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This paper proposes and studies three methods for the identification of cracks in linear elastic bodies. They are based on the reciprocity gap principle which they extend to the case of partially redundant boundary data. The methods are all assessed on an academic 2D case, then the most appealing is more deeply analysed and illustrated on a 3D test-case.

Introduction

Crack identification is an important issue in the context of the non-destructive control of in-situ mechanical parts. In this framework, we focus on the problem of reconstructing crack shapes from the measurement of displacement on a part of the boundary subjected to known static load. This question, which belongs to the class of inverse problems, has received much attention in the past years. In [START_REF] Andrieux | On the inverse emergent plane crack problem[END_REF], the authors gave uniqueness and stability results for the emerging crack identification problem on the Laplace equation. In [START_REF] Ben Abda | Identification of 2D cracks by elastic boundary measurements[END_REF], uniqueness was proven for buried cracks, and stability for emerging cracks in elasticity. Both uniqueness results are true for unspecified shapes of the crack, while both stability results were proven for straight cracks. [START_REF] Santosa | A computational algorithm to determine cracks from electrostatic boundary measurements[END_REF] proposed an identification method for the 2D Laplace equation based on the minimization of the Kohn-Vogelius functional.

Solving inverse problems often reduces to solving many forward problems, which is often very CPUconsuming. This why non-iterative methods have been investigated, such as the linear sampling method (for the Helmholtz equation) in [START_REF] Cakoni | The linear sampling method for cracks[END_REF] or the topological gradient method in [START_REF] Amstutz | Crack detection by the topological gradient method[END_REF].

In [START_REF] Andrieux | The reciprocity gap: a general concept for flaws identification problems[END_REF], the authors introduced the reciprocity gap method, which applies to homogeneous materials and does not rely on any forward resolution. In [START_REF] Andrieux | Reciprocity principle and crack identification[END_REF], a theoretical study of this method applied to crack identification was provided. Two main limitations must be underlined: first, it is required to know both Dirichlet and Neumann data on the entire boundary, and second, only plane cracks can be identified. In [START_REF] Ferrier | Planar crack identification in 3D linear elasticity by the Reciprocity Gap method[END_REF], a complete numerical study of the algorithm was provided, and a variant better suited to thick domains was proposed.

Many studies have been carried out about different versions of this method. In [START_REF] Ben Abda | On the use of the reciprocity-gap functional in inverse scattering from planar cracks[END_REF], the method is applied to the Helmholtz equation, which allows the identification of more complicated shapes. In [START_REF] Steinhorst | Application of the reciprocity principle for the determination of planar cracks in piezoelectric material[END_REF], the authors proposed a generalization to piezo-electrical materials. In [START_REF] Shifrin | Identification of small well-separated defects in an isotropic elastic body using boundary measurements[END_REF], an application of the reciprocity gap was proposed for small ellipsoidal inclusions. In a more recent paper [START_REF] Shifrin | Identification of multiple cracks in 2D elasticity by means of the reciprocity principle and cluster analysis[END_REF], the authors proposed a method based on the reciprocity gap to identify small non-coplanar separated cracks. Some authors have already worked to relax the necessity of redundant data on all the boundary. One can mention [START_REF] Ben Abda | Line segment crack recovery from incomplete boundary data[END_REF], dealing with the 2D Laplace equation, where the missing boundary data was first completed via the resolution of a bounded extremal problem and the reciprocity gap was used in a second step. In [START_REF] Andrieux | Emerging crack front identification from tangential surface displacements[END_REF], the authors made a numerical study of the algorithm of [START_REF] Andrieux | Reciprocity principle and crack identification[END_REF] on the particular case of an emerging crack in a known plane, with partially missing Dirichlet data recovered by solving a preliminary Cauchy problem.

In this work, we study three different ways to overcome the necessity of having complete redundant data. In Section 2, the general identification problem is presented, as well as a simple test-case to compare the methods. Section 3 is dedicated to the method proposed by [START_REF] Andrieux | Emerging crack front identification from tangential surface displacements[END_REF], that consists in solving a preliminary Cauchy problem, with the Steklov-Poincaré method [START_REF] Ferrier | The Steklov-Poincaré technique for data completion: Preconditioning and filtering[END_REF] in our case. This method will be referred to as Cauchy Reciprocity Gap (C-RG). In Section 4, we show that, in some cases, it is possible to generate test-fields adapted to the missing data, and the resulting method is referred to as Petrov-Galerkin-homogeneous Reciprocity Gap (PG0-RG).

In Section 5, we present a method that simultaneously identifies the crack and the missing boundary value via the reciprocity gap method. We call this last method the general Petrov-Galerkin Reciprocity Gap (gPG-RG) The last section proposes a deeper numerical study of that last method on, among others, a 3D test-case.

Crack identification problem

Let Ω ⊂ R d (d = 2 or 3), be an open domain.

Its boundary is denoted by ∂Ω and n is the outerpointing normal vector. The domain has an internal crack, denoted by Σ, and n Σ is the normal vector to this crack. We consider that this domain is subjected to a series of r max self-equilibrated boundary traction loads f r . Let u r be the displacement field, σ r the Cauchy stress tensor, H the Hooke's tensor and ε the symmetric gradient operator. The system of equations satisfied by (u r , σ r ) can be written as:

∀r, 1 r r max , 0 = div(σ r ) in Ω\Σ, σ r = H : ε(u r ) in Ω\Σ, σ r • n Σ = 0 on Σ σ r • n = f r on ∂Ω (1)
The solution to this system (1) is unique provided it is sought in the space orthogonal to the rigid body motions space. Note that these equations correspond to a simplistic representation of the crack since, without further assumptions, interpenetration would be possible. In the following, we will either assume that the loads are known to open the crack or we will improve the model by considering frictionless unilateral contact on the crack lips.

We set the notation σ(•) = H : ε(•). Let V = {v ∈ H 1 (Ω), σ(v) ∈ H div (Ω), div(σ(v)) = 0 weakly in Ω}, the set of elastically mechanical balanced test functions (mechanical equivalent to harmonic functions). The reciprocity gap functional RG r is defined as follows:

v ∈ V → RG r (v) ∈ R = ∂Ω (f r • v -u r • σ(v) • n) dS (2)
If u r denotes the displacement jump on the crack, one can prove that:

∀v ∈ V, RG r (v) = Σ σ(v) : (n Σ ⊗ u r ) dS (3) 
If the material's constitutive parameters, on which σ depends, are homogeneous, functions in V can be computed numerically or analytically. 2) is fully known and the reciprocity gap method consists in computing RG r (v) for well-chosen test-fields and to use this information to infer the shape of Σ. In particular, if we assume that the crack Σ is planar, contained in the plane written Π, two experiments (r max = 2) and well-chosen testfields enable to fully characterize the crack's plane Π [START_REF] Andrieux | Reciprocity principle and crack identification[END_REF]. The method remains valid in the case of several cracks belonging to the same plane Π, see for example [START_REF] Ferrier | Planar crack identification in 3D linear elasticity by the Reciprocity Gap method[END_REF] or [START_REF] Ben Abda | On the use of the reciprocity-gap functional in inverse scattering from planar cracks[END_REF] for Helmholtz equation.

The intersection of Π with the domain Ω is denoted by ω, as described on Figure 1. The equation (3) can then be re-written by using the extension by 0 of u r on ω:

∀v ∈ V, RG r (v) = ω σ(v) : (n Π ⊗ u r ) dS (4) 
Then, the Galerkin projection of (4) into a finite dimensional subspace enables to reconstruct an approximation of u r . The shape of the crack can then be post-processed, for instance by thresholding.

This paper focuses on the cases where the dis- the reciprocity likelihood maximization [START_REF] Andrieux | The reciprocity likelihood maximization: a variational approach of the reciprocity gap method[END_REF]. In these cases, the crack is still sought as the support of the displacement jump on a surface to be determined, but the assumed flatness can no more be exploited, so even curved cracks could be considered, as long as the surface remains simple to configure. In order to be able to compare all three methods and maintain computational cost low, we maintain the planar crack hypothesis in the whole paper. In this part, the way to overcome the lack of knowledge on one of the sides is to first run a data completion algorithm to reconstruct the missing piece of Fig. 3: Studied domain and applied load cases information. This strategy has already been followed in [START_REF] Ben Abda | Line segment crack recovery from incomplete boundary data[END_REF][START_REF] Kadri | Identification of internal cracks in a three-dimensional solid body via Steklov-Poincaré approaches[END_REF].
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Presentation of the method

We first solve a Cauchy problem on a smaller part of Ω, denoted by Ω 1 and assumed not to contain the crack, whose boundary contains all the partially known edges (faces in 3D) at a least a part of the fully

known edges: ∂Ω \ (Γ n ∩ Γ d ) ⊂ ∂Ω 1 and ∂Ω 1 ∩ (Γ n ∩ Γ d ) = ∅.
The interface Γ = ∂Ω 1 ∩Ω closes the domain (see Figure 4). In the proposed example, the lateral sides belong to Γ n ∩ Γ d , that is to say they bear redundant information, while the top side is only in Γ d .

The equations corresponding to the Cauchy problem are:

0 = div(σ r (u r )) in Ω 1 σ r = H : ε(u r ) in Ω 1 σ r • n = f r on ∂Ω 1 ∩ Γ n u r = u r on ∂Ω 1 ∩ Γ d (5)
Many methods exist in the literature to solve this system. One can cite for example the energy error gap method from [START_REF] Andrieux | Solving Cauchy problems by minimizing an energy-like functional[END_REF], the iterated regularization from [START_REF] Cimetiere | Solution of the Cauchy problem using iterated Tikhonov regularization[END_REF] or the alternating method of [START_REF] Kozlov | Iterative procedures for solving ill-posed boundary value problems that preserve the differential equations[END_REF]. We choose to use the Steklov-Poincaré algorithm [START_REF] Belgacem | On Cauchy's problem: I. A variational Steklov-Poincaré theory[END_REF], which has been successfully applied in the framework of crack identification in [START_REF] Kadri | Identification of internal cracks in a three-dimensional solid body via Steklov-Poincaré approaches[END_REF]. A recent study [START_REF] Ferrier | The Steklov-Poincaré technique for data completion: Preconditioning and filtering[END_REF] With the former choice, the crack identification is applied on a more slender domain, but with the latter choice, more accurate information is used since the displacement on the top side was a given quantity and only the reaction needed to be rebuilt. 

Numerical study

In order to apply the proposed method, we suppose that the crack Σ is contained in the bottom-most half of the unit square. The first step consists in solving two Cauchy problems on the higher half of the square, Ω 1 , corresponding to two of the four available load cases. All the combinations were tested and the couple {1, 3} minimizes the distance between the two identified crack lines. In this numerical study, the mesh used for the direct computation is re-used for the resolution of the Cauchy problem, and its boundary elements are also used for the computation of the integrals needed for the reciprocity gap method. This "inverse problem crime" is deliberately committed in such a way to reveal the unreliability of the method. The mesh is constituted of 18142 triangle P1 elements with 8821 nodes, and the boundaries are refined. There are 500 elements on Γ n, 1500 on Γ n ∩ Γ d and 500 on Γ .

Figure 5 displays the relative errors on the identified u and f on the interface Γ . One can note that the error on f is, as usual for the Cauchy problem, much greater than the error on u. What is more, the error on f dramatically increases when getting closer to the corners. Adding a smoothing step could be of interest, but this idea was not investigated in this study.

Figure 6 presents the relative errors on the identification of f on the top side. One can remark that, as expected, the precision of the identification is much better on the top side Γ n than on the interface Γ .

The crack identification procedure with polynomial reconstruction [START_REF] Ferrier | Planar crack identification in 3D linear elasticity by the Reciprocity Gap method[END_REF] is then either applied on the lower domain Ω 2 or on the full domain Ω. This proce- Whatever the choice of domain, the identification of the crack's line is very satisfactory while the normal displacement jump suffers from the noise and its reconstruction has to be strongly regularized, making it very smooth. Anyway, this identification gives a correct idea of the position of the crack, but its length is impossible to deduce from the result.

Conclusion on the method

This method requires to know a priori that the crack is not in some part of the domain (Ω 1 ), that is sufficiently large to efficiently solve the Cauchy problem.

What is more, in this method, the resolution of the Cauchy problem has to be particularly precise in or-der to provide the reciprocity gap algorithm with data of sufficient quality.

The stability of the crack identification problem is locally Lipschitz (at least in the case of straight emerging cracks, see [START_REF] Andrieux | On the inverse emergent plane crack problem[END_REF][START_REF] Ben Abda | Identification of 2D cracks by elastic boundary measurements[END_REF]), while the Cauchy problem, used as an intermediate step, is more severely ill-posed, with logarithmic stability and eigenvalues that tend to zero exponentially (see [START_REF] Belgacem | Why is the Cauchy problem severely ill-posed?[END_REF] for a spectral analysis or [START_REF] Alessandrini | The stability for the cauchy problem for elliptic equations[END_REF] for a stability analysis). As a consequence, this method is not optimal in term of stability. An other issue is that the Reciprocity Gap method presented in [START_REF] Andrieux | Reciprocity principle and crack identification[END_REF] can only be used with exactly 2 load cases. As a consequence, if more load cases are available (as in our example), this extra information can not be exploited. The last limitation of this approach is that it requires to solve two forward problems per iteration of the Steklov-Poincaré method in order to solve the Cauchy problem. This reduces the benefit from using the reciprocity gap method because the resolution of the Cauchy problem constitutes the computational bottleneck of the method.

On the other hand, the method can be straightforwardly applied on any geometry of the boundary, and for any kind of missing data (Dirichlet, Neumann or both).

Generation of adapted test-fields (PG0-RG method)

Let us consider the following subspace of admissible fields:

V 0 =        v ∈ V, v = 0 on Γ d σ(v) • n = 0 on Γ n       (6) 
We need to assume that Γ d ∩Γ n = ∅ in order for V 0 not to be reduced to the null function. In words, the following method can not be applied to problems where a part of the boundary bears no information (neither Dirichlet nor Neumann). Under that hypothesis and assuming that the boundary is regular enough, it is possible to build fields in V 0 . For instance for piecewise polynomial boundary, one can use the method of [START_REF] Ferrier | Planar crack identification in 3D linear elasticity by the Reciprocity Gap method[END_REF]. However, in this case, a new condition emerges:

Γ d and Γ n cannot exist on two different parts of the same polynomial-shaped surface. This is illustrated on Figure 9.
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Fig. 9: Two cases where polynomials test-functions cannot be build

The advantage of using test fields in V 0 is that the boundary integral of ( 2) can be evaluated without difficulty because the terms on Γ d and Γ n vanish:

∀v ∈ V 0 , ∀r ∈ 1; r max , RG r (v) = ∂Ω (f r • v -u r • σ(v) • n) dS = Γn f r • v dS - Γ d u r • σ(v) • n dS (7)
On the numerical point of view, the determination of a basis of a finite-dimensional subset of V 0 can be done thanks to the kernel of the discrete form of the operator div(σ(•)), combined with boundary conditions. This operation can be realized once for all for a given constitutive law. In practice, in our implementation, this computation appears not to be costly.

Anyhow, as said earlier, the test fields that permit to compute the coordinates of the Plane Π, as proposed in [START_REF] Andrieux | Reciprocity principle and crack identification[END_REF], do not belong to V 0 . We thus propose a technique that identifies simultaneously the plane Π and the displacement jump (whose support represents the crack Σ).

Principle of the method

We introduce e r (Π, u j , v), the identification error between the values given by ( 2) and ( 4) for a load case r, a plane Π, a displacement jump u j and a test-function

v in V 0 . e r (Π, u j , v) = Π σ(v) : (n Π ⊗ u j ) dS - Γn f r • v dS - Γ d u r • σ(v) • n dS (8)
Proposition 1 If Π is the actual crack plane, and if u r is the actual displacement jump for the load-case r, e r (Π, u r , v) vanishes for any v in V 0 .

Proof The proof follows from the application of equation (3) in the definition of e r (Π, u r , v).

In [START_REF] Ben Abda | Identification of 2D cracks by elastic boundary measurements[END_REF], the identifiability of cracks from one measurement is demonstrated in the case where the displacement is not smooth at the vicinity of the crack tips, and in the 2D framework. However, the utilization of more than one test cases is expected to increase the stability of the resolution. That is why we propose to minimize, in the mean square sense, the errors (e r (Π, u r , v)), for r max different load cases and

n different test-functions ψ i i=1...n in V 0 . Let us in- troduce the minimization problem over Π in the set of planes of R d , and over u r in H 1/2 (ω): min Π,( u r ) r 1 2 rmax r=1 n i=1 e r (Π, u r , ψ i ) 2 (9)
In practice, the plane Π can be characterized by few parameters (2 in 2D, 3 in 3D) which we gather in the vector θ. To emphasize this, the plane is now denoted by Π θ . As said earlier non-flat surface could be considered, it would just make the number of parameters and the computational cost higher.

Regarding u r , it is sought in a subspace of . The minimization problem can then be written as:

min θ,(α r θ ) r 1 2 rmax r=1 n i=1   e r (Π θ , m j=1 α r θ,j φ θ,j , ψ i )   2 (10) 
Remark 1 The vector θ could be appended with other unknown parameters to be identified (material coefficients, geometrical details).

Problem [START_REF] Ben Abda | Identification of 2D cracks by elastic boundary measurements[END_REF] is exactly the minimization problem that results from the Petrov-Galerkin projection of the equations ( 2) and ( 4) for each r in range 1; r max . It can then be algebraically rewritten:

min θ,(α r θ ) r 1 2 rmax r=1 A θ α r θ -b r 2 2 ( 11 
)
With the following notations:

b r i = Γn f r • ψ i dS - Γ d u r • σ(ψ i ) • n dS A θ,ij = ω θ σ(ψ i ) : (n Π θ ⊗ φ θ,j ) dS ( 12 
)
Remark 2 The method finds the crack's parameters, and displacement gap that minimize the reciprocity gap. As such, it can be linked to the more-conventional PDE-constrained minimization methods, that consist in minimizing a well-chosen cost-function under the constraint of respecting the PDE. These methods applied to parameter identification are detailed for example in [START_REF] Avril | Overview of identification methods of mechanical parameters based on full-field measurements[END_REF]. In the case of our algorithm, the PDE constraint is enforced via the choice of the test-functions in V 0 , which ensures that one does not have to iteratively solve the direct problem, in the same vein as the reciprocity likelihood minimization method [START_REF] Andrieux | The reciprocity likelihood maximization: a variational approach of the reciprocity gap method[END_REF].

As this minimization problem is very likely to be unstable due to the inherent ill-posedness of the problem (Appendix A provides some elements to understand the properties of Matrix A), we add a quadratic symmetric semi-definite positive regularization term

α rT θ M T θ M θ α r
θ to the functional. The weight of that term is tuned by the positive real parameter µ:

min θ,(α r θ ) r 1 2 rmax r=1 A θ α r θ -b r 2 2 + µ 2 M θ α r θ 2 2 (13) 
In practice, we propose M θ to stand for the "Frobenius norm of the surface gradient" operator:

M θ α r θ 2 2 = ω θ ∇ u r 2 F dS (14) 
The kernel of M T θ M θ is spanned by constant fields, this does not affect the regularization since the instability only affects oscillatory terms.

In the end, the cost-functional to be minimized can be written as:

Υ (θ, (α r θ ) r ) = 1 2 rmax r=1 α rT θ A T θ A θ + µM T θ M θ α r θ -α rT θ A T θ b r (15) 
As it naturally arises, the minimization of Υ is conducted in a nested way: the inner loop seeks (α r θ )

for a given θ, while the outer loop seeks the optimal θ. We introduce the following notations:

αr θ = arg min (α r θ ) r Υ (θ, (α r θ ) r ) (16) 
Φ(θ) = Υ (θ, ( αr θ ) r ) (17)

Technical choices

(ψ i ) i=1...n is chosen to be a basis of V 0 ∩ R 20 [x, y, z],
the vector subspace of admissible polynomials with degree less or equal to 20. The construction of such a basis is described in [START_REF] Ferrier | Planar crack identification in 3D linear elasticity by the Reciprocity Gap method[END_REF].

(φ θ,j ) j=1...m is the basis of finite element shape functions associated to a 2D mesh of the surface ω θ . These functions have local support, contrary to the functions commonly used with the reciprocity gap method [START_REF] Andrieux | Reciprocity principle and crack identification[END_REF][START_REF] Andrieux | Emerging crack front identification from tangential surface displacements[END_REF]. This is made possible by the Petrov-Galerkin procedure and has several advantages. Firstly, as the crack is supposed to occupy only a small part of the surface ω θ , it better renders the local variations of the displacement jump function.

Secondly, it permits refining locally some parts of the mesh. Finally, regularization is easy to apply in this framework.

In practice, the mesh is made out of triangles, and first degree shape functions are used. For any position θ of the plane Π θ , one has to mesh ω θ = Π θ ∩ Ω in order to compute the matrices A θ and M θ . The resulting mesh is denoted by M θ . While in the 2D case the crack is 1D and meshing is trivial, in the 3D case the meshes were generated with Gmsh software [START_REF] Geuzaine | Gmsh: A 3-D finite element mesh generator with built-in pre-and postprocessing facilities[END_REF]. In practice, this mesh generation is sufficiently efficient to have only a negligible impact on the overall computational cost of the algorithm

The quality of the solution can be improved by some a priori knowledge:

-If the crack is known not to be emerging, then all the boundary degrees of freedom of ∂ω θ can be imposed null Dirichlet conditions. If T θ is the discrete trace operator, this condition can be written as T θ α r θ = 0.

-Since there is no interpenetration, we know that Finally, the minimization can be written as:

u r •n Π θ 0. If C θ is (
min θ,(T θ α r θ =0,C θ α r θ 0) r Υ (θ, (α r θ ) r ) ( 18 
)
Where Υ is defined in equation [START_REF] Cakoni | The linear sampling method for cracks[END_REF]. In this context, the minimization with respect to (α r θ ) for a given θ can be run with an Uzawa algorithm.

Choosing θ in order to configure the plane Π θ is not a trivial question, since the set of planes (aka projective space) is not a vector space. Moreover, in order to help the outer minimization, it is of interest to use The outer minimization (with respect to θ), is performed via a Newton algorithm that finds the roots of the gradient of Φ(θ). This gradient is estimated with finite differences, and the Hessian is approximated via the sensibility matrices. Algorithm 1 presents the method. It calls for a series of remarks.

-The choice of the sampling step p s of the finite difference evaluation of the gradient is important:

for too large p s , the error on the identified parameters stagnates quickly while, for too small p s , the algorithm may not be able to efficiently optimize the parameters, mostly because of roundoff effect. For that reason, it was chosen to adapt p s to the evolution of the parameters by writing In our implementation, the Uzawa algorithm performed a fixed number of iterations, namely 100.

A straightforward improvement would be to use a variable criterion on the stagnation of C θ α r + which should decrease when θ converges. This would make it possible to avoid long computations for the first steps for which the identified displacement jump is anyway quite wrong.

-In practice, the minimization problems that have to be solved under inequality constraint for the different load-cases r share the same left-hand side.

As a consequence, a multiple right-hand side strategy can be used during the Uzawa algorithm.

-The test-functions being high order polynomials, operation. Using mesh morphing instead led to similar overall behavior of the algorithm.

they
for j = 1,
-In some cases, it was observed that the proposed algorithm stagnated around sub-optimal solutions.

We investigated using BFGS for the outer minimization. This quasi-Newton method has the advantage not to require mesh projection for the update of the matrices, but it did not lead to much improved solutions.

We also tested using Markov chains. This method does not need to compute gradient nor Hessian, and statistically leads to safer convergence.

However, the convergence rate was drastically decreased, making it less convenient than the New-ton method presented above which was used in all the following examples.

Numerical study

We evaluate the method on the 2D test-case of Fig-

ure 3 where the space of test functions only needs to be adapted to the missing Neumann data on the top side.

For this numerical study, it was chosen to interpolate the measurement on a coarse mesh that is different from the mesh used for the direct computation. By this means, even when no synthetic noise is explicitly added, the measured data are slightly incompatible.

In a first time, we propose on Figure 11 The first remark about those maps is that the costfunction is symmetric with respect to the second diagonal, because θ 1 and θ 2 are interchangeable. Also, as the parameters are angles, the space is 2π periodic. Clearly, the functions are not convex, and they do not necessarily have a unique minimum. Moreover, the functions do not strictly vanish for the reference value, because of at least three factors. First, even if no synthetic noise was added, the data comes from an approximate solution. Second, a transfer was necessary between the finite element mesh to the surface mesh used for the computation of integrals. Finally, the cost-function is only evaluated for discrete values of (θ 1 , θ 2 ).

Table 1 presents the Euclidean norm the righthand side (RHS) of the linear system associated to each load case. This norm is proportional to the mag- In order to tune the regularization, we propose to use the L-curve method (see Figure 13). Below a given value of µ, close to 10, non-physical oscillations of the displacement jump field appear, which make the norm of the gradient of the displacement jump explode. For The parameters θ 1 and θ 2 (see Figure 10) were initialized by: θ 0 1 = 0 and θ 0 2 = π. This corresponds to a horizontal line of equation y = 1/2. The decrease of the cost-function with the iterations is displayed on Figure 14.

The identification of the crack's line is presented on Figure 15, it is very close to the reference line used for the direct computation. On Figure 17, the identified displacement jump over this line is compared to the true displacement jump over the reference line for the different load cases. It is noteworthy that the more the load opens the crack, the larger is the right-hand side and the more precise is the identification (as seen on Table 1).

Remark 3 The reference (forward) computation was conducted on a mesh with an explicit crack (double nodes). The displacement jump is measured as the dif-

ference between the displacements on two close lines located on both sides of Π. As a consequence, the value of the reference displacement jump does not exactly vanish outside the crack.

Remark 4

In the case where the applied load does not open the crack, it is necessary to study the tangential components of the displacement jump, that are available by the proposed method, but not displayed here.

However, for the seek of stability, it is much preferable that at least one load-case leads to a non-vanishing normal gap.

Conclusion on the PG0-RG method

This method is limited by the need to construct testfunctions that are in V 0 . In our case of polynomial test-functions, it is feasible to design such functions for (piecewise) polynomial boundaries with Dirichlet or Neumann missing data. But, if the data is missing only on a small part of a line, this method leads to ignoring the data on the entire line.

On the other hand, and contrarily to the previously-presented C-RG method, it is not necessary to assume that the crack is contained in a part of Ω. The comparison of the results of figures 8 and 17

show that this method can also achieve a better accuracy since for the C-RG method the noise on Cauchy data induces a stronger noise on the data used in the reciprocity gap step. As the used test-functions respect the equilibrium by themselves, the method does not require to solve any direct problem, which means that most of the benefit of the reciprocity gap method remains. Anyhow, there is a significant cost in computing, at each iteration, the small matrices A θ (which is moreover dense) and M θ . This approach is technically close to the PG0-RG method but instead of trying to eliminate the unknown boundary conditions by constructing the space V 0 , we use test-functions in V (ie. that only respect the local equilibrium inside the domain), and we try to identify the boundary conditions together with the crack.

Presentation of the method

Let us rewrite the definition of the reciprocity gap functional [START_REF] Amstutz | Crack detection by the topological gradient method[END_REF], and separate the integrals on the different parts of the boundary. We distinguish the known part of the force f r , defined on Γ n , from the unknown part of the force f r , defined on Γ n. The same distinction is made on the boundary displacement: on Γ d , u is known, whereas on Γ d, u is unknown. Note that u and u are tied by the H 1/2 (∂Ω) continuity at Γd ∩ Γ d.

For simplicity reasons, we assume that u is 0 on ∂Γ d , so that u should be sought in H

1/2 00 (Γ d).
Similarly as in [START_REF] Andrieux | On the inverse emergent plane crack problem[END_REF], we introduce ȇr (Π, u j , f , u, v), the difference between the values given by ( 2) and ( 4)

for a load case r, a plane Π, a displacement jump

u j , force f on Γ n, displacement u on Γ d and a test- function v in V. ȇr (Π, u j , f , u, v) = Π σ(v) : (n Π ⊗ u j ) dS - Γn f • v dS - Γ d u • σ(v) • n dS - Γn f r • v dS - Γ d u r • σ(v) • n dS ( 19 
)
This identification error vanishes for the right crack plane Π, the right displacement jump u r and the right forces and displacement f r and u r on Γ n and

Γ d.
As in ( 9), we introduce n different test-functions (ψ i ) i=1...n in V, and we write the following minimization problem : min

Π, u r , u r , f r r 1 2 rmax r=1 n i=1 ȇr (Π, u r , ψ i , f r , u r ) 2 (20) 
As previously, we introduce the family (φ θ,j ) j=1...m , that spans the space describing u r .

Two other families have to be introduced as well. The approximation of f r lives in the space spanned by (χ k ) k=1...p , of dimension p, and the approximation of u r lives in the space spanned by (ρ l ) l=1...q , of dimension q. The corresponding amplitude vectors are respectively α r θ = α r θ,j j=1...m , β r = (β r k ) k=1...p and γ r = (γ r l ) l=1...q . The minimization problem then reads:

min θ,(α r θ ,β r ,γ r ) r 1 2 rmax r=1 n i=1   ȇr   Π, m j=1 α r θ,j φ θ,j , ψ i , p k=1 β r k χ k , q l=1 ρ l γ r l     2 (21) 
As previously, this problem can be algebraically written as:

min θ,(α r θ ,β r ,γ r ) r 1 2 rmax r=1 Φ θ α r θ + Xβ r + Rγ r -b r 2 (22)
with:

b r i = Γn f r • ψ i dS - Γ d u r • σ(ψ i ) • n dS Φ θ,ij = ω θ σ(ψ i ) : (n Π θ ⊗ φ θ,j ) dS X ik = - Γn χ k • ψ i dS R il = Γ d ρ l • σ(ψ i ) • n dS (23) 
The assembly of the matrices X and R, is one of the most costly steps, because they are fully populated. Fortunately, this operation can be done once for all. Φ θ is dense as well, and while its size is much smaller, its assembly has to be done at each iteration as it depends on the position of the plane Π θ , making it a potential bottleneck for the method.

The minimization is regularized by two terms which respectively penalize the L 2 norm of f r and the gradients of u r and u r as in equation ( 14). Thus, the discrete operators M θ , M X and M R are introduced in order to build the desired quantities from the degrees of freedom. The sparse structure of these matrices ensures that the numerical cost of their assembly remains small.

min θ,(α r θ ,β r ,γ r ) r 1 2 rmax r=1 A θ α r θ + Xβ r + Rγ r -b r 2 + µ 2 M θ α r θ 2 2 + µ 2 η M X β r 2 2 + µ 2 M R γ r 2 2 ( 24 
)
Remark 5 (Regularization of the boundary displacement) At that point, it is crucial to take into account the continuity of u r during the regularization.

In other words, the regularization acts on the displacement fields on Γ d with known values on ∂Γ d. In particular, if u r was non-zero on ∂Γ d ∩ ∂Γ d , the regular-ization would contribute to the right-hand side of the problem. Note that this remark extends to point-wise measurements in a discrete setting. For the sake of simplicity, we assume the displacement is known to be zero on ∂Γ d.

We introduce the following notations:

A θ = A θ X R ; ᾱr =         α r θ β r γ r         M θ =         M θ 0 0 0 ηM X 0 0 0 M R         ; (25) 
Finally, as previously, two operators are introduced: T θ is the discrete trace operator on ∂ω θ and C θ is such that C θ ᾱr 0 ensures that u r 0 on any point of Σ, which is the non-interpenetration condition between the faces of the crack. Our final minimization problem can be written as:

min θ,(T θ ᾱr =0,C θ ᾱr 0) r=1...rmax 1 2 rmax r=1 ᾱrT A T θ A θ + µM T θ M θ ᾱr -ᾱrT A T θ b r (26) 
Remark 6 As it is used here, the Reciprocity Gap method reconstructs a field (the displacement gap)

which is an indicator of the presence of a crack. From this point of view, it is close to the topological gradient method [START_REF] Amstutz | Crack detection by the topological gradient method[END_REF] and the linear sampling method [START_REF] Cakoni | The linear sampling method for cracks[END_REF]. The first method uses the topological gradient as such indicator, and the second is a method in inverse scattering theory based on solving a linear integral equation that uses the equation's solution as an indicator function for the the support of the scattering object.

Technical choices

Note that all remarks given in Section 4.2 are also relevant for this approach, but other topics need to be considered.

-The regularization parameter η was introduced for physical homogeneity reasons. In practice it can be fixed such that ( M θ 2

F + M R 2 F ) η M X 2 F .
-The same balancing should be carried on for the matrices Φ θ , R and X. X is replaced by λX such

that ( Φ θ 2 F + R 2 F ) λ X 2
F (and as a post process operation, β r is multiplied by λ).

-As previously, the surface ω θ is meshed, and finite element shape functions are used for (φ θ,j ). Regarding the boundary quantities, the parts bearing unknowns are also meshed. The force f r is approximated by piecewise constant functions, whereas the displacement u r is approximated by continuous piecewise linear functions.

-Provided the regularization parameter is wellchosen, the result on the crack's plane ω θ is meshindependent, which means that the shape of the solution does not depend on the mesh size, and only the resolution is impacted. On the contrary, it has been observed that a too coarse mesh of ∂Ω can lead to instabilities in the identification of the displacement jump on ω θ . This is probably due to the fact that if not enough degrees of freedom were available on ∂Ω to describe properly the boundary fields, the algorithm would artificially reduce the residual by proposing an irrelevant displacement jump field on ω θ . For that reason, it is recommended to use a coarser mesh on ω θ than on ∂Ω. Let us emphasize the fact that, in the part dedicated to the numerical results, this mesh is finer than necessary in order to make the result more readable.

-As said earlier, part of the problem does not vary with the position of the plane, which can be exploited to reduce the computational cost. Let us

sym R T R + µM T R M R   (27) 
Let us note with subscript θ the first block (which depends on the crack plane), and with subscript b the second block which is invariant (b stands for boundary). For each configuration θ, the system to be solved takes the form:

    D θθ D θb D bθ D bb         x θ x b     =     y θ y b     (28) 
which we organize the following way:

D θθ -D θb D -1 bb D bθ x θ = y θ -D θb D -1 bb y b x b = D -1 bb (y b -D bθ x θ ) (29) 
The assembly and factorization of D bb is done once for all. What remains to be computed at each iteration is the Schur complement (first line of (29))

which is of small dimension.

Moreover, using the Uzawa algorithm to take care of the non-penetration constraint is particularly efficient on the condensed system: x b needs not be updated every time, and the smallest eigenvalue of the condensed system (which drives the convergence) is greater than the one of the original system.

Numerical study

As for the previous numerical experiment, the measurements were interpolated on a coarser mesh before being used.

On this example, the stagnation of the costfunction Φ happens after 6 iterations. Figure 16 shows the identified crack's line. As for the PG0-RG method, this line is very close to the reference line of the crack.

Table 2 shows the error on identified displacement jump and Neumann reaction on the top boundary.

Given those results, it was chosen to display graphically only the identification resulting from load cases 1 and 4 (see Figure 18b). The quality of the reconstruction appears to be comparable to that of the PG0-RG method. The load-case 2, that is nearly parallel to the crack's line, induces a displacement jump of very small magnitude that is not identifiable by this method.

Furthermore, it is possible to identify the reaction force on the boundary with missing Neumann data, as displayed on Figure 18a. On this reaction force, the result is less accurate than the result obtained via the resolution of a Cauchy problem (see Figure 6). This is due to the fact that the regularization coefficient has been determined by plotting a L-curve considering only the norm of the displacement jump on the crack line, and not this reaction force.

Conclusion on the gPG-RG method

This method identifies simultaneously the crack and the missing boundary conditions. It has the advantage to rely on very few assumptions. Regularization seems to perform quite well, leading to good quality results.

The method requires to do many partial assemblies of surface quantities and inversions of small but dense matrices. In simple geometry cases, the solution of the inverse problem via the reciprocity gap method can even be faster than the forward cracked problem.

On the other hand, cases can be found, with complex boundaries and many missing data, where the method is numerically very expensive.

Numerical investigation of the gPG-RG method

In this part, the gPG-RG method presented in Section 5 is assessed on various test-cases based on the same geometry as previously. The first parameter that can vary is the number of sensors on the boundary of the studied domain. As a matter of fact, it is expected that the fewer sensors are present, the less precise the identification will be. Then, the stability of the method with respect to an additive Gaussian noise on the Dirichlet data is investigated. On Figure 20, we can see that the line of the crack is better reconstructed, and Figure 20 presents acceptable reconstructions for the load-cases 1 and 4, that lead to the greatest amplitudes of the gap.

In the third experiment, both Dirichlet and Neumann data are missing on top boundary. This case is such that Γ n ∪Γ d = ∂Ω. On Figure 21, it is noticeable that the identification of the line is very good. We see that the quality of the identification of the displacement jump is comparable with the quality obtained on From the analysis of Figure 22, it can be said that the orientation of the crack is rather badly identified.

However, as the identified line intersects the reference line quite close to the real position of the crack, the position of the crack itself is roughly correct. What is more, the reconstructed displacement jump is much smoother than the reference jump (while the value of the regularization parameter is the same as for the previous computations). This can be explained by the fact that as there are less known data, the impact of the regularization term is increased. This last numerical experiment shows that while the proposed method is theoretically able to deal with pointwise Dirichlet data, it is not very efficient in practice. to be applicable only in adapted cases (see for ex-ample [START_REF] Andrieux | Emerging crack front identification from tangential surface displacements[END_REF]). The second method, referred as PG0-RG, which consists in adapting the test-functions is only suited for simple shapes of the boundary, but in those cases, it is potentially very efficient in terms of CPU and accuracy. The last method, referred as gPG-RG, is more general and can be applied in cases where the shape of the boundary with missing data is arbitrarily complex.

This gPG-RG method was then illustrated and numerically tested using data of various quantity and quality, and on a 3D plane crack identification testcase.

Finally, the proposed methods introduce a set of variable parameters, like the number of Uzawa iterations, the maximum order of the polynomial test functions and the regularization coefficients. Defining tuning strategies is the main perspective of this work.

A Brief study of the Petrov-Galerkin formulation

This appendix aims at providing some theoretical ground to the formulation used in Sections 4 and 5.

For simplicity reasons, we focus on the case of identifying a crack with fully known boundary conditions.

The extra terms needed for more general cases do not change the main properties of the system.

We recall that the system to be solved takes the form (for simplicity reason, we drop the subscript r, The traces on ω of the fields v 1 and v 2 are the same, and consequently, the field v, that is equal to v 1 on Ω 1 and v 2 on Ω 2 , and that is extended by continuity on ω, is in V ⊥ ω and is such that σ(v) • n Π = τ on ω.
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 1 Fig. 1: Definition of the crack and its supporting sur-

  placement and traction fields are not known on the whole boundary. Let us introduce the following parts of the boundary ∂Ω: Γ n is the part where Neumann data f r is available and Γ d is the part where Dirichlet data u r is available. The hat notation is reserved to quantities which are known because they are either imposed or measured. We note Γ n = ∂Ω \ Γ n and Γ d = ∂Ω \ Γ d , when needed the unknown traction and displacement fields are written f r and u r . The partition of the boundary is illustrated on Figure 2. The crack identification problem considered in this paper consists in recovering Σ from the knowledge of u r and f r . One condition for the uniqueness of the solution to the crack identification problem is

. 2 :

 2 Fig. 2: Partition of the boundary of the domain

For the first numerical

  illustrations, we study the case of a cracked unit square subjected to a zero Dirichlet boundary condition on its top side. Various Neumann loads are then applied on the other sides and the resulting displacement is measured. In this framework, Dirichlet data is available on the entire boundary (Γ d = ∂Ω) whereas the reaction forces on the top side are unknown (Γ n is the top side, Γ n is the three other sides). The load cases are presented on Figure 3, as said earlier, they all tend to open the crack.
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 4 Fig. 4: Two ways to solve the crack identification problem with partial information (double bar means both
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 516 Fig. 5: Pointwise relative errors on u y and f y along Γ for load-case #1
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 718 Fig. 7: Identification of the crack, reconstruction on
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 12 (ω θ ) of dimension m spanned by finite element shape functions (φ θ,j ) j=1...m , and we define the vectors of the corresponding amplitudes: α r θ = α r θ,j j=1...m

  the opposite of) the discrete counterpart to the normal projection on the crack plane, this condition can be written as C θ α r θ 0.

Fig. 10 :

 10 Fig. 10: Parameters θ 1 and θ 2 that define the crack's "plane" in 2D

p-

  s = min(k δθ s θ s , p min ), with k = O(10 -1 ) (variations of k have little effect around this value), and p min the minimal step. This algorithm makes use of a positive parameter, denoted by k u and a sufficient condition for the convergence of the algorithm is that k u < min(eig(A T θ A θ + µM T θ M θ )) (provided each line of C θ has norm 1). Thus, a possibility is to use for k u an estimation of the smallest non-zero eigenvalue of the regularization operator (µM T θ M θ ).

--Algorithm 1 :=0,C θs α r θs 0 rΥ

 10 are expected to be very oscillatory, and thus to amplify the noise present on the fields with which they are multiplied, and to cause high integration errors. This phenomenon is the numerical consequence of the ill-posedness of the inverse problem, and is remedied by the regularization term. The computation of the integrals on the boundary that appear in the definition of the reciprocity gap functional, and in the terms of the matrix A are done by Gaussian integration on a mesh of the surface with 2 Gauss points on edges (2D case) and 3 Gauss points on triangles (3D case). We checked that using more Gauss points did change only marginally the numerical values of the right and left hand sides, and did not improve the quality of the result. In the finite difference approximation, we need to compare quantities, like the gradient M θ αθ , defined on different meshes M θ+dθ and M θ . This was conducted by mesh projection, which is a costly Nested optimizations algorithm with adapted test-functions µ and k given parameters, initialization θ0 and p0 given; for s = 0, 1, . . . , n (convergence) do Re-mesh the surface and assemble A θs , M θs and C(θs); for r = 1, 2, . . . , rmax (load cases) do Find (using Uzawa algorithm): αr θs = arg min T θs α r θs (θs, (α r θs ) r ) Find a basis {e1, . . . , e d } of θ ⊥ s , of dimension d = 2 or 3;

  Fig. 11: Cost-function logarithm map for different

  nitude of the displacement jump along the crack, which means that the load-cases with the largest right-hand side norm have also the most favourable signal-to-noise ratio. This information can be used to determine which load case is the most suited for the identification. In our example, the first load-case leads to the largest RHS, and on Figure11, the map resulting from it is the one with the sharpest minimum. What is more, the argument of this minimum is very close to the reference value. Loads 1 and 4 open the crack more than loads 2 and 3, and lead to a higher norm of the corresponding right hand side and to a lower relative error on the displacement jump. As nothing ensures that the load cases actually open the crack, the information of the norm of this RHS can be used to distinguish load cases that lead to a gap having a reasonable amplitude from the others. In order to validate numerically the relevance of Tikhonov regularization, we estimate the condition number of the system at θ's reference value, for different values of the regularization parameter, see Figure 12a. One can observe as well on Figure 12b, that the condition number is practically not impacted by the number of degrees of freedom of the chosen discretization and the degree of the polynomial testfunctions.

  Fig. 12: Influence of the parameters of the computation on the condition number
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 13 Fig. 13: L-curve for polynomials of degree 20, with 50

Fig. 14 :

 14 Fig. 14: Convergence of the outer minimization -PG0-
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 1819 Fig. 18: Identification of the reaction force and the normal displacement jump -gPG-RG method (Section 5)
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 18b Figure 18b. This good result can be explained again
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 2021 Fig. 20: Identification of the crack's line and the normal displacement jump in the case of right and top
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 22232425 Fig. 22: Identification of the crack's line and the normal displacement jump in the case with Neumann missing
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 2627 Fig. 26: Identification of the crack with 1 % added Gaussian noise
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 28 Fig. 28: Identification of the shape of the crack by thresholding
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 29 Fig. 29: Splitting of the domain

  2, . . . , d doSet θs,j = θs + psej, re-mesh the surface to assemble A θ s,j and M θ s,j ; for r = 1, 2, . . . , rmax (the load cases) do

		Find (using Uzawa algorithm):	αr θ s,j =	arg min
								T θ s,j	α r θ s,j	=0,C θ s,j	α r θ s,j	0
		Ar =	1 ps . . . A θ s,j	αr θ s,j -A θs	αr θs . . . and Mr =	1 ps . . . M θ s,j	αr θ s,j -M θs	αr θs . . . ;
	g =	rmax r=1	A T r (A θs	αr	
		rmax r=1	A T r Ar + µM T r Mr	approximation of ∇ 2 Υs;
	δθs = -H -1 g,	θs+1 = θs + δθs,	ps = k	δθs θs	;

r Υ (θs,j, α r θ s,j r ) for r = 1, 2, . . . , rmax (the load cases) do θs -b r ) + µM T r M θs αr θs approximation of ∇Υs; H =

Table 1 :

 1 Amplitude of the different right hand sides and associated error

	Load case	1	2	3	4
	RHS Euclidean norm	32.427	1.5031 8.5605	16.827
	Relative error on the displacement jump identification 0.10775 1.3757 1.0282 0.40753
	numerical examples made on the test-cases of Fig-				
	ure 11, both with method PG0-RG and gPG-RG, this				
	value µ = 10 is used, unless otherwise stated.				

Table 2 :

 2 Errors of the identification procedure -gPG-RG method (Section 5)

	Load case	1	2	3	4
	Relative error on the extra BC identification	0.097940 0.48754 0.21947 0.14691
	Relative error on the displacement jump identification	0.22109	2.5757	0.97297 0.37512

Table 3: Summary of the errors on the displacement jump identification (section 6)

Effect of the number of sensors

In this part, the impact of the number of measure points is studied.

In the first experiment, Neumann data are missing on both top and bottom boundaries. It can be remarked from the analysis of Figure 19 that the orientation of the crack is not recovered accurately in this case. However, it is noticeable, that the displacement jump, that gives the position of the crack in its line, is quite well reconstructed (at least for the load-and the bracket notations for the displacement jump):

In the formulation, we make use of the duality bracket in the Hilbert space H ) and test (V) spaces, which is the playground of the Banach-Necas-Babǔska theorem [START_REF] Ern | Theory and practice of finite elements[END_REF], also known as inf-sup theorem.

One first precaution must be taken. For a given plane surface ω, we can define V ω , the space of the v

space, which means in particular that it is not dense in V, and ensures that v ∈ V ⊥ ω is not empty. In order to avoid inconsistency, the formulation must be studied

For the formulation to be stable, the following quantity should be bounded from below by a positive number:

Unfortunately, this is not possible. Indeed, we have the following property:

and more precisely, for a given u ∈ H 1/2 00 , the τ which realizes the upper bound is the image of u by Riesz' isomorphism which we note τ u . The problem is then to