(
gθ0( ~Xt)− gθ0( ~X∗t )

)2]
=

1

n
E
[(
gθ0( ~X0)− gθ0( ~X∗0 )

)2]
since E[ξ2

0 ] = 1. In addition,

E
[(
gθ0( ~X0)− gθ0( ~X∗0 )

)2]
=

D(Sm′ )∑
i=1

D(Sm′ )∑
j=1

θ0,i θ0,j E
[
(X−i −X∗−i)(X−j −X∗−j)

]
≤

(D(Sm′ )∑
i=1

θ0,i ‖X−i −X∗−i‖2

)2

using Cauchy-Schwarz Inequality. It then follows as
∑D(Sm′ )

i=1 |θ0,i| < 1

E
[

sup
gθ∈B(m′,µ)

(
νn(gθ)− ν∗n(gθ)

)2]
≤ 1

n

(
τ (2)(qn)

)2
≤ C2

τ

n

( log qn
qn

)2γ−2

where the last inequality follows from Proposition 1. Thus,

E
[

sup
gθ∈B(m̂,µ)

(
νn(gθ)− ν∗n(gθ)

)2]
≤

∑
m′∈Mn

E
[

sup
gθ∈B(m′,µ)

(
νn(gθ)− ν∗n(gθ)

)2]
≤ Kn

C2
τ

n

( log qn
qn

)2γ−2

≤ A2C2
τ

n2
,

using Assumption A5 and since Kn ≤ n.

2/ Control of E[V ∗m̂].
First, let us rewrite ν∗n(gθ) for gθ ∈ B(m′, µ). Setting ~Xt = (X∗t−1, . . . , X

∗
t−D(Sm′ )

)>, we
have

ν∗n(gθ) =
1

n

n∑
t=1

ξt gθ( ~X
∗
t )

=
1

2 snqn

sn−1∑
k=0

(
qn∑
i=1

ξ2kqn+i gθ( ~X
∗
2kqn+i) +

qn∑
i=1

ξ(2k+1)qn+i gθ( ~X
∗
(2k+1)qn+i)

)
= ν∗n,1(gθ) + ν∗n,2(gθ)

with

ν∗n,1(gθ) =
1

sn

sn−1∑
k=0

ν∗n,1,k(gθ) and ν∗n,2(gθ) =
1

sn

sn−1∑
k=0

ν∗n,2,k(gθ)

10



where

ν∗n,1,k(gθ) =
1

2 qn

qn∑
i=1

ξ2kqn+i gθ( ~X
∗
2kqn+i) and ν∗n,2,k(gθ) =

1

2 qn

qn∑
i=1

ξ(2k+1)qn+i gθ( ~X
∗
(2k+1)qn+i)

Now let remark that ν∗n,1(gθ) and ν∗n,2(gθ) are both sum of sn independent random variables
by virtue of Proposition 2. Hence,

V ∗m̂ ≤
(

sup
gθ∈B(m̂,µ)

4
(
ν∗n,1(gθ)

)2 − 4x2 n−1D(Sm̂)
)

+

+
(

sup
gθ∈B(m̂,µ)

4
(
ν∗n,2(gθ)

)2 − 4x2 n−1D(Sm̂)
)

+
.

As a consequence it is sufficient to study E∗1 := E
(

sup
g∈B(m̂,µ)

4
(
ν∗n,1(gθ)

)2−4x2 n−1D(Sm̂)
)

+

and the bound for E
(

sup
gθ∈B(m̂,µ)

4
(
ν∗n,2(gθ)

)2 − 4x2 n−1D(Sm̂)
)

+
will follow by using anal-

ogous arguments.

Bounding E∗1

Since the noise (ξt) is not bounded, the process ν∗n,1 is not bounded either. Let’s use the
technique used in Comte and Genon-Catalot (2020) to overcome this difficulty. Therefore,
we decompose ξt as

ξt = ηt + εt, ηt = ξt I1|ξt|≤kn ,

where kn is a deterministic sequence or a constant to be chosen later. We then have

ν∗n,1(gθ) = υ∗n,1(gθ) + υ∗n,2(gθ), where

υ∗n,1(gθ) =
1

sn

sn−1∑
k=0

υ∗n,1,k(gθ) with υ∗n,1,k(gθ) =
1

2 qn

qn∑
i=1

η2kqn+i gθ( ~X
∗
2kqn+i) and

υ∗n,2(gθ) =
1

sn

sn−1∑
k=0

υ∗n,2,k(gθ) with υ∗n,2,k(gθ) =
1

2 qn

qn∑
i=1

ε2kqn+i gθ( ~X
∗
2kqn+i).

Thus,

E∗1 ≤ 8E

[(
sup

gθ∈B(m̂,µ)

(
υ∗n,1(gθ)

)2 − 0.5x2 n−1D(Sm̂)
)

+

]
+ 2E

[
sup

gθ∈B(m̂,µ)

(
υ∗n,2(gθ)

)2]

≤ 8
∑

m′∈Mn

E

[(
sup

gθ∈B(m′,µ)

(
υ∗n,1(gθ)

)2 − 0.5x2 n−1D(Sm′)
)

+

]
(4.5)

+2E

[
sup

gθ∈B(m̂,µ)

(
υ∗n,2(gθ)

)2]
. (4.6)

We start by bounding the term in (4.5). Let m′ ∈ Mn. In order to apply Theorem 5.1,
one has to find M,H and v such that

sup
gθ∈B(m′,µ)

∣∣υ∗n,1,k(gθ)∣∣ ≤M, E
[

sup
gθ∈B(m′,µ)

∣∣υn,1(gθ)
∣∣2] ≤ H2,

and sup
g∈B(m′,µ)

Var
(
υ∗n,1,k(gθ))

)
≤ v.

11



• Since the noise is bounded here and from the assumption A1, the process (Xt) is also
bounded. Indeed, under A1, there exists (φ∗i ) such that

Xt =
∞∑
i=0

φ∗i ξt−i with
∞∑
i=0

|φ∗i | < +∞.

Therefore |Xt| ≤ Φ0 kn with Φ0 :=
∑∞

i=0 |φ∗i |. Moreover, for any gθ ∈ B(m′, µ), we have

∣∣gθ( ~Xt)
∣∣ =

∣∣∣D(Sm′ )∑
i=1

θiXt−i

∣∣∣ ≤ Φ0 kn

D(Sm′ )∑
i=1

|θi| < Φ0 kn.

As a result, we have

sup
gθ∈B(m′,µ)

∣∣υ∗n,1,k(gθ)∣∣ ≤ 1

2 qn
sup

gθ∈B(m′,µ)

qn∑
i=1

∣∣η2kqn+i gθ( ~X
∗
2kqn+i)

∣∣
≤ Φ0 k

2
n

2
:= M

• Next, since the parameter set are compacts, there exists θ0 ∈ Θm ∪Θm′ such that

sup
gθ∈B(m′,µ)

∣∣υ∗n,1(gθ)
∣∣2 =

∣∣υ∗n,1(gθ0)
∣∣2.

Moreover,

E
[∣∣υ∗n,1(gθ0)

∣∣2] =
1

sn
E
[∣∣υ∗n,1,0(gθ0)

∣∣2]
=

1

4 sn q2
n

qn∑
i,j=1

E
[
ηi gθ( ~X

∗
i ) ηj gθ( ~X

∗
j )
]

=
1

4 sn q2
n

qn∑
i=1

E
[(
ηi gθ( ~X

∗
i )
)2]

≤ Φ2
0 k

2
n

2n
≤ Φ2

0 k
2
n

2n
D(Sm′) := H2

since D(Sm′) ≥ 1.
• Lastly, as Var [X] ≤ E[X2], it follows from the previous series of equations

Var
(
υ∗n,1,0(gθ))

)
≤ E

[∣∣υ∗n,1,0(gθ0)
∣∣2] ≤ Φ2

0 k
2
n

4 qn
:= v.

As a consequence from Theorem 5.1 and taking α = 1
2( x2

2Φ2
0 k

2
n
− 1) > 0, we have

E

[(
sup

gθ∈B(m′,µ)

(
υ∗n,1(gθ)

)2 − 0.5x2 n−1D(Sm′)
)

+

]

≤ 2

K

(
Φ2

0 k
2
n

4qn
e
−KqnD(Sm′ ) ( x2

2Φ2
0 k

2
n
−1)

+
49Φ2

0k
4
n

4n2KC2(α)
e−2
√

2KC(α)

√
n
√
D(Sm′ )
kn

)
.

Hence there exists a constant K ′ such that∑
m′∈Mn

E

[(
sup

gθ∈B(m′,µ)

(
υ∗n,1(gθ)

)2 − 0.5x2 n−1D(Sm′)
)

+

]
≤ K ′

n
. (4.7)
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• Now, let us upper bound the term in (4.6). For any m′ ∈ Mn and any gθ ∈ B(m′, µ),
we have

gθ( ~Xt) =

D(Sm′ )∑
i=1

θiXt−i ≤ sup
t−D(Sm′ )≤i<t

|Xi|
(D(Sm′ )∑

i=1

|θi|
)
< sup

t−D(Sm′ )≤i<t
|Xi|.

Therefore,

υ∗n,2,k(gθ) =
1

2 qn

qn∑
i=1

ξ2kqn+i gθ( ~X
∗
2kqn+i)

<
1

2 qn

qn∑
i=1

|ξ2kqn+i| sup
2kqn+i−Kn≤t<2kqn+i

|X∗t | := Y ∗k , (4.8)

so that

sup
g∈B(m̂,µ)

υ∗n,2(gθ) <
1

sn

sn−1∑
k=0

Y ∗k .

Let us notice that (Y ∗k )k is a family of independent random variables as (υ∗n,1,k(g))k.
Thus, it follows

E
[

sup
gθ∈B(m̂,µ)

∣∣υ∗n,2(gθ)
∣∣2] <

1

s2
n

sn−1∑
i,j=0

E
[
Y ∗i Y

∗
j

]
<

1

s2
n

sn−1∑
i=0

E
[
Y ∗2i

]
=

1

sn
E
[
Y ∗20

]
.

Moreover,

E
[
Y ∗20

]
=

1

4 q2
n

qn∑
i,j=1

E
[
|ξi| sup

i−Kn≤t<i
|X∗t | |ξj | sup

j−Kn≤t<j
|X∗t |

]
=

1

4 q2
n

qn∑
i=1

E
[(

sup
i−Kn≤t<i

|X∗t |
)2]

=
µ2

4 qn
, (4.9)

where µ2 = E[X2
t ] <∞. It follows

E
[

sup
gθ∈B(m̂,µ)

∣∣ν∗n,1(gθ)
∣∣2] < µ2

4 sn qn
=
µ2

2n
. (4.10)

Inequality (4.7) along with (4.10) yields to

E∗1 ≤
8K ′

n
+
µ2

n
.

We conclude that there exists K > 0

E[Vm̂] ≤ K

n
. (4.11)
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Returning to (4.3), and taking expectation on both sides, it then follows

(
1−2

(1 + y)

x

)
E
[∥∥f t

θ̂m̂
−f tθ∗

∥∥2

n

]
≤
(

1+2
(1 + y−1)

x

)
E
[∥∥f tθ∗−f tθ∗m∥∥2

n

]
+2 pen(Sm)+x

K

n
.

(4.12)

For y = x−2
x+2 > 0, so that 1 + y = 2x

x+2 and 1 + y−1 = 2x
x−2 , we obtain

E
[∥∥f t

θ̂m̂
− f tθ∗

∥∥2

n

]
≤ C(x)

(
E
[∥∥f tθ∗ − f tθ∗m∥∥2

n

]
+ 2 pen(Sm)

)
+
x(x+ 2)

x− 2

K

n

with C(x) = (x+2)2

(x−2)2 > 1. �

4.2 Proof of Proposition 4

Since the collectionMn is hierarchical, we have

P(Ωc
n) ≤

∑
m∈Mn

P

(
∃Fθ ∈ Sm :

∣∣∣∣∣‖fθ‖2n‖fθ‖2µ
− 1

∣∣∣∣∣ > 1

2

)
≤

∑
m∈Mn

P(Ωc
m)

where

Ωm =

{∣∣∣∣∣‖Fθ‖2n‖Fθ‖2µ
− 1

∣∣∣∣∣ ≤ 1

2
∀Fθ ∈ Sm

}
.

Let m ∈Mn. We have

P(Ωc
m) ≤ P

(
sup
Fθ∈Sm

∣∣∣∣∣‖Fθ‖2n‖Fθ‖2µ
− 1

∣∣∣∣∣ > 1

2

)
.

Moreover,

sup
Fθ∈Sm,‖Fθ‖2µ=1

∣∣∣∣∣‖Fθ‖2n‖Fθ‖2µ
− 1

∣∣∣∣∣ > 1

2
⇐⇒ sup

Fθ∈Sm,‖Fθ‖2µ=1

∣∣∣νn(F 2
θ )
∣∣∣ > 1

2

with νn(F 2
θ ) = n−1

∑n
t=1

(
(f tθ)

2 − E
[
(f1
θ )2
])

. Hence,

P

(
sup
f∈Sm

∣∣∣∣∣‖Fθ‖2n‖Fθ‖2µ
− 1

∣∣∣∣∣ > 1

2

)
≤ P

(
sup
Fθ∈Sm

∣∣νn(F 2
θ )
∣∣ > 1

2

)
.

For any Fθ ∈ Sm, using the linearity we can write

(
fθ( ~Xt)

)2
=
( Dm∑
i=1

θiXt−i

)2
=

Dm∑
i,j=1

θiθjXt−iXt−j = θ>Σ̂m,tθ

where θ = (θ1, . . . , θDm)>, Σ̂m,t = Zmt (Zmt )> with Zmt = (Xt−1, . . . , Xt−Dm)>. So that
with Σm = E

[
Σ̂m,t

]
, it follows

ν∗n(F 2
θ ) =

1

n

n∑
t=1

θ>
(
Σ̂t − Σ

)
θ = θ>(Σ̂m − Σm)θ,
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where Σ̂ = n−1
∑n

t=1 Σ̂t. As a result,

sup
Fθ∈Sm,‖Fθ‖2µ=1

|ν∗n(F 2
θ )| ≤

∥∥Σ̂m − Σm

∥∥
op.

Indeed,

sup
Fθ∈Sm

|ν∗n(F 2
θ )| = sup

θ:
∑
|θi|<1

θ>(Σ̂m − Σm)θ = sup
θ:

∑
|θi|<1

‖θ‖2 θ>(Σ̂m − Σm)θ

‖θ‖2

≤ sup
θ: ‖θ‖2≤1

θ>(Σ̂m − Σm)θ

‖θ‖2
=
∥∥Σ̂m − Σm

∥∥
op

since −1 < θi < 1 ensures that ‖θ‖2 ≤
∑
|θi|. Hence,

P

(
sup

Fθ∈Sm,‖Fθ‖2µ=1

|νn(F 2
θ )| > 1

2

)
≤ P

(∥∥Σ̂m − Σm

∥∥
op >

1

2

)

≤ P

(∥∥Σ̂m − Σ̂∗m
∥∥
op >

1

4

)
+ P

(∥∥Σ̂∗m − Σm

∥∥
op >

1

4

)
=: P1 + P2.

Using Lemma 3 with u = 1/4 and by virtue of A6, it follows

P2 ≤ 2 exp
(
− 3 log n

)
≤ 2

n3
.

Now let bound P1. We know that for a Dm ×Dm matrix A

∥∥A∥∥op ≤
∥∥A∥∥∞ := max

1≤i≤Dm

Dm∑
j=1

|Aij |

Thus, from Markov’s Inequality,

P1 ≤ 4E
[∥∥Σ̂m − Σ̂∗m

∥∥
op
]

≤ 4E
[

max
1≤i≤Dm

Dm∑
j=1

∣∣(Σ̂m − Σ̂∗m
)
i,j

∣∣]

≤ 4

Dm∑
j=1

E
[∣∣(Σ̂m − Σ̂∗m

)
i0,j

∣∣]
≤ 4

Dm∑
j=1

E
[∣∣Xt−i0Xt−j −X∗t−i0X

∗
t−j
∣∣].

Moreover,
∣∣Xt−iXt−j − X∗t−iX∗t−j

∣∣ ≤ ∣∣Xt−i
∣∣∣∣Xt−j − X∗t−j

∣∣ +
∣∣X∗t−j∣∣∣∣Xt−i − X∗t−i

∣∣ so that
with Cauchy-Schwartz’s Inequality,

E
[∣∣Xt−iXt−j −X∗t−iX∗t−j

∣∣] ≤ 2
∥∥X0

∥∥
2

∥∥Xt−1 −X∗t−1

∥∥
2

≤ 2
∥∥X0

∥∥
2
τ (2)(qn).

Hence using Proposition 1, it follows

P1 ≤ 8
∥∥X0

∥∥
2
Dm τ

(2)(qn)

≤ 8
∥∥X0

∥∥
2
Dm Cτ

( log qn
qn

)γ−1
.
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Moreover, since γ ≥ 8 and from assumption A5, one can find some constant A′ such that( log qn
qn

)γ−1
≤ A′

n4
.

As a result, with c0 := 8
∥∥X0

∥∥
2
Cτ A

′, it holds

P1 ≤
c0

n3
.

As a consequence,

P(Ωc
n) ≤ 2 + c0

n3
.

�

4.3 Proof of Proposition 3

Proof. The proof of the will be based on the relation between the spectral density function
and the maximum eigenvalues of the variance covariance matrix.

Denote by u ∈ RDm the normalized eigenvector associated to the largest eigenvalue
λmax(Σm). Hence,

λmax(Σm) = u>Σm u =

Dm∑
j,k=1

uj r(j − k)uk =

∫ π

−π
g(λ)

Dm∑
j,k=1

uj e
i(j−k)λ ukdλ

=

∫ π

−π
g(λ)

∣∣∣∣∣
Dm∑
j=1

uj e
i jλ

∣∣∣∣∣
2

dλ ≤ sup
−π≤λ<π

g(λ)

∫ π

−π

∣∣∣∣∣
Dm∑
j=1

uj e
i jλ

∣∣∣∣∣
2

dλ

≤ sup
−π≤λ<π

g(λ),

since, using Parseval identity,
∫ π
−π

∣∣∣∑Dm
j=1 uj e

i jλ
∣∣∣2 dλ =

∑Dm
j=1 u

2
j = 1.

But, from Lemma 2 and since γ ≥ 2, it follows∣∣∣ sup
−π≤λ<π

g(λ)
∣∣∣ ≤ 1

2π

∑
h∈Z
|r(h)|

≤ C

π

+∞∑
h=0

1

(h+ 1)γ
<∞.

Given that Σm is symmetric, it follows

∥∥Σm

∥∥
op = λmax(Σm) ≤ C

π

+∞∑
h=0

1

(h+ 1)γ
,

which concludes the proof of (2.9).

Now we end by the proof of (2.10). Reasoning as above, and by virtue of A4, one can
show that

λmin(Σm) ≥ inf
−π≤λ<π

g(λ) ≥ a

which yields to ∥∥Σ−1
m

∥∥
op =

1

λmin(Σm)
≤ 1

a
,

so that (2.10) is established.
�
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4.4 Technical Lemmas

Lemma 1. Assume A1 holds and (Xt) the mixing stationary solution of (1.1). Then, the
process ( ~Xt) is mixing and

τ
(1)
~X,∞

(r) ≤ Kn τ
(1)
X,∞(r − 1). (4.13)

Proof. Let set byMi
~X

= σ( ~Xt, t ≤ i) andMi
X = σ(Xt, t ≤ i) for an integer i. One would

like to bound τ (1)
(
Mi

~X
,
(
~Xj1 , . . . ,

~Xjk

))
for jk > . . . > j1 ≥ i+ r.

Let assume that the universe Ω is rich enough so that, one can find ~X∗jl =
(
X∗jl−1, . . . , X

∗
jl−Kn

)>
with l = 1, . . . , k verifying

1.
(
~X∗j1 , . . . ,

~X∗jk
)
is distributed as

(
~Xj1 , . . . ,

~Xjk

)
and independent ofMi

~X
;

2.
(
X∗j1−1, . . . , X

∗
jk−1

)> is distributed as
(
Xj1−1, . . . , Xjk−1

)> and independent ofMi
X .

As a result,

τ (1)
(
Mi

~X
,
(
~Xj1 , . . . ,

~Xjk

))
≤

k∑
l=1

‖ ~Xjl − ~X∗jl‖1 =
k∑
l=1

Kn∑
t=1

E
[
|Xjl−t −X

∗
jl−t|

]
≤ Kn

k∑
l=1

E
[
|Xjl−1 −X∗jl−1|

]
= Kn

∥∥∥(Xj1−1, . . . , Xjk−1

)> − (X∗j1−1, . . . , X
∗
jk−1

)>∥∥∥
1

= Kn τ
(1)
(
Mi

X ,
(
Xj1−1, . . . , Xjk−1

))
.

This fact along with the definition of τ (1)
~X,∞

(r) leads to (4.13).
�

Lemma 2. Under A1 with |θ∗t | = O(t−γ) where γ > 1, we have

r(h) = E[X0Xh] = O
(
(h+ 1)−γ

)
Proof. By virtue of A1, the process (Xt)t is causal; that is there exists (φi)i∈N such that
Xt =

∑+∞
i=0 φi ξt−i with

∑+∞
i=0 |φi| < ∞. The sequence (φi)i∈N is given by the relation

φ(z) =
∑+∞

i=0 φi z
i = 1

θ(z) with θ(z) = 1 −
∑+∞

i=0 θ
∗
i z

i. Equating coefficients of zj , j =
0, 1, . . ., we find that φ0 = 1 and for i ≥ 1

φi =

i∑
j=1

θ∗j φi−j .

This fact allows us to deduce that the sequences (φi)i∈N and (θ∗i )i∈N decay at the same
rate. Therefore, since |θ∗t | = O

(
(t+ 1)−γ

)
, there exists h0 ∈ Z such that for any h ≥ h0, it

holds |φt| ≤ C (t+ 1)−γ for some constant C > 0. Thus,

r(h) =
∞∑
j=0

φj φj+h

≤ C2
∞∑
j=0

1

(j + 1)γ
1

(j + h+ 1)γ

≤ C2 (h+ 1)−γ
∞∑
j=0

1

(j + 1)γ
≤ C2π

2

6
(h+ 1)−γ ,

where the last inequality follows from the fact that γ ≥ 2 and that established the Lemma.
�
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Lemma 3. Under assumptions A2, it holds for any model m ∈Mn, and for all u > 0

P
(∥∥Σ̂∗m − Σm

∥∥
op ≥ u

)
≤ 2 exp

{
− sn

2
min

{(
u

16Dm σ2
0

)2

,
u

32Dm σ2
0

}}
Proof. One can write for a matrix A∥∥A∥∥op = max

v: ‖v‖=1

∣∣v>Av∣∣ =
∣∣v>0 Av0

∣∣.
Therefore one can find a vector v0 ∈ RDm with ‖v0‖ = 1 such that

P
(∥∥Σ̂∗m − Σm

∥∥
op ≥ u

)
= P

(∣∣v>0 (Σ̂∗m − Σm

)
v0

∣∣ ≥ u).
But,

v>0
(
Σ̂∗m − Σm

)
v0 =

1

n

n∑
t=1

(
v>0 Σ̂∗m,tv0 − v>0 Σmv0

)
=

1

n

n∑
t=1

(
v>0 (Z∗mt ) (Z∗mt )>v0 − v>0 Σmv0

)
=

1

n

n∑
t=1

(
Y 2
t − E[Y 2

t ]
)

with Yt = v>0 Z
m
t =

∑Dm
i=1 v

i
0X
∗
t−i. From A2, Yt is SG(Dm σ

2
0). Therefore, Y 2

t is SE(256D2
m σ

4
0, 16Dmσ

2
0)

(where SE stands for Sub-Gaussian and SE for Sub-Exponential).
Moreover, we can write

v>0
(
Σ̂∗m − Σm

)
v0 =

1

n

n∑
t=1

(
Y 2
t − E[Y 2

t ]
)

=
1

sn

sn−1∑
k=0

(
1

2qn

qn∑
i=1

(
Y 2

2kqn+i − E[Y 2
1 ]
))

+
1

sn

sn−1∑
k=0

(
1

2qn

qn∑
i=1

(
Y 2

(2k+1)qn+i − E[Y 2
1 ]
))

= Y1 + Y2.

Therefore,

Y1 =
1

sn

sn−1∑
k=0

Y1,k and Y2 =
1

sn

sn−1∑
k=0

Y2,k with

Y1,k =
1

2qn

qn∑
i=1

(
Y 2

2kqn+i − E[Y 2
1 ]
)

and Y2,k =
1

2qn

qn∑
i=1

(
Y 2

(2k+1)qn+i − E[Y 2
1 ]
)
.

{Y1,k} and {Y2,k} are independent random vectors by virtue of Proposition 2. Now, let
us show that Yi,k are sub-exponentials. For λ such that |λ| < 1

16Dmσ2
0
, and denoting

wi = Y 2
2kqn+i − E[Y 2

1 ], we have

E
[
eλY1,k

]
= E

[
exp

( 1

2qn

qn∑
i=1

λwi

)]
= E

[
Πqn
i=1 exp

(λwi
2qn

)]

= E

[
Πqn
i=1

(
exp

(λwi
2

))1/qn

]

≤ Πqn
i=1

(
E
[

exp
(λwi

2

)])1/qn

≤ e
λ2

2
64D2

m σ4
0 ,
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where we have used Hölder’s Inequality. Hence Y1,k is SE(64D2
m σ

4
0,16Dmσ

2
0). As a result,

using exponential inequalities for SE random variables, it follows

P
(
Y1 ≥ u/2

)
≤ exp

{
− sn

2
min

{(
u

16Dm σ2
0

)2

,
u

32Dm σ2
0

}}

so that

P
(∣∣v>0 (Σ̂∗m − Σm

)
v0

∣∣ ≥ u/2) ≤ 2 exp

{
− sn

2
min

{(
u

16Dm σ2
0

)2

,
u

32Dm σ2
0

}}
.

�

Lemma 4. Assume A3 holds, then Σ̂m is a.e. invertible. Also, Σm is invertible.

Proof. We can write Σ̂m = M>mMm with Mm =
[
Xi−1, . . . , Xi−Dm

]n
i=1

. By virtue of A3,
Mm is of full rank which implies the a.e. invertibility of Σ̂m.

Moreover, Σm = E
[
Σ̂m

]
= E

[
Zm0 (Zm0 )>

]
with Zm0 = (X−1, . . . , X−Dm)>. Let u ∈ RDm ,

it follows u>Σmu = E
[
((Zm0 )>u)2

]
≥ 0. Let show that whenever the equality holds

(u>Σm = 0), u = 0.
Since ((Zm0 )>u)2 ≥ 0, its expectation vanishes if and only if (Zm0 )>u = 0 a.e. which yields
to u = 0 by A3. Hence, Σm is positive definite and then invertible. �

5 Theoretical Tools

The next Theorem is a Talagrand’s Inequality given in Klein et al. (2005).

Theorem 5.1. Let Y1, . . . , Yn be independent random variables and let F be a countable
class of uniformly bounded measurable functions. Then for all α > 0,

E
[
sup
g∈F
|ηn(g)|2 − 2(1 + 2α)H2

]
+
≤ 2

K

( v
n
e−Kα

nH2

v +
49M2

4Kn2C2(α)
e
− 2
√

2KC(α)
√
α

7
√

2
nH
M

)
with ηn(g) = n−1

∑n
t=1(g(Yt)− E[g(Yt)]) for any g ∈ F ;

C(α) = (
√

1 + α− 1) ∧ 1, K = 1/6

sup
g∈F
‖g‖∞ ≤M, E

[
sup
g∈F
|ηn(g)|

]
≤ H, sup

g∈F

1

n

n∑
t=1

Var (g(Yt)) ≤ v.
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