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In this paper, we address risk aggregation and capital allocation problems in the presence of dependence between risks. The dependence structure is defined by a mixed Bernstein copula which represents a generalization of the well-known Archimedean copulas. Using this new copula, the probability density function and the cumulative distribution function of the aggregate risk are obtained. Then, closed-form expressions for basic risk measures, such as tail value-atrisk (TVaR) and TVaR-based allocations, are derived.

Introduction

Risk aggregation and risk-based capital allocation have attracted considerable attention in actuarial sciences and quantitative risk management over the past years. One of the crucial applications of risk aggregation is to determine the required regulatory capitals and to price insurance and reinsurance products. For this purpose, an adequate risk measure should be used to evaluate the whole level of risk for a given portfolio. An important risk measure is the Value at Risk (VaR), which is defined as a threshold value such that the probability the loss on a portfolio exceeds this value is a given probability 1-κ. Another interesting risk measure is the Tail Value at Risk (TVaR), also known as the conditional tail expectation (CTE), which represents the average amount of a loss given that the loss exceeds a specified quantile. The TVaR is known to be a coherent risk measure over the space of continuous random variables (see [START_REF] Dhaene | Can a coherent risk measure be too subadditive[END_REF]; Furman and Zitikis (2008a); [START_REF] Furman | Tail variance premium with applications for elliptical portfolio of risks[END_REF]).

In this paper, we address risk aggregation and capital allocation using the TVaR risk measure. Consider a vector of n continuous and non-negative random variables (rv's) X = (X 1 , • • • , X n ), the component X i denotes the marginal risk (claim or loss). We define the aggregate loss as S n = X 1 + • • • + X n . For a given confidence level κ, the value at risk of S n , V aR κ (S n ), is defined by

V aR κ (S n ) = inf (x ∈ R, F Sn (x) ≥ κ) ,
where 0 < κ < 1 and F Sn is the cumulative distribution function (cdf) of S n . We also define the tail value at risk of S n , T V aR κ (S n ), as follows

T V aR κ (S n ) = E (S n | S n > V aR κ (S n )) .
(1.1)

The contribution of the i-th risk X i to the aggregate risk S n is given by

T V aR κ (X i ; S n ) = E (X i | S n > V aR κ (S n )) , (1.2) for i = 1, • • • , n.
The additivity of the expectation allows the decomposition of the TVaR into the sum of TVaR contributions as follows

T V aR κ (S n ) = n i=1 T V aR κ (X i ; S n ).
Adequate economic capital and capital allocation relay on accurate dependences modeling between different components of the portfolio. For this reason, multivariate risk models incorporating dependence are very important in risk modeling in finance and insurance. In the literature, several classes of multivariate distributions have been proposed. [START_REF] Landsman | Tail conditional expectations for elliptical distributions[END_REF] obtained the explicit formulas of T V aR κ (S n ) and T V aR κ (X i ; S n ) for the multivariate elliptical distributions, which include the distributions such as multivariate normal, stable, student, etc. Other closedform expressions for the economic capital and risk contribution under multivariate phase-type distributed risks have been given in [START_REF] Cai | Conditional tail expectations for multivariate phase-type distributions[END_REF]. The case of multivariate gamma distribution for risks has been studied in [START_REF] Furman | Risk capital decomposition for a multivariate dependent gamma portfolio[END_REF] as well as a multivariate Tweedie distribution in [START_REF] Furman | Multivariate tweedie distributions and some related capital-at-risk analyses[END_REF]. [START_REF] Chiragiev | Multivariate pareto portfolios: Tce-based capital allocation and divided differences[END_REF] consider the case of multivariate Pareto risks. In these papers, explicit expressions for the T V aR κ (S n ) and the TVaRbased allocation are derived. For further details on the TVaR-based allocation of risk capital, [START_REF] Kim | Estimation and allocation of insurance risk capital[END_REF] and references within can be consulted. Other researchers addressed the risk aggregation problem using copulas. For example, [START_REF] Cossette | Multivariate distribution defined with farlie-gumbel-morgenstern copula and mixed erlang marginals: Aggregation and capital allocation[END_REF] consider a portfolio of dependent risks whose multivariate distribution is the Farlie-Gumbel-Morgenstern copula with mixed Erlang marginal distributions. [START_REF] Sarabia | Risk aggregation in multivariate dependent pareto distributions[END_REF] give explicit formulas for the probability density function of S n for some multivariate mixed exponential distributions for which the dependence structure is an Archimedean copula. Recently, [START_REF] Marri | Moments of compound renewal sums with dependent risks using mixing exponential models[END_REF] derive explicit expressions for the higher moments of the discounted aggregate renewal claims with dependence.

The focus of this paper is to derive explicit formulas of T V aR κ (S n ) and T V aR κ (X i ; S n ) for i = 1, • • • , n, with a more general dependence structure that allows us to capture different types of dependence between structure. The multivariate model that we suggest is a mixed Bernstein copula. The mixed Bernstein copulas have many attractive properties and, in particular, they are non-exchangeable. This is useful for risk aggregation in many insurance and financial applications. Our model provides a new generalization of the well-known Archimedean copulas. The remainder of this paper is structured as follows. In Section (2), we introduce the mixed Bernstein copulas.

The distribution of the aggregated risk is investigated in Section (3). In Section (4), we derive closed-formulas of the T V aR κ (S n ) and T V aR κ (X i ; S n ) for n dependent rv's X 1 , X 2 , • • • , X n joined by the mixed Bernstein copulas. We obtain specific expressions for the aggregated distribution in Section (5). The results are illustrated with numerical applications in Section (6).

Mixed Bernstein copulas

In this section, we will construct a new family of copulas that will be used in the different models. ∞ 0 e -sθ f Θ (θ)dθ. In this paper, we assume that X 1 , • • • , X n are n dependent, positive and continuous rv's such that

Let X = (X 1 , • • • , X n ) be
(X 1 , • • • , X n ) = Z 1 Θ , • • • , Z n Θ , (2.1) where (Z 1 , • • • , Z n
) is a vector of n continuous rv's with joint survival distribution function denoted by F and with standard exponential marginal distributions (with mean 1).

In [START_REF] Sarabia | Aggregation of dependent risks in mixtures of exponential distributions and extensions[END_REF] and [START_REF] Albrecher | Explicit ruin formulas for models with dependence among risks[END_REF], the rv's Z i are supposed to be independent. While such an assumption significantly simplifies the model setup, it is also to possible that it leads to a misidentification of the dependence structure. Indeed, the variable Θ only capture the common factor of dependence between all the n variables (e.g., climate conditions, age,• • • ,etc.). In this paper, we add another level of dependence by assuming the vector Z i has dependent components. According to Sklar's theorem for survival functions (see e.g. [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF]), the multivariate survival function of Z 1 , • • • , Z n can be written as a function of the marginal survival functions and a copula C 1 describing the dependence structure as follows:

F (z 1 , • • • , z n ) = C 1 (e -z 1 , • • • , e -zn ) , for n ∈ {2, 3, • • • } , and z 1 , • • • , z n ≥ 0.
In this paper, we assume that C 1 is defined with the Bernstein copulas C B introduced in [START_REF] Sancetta | The bernstein copula and its applications to modeling and approximations of multivariate distributions[END_REF] and defined under some specifics conditions on the function α, by

C B (u 1 , • • • , u n ) = m 1 ν 1 =0 • • • mn νn=0 α ν 1 m 1 , • • • , ν n m n n i=1 G ν i :m i (u i ), (2.2) for every (u 1 , • • • , u n ) in [0, 1] n such that 0 ≤ ν i ≤ m i ∈ N,
where

G ν i :m i (u i ) = m i ν i u ν i i (1 -u i ) m i -ν i , ν i = 0, 1, • • • , m i , (2.3)
is the ν i th Bernstein polynomial of order m i , i = 1, • • • , n. [START_REF] Sancetta | The bernstein copula and its applications to modeling and approximations of multivariate distributions[END_REF] showed that the coefficients of the Bernstein copulas C B have a direct interpretation as the points of some arbitrary approximated copula C 1 , i.e., C 1

ν 1 m 1 , • • • , νn mn = α ν 1 m 1 , • • • , νn mn .
This justifies our choice of Bernstein copulas since our mixed Bernstein model could approximate many different dependence structures. In [START_REF] Cottin | From bernstein polynomials to bernstein copulas[END_REF], it has been proved that any copula function can be approximated uniformly using Bernstein polynomials. In the following theorem, we give sufficient conditions for C B (u 1 , • • • , u n ) to be a copula.

Theorem 2.1. The Bernstein polynomial

C B (u 1 , • • • , u n ) is a copula function if conditions 1 l 1 =0 • • • 1 ln=0 (-1) n+l 1 +•••+ln α ν 1 + l 1 m 1 , • • • , ν n + l n m n ≥ 0, (2.4) for all 0 ≤ ν i ≤ m i -1, i = 1, • • • , n, α ν 1 m 1 , • • • , ν i-1 m i-1 , 0, ν i+1 m i+1 • • • , ν n m n = 0, ∀i = 1, • • • , n, (2.5) and α 1, • • • , 1, ν i m i , 1, • • • , 1 = ν i m i , ∀i = 1, • • • , n (2.6)
hold. Moreover, (2.5) and (2.6) are necessary for C B (u 1 , • • • , u n ) to be a copula.

Proof. A proof of this theorem was given by [START_REF] Yang | Bernstein Copulas and Composite Bernstein Copulas[END_REF].

The application of Bernstein copulas in actuarial science is recent. [START_REF] Salmon | Pricing multivariate currency options with copulas[END_REF] and [START_REF] Hurd | Using copulas to construct bivariate foreign exchange distributions with an application to the sterling exchange rate index[END_REF] apply Bernstein copulas to the pricing of two-asset derivatives written on foreign exchange rates. [START_REF] Diers | Dependence modeling in non-life insurance using the bernstein copula[END_REF] use Bernstein copulas to model the dependence between nonlife insurance risks. [START_REF] Tavin | Application of Bernstein copulas to the pricing of multi-asset derivatives[END_REF] analyze properties of Bernstein copulas in a context of multiasset derivatives pricing. In contrast to Archimedean copulas, Bernstein copulas can model nonexchangeable dependence structures.

From [START_REF] Sancetta | The bernstein copula and its applications to modeling and approximations of multivariate distributions[END_REF] and [START_REF] Cottin | From bernstein polynomials to bernstein copulas[END_REF], the corresponding pdf of the copula C B is given by

c B (u 1 , • • • , u n ) = m 1 -1 ν 1 =0 • • • mn-1 νn=0 γ ν 1 m 1 , • • • , ν n m n n i=1 m i G ν i :m i -1 (u i ) , (2.7) 
where [START_REF] Cottin | From bernstein polynomials to bernstein copulas[END_REF] show that the Bernstein copulas density function can also be expressed as

γ ν 1 m 1 , • • • , ν n m n = 1 l 1 =0 • • • 1 ln=0 (-1) n+l 1 +•••+ln α ν 1 + l 1 m 1 , • • • , ν n + l n m n .
c B (u 1 , • • • , u n ) = m 1 -1 ν 1 =0 • • • mn-1 νn=0 Pr (N 1 = ν 1 , • • • , N n = ν n ) n i=1 m i G ν i :m i -1 (u i ) , (2.8) where (N 1 , • • • , N n ) is a random vector whose marginal component N i follows a discrete uniform distribution over {0, 1, • • • , m -1} and Pr (N 1 = ν 1 , • • • , N n = ν n ) = γ ν 1 m 1 , • • • , νn mn .
For more details about Bernstein copulas, we refer readers to [START_REF] Kulpa | On approximation of copulas[END_REF] and [START_REF] Sancetta | The bernstein copula and its applications to modeling and approximations of multivariate distributions[END_REF].

From (2.1), the joint survival function of X 1 , • • • , X n can be written as

H (x 1 , • • • , x n ) = ∞ 0 C B e -θx 1 , • • • , e -θxn f Θ (θ)dθ,
(2.9)

for x 1 , • • • , x n ≥ 0. It implies that the marginal survival function of X i is given by Hi (x) = Pr(X i ≥ x) = f Θ (x),
(2.10)

for i = 1, • • • , n
, where f Θ is the Laplace transforms of F Θ . Note that the marginal random variables X i are necessarily completely monotone (see, e.g., [START_REF] Oakes | Bivariate survival models induced by frailties[END_REF]).

A closed-form expression for the survival function of (X

1 , • • • , X n ) is given in the next theorem. Theorem 2.2. Let X = (X 1 , • • • , X n
) be a vector of n continuous and non-negative rv's defined by the stochastic representation (2.1). Then the survival function of

(X 1 , • • • , X n ) is given by H (x 1 , • • • , x n ) = m 1 1 =0 • • • mn n=0 β 1 ,••• , n f Θ n i=1 i x i , (2.11) for x 1 , • • • , x n ≥ 0, where β 1 ,••• , n = 1 ν 1 =0 • • • n νn=0 (-1) n i=1 ( i -ν i ) n i=1 m i -ν i m i -i n i=1 m i ν i α ν 1 m 1 , • • • , ν n m n .
Proof. From (2.2) and (2.9), we have

H (x 1 , • • • , x n ) = m 1 ν 1 =0 • • • mn νn=0 α ν 1 m 1 , • • • , ν n m n ∞ 0 n i=1 G ν i :m i (e -θx i )f Θ (θ)dθ. (2.12)
Otherwise, applying the binomial theorem to (1 -e -θx i ) m i -ν i and using (2.3) yield

n i=1 G ν i :m i e -θx i = n i=1 m i ν i m 1 -ν 1 1 =0 • • • mn-νn n=0 n i=1 m i -ν i i e -θ n i=1 x i (ν i + i ) (-1) n i=1 i .
Substituting the last expression into (2.12), we obtain

H (x 1 , • • • , x n ) = m 1 ν 1 =0 • • • mn νn=0 α ν 1 m 1 , • • • , ν n m n n i=1 m i ν i m 1 -ν 1 1 =0 • • • mn-νn n=0 n i=1 m i -ν i i (-1) n i=1 i f Θ n i=1 (ν i + i ) x i = m 1 ν 1 =0 • • • mn νn=0 α ν 1 m 1 , • • • , ν n m n n i=1 m i ν i m 1 1 =ν 1 • • • mn n=νn n i=1 m i -ν i i -ν i (-1) n i=1 ( i -ν i ) f Θ n i=1 i x i .
Inverting the order of summation with respect to the variables i and ν

i , i = 1, • • • , n, one readily obtains H (x 1 , • • • , x n ) = m 1 1 =0 • • • mn n=0 β 1 ,••• , n f Θ n i=1 i x i ,
from which we get the desired result.

On the other hand, according to Sklar's theorem for survival functions, see e.g. [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF], the joint survival function of X 1 , • • • , X n can be written as a function of the marginal survival functions Hi , i = 1, • • • , n, and a copula C describing the dependence structure as follows:

H (x 1 , • • • , x n ) = C H1 (x 1 ), • • • , Hn (x n ) ,
(2.13)

for n ∈ {2, 3, • • • } , and x 1 , • • • , x n ≥ 0.
Then, the following proposition holds.

Proposition 2.1. The copula function C : [0, 1] n → [0, 1] that corresponds to the general dependence structure defined in Theorem (2.2) is given, for

u i ∈ [0, 1], i = 1, • • • , n, by C (u 1 , • • • , u n ) = m 1 1 =0 • • • mn n=0 β 1 ,••• , n f Θ n i=1 i f -1 Θ (u i ) , (2.14) 
where

β 1 ,••• , n = 1 ν 1 =0 • • • n νn=0 (-1) n i=1 ( i -ν i ) n i=1 m i -ν i m i -i n i=1 m i ν i α ν 1 m 1 , • • • , ν n m n .
Proof. The result follows easily from (2.10), (2.11) and (2.13).

This new family of copulas C extends the well-known Archimedean copulas and could be seen as a mixture of distorted Archimedean copulas with generator f Θ . The study of the properties of this copula are beyond the scoop of this paper and we leave it for a future research.

Remark 2.1. From (2.5), one gets

β 1 ,••• , i-1 ,0, i+1 ,••• , n = 0, for i = 1, • • • , n. Remark 2.2. If m 1 = • • • = m n = 1, then the copula C in (2.14) reduces to a n-dimensional
Archimedean copula with generator f Θ and given by C

(u 1 , • • • , u n ) = f Θ n i=1 f -1 Θ (u i ) .
Remark 2.3. The most simple form of the bivariate Bernstein copula C B is given by the Farlie-Gumbel-Morgenstern copula, which is defined by

C F GM B (u, v) = uv+δuv(1-u)(1-v), for δ ∈ [-1, 1] with δ = 4α( 1 2 , 1 2 ) -1 and m 1 = m 2 = n = 2. The expression for C (u 1 , u 2 ) in (2.14) turns into C (u 1 , u 2 ) = 2 1 =1 2 2 =1 β 1 , 2 f Θ 2 i=1 i f -1 Θ (u i ) , (2.15)
where β 1,1 = 1 + δ, β 1,2 = β 2,1 = -δ and β 2,2 = δ. Then C in (2.15) reduces to the copula discussed in [START_REF] Côté | Dependence in a background risk model[END_REF].

For the sake of simplicity, it is assumed that

m i = m, for i = 1, • • • , n.
An appropriate choice of the joint cumulative distribution α in the calculation of the coefficient β could lead to a different dependence structure. This point is illustrated in the following example. In fact, the copulas defined in Proposition (2.1) could significantly change the obtained dependence by an Archimedean copula.

Example 2.1. Assume that the mixing rv Θ is following a Gamma distribution such that

f Θ (x) = 1 + x b -a , a ≥ 1,
Thus, when m = 1 the copula C in (2.14) is reduced to a Clayton copula. For different values of m and for different choices of α, the dependence structure is assessed via the Spearman's ρ that is given by

ρ = 12 1 0 1 0 C(u 1 , u 2 )du 1 du 2 -3. (2.16)
This allows us to measure the impact of introducing the Bernstein copula on the dependence structure of the mixed exponential model. In this illustrations, we consider two cases for alpha

(i) Counter-comonotonic: α(u 1 , u 2 ) = max(u 1 + u 2 -1, 0), and 
(ii) Comonotonic: α(u 1 , u 2 ) = min(u 1 , u 2 ).
Given this choices for α, the obtained values of ρ will consist of an upper bound if α is comonotonic and a lower limit if α is counter-comonotonic. In Figure 1 increases when the Bernstein copula has a negative (positive) dependence. Moreover, the dependence is significantly changing, which means that the introduction of the mixed-Bernstein copula improves the obtained range of dependence and allows ρ to reach values beyond the value in the case of Archimedean copula (when m = 1). Similar results with the same pattern are obtained under different choices of the copula α.

3 The distribution of the aggregated risk S n = n i=1 X i

In this section, we obtain the probability density function and the survival function of the aggregated risk S n .

The joint probability density function (pdf) of (Z

1 , • • • , Z n ) is given by f Z 1 ,••• ,Zn (z 1 , • • • , z n ) = c B e -z 1 , • • • , e -zn e - n i=1 z i . (3.1)
Combining (2.7) and (3.1), the pdf of (Z

1 , • • • , Z n ) becomes f Z 1 ,Z 2 ,••• ,Zn (z 1 , • • • , z n ) = m n e - n i=1 z i m-1 ν 1 =0 • • • m-1 νn=0 γ ν 1 m , • • • , ν n m n i=1 m -1 ν i e -ν i z i (1 -e -z i ) m-1-ν i = m-1 ν 1 =0 • • • m-1 νn=0 γ ν 1 m , • • • , ν n m n i=1 f W i (z i ), (3.2) 
where W i are n independent rv's with pdf

f W i (z) = m m-1 ν i e -(ν i +1)z (1 -e -z ) m-1-ν i . Note that f W i is the density function of the m -ν i th of the smallest order statistic from m i.i.d. rv's D i , i = 1, • • • , m, exponentially distributed with mean 1 W i d = D m-ν i :m .
For more details about order statistics, we refer readers to [START_REF] David | Order Statistics[END_REF]. Furthermore, it is known that (see, e.g., [START_REF] Basu | Order statistics in exponential distribution[END_REF])

D m-ν i :m d = m-ν i j=1 Q j m -j + 1 , (3.3) 
where Q j are m -ν i independent exponential distributions with mean 1. (Here, d = stands for the 'equality in distribution).

To derive the pdf of the aggregated random variable S n = X 1 + • • • + X n with the mixed Bernstein copulas presented in Section (2), the following result is needed.

Theorem 3.1. Assume that the rv's Z 1 , • • • , Z n are dependent and defined with the Bernstein copulas and distributed as exponential Exp(1), such as assumed in Section (2). Then, the pdf of the aggregated random variable

Sn = Z 1 + • • • + Z n is given by f Sn (x) = ∞ l=n A l e -mx x l-1 m l Γ(l) , (3.4) 
where

A l = Pr n i=1 m j=N i +1
∆ i,j = l and ∆ i,j form a sequence of independent rv's, independent of N i , for i = 1, • • • , n and j = 1, • • • , m such that ∆ i,j follow a shifted geometric distribution Geom( j m ), with probability mass function Pr (∆

i,j = l) = j m 1 -j m l-1 , for for i = 1, • • • , n, j = 1, • • • , m and l = 1, 2, • • • .
Proof. From (3.2) and (3.3), the Laplace transform of Sn is

f Sn (s) = m-1 ν 1 =0 • • • m-1 νn=0 γ ν 1 m , • • • , ν n m n i=1 m-ν i j=1 m -j + 1 m -j + 1 + s = m-1 ν 1 =0 • • • m-1 νn=0 γ ν 1 m , • • • , ν n m n i=1 m j=ν i +1 j j + s .
In fact, we can rewrite the above result as

f Sn (s) = m-1 ν 1 =0 • • • m-1 νn=0 γ ν 1 m , • • • , ν n m n i=1 m j=1 j j + s 1 {j≥ν i +1}
, where 1 {A} denoting the indicator function on A, we readily obtain that

f Sn (s) = m-1 ν 1 =0 • • • m-1 νn=0 γ ν 1 m 1 , • • • , ν n m n m j=1 j j + s n i=1 1 {j≥ν i +1} .
On the other hand, we have m j=1 j j+s n i=1

1 {j≥ν i +1} = m m+s mn- n i=1 ν i m j=1 j m 1-(1-j m )( m m+s ) n i=1 1 {j≥ν i +1}
.

f Sn can then be rewritten as

f Sn (s) = E   m m + s n i=1 m j=N i +1 ∆ i,j   = ∞ l=0 m m + s l Pr   n i=1 m j=N i +1 ∆ i,j = l   , (3.5) 
where ∆ i,j , form a sequence of independent rv's, independent of N i ,

for i = 1, • • • , n and j = 1, • • • , m such that ∆ i,j follow a shifted geometric distribution Geom( j m ), for i = 1, • • • , n and j = 1, • • • , m.
The inversion of (3.5) with respect to s yields (3.4) with

A l = m-1 ν 1 =0 • • • m-1 νn=0 γ ν 1 m 1 , • • • , ν n m n Pr   n i=1 m j=ν i +1 ∆ i,j = l   . (3.6)
Since the support of the rv

n i=1 m j=N i +1 ∆ i,j is {n, n + 1, • • • }, then A l = 0 for l = 0, • • • , n -1.
The expression in (3.4) follows immediately. Now, we are in position to derive a closed-form expression of the pdf of S n = n i=1 X i .

In the following corollary, we use Theorem (3.1) to derive the pdf of the aggregated random variable

S n = X 1 + • • • + X n . Corollary 3.1. Let X = (X 1 , • • • , X n ) be
a vector of n continuous and non-negative rv's defined by the stochastic representation (2.1). Then, the pdf of the aggregated random variable S n is given by

f Sn (x) = ∞ l=n A l (-1) l m l Γ(l) x l-1 f Θ (l) (mx) , (3.7) for x > 0.
Proof. From (2.1), we have f Sn (x) = ∞ 0 θf Sn (xθ)f Θ (θ)dθ. Substitution of (3.4) into the last expression yields the required result.

Remark 3.1. If m = 1, It follows from (3.6) that A l = 1 if l = n, 0 if l = n.
Substituting the last expression into (3.7), one obtains the pdf of the aggregated risk S n discussed in [START_REF] Sarabia | Aggregation of dependent risks in mixtures of exponential distributions and extensions[END_REF] and given by

f Sn (x) = (-1) n Γ(n) x n-1 f Θ (n) (x).
We further derive the survival function of the distribution of S n = n i=1 X i .

Corollary 3.2. The survival function of the distribution of S n is given by

Pr (S n > x) = ∞ i=0 (-1) i B i (mx) i i! f Θ (i) (mx) , for x > 0, where B i = ∞ =max(i+1,n) A = Pr n i=1 m j=N i +1 ∆ i,j ≥ max(i + 1, n) .
Proof. From (3.7), we have

Pr (S n > x) = ∞ l=n A l (-1) l m l Γ(l) ∞ x z l-1 f Θ (l) (mz)dz = ∞ l=n A l (-1) l Γ(l) ∞ mx z l-1 f Θ (l) (z)dz.
By integration by parts (see [START_REF] Hartman | The theory of Lebesgue measure and integration[END_REF]), one gets

Pr (S n > x) = ∞ l=n A l l-1 i=0 (-1) i (mx) i i! f Θ (i) (mx),
which completes the proof.

Remark 3.2. If m = 1, then one gets the survival function of the aggregated risk S n discussed in [START_REF] Sarabia | Aggregation of dependent risks in mixtures of exponential distributions and extensions[END_REF] and given by

Pr (S n > x) = n-1 i=0 x i i! (-1) i f Θ (i) (x).
4 TVaR with the mixed Bernstein copulas

In this section we derive an expression of the TVaR for n dependent rv's X 1 , • • • , X n joined by the mixed Bernstein copulas with generator f Θ .

Theorem 4.1. Let X 1 , • • • , X n n dependent rv's joined by the mixed Bernstein copulas with generator f Θ , then the TVaR of the aggregate risk

S n = n i=1 X i is T V aR κ (S n ) = 1 1 -κ ∞ ν=1 P ν (-1) ν+1 m ν-1 V aR ν κ (S n ) ν! f Θ (ν-1) (mV aR κ (S n )) + n (1 -κ) ∞ mV aRκ(Sn) f Θ (x)dx, (4.1)
where

P ν = E    n i=1 m j=N i +1 ∆ i,j 1 n i=1 m j=N i +1 ∆ i,j ≥max(ν,n)    and ∆ i,j form a sequence of indepen- dent rv's, independent of N i , for i = 1, • • • , n and j = 1, • • • , m such that ∆ i,j follow a shifted geometric distribution Geom( j m ).
Proof. The combination of (1.1) and (3.7) yields

T V aR κ (S n ) = 1 1 -κ ∞ l=n A l (-1) l m l Γ(l) ∞ V aRκ(Sn) x l f Θ (l) (mx)(x)dx = 1 1 -κ ∞ l=n A l (-1) l mΓ(l) ∞ mV aRκ(Sn) x l f Θ (l) (x)dx. (4.2)
On the other hand, by integration by parts (see [START_REF] Spiegel | Mathematical handbook of formulas and tables[END_REF]), one gets ∞ mV aRκ(Sn)

x l f Θ (l) (x)dx = l i=1 (-1) l-i+1 m i l! i! V aR i κ (S n )f Θ (i-1) (mV aR κ (S n )) + (-1) l l! ∞ mV aRκ(Sn) f Θ (x)dx.
Combining the last expression with (4.2) gives

T V aR κ (S n ) = 1 1 -κ ∞ l=n l i=1 lA l (-1) i+1 m i-1 i! V aR i κ (S n )f Θ (i-1) (mV aR κ (S n )) + 1 m(1 -κ) ∞ l=n lA l ∞ mV aRκ(Sn) f Θ (x)dx.
Otherwise, from Theorem (3.1), we have

∞ l=n lA l = E n i=1 m j=N i +1 ∆ i,j = n i=1 m j=1 m j Pr [N i ≤ j -1] =
mn. Thus (4.1) holds.

Corollary 4.1. If we take m = 1, then the T V aR κ (S n ) in Theorem (4.1) reduces to

T V aR κ (S n ) = n 1 -κ n i=1 (-1) i+1 i! V aR i κ (S n )f Θ (i-1) (V aR κ (S n )) + n (1 -κ) ∞ V aRκ(Sn) f Θ (x)dx.
Proof. Substituting m = 1 into (4.1), we get the desired result.

To derive the TVaR-based contribution of risk i, i = 1, • • • , n to the sum S n with the mixed Bernstein copulas presented in Section (2), the following result is needed.

Lemma 4.2. Assume that the rv's Z 1 , • • • , Z n are dependent and defined with the Bernstein copulas and distributed as exponential Exp(1), such as assumed in Section (2). Then, the pdf of the random vector (Z i , Sn -Z i ) is given by

f Z i , Sn-Zi (x, y) = ∞ k=1 ∞ l=n-1 q (i) k,l τ k,m (x)τ l,m (y), (4.3) 
for x > 0 and y > 0, where

τ k,β (x) = β k x k-1 e -βx (k-1)! , β > 0, q (i) k,l = Pr    m j=N i +1 ∆ i,j = k, n ν=1 ν =i m j=Nν +1 ∆ ν,j = l    ,
and ∆ ν,j form a sequence of independent rv's, independent of N ν , for ν = 1, • • • , n and j = 1, • • • , m such that ∆ ν,j follow a shifted geometric distribution Geom( j m ).

Proof. Let f Z i , Sn-Zi be the joint Laplace transform of the random vector (Z i , Sn -Z i ) defined by

f Z i , Sn-Zi (s 1 , s 2 ) = ∞ 0 ∞ 0 e -(xs 1 +ys 2 ) f Z i , Sn-Zi (x, y)dxdy. It follows from (3.2) and (3.3) f Z i , Sn-Zi (s 1 , s 2 ) = m-1 ν 1 =0 • • • m-1 νn=0 γ ν 1 m , • • • , ν n m   m-ν i j=1 m -j + 1 m -j + 1 + s 1       n k=1 k =i m-ν k j=1 m -j + 1 m -j + 1 + s 2     = m-1 ν 1 =0 • • • m-1 νn=0 γ ν 1 m , • • • , ν n m   m =ν i +1 + s 1       n k=1 k =i m j=ν k +1 j j + s 2     . (4.4)
After some rearrangements, (4.4) becomes

f Z i , Sn-Zi (s 1 , s 2 ) = m-1 ν 1 =0 • • • m-1 νn=0 γ ν 1 m , • • • , ν n m   m =ν i +1 + s 1       m j=1 j j + s 2 n k=1 k =i 1 {j≥ν k +1}     . (4.5)
On the other hand, we have

m =ν i +1 +s 1 = m m+s 1 m-ν i m =ν i +1 m 1-(1-m ) m m+s 1 and m j=1 j j+s 2 n k=1 k =i 1 {j≥ν k +1} = m m+s 2 mn-m+ν i - n j=1 ν j m j=1 j m 1-(1-j m ) m m+s 2 n k=1 k =i 1 {j≥ν k +1}
. Substituting the latter expressions in (4.5), it follows that the joint Laplace transform f Z i , Sn-Zi can be rewritten as

f Z i , Sn-Zi (s 1 , s 2 ) = E     m m + s 1 m j=N i +1 ∆ i,j m m + s 2 n ν=1 ν =i m j=Nν +1 ∆ ν,j     , (4.6)
where ∆ ν,j form a sequence of independent rv's, independent of N ν , for ν = 1, • • • , n and j = 1, • • • , m such that ∆ ν,j follow a shifted geometric distribution Geom( j m ).

Since the support of the rv

n ν=1 ν =i m j=Nν +1
∆ ν,j is {n -1, n, • • • }, the inversion of (4.6) with respect to s 1 and s 2 yields the required result. Now, we are in a position to derive a closed-formula for the TVaR-based contribution of risk i, i = 1, • • • , n to the sum S n with the mixed Bernstein copulas presented in Section (2).

Theorem 4.3. Let X 1 , • • • , X n n dependent rv's joined by the mixed Bernstein copulas with generator f Θ . Then the TVaR-based contribution of risk i

, i = 1, • • • , n to the sum S n = X 1 + • • • + X n at level κ, 0 < κ < 1, is T V aR κ (X i ; S n ) = 1 1 -κ ∞ ν=1 P (i) ν (-1) ν+1 m ν-1 V aR ν κ (S n ) ν! f Θ (ν-1) (mV aR κ (S n )) + 1 1 -κ ∞ mV aRκ(Sn) f Θ (x)dx, (4.7) 
where

P (i) ν = E    m j=N i +1 ∆ i,j 1 n i=1 m j=N i +1 ∆ i,j ≥max(ν,n)  
 and ∆ i,j form a sequence of independent rv's, independent of N i , for i = 1, • • • , n and j = 1, • • • , m such that ∆ i,j follow a shifted geometric distribution Geom( j m ).

Proof. From (1.2) and (2.1), the capital attributed to the continuous distributed risk i can be expressed as (4.8) where Sn = n j=1 Z j and f Z i , Sn-Zi is the pdf of the random vector (Z i , Sn -Z i ).

T V aR κ (X i ; S n ) = 1 1 -κ E X i .1 {Sn>V aRκ(Sn)} = 1 1 -κ ∞ 0 1 θ E Z i .1 { Sn>θV aRκ(Sn)} f Θ (θ)dθ = 1 1 -κ ∞ 0 1 θ ∞ θV aRκ(Sn) s 0 xf Z i , Sn-Zi (x, s -x)f Θ (θ)dxdsdθ,
Using Lemma (4.2) leads to

s 0 xf Z i , Sn-Zi (x, s -x)dx = ∞ k=1 ∞ l=n-1 q (i) k,l k m τ k+l+1,m (s) = ∞ r=n a (i) r τ r+1,m (s), (4.9) 
where a

(i) r = r-n+1 k=1 k m q (i)
k,r-k . Consequently, inserting (4.9) into (4.8), one gets

T V aR κ (X i ; S n ) = 1 1 -κ ∞ r=n a (i) r ∞ 0 1 θ ∞ θV aRκ(Sn) τ r+1,m (s)f Θ (θ)dsdθ = 1 1 -κ ∞ r=n a (i) r r ν=0 ∞ 0 1 θ (mθV aR κ (S n )) ν
ν! e -mθV aRκ(Sn) f Θ (θ)dθ.

Otherwise from (4.9),

∞ r=n a (i) r = ∞ 0 s 0 xf Z i , Sn-Zi (x, s -x)dx = 1, it follows that T V aR κ (X i ; S n ) = - 1 1 -κ ∞ r=n a (i) r r ν=1 (-mV aR κ (S n )) ν ν! f Θ (ν-1) (mV aR κ (S n )) + 1 1 -κ ∞ mV aRκ(Sn) f Θ (x)dx.
Inverting the order of summation w.r.t. the variables r and ν in the last expression, one readily obtains

T V aR κ (X i ; S n ) = - 1 1 -κ ∞ ν=1 ∞ r=max(ν,n) a (i) r (-mV aR κ (S n )) ν ν! f Θ (ν-1) (mV aR κ (S n )) + 1 1 -κ ∞ mV aRκ(Sn) f Θ (x)dx, where P (i) ν = ∞ r=max(ν,n) r-n+1 k=1 kq (i) k,r-k = E    m j=N i +1 ∆ i,j 1 n ν=1 m j=Nν +1
∆ ν,j ≥max(ν,n)    , and then (4.7) immediately follows.

Corollary 4.2. If we take m = 1, then (4.7) reduces to

T V aR κ (X i ; S n ) = 1 1 -κ n ν=1 (-1) ν+1 (V aR κ (S n )) ν ν! f Θ (ν-1) (V aR κ (S n )) + 1 1 -κ ∞ V aRκ(Sn) f Θ (x)dx.
Proof. If we take m = 1, it follows from (4.7) that P

(i) ν = 1 if ν = 1, 2, • • • , n and 0 if ν > n.
Therefore, the proof is complete.

Corollary 4.3. Let X 1 , • • • , X n n dependent rv's joined by the mixed Bernstein copulas with generator f Θ . Then

T V aR κ (S n ) = n i=1 T V aR κ (X i ; S n ).
Proof. The result follows easily from Theorems (4.1) and (4.3).

Corollary 4.4. Let X 1 , • • • , X n n dependent rv's joined by the mixed Bernstein copulas with generator f Θ . If the joint probability mass function of the random vector

(N 1 , • • • , N n ) is exchangeable, then T V aR κ (X i ; S n ) = 1 n T V aR κ (S n ).
Proof. The proof follows from Theorem (4.3) by using elementary calculus.

Models

In this section, we present some results as consequences of our main results stated previously. We will consider dependent models with different claim distributions of the type Pareto and Gamma distributions, see [START_REF] Albrecher | Explicit ruin formulas for models with dependence among risks[END_REF] and [START_REF] Sarabia | Aggregation of dependent risks in mixtures of exponential distributions and extensions[END_REF] for more details.

Pareto claims with Clayton copula dependence

We assume that Θ has a gamma distribution, Θ ∼ Gamma(a, b), with pdf f Θ (θ) = b a Γ(a) θ a-1 e -bθ , and a Laplace transform f Θ defined by

f Θ (x) = 1 + x b -a
, a ≥ 1.

(5.1)

Gamma claims with dependence claims

Our next model is based on a Gamma claim distribution, X i ∼ Gamma(a, λ), for a ≤ 1, it follows that the survival function of the claim X i is Hi

(x) = f Θ (x) = Γ(a, λx) Γ(a) , a ≤ 1. 
(5.7)

Using (2.11), the multivariate survival function of (X 1 , • • • , X n ) can be written as

H (x 1 , • • • , x n ) = m 1 =0 • • • m n=0 b 1 ,••• , n Γ a, λ n i=1 i x i Γ(a)
.

We are now ready to apply the preceding result to derive a closed expression for the pdf of the aggregated risk with dependent Gamma claim.

Theorem 5.2. Let S n = X 1 + • • • + X n be the sum of n dependent rv's with gamma marginal distributions and with joint cdf defined by the multivariate mixed Bernstein copulas. Then the pdf of the aggregated random variable can be written as a finite mixture of Gamma distributions

f Sn (x) = ∞ k=1 ω k f G(a+k-1,λm) (x), (5.8) 
where

ω k = ∞ l=max(k,n) A l Γ(a+k-1) Γ(k)Γ(l-k+1)Γ(a) (-1) l-k (a -1) l-k .
Proof. According to (5.7), the lth-order derivative of f Θ is given by

f Θ (l) (x) = - λ a Γ(a) l-1 k=0 l -1 k (-1) l-k-1 λ l-k-1 e -λx (a -1) k x a-k-1 , (5.9) with (a) n = a(a -1) • • • (a -n + 1
) is the Pochhammer symbol. Substituting (5.9) into (3.7), one gets

f Sn (x) = ∞ l=n A l Γ(l)Γ(a) l-1 k=0 l -1 k (-1) k m a+l-k-1 λ a+l-k-1 (a -1) k x a+l-k-2 e -λmx = ∞ l=n A l Γ(l)Γ(a) l k=1 l -1 l -k (-1) l-k m a+k-1 λ a+k-1 (a -1) l-k x a+k-2 e -λmx .
Equation (5.8) automatically follows.

Remark 5.3. Substituting m = 1 into (5.8), one obtains,

f Sn (x) = n k=1 ω k f G(a+k-1,λ) (x), (5.10) 
where

ω k = Γ(a+k-1) Γ(k)Γ(n-k+1)Γ(a) (-1) n-k (a -1) n-k if k = 1, 2, • • • , n 0 if k = n + 1, n + 2, • • • ,
then (5.10) reduces to the pdf of the aggregated risk S n with gamma marginal distributions discussed in [START_REF] Sarabia | Aggregation of dependent risks in mixtures of exponential distributions and extensions[END_REF].

Numerical illustrations

In this section, numerical examples are given to illustrate our findings. We assume that the rv Θ has a Gamma distribution, Gamma(a, b). In the first example, the Bernstein copula is based on an exchangeable copula, while in the second one, we use a non exchangeable copula.

Example 6.1. In this example, the values for the risk measures V aR 0.95 (S 2 ) and T V aR 0.95 (S 2 ) are computed for different values of m in the following two cases

(i) The copula α is comonotonic, i.e., α(u 1 , u 2 ) = min(u 1 , u 2 ).
(ii) The copula α is counter-comonotonic, i.e.,

α(u 1 , u 2 ) = max(u 1 + u 2 -1, 0).
The obtained results are displayed in Table 1. As expected, introducing a positive dependence (negative dependence) between the risks leads to a heavier (a lighter) tail for the aggregate risk S 2 . Example 6.2. In this example, two non-exchangeable copulas are considered (i) A piece-wise copula based on two different Gaussian copulas

α(u 1 , u 2 ) = τ C φ u 1 τ , u 2 ; r 1 if u 1 τ τ u 2 + (1 -τ ) C φ u-τ 1-τ , u 2 ; r 2 Otherwise,
where C φ (., .; r) is the Gaussian copula with parameter r. In our numerical computation, it is assumed that τ = 0.5, r 1 = -0.95, and r 2 = 0.95.

(ii) Following [START_REF] Liebscher | Construction of asymmetric multivariate copulas[END_REF], we consider a non-exchangeable copula based on transformations of two Clayton copulas (Cf. Equation ( 4) in [START_REF] Liebscher | Construction of asymmetric multivariate copulas[END_REF])

α (u 1 , u 2 ) = 1 + 2 i=1 u -γθ i i -1 -1/γ 1 + 2 i=1 u -δ(1-θ i ) i -1 -1/δ
, with γ = 6, δ = 2, θ 1 = 0.525, and θ 2 = 0.3.

For these two copulas, we compute the V aR 0.95 (S 2 ), T V aR 0.95 (S 2 ), T V aR 0.95 (X 1 , S 2 ), and T V aR 0.95 (X 2 , S 2 ).

The obtained values are given in Table 2. From these results, one can see that introducing the second layer of dependence (i.e., Bernstein copula) impacts the obtained values for the risk measures and the capital allocations. The fact that the dependence is non-exchangeable does not translate to a significant difference between the capital allocations T V aR 0.95 (X 1 , S 2 ) and T V aR 0.95 (X 2 , S 2 ) and this is due to the fact that X 1 and X 2 are id. We obtained similar results under different choices of α and marginal distributions. This pushes us to assume that the dependence structure only affects the level of the risk measures while the capital allocation (as a percentage) is mainly depending on the marginal risks.

  a vector of n continuous and positive random variables (rv's) with joint survival distribution function (sf) denoted by H and univariate survival marginal distributions Hi , i = 1, • • • , n. Let Θ be a positive random variable (rv) with probability density function (pdf) f Θ , cumulative distribution function (cdf) F Θ , and Laplace transform f Θ (s) =

  Figure 1: The upper and lower bounds for ρ for different values for m.

Table 1 :

 1 Impact of m on the VaR, TvaR in the case of an exchangeable copula

	Case (i)	m = 1	m = 5	m = 10	m = 20	m = 30	m = 40	m = 50
	V aR 0.95 (S 2 )	139.12	155.60	159.76	162.15	162.95	163.34	163.55
	T V aR 0.95 (S 2 )	205.30	233.06	241.33	247.00	249.30	250.57	251.37
	Case (ii)	m = 1	m = 5	m = 10	m = 20	m = 30	m = 40	m = 50
	V aR 0.95 (S 2 )	139.12	123.41	119.98	118.06	117.39	117.05	116.84
	T V aR 0.95 (S 2 )	205.30	178.71	173.63	170.91	169.98	169.51	169.22

Table 2 :

 2 Impact of m on the VaR, TvaR in the case of non-exchangeable copulas

	Case (i)	m = 1	m = 5	m = 10	m = 20	m = 30	m = 40	m = 50
	V aR 0.95 (S 2 )	139.12	139.86	141.87	142.99	143.31	143.43	143.49
	T V aR 0.95 (S 2 )	205.30	209.14	215.04	219.35	221.09	222.04	222.64
	T V aR 0.95 (X 1 , S 2 ) 102.65	105.48	109.01	111.47	112.43	112.94	113.26
	T V aR 0.95 (X 2 , S 2 ) 102.65	103.66	106.03	107.88	108.66	109.10	109.38
	Case (ii)	m = 1	m = 5	m = 10	m = 20	m = 30	m = 40	m = 50
	V aR 0.95 (S 2 )	139.12	148.88	152.44	154.52	155.20	155.53	155.71
	T V aR 0.95 (S 2 )	205.30	222.08	229.17	234.16	236.19	237.30	238.01
	T V aR 0.95 (X 1 , S 2 ) 102.65	110.99	114.51	116.99	118.00	118.56	118.91
	T V aR 0.95 (X 2 , S 2 ) 102.65	111.09	114.66	117.16	118.18	118.74	119.10

It follow that X i ∼ P areto(a, b) with survival function given by Hi (x) = f Θ (x) = 1 + x b -a , a ≥ 1, for i = 1, • • • , n. Using (5.1), the expression for

Using (2.13), the expression for the survival function of (X

which is the joint survival function of a Pareto distribution.

Remark 5.1. Note that if m = 1, then the survival function

3) reduces to the joint survival function of a Pareto type II distribution proposed by [START_REF] Arnold | Pareto Distributions[END_REF][START_REF] Arnold | Pareto Distributions[END_REF] and given by H

.

In the following theorem, we give a close expression for the pdf of the aggregated risk for the special case of the Pareto claim with Clayton copula dependence.

Theorem 5.1. Let S n = X 1 + • • • + X n be the sum of n dependent rv's with joint cdf defined by the multivariate mixed Bernstein copulas. Then the pdf of the aggregated random variable is given by

for x > 0, where B(l, a) = Γ(l)Γ(a) Γ(l+a) denotes the Beta function.

Proof. Taking the lth order derivative of (5.1) with respect to x yields

Substituting the last expression into (3.7), we get the desired result.

Remark 5.2. If we take m = 1 in (5.4), then the pdf of the aggregated risk reduces to

which is the pdf of the aggregated risk S n with Pareto marginal distribution with shape parameter a, scale parameter b and Clayton survival copula discussed in [START_REF] Sarabia | Risk aggregation in multivariate dependent pareto distributions[END_REF][START_REF] Sarabia | Aggregation of dependent risks in mixtures of exponential distributions and extensions[END_REF].