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CENTRAL ALGEBRAIC GEOMETRY AND SEMINORMALITY

JEAN-PHILIPPE MONNIER

Abstract. We develop the theory of central ideals on commutative rings. We introduce and study
the central seminormalization of a ring in another one. This seminormalization is related to the
theory of regulous functions on real algebraic varieties. We provide a construction of the central
seminormalization by a decomposition theorem in elementary central gluings. The existence of a
central seminormalization is established in the affine case and for real schemes.

1. Introduction

The present paper is devoted to the study of the seminormalization in the real setting. The operation
of seminormalization was formally introduced around fifty years ago first in the case of analytic spaces
by Andreotti and Norguet [2] and later in the abstract scheme setting by Andreotti and Bombieri [1].
The notion arose from a classification problem. For algebraic varieties, the seminormalization of X
in Y is basically the biggest intermediate variety which is bijective with X. Recently, the concept
of seminormalization appears in the study of singularities of algebraic varieties, in particular in the
minimal model program of Kollár and Kovács (see [13] and [14]).

Around 1970 Traverso [27] introduced the closely related notion of the seminormalization A∗B of
a commutative ring A in an integral extension B. The idea is to glue together the prime ideals of
B lying over the same prime ideal of A. The seminormalization A∗B has the property that it is the
biggest extension of A in a subring C of B which is subintegral i.e such that the map SpecC → SpecA
is bijective and equiresidual (it gives isomorphisms between the residue fields). For geometric rings
all these notions of seminormalizations are equivalent and are strongly related with the Grothendieck
notion of universal homeomorphism [11, I 3.8]. We refer to Vitulli [29] for a survey on seminormality
for commutative rings and algebraic varieties. See also [10], [19], [26] and [28] for more detailed
informations on seminormalization.

For an integral extension B of a commutative ring A, using the classical notion of real ideal [4],
we may try to copy Traverso’s construction by gluing together all the real prime ideals of B lying
over the same real prime ideal of A. Unfortunately it doesn’t give an acceptable notion of real
seminormalization since real prime ideals do not satisfy a lying-over property for integral extensions.
Normalization in the real setting is deeply studied in [8], the aim of the paper is to develop the theory
of central seminormalization introduced in [9].

The paper is organized as follows. In the second section we recall some classical results on real
algebra and more precisely about the theory of real ideals as it is developed in [4]. In the third section
we introduce the notion of central ideal: If I is an ideal of an integral domain A with fraction field
K(A), we say that I is a central ideal if ∀a ∈ A, ∀b ∈

∑
K(A)2 (

∑
K(A)2 is the set of sum of squares

of elements in K(A)) we have
a+ b ∈ I ⇒ a ∈ I.
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We develop the theory of central ideals similarly to the theory of real ideals done in [4] proving in
particular that an ideal is central if and only if it is equal to its central radical (the intersection of
the central prime ideals containing it). We prove that the notion of central ideal developed here is
compatible for geometric rings (coordinate rings of affine variety over R) with the Central Nullstellen-
satz [4, Cor. 7.6.6] and also coincides for prime ideals with that of [9]. For a domain A, the central
spectrum of A (the set of central prime ideals of A) is denoted by C-SpecA. For an extension A→ B
of domains we show that we have a well defined associated map C-SpecB → C-SpecA. In the fourth
section we show that central ideals (that are real ideals) behave much better than real ideals when
we consider integral extensions of rings. This is the principal reason we prefer working with central
ideals in this paper. Especially, we have the following lying-over property: Let A→ B be an integral
and birational extension of domains (birational means K(A) ' K(B)), then C-SpecB → C-SpecA is
surjective.

Regarding the classical case, we say that an extension A → B of domains is centrally subintegral
if it is an integral extension such that the associated map C-SpecB → C-SpecA is bijective and
equiresidual. Surprisingly, centrally subintegral extensions of geometric rings are strongly linked with
the recent theory of rational continuous and regulous functions on real algebraic varieties introduced by
Fichou, Huisman, Mangolte and the author [6] and by Kollár and Nowak [16]. Let X be an irreducible
affine algebraic variety over R with coordinate ring R[X]. The central locus Cent(X) is the subset of the
set of real closed points X(R) such that the associated ideal is central. By the Central Nullstellensatz
CentX coincides with the Euclidean closure of the set of smooth real closed points. Following [9],
we denote by K0(CentX), called the ring of rational continuous functions on CentX, the ring of
continuous functions on CentX that are rational on X. We denote by R0(CentX), called the ring
of regulous functions on CentX, the subring of K0(CentX) given by rational continuous functions
that satisfies the additional property that they are still rational by restriction to any subvariety
intersecting CentX in maximal dimension. The link between centrally subintegral extensions and
regulous functions is given by the following result: Given a finite morphism π : Y → X between
two irreducible affine algebraic varieties over R then π∗ : R[X]→ R[Y ] is centrally subintegral iff the
map π|CentY CentY → CentX is biregulous iff X and Y have the same regulous functions i.e the
map R0(CentX) → R0(CentY ), f 7→ f ◦ π|CentY is an isomorphism. The rational continuous and
regulous functions are now extensively studied in real geometry, we refer for example to [18, 15, 7, 22]
for further readings related to the subject.

Similarly to the standard case then we prove in the fifth section that given an extension A→ B of
domains there is a biggest extension of A in a subring of B which is centrally subintegral. The target
of this biggest extension is denoted by Asc,∗B and is called the central seminormalization of A in B.
This result is a deep generalization of [9, Prop. 2.23]. To get the existence of such seminormalization
we have introduced and studied several concepts: the central gluing of an integral extension, the
birational and birational-integral closure of a ring in another one.

In the sixth section we obtain the principal result of the paper. We have proved the existence of a
central seminormalization of a ring in another one but if we take an explicit geometric example i.e a
finite extension of coordinate rings of two irreducible affine algebraic varieties over R, due to the fact
that when we do the central gluing then we glue together infinitely many ideals, it is in general not
easy to compute the central seminormalization. In the main result of the paper, we prove that, under
reasonable hypotheses on the extension A → B, we can obtain the central seminormalization Asc,∗B
from B by a birational gluing followed by a finite number of successive elementary central gluings
almost like Traverso’s decomposition theorem for classical seminormal extensions [27]. We use this
construction to compute the central seminormalization in several examples. This decomposition result
allows to prove in section 7 that the processes of central seminormalization and localization commute
together. The proof of the decomposition theorem make strong use of the results on central ideals
developed in Section 3.
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The last section of the paper is devoted to the existence, given a finite type morphism π : Y → X
of irreducible affine algebraic varieties over R or integral schemes of finite type over R, of a central
seminormalization of X in Y denoted by Xsc,∗

Y . It can be seen as a real or central version of Andreotti
and Bombieri’s construction of the classical seminormalization of a scheme in another one [1]. We show
that the ring R[X]sc,∗R[Y ] is a finitely generated algebra over R in the affine case and the OX -algebra
(OX)sc,∗π∗OY

is a coherent sheaf when we work with schemes. In the affine case, we prove that the
coordinate ring of Xsc,∗

Y is the integral closure of the coordinate ring of X in a certain ring of regulous
functions generalizing one of the main results in [9].

Acknowledgment : The author is deeply grateful to G. Fichou and R. Quarez for useful discus-
sions.

2. Real algebra

Let A be ring. We assume in the paper that all the rings are commutative and contain Q.
Recall that an ideal I of A is called real if, for every sequence a1, . . . , ak of elements of A, then

a21 + · · · + a2k ∈ I implies ai ∈ I for i = 1, . . . , k. We denote by SpecA (resp. R-SpecA) the (resp.
real) Zariski spectrum of A, i.e the set of all (resp. real) prime ideals of A. The set of maximal (resp.
and real) ideals is denoted by MaxA (resp. R-MaxA). We endow SpecA with the Zariski topology
whose closed subsets are given by the sets V(I) = {p ∈ SpecA| I ⊂ p} where I is an ideal of A. If
f ∈ A we denote simply V((f)) by V(f). The subsets R-SpecA, MaxA and R-MaxA of SpecA are
endowed with the induced Zariski topology. The radical of I, denoted by

√
I, is defined as follows:

√
I = {a ∈ A| ∃m ∈ N am ∈ I},

it is also the intersection of the prime ideals of A that contain I. If B is a ring, we denote in the sequel
by

∑
B2 the set of (finite) sums of squares of elements of B. The real radical of I, denoted by R

√
I,

is defined as follows:
R
√
I = {a ∈ A| ∃m ∈ N ∃b ∈

∑
A2 such that a2m + b ∈ I}.

We have:

Proposition 2.1. [4, Prop. 4.1.7]
1) R
√
I is the smallest real ideal of A containing I.

2)
R
√
I =

⋂
p∈R-SpecA, I⊂p

p .

It follows that I is a real ideal if and only if I = R
√
I and that a real ideal is radical.

An order α in A is given by a real prime ideal p of A (called the support of α and denoted by
supp(α)) and an ordering on the residue field k(p) at p. An order can equivalently be given by a
morphism φ from A to a real closed field (the kernel is then the support). The set of orders of A
is called the real spectrum of A and we denote it by Specr A. One endows Specr A with a natural
topology whose open subsets are generated by the sets {α ∈ Specr A|α(a) > 0}. Let φ : A→ B be a
ring morphism. It canonically induces continuous maps SpecB → SpecA, R-SpecB → R-SpecA and
Specr B → Specr A.

Assume X = SpecR[X] is an affine algebraic variety over R with coordinate ring R[X] (see [20] for
a description of the different notions of real algebraic varieties), we denote by X(R) the set of real
closed points of X. We recall classical notations. If f ∈ R[X] then Z(f) = V(f) ∩ X(R) = {x ∈
X(R)| f(x) = 0} is the real zero set of f . If A is a subset of R[X] then Z(A) =

⋂
f∈AZ(f) is the
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real zero set of A. If W ⊂ X(R) then I(W ) = {f ∈ R[X]| W ⊂ Z(f)} is an ideal called the ideal of
functions vanishing on W . We recall the real Nullstellensatz [4, Thm. 4.1.4]:

Theorem 2.2. (Real Nullstellensatz)
Let X be an affine algebraic variety over R. Then:

I ⊂ R[X] is a real ideal ⇔ I = I(Z(I)).

Corollary 2.3. Let X be an affine algebraic variety over R. The map R-MaxR[X] → X(R), m 7→
Z(m) is bijective and for any ideal I ⊂ R[X] we have

Z(I) = V(I) ∩ R-MaxR[X].

In the sequel we will identify R-MaxR[X] and X(R) for an affine algebraic variety X over R. We
can endow X(R) with the induced Zariski topology, the closed subsets are of the form Z(I) for I an
ideal of A.

3. Central algebra

The goal of this section is to develop the theory of central ideals similarly to the theory of real ideals
done in [4] or in the previous section. We also prove that the notion of central ideal developed here
coincides for prime ideals with that of [9]. This section will serve as a basis for developing the theory
of central seminormalization and especially to prove a central version of Traverso’s decomposition
theorem.

In this section A is a domain containing Q. We denote by K(A) its fraction field.

Proposition 3.1. The following properties are equivalent:
1) −1 6∈

∑
K(A)2.

2) Specr K(A) 6= ∅.
3) (0) is a real ideal of K(A).
4) (0) is a real ideal of A.

Proof. See the first chapter of [4] to get the equivalence between the first three properties. Since the
contraction of a real ideal is a real ideal then 3) implies 4). Assume (0) is a real ideal of A and
−1 ∈

∑
K(A)2. We have −1 =

∑n
i=1(

ai
bi
)2 with the ai and bi in A \ {0} and consequently

(

n∏
i=1

bi)
2 +

n∑
i=1

(ai(

n∏
j=1,j 6=i

bj))
2 = 0

and since (0) is a real ideal of A then it follows that ai = 0 for i = 1, . . . , n, impossible. �

In the sequel, we say that A is a real domain if the equivalent properties of Proposition 3.1 are
satisfied. In case A is the coordinate ring R[X] of an irreducible affine algebraic variety X over R then
we simply denote K(R[X]) by K(X) and it corresponds to the field of classes of rational functions on
X and we call it the field of rational functions on X or the function field of X.

We modify a bit the definition of a real ideal.

Definition 3.2. Let I be an ideal of A. We say that I is central if for every a ∈ A, for every
b ∈

∑
K(A)2 we have:

a2 + b ∈ I ⇒ a ∈ I

Remark 3.3. Clearly, I is central ⇒ I is real ⇒ I is radical.

Remark 3.4. An ideal I ⊂ A is central if and only if I is (
∑
K(A)2 ∩A)-radical in the sense of [4].

Definition 3.5. 1) We denote by C-SpecA the set of central prime ideals of A.
2) We denote by C-MaxA the set of central and maximal ideals of A.
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3) We say that A is a central ring if any real ideal is central.
4) Assume X is an irreducible affine algebraic variety over R and let R[X] be the coordinate ring

of X. We denote by CentX the image of C-MaxR[X] by the bijection R-MaxR[X]→ X(R).
We call CentX the set of central real closed points of X. We say that X is central if X(R) =
CentX.

Let X be an affine algebraic variety over R. We recall classical notations. We denote by Xreg(R)
the set of smooth points of X(R). Let W ⊂ X(R), we denote by WZ (resp. WE) the closure of W
for the Zariski (resp. Euclidean) topology.

Our definition of central ideals is chosen in order to satisfy the Central Nullstellensatz stated in [4,
Cor. 7.6.6].

Theorem 3.6. (Central Nullstellensatz)
Let X be an irreducible affine algebraic variety over R. Then:

I ⊂ R[X] is a central ideal ⇔ I = I(Z(I) ∩Xreg(R)
E
) ⇔ I = I(V(I) ∩Xreg(R)

E
)

Proof. We assume I = I(Z(I) ∩ Xreg(R)
E
) and a2 + b ∈ I for a ∈ R[X] and b ∈

∑
K(X)2. Since

a2 + b ∈ I then a ∈ I(Z(I) ∩Xreg(R)
E
) by [4, Cor. 7.6.6]. By hypothesis we get a ∈ I and thus I is

central.
Assume I is a central ideal of R[X]. Let a ∈ I(Z(I) ∩Xreg(R)

E
). By [4, Cor. 7.6.6], there exist

m ∈ N, b ∈
∑
K(X)2 such that a2m + b ∈ I. Since I central then am ∈ I. Since I is radical then it

follows that a ∈ I.
To end the proof remark that Z(I) ∩Xreg(R)

E
= V(I) ∩Xreg(R)

E
. �

From the previous theorem, it follows:

Corollary 3.7. Let X be an irreducible affine algebraic variety over R. Then:

CentX = Xreg(R)
E
.

Corollary 3.8. Let X be an irreducible affine algebraic variety over R. The ring R[X] is central if
and only if X is central.

Proof. It follows from Theorems 2.2 and 3.6, that any real ideal of R[X] is central if and only if
CentX = Xreg(R)

E
= X(R). �

We prove that we recover the definition of central prime ideal given in [9].

Proposition 3.9. Let X be an irreducible affine algebraic variety over R. Let p ∈ SpecR[X]. The
following properties are equivalent:

1) p ∈ C-SpecR[X].
2) Z(p) ∩ CentX

Z
= Z(p).

3) V(p) ∩ CentX
Z
= V(p).

4) p = I(Z(p) ∩ CentX) = I(V(p) ∩ CentX).
5) p = {f ∈ R[X]| ∃m ∈ N, ∃g ∈

∑
K(X)2 such that f2m + g ∈ p}.

6) There exists an α ∈ Specr(K(X)∩R[X]) which specializes in a order β with support p i.e β is
in the closure of the singleton {α} for the topology of Specr R[X].

Proof. The equivalence between 1) and 4) is given by Theorem 3.6.
The equivalence between 2) and 6) is [8, Lem. 2.9].
Let us prove that 4), 3) and 2) are equivalent. Remark that we always have p ⊂ I(Z(p)) ⊂

I(Z(p)∩CentX) and p ⊂ I(V(p)) ⊂ I(V(p)∩CentX) . Thus if we assume that p = I(Z(p)∩CentX)
(resp. p = I(V(p) ∩ CentX) ) then I(Z(p)) = p (resp. I(V(p)) = p) and it follows that p is a real
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ideal by the real Nullstellensatz (resp. p is a radical ideal by the classical Nullstellensatz), moreover
I(Z(p)) = I(Z(p) ∩CentX) (resp. I(V(p)) = I(V(p) ∩CentX)) and it says that Z(p) ∩ CentX

Z
=

Z(p) (resp. V(p) ∩ CentX
Z
= V(p)). We have proved 4) implies 2) and 3).

Assume Z(p) ∩ CentX
Z
= Z(p) (resp. V(p) ∩ CentX

Z
= V(p)) and let f ∈ R[X]. It follows that

Z(p) ⊂ Z(f) (resp. V(p) ⊂ V(f)) if and only if (Z(p)∩CentX) ⊂ Z(f) (resp. (V(p)∩CentX) ⊂ V(f))
and thus we get 4).

Clearly 5) implies 1). Assume p is central. Let f ∈ R[X] such that there exist m ∈ N and
g ∈

∑
K(X)2 such that f2m + g ∈ p. Then fm ∈ p and thus f ∈ p since p is radical, it proves that 1)

implies 5). �

Example 3.10. Let X be the Whitney umbrella i.e the real algebraic surface with equation y2 = zx2.
Then p = (x, y) ⊂ R[X] is a central prime ideal since Z(p) (the “z”-axis and the stick of the umbrella)
meets CentX in dimension one (the intersection is half of the stick).

Example 3.11. Let X be the Cartan umbrella i.e the real algebraic surface with equation x3 =
z(x2 + y2). Then p = (x, y) ⊂ R[X] is a real prime ideal but not a central ideal by 2) of Proposition
3.9 since Z(p) (the “z”-axis and the stick of the umbrella) meets CentX in a single point. We prove
now directly that p is not central:
We have

b = x2 + y2 − z2 = x2 + y2 − x6

(x2 + y2)2
=

3x4y2 + 3x2y4 + y6

(x2 + y2)2
∈ (

∑
K(X)2) ∩ R[X]

thus z2 + b = x2 + y2 ∈ p but z 6∈ p.

We give a central version of [4, Lem. 4.1.5].

Proposition 3.12. Assume A is noetherian. If I ⊂ A is a central ideal then the minimal prime ideals
containing I are central ideals.

Proof. Let p1, . . . pl be the minimal prime ideals containing I. If l = 1 then I = p1 since I is radical and
thus the proof is done in that case. So we assume l > 1 and p1 is not central. There exist a ∈ A \ p1,
b1, . . . , bk ∈ K(A) such that a2 + b21 + · · ·+ b2k ∈ p1. We choose a2, . . . , al such that ai ∈ pi \ p1 and we
set c =

∏l
i=2 ai. Then (ac)2 + (b1c)

2 + · · · + (blc)
2 ∈

⋂
i=1,...,l pi = I (I is radical). Thus ac ∈ p1, a

contradiction. �

Definition 3.13. Let I ⊂ A be an ideal. We define the central radical of I, denoted by C
√
I, as

follows:
C
√
I = {a ∈ A| ∃m ∈ N ∃b ∈

∑
K(A)2 such that a2m + b ∈ I}.

We give a central version of Proposition 2.1. It can be derived from [4, Prop. 4.2.6] using the theory
of convex ideals for a cone.

Proposition 3.14. Let I ⊂ A be an ideal. We have:
1) C
√
I is the smallest central ideal of A containing I.

2)
C
√
I =

⋂
p∈C-SpecA, I⊂p

p .

Proof. We show that C
√
I is an ideal. It is clear that 0 ∈ C

√
I. Let a ∈ C

√
I. There exist m ∈ N,

b1, . . . , bk ∈ K(A) such that a2m + b21 + · · · + b2k ∈ I. Let a′ ∈ A. Since (aa′)2m + (b1(a
′)m)2 + · · · +

(bk(a
′)m)2 ∈ I and since bi(a′)m ∈ K(A) then aa′ ∈ C

√
I. To show that C

√
I is closed under addition

then copy the proof of [4, Prop. 4.1.7] with the conditions that the bi and b′j are only in K(A) rather
than in A.
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We show that C
√
I is a central ideal. Let a ∈ A and b1, . . . , bk ∈ K(A) such that a2+b21+· · ·+b2k ∈

C
√
I.

Thus there exist m ∈ N and c1, . . . , cl ∈ K(A) such that (a2 + b21 + · · ·+ b2k)
2m + c21 + · · ·+ c2l ∈ I. It

follows that there exist d1, . . . , dt ∈ K(A) such that a4m + d21 + · · ·+ d2t ∈ I and thus a ∈ C
√
I.

Let J be a central ideal of A containing I. Let a ∈ C
√
I. There exist m ∈ N, b ∈

∑
K(A)2 such

that a2m + b ∈ J . Thus am ∈ J by centrality of J and finally a ∈ J by radicality of J . The proof of
1) is done.

We denote by I ′ the ideal ⋂
p∈C-SpecA, I⊂p

p .

From 1) we get C
√
I ⊂ I ′. Let us show the converse inclusion. Let a ∈ A \ C

√
I. Let J be maximal

among the central ideals containing I but not a. If J is not prime then, following the proof of [4,
Prop. 4.1.7], we can find m ∈ N, b ∈

∑
K(A)2 such that a2m + b ∈ I, it gives a contradiction. Hence

J is a prime ideal and thus a 6∈ I ′. �

Corollary 3.15. Let I ⊂ A be an ideal. Then, I is a central ideal if and only if I = C
√
I.

To end this section, we study the existence of a central ideal.

Proposition 3.16. The following properties are equivalent:
1) A is a real domain.
2) C-SpecA 6= ∅.
3) A has a proper central ideal.
4) (0) is a central ideal of A.

Assume A is the coordinate ring of an irreducible affine algebraic variety over R. Then the previous
properties are equivalent to the two following ones:

5) Xreg(R) 6= ∅.
6) X(R) is Zariski dense in X(C) and SpecA.

Proof. It is clear that 4) implies 2) and 3). By Proposition 3.1 then 4) implies 1). Assume A is a real
domain. By Proposition 3.1, we know that (0) is a real ideal and we will prove that it is moreover a
central ideal. Assume a2 + b = 0 with a ∈ A and b ∈

∑
K(A)2. It gives an identity c2a2 + s = 0 with

c ∈ A \ {0} and s ∈
∑
A2. Since (0) is a real ideal then it follows a = 0. We get 1) implies 4). Since

a prime ideal is proper then 2) implies 3). Assume I ⊂ A is a proper central ideal. By Corollary 3.15
we have I = C

√
I. By Proposition 3.14, I is the intersection of the central prime ideals of A containing

I, it follows that the set of central prime ideals of A containing I is non-empty and 3) implies 2). Let
I ⊂ A be a proper and central ideal of A. Assume A is not a real domain. By Proposition 3.1, we get
that −1 ∈

∑
K(A)2 and since 12+(−1) = 0 ∈ I and I is central then it follows that 1 ∈ I, impossible.

Thus 3) implies 1).
Assume A is the coordinate ring of an irreducible affine algebraic variety X over R. Assume A is a

real domain. We have proved that it implies (0) is a central ideal. By 3) of Proposition 3.9, it follows
that CentX is Zariski dense in SpecA. Hence X(R) is also Zariski dense in SpecA (and in X(C)).
It proves that 1) implies 6). If Xreg(R) 6= ∅ then CentX 6= ∅ and thus 5) implies 2). Assume X(R)
is Zariski dense in SpecA then it intersects the set of regular prime ideals of A which is a non-empty
Zariski open subset of SpecA and thus 6) implies 5). �

4. Integral extensions and lying-over properties

In the sequel we consider rings up to isomorphisms and affine algebraic varieties up to isomorphisms.
In particular, when we write an equality of rings it means they are isomorphic, the reader should
remember this especially when speaking about uniqueness.
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4.1. Integral extensions and normalization. Let A→ B be an extension of domains. The exten-
sion is said of finite type (resp. finite) if it makes B a finitely generated A-algebra (resp. A-module).
We say that A → B is birational if it induces an isomorphism between the fraction fields K(A) and
K(B). We say that an element b ∈ B is integral over A if b is the root of a monic polynomial with
coefficients in A. By [3, Prop. 5.1], b is integral over A if and only if A[b] is a finite A-module. This
equivalence allows to prove that A′B = {b ∈ B| b is integral over A} is a ring called the integral closure
of A in B. The extension A → B is said to be integral if A′B = B. In case B = K(A) then the ring
A′K(A) is denoted by A′ and is simply called the integral closure of A. The ring A is called integrally
closed (in B) if A = A′ (A = A′B). If A is the coordinate ring of an irreducible affine algebraic variety
X over a field k then A′ is a finite A-module (a theorem of Emmy Noether [5, Thm. 4.14]) and thus
it is a finitely generated k-algebra and so A′ is the coordinate ring of an irreducible affine algebraic
variety over k, denoted by X ′, called the normalization of X. For a morphism π : X → Y between
two affine algebraic varieties over a field k, we denote by π∗ : k[Y ]→ k[X], f 7→ f ◦ π the associated
ring morphism. We recall that a morphism X → Y between two irreducible affine algebraic varieties
over a field k is said of finite type (resp. finite) (resp. birational) if the ring morphism k[Y ]→ k[X] is
of finite type (resp. finite) (resp. birational). The inclusion k[X] ⊂ k[X ′] = k[X]′ induces a finite and
birational morphism which we denote by π′ : X ′ → X, called the normalization morphism. We say
that an irreducible affine algebraic variety X over a field k is normal if its coordinate ring is integrally
closed.

4.2. Contraction and lying-over properties. For an extension of rings, it is clear that the con-
traction of a real ideal is a real ideal. We prove that, for an extension of domains, the contraction of
a central ideal remains central.

Proposition 4.1. Let A → B be an extension of domains. If I is a central ideal of B then I ∩ A is
a central ideal of A. In particular, the map

C-SpecB → C-SpecA, q 7→ q∩A
is well defined.

Proof. The proof is clear since
∑
K(A)2 ⊂

∑
K(B)2. �

Remark 4.2. As noticed in [9] the result of the previous proposition cannot be generalized in the
reducible case (even for extensions of reduced rings with a finite number of minimal prime ideals that
are real) and it is the reason we restrict ourself to extension of domains in the paper. There are some
problems if for example the contraction of a minimal prime ideal of B is not a minimal prime ideal of
A. Consider the extension

A = R[C] = R[x, y]/(y2 − x2(x− 1))→ B = R[C]× (R[C]/(x, y)), f 7→ (f, f(0, 0))

The extension A → B is associated to the morphism of affine algebraic varieties C ′ → C where C is
the plane cubic with a real isolated point, C ′ is the disjoint union of C and a real point, the morphism
is the identity on C and maps the point onto the origin. The contraction to A of the minimal and
central prime ideal R[C] × (0) (central here means central in its irreducible component) of B is the
real maximal ideal corresponding to the isolated real point and thus the contracted ideal is not central
(Proposition 3.9).

We have the following lying over properties:

Proposition 4.3. Let A→ B be an integral extension of domains. Then:
1) SpecB → SpecA, q 7→ q∩A is surjective.
2) MaxB → MaxA is well defined and surjective.
3) If A→ B is birational then the map C-SpecB → C-SpecA is surjective.
4) If A→ B is birational then the map C-MaxB → C-MaxA is well defined and surjective.
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Proof. See [21, Thm. 9.3] for statements 1) and 2). From Proposition 4.1 and [9, Prop. 2.8] we get
3) in the case A is a real domain. Assume A is a domain but K(A) is not real and A→ B is integral
and birational. Then K(B) is not real and by Proposition 3.16 then C-SpecA = C-SpecB = ∅ and
we get 3) in that case. Statement 4) is a consequence of 2) and 3). �

Remark 4.4. We do not have a lying over property for real prime ideals even for birational exten-
sions. Consider for example the integral and birational extension A = R[x, y]/(y2 − x2(x − 1)) →
R[x, Y ]/(Y 2 − (x − 1)) = B given by x 7→ x and y 7→ Y x. The extension is integral and birational
since it corresponds to the normalization of the plane cubic curve with a real isolated node given by
the equation y2−x2(x− 1) = 0 and thus B = A′. Over the real but not central ideal (x, y) in A there
is a unique ideal of B given by (x, Y 2 + 1) and this ideal is not real. This is the principal reason we
work here with the central spectrum rather than the real spectrum.

Remark 4.5. Consider for example the integral extension A = R[x] → R[x, y]/(y2 − x) = B, we
do not have any real prime ideal of B lying over the real and central prime ideal (x + 1) of A. This
example shows that we do not have a central lying over property for integral extensions of domains
which are not birational. From [9], the central lying-over property exists more generally for an integral
extension A→ B of domains such that Specr K(B)→ Specr K(A) is surjective.

5. Central seminormalization for rings

5.1. Centrally subintegral extension. Recall ([29]) that an extension A→ B is said subintegral if
it is an integral extension, for any prime ideal p ∈ SpecA there exists a unique prime ideal q ∈ SpecB
lying over p (it means SpecB → SpecA is bijective), and furthermore for any such pair p, q the
induced injective map on the residue fields k(p) → k(q) is an isomorphism. To characterize the last
property, we say that SpecB → SpecA is equiresidual. In summary an integral extension A → B is
subintegral if and only if SpecB → SpecA is bijective and equiresidual. Such a concept is related to
the notion of "radiciel" morphism of schemes introduced by Grothendieck [11, I Def. 3.7.2]. Swan
gave another nice characterization of a subintegral extension [26, Lem. 2.1]: an extension A → B is
subintegral if B is integral over A and for all morphisms A→ K into a field K, there exists a unique
extension B → K.

In the same spirit, we can give a natural definition of a central subintegral extension.

Definition 5.1. Let A→ B be an extension of domains. We say that A→ B is centrally subintegral
or sc-subintegral for short (we follow the notation used in [9]) if it is an integral extension, and if the
map C-SpecB → C-SpecA is bijective and equiresidual.

Remark 5.2. From Propositions 3.16 and 4.1, any integral extension A→ B of a non-real domain A
is trivially centrally subintegral since C-SpecA = C-SpecB = ∅.

Remark 5.3. Let A → B be a centrally subintegral extension of domains and assume A is real. By
4) of Proposition 3.16 then (0) is a central ideal of A. Since the null ideal of B is the unique prime
ideal of B lying over the null ideal of A then, by bijectivity of the central spectra, (0) is also a central
ideal of B. By equiresiduality then the extension A→ B is birational.

Example 5.4. The finite extension A = R[x] → R[x, y]/(y2 − x3) = B satisfies the property that
C-MaxB → C-MaxA is bijective and equiresidual but A→ B is not birational and so A→ B is not
centrally subintegral.

Example 5.5. The finite extension R[x, y]/(y2−x3)→ R[t] given by x 7→ t2 and y 7→ t3 (corresponding
to the normalization of the cuspidal curve) is centrally subintegral.

From [26, Lem. 2.1] we derive another characterization of a centrally subintegral extension.
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Proposition 5.6. An extension A → B is centrally subintegral if B is integral over A and for all
morphisms ϕ : A→ K into a field K with kerϕ ∈ C-SpecA, there exists a unique extension ψ : B → K
such that kerψ ∈ C-SpecB.

We want now to characterize differently these centrally subintegral extensions in the case we work
with geometric rings.

LetX be an irreducible affine algebraic variety over R. A (resp. irreducible) real algebraic subvariety
V of X is a closed Zariski subset of SpecR[X] of the form V = V(I) = {p ∈ SpecR[X]| I ⊂ p} '
Spec(R[X]/I) for I an (resp. prime) ideal of R[X]. In that case the real part of V , denoted by V (R),
is the closed Zariski subset of X(R) given by Z(I). An algebraic subvariety V of X is said central
in X if V = V(I) ' Spec(R[X]/I) for I a central ideal in R[X]. By Theorem 3.6, an irreducible real
algebraic subvariety V of X is central in X if and only if V (R) ∩ CentX

Z
= V (R).

Remark 5.7. The stick is central in the Whitney umbrella but it is not the case in the Cartan
umbrella.

Remark 5.8. For an irreducible real algebraic subvariety V of X, the properties "V is central" and
"V is central in X" are distinct. As example, take the stick of the Cartan umbrella.

Definition 5.9. Let π : Y → X be a dominant morphism between irreducible affine algebraic varieties
over R. We say that π is centrally subintegral or sc-subintegral if the extension π∗ : R[X] → R[Y ] is
sc-subintegral.

Let π : Y → X be a dominant morphism between irreducible affine algebraic varieties over R.
By Proposition 4.1, we have an associated map C-SpecR[Y ] → C-SpecR[X]. We say that π : Y →
X is centrally hereditarily birational if for any irreducible real algebraic subvariety V = V(p) '
Spec(R[Y ]/ p) central in Y , the morphism π|V : V → W = V(p∩R[X]) ' Spec(R[X]/(p∩R[X])) is
birational i.e the extension k(p∩R[X]) = K(W ) → k(p) = K(V ) is an isomorphism. By Proposition
3.16 a centrally hereditarily birational morphism Y → X is birational if Xreg(R) 6= ∅. From above
remarks we easily get:

Proposition 5.10. Let π : Y → X be a dominant morphism between irreducible affine algebraic
varieties over R. The following properties are equivalent:

1) The morphism π : Y → X is centrally hereditarily birational.
2) The map C-SpecR[Y ]→ C-SpecR[X] is equiresidual.

From Proposition 4.3, with an additional finiteness hypothesis we get:

Corollary 5.11. Let π : Y → X be a finite morphism between irreducible affine algebraic varieties
over R. The following properties are equivalent:

1) The morphism π : Y → X is centrally hereditarily birational and the map C-SpecR[Y ] →
C-SpecR[X] is bijective.

2) π is sc-subintegral.

Let X be an irreducible affine algebraic variety over R such that Xreg(R) 6= ∅. Following [9],
we denote by K0(CentX), called the ring of rational continuous functions on CentX, the ring of
continuous functions on CentX that are rational on X i.e coincide with a regular function on a non-
empty Zariski open subset of X(R) intersected with CentX. We denote by R0(CentX), called the
ring of regulous functions on CentX, the subring of K0(CentX) given by rational continuous functions
f ∈ K0(CentX) that satisfies the additional property that for any irreducible real algebraic subvariety
V = V(p) for p ∈ C-SpecR[X] of X then the restriction of f to V (R) ∩ CentX is rational on V i.e
lies in k(p). Remark that for a variety with at least a smooth real closed point, then being rational,
rational on the real closed points or rational on the central closed points is the same (Proposition
3.16).
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Let π : Y → X be a finite and birational morphism between irreducible affine algebraic varieties
over R. By Proposition 4.3, we have associated surjective maps C-SpecR[Y ] → C-SpecR[X] and
CentY → CentX. The composition by π induces natural morphisms K0(CentX)→ K0(CentY ) and
R0(CentX)→ R0(CentY ). We say that the map CentY → CentX is biregulous if it is bijective and
the inverse bijection is a regulous map i.e its component are in R0(CentX). Such a concept is related
to Grothendieck’s notion of universal homeomorphism between schemes [11, I 3.8].

The following theorem from [9] explains how sc-subintegral extensions and regulous functions are
related.

Theorem 5.12. [9, Lem. 3.13, Thm. 3.16]
Let π : Y → X be a finite and birational morphism between irreducible affine algebraic varieties over
R. The following properties are equivalent:

1) π is sc-subintegral.
2) The morphism π : Y → X is centrally hereditarily birational and the map C-SpecR[Y ] →

C-SpecR[X] is bijective.
3) R0(Cent)→ R0(CentY ), f 7→ f ◦ π|CentY is an isomorphism.
4) The map π|CentY : CentY → CentX is biregulous.
5) For all g ∈ R[Y ] there exists f ∈ R0(CentX) such that f ◦ π|CentY = g on CentY .

Remark 5.13. All these equivalent properties are trivially satisfied if CentX = ∅ (Remark 5.2).

5.2. Classical algebraic seminormalization. We recall in this section the principal result obtained
by Traverso [27] concerning the seminormality of a ring in another one.

Definition 5.14. A ring C is said intermediate between the rings A and B if there exists a sequence
of extensions A→ C → B. In that case, we say that A→ C and C → B are intermediate extensions
of A→ B and we say moreover that A→ C is a subextension of A→ B.

Seminormal extensions are maximal subintegral extensions.

Definition 5.15. Let A → C → B be a sequence of two extensions of rings. We say that C is
seminormal between A and B if A→ C is subintegral and moreover if for every intermediate domain
D between C and B with C ( D then A→ D is not subintegral. We say that A is seminormal in B
if A is seminormal between A and B.

Definition 5.16. Let A be a ring and let I be an ideal of A. The Jacobson radical of A, denoted by
Rad(A), is the intersection of the maximal ideals of A.

For a given extension of rings A → B, Traverso (see [27] or [29]) proved there exists a unique
intermediate ring which is seminormal between A and B.

Theorem 5.17. Let A → B be an extension of rings. There exists a unique ring between A and B
which is seminormal between A and B, this ring is denoted by A∗B, it is called the seminormalization
of A in B and moreover we have

A∗B = {b ∈ A′B| ∀ p ∈ SpecA, bp ∈ Ap +Rad((A′B)p)}.

Remark that to build A∗B = {b ∈ B| ∀ p ∈ SpecA, bp ∈ Ap +Rad((A′B)p)} then, for all p ∈ SpecA,
we glue together all the prime ideals of A′B lying over p.

5.3. Introduction to the Central algebraic Seminormalization Existence Problem. Inter-
mediate extensions of a centrally subintegral extension are still centrally subintegral extensions:

Lemma 5.18. Let A→ C → B be a sequence of extensions of domains. Then A→ B is sc-subintegral
if and only if A→ C and C → B are both sc-subintegral.
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Proof. Assume A → B is sc-subintegral. Clearly, A → C and B → C are both integral extensions.
It follows that C-SpecB → C-SpecA is bijective and equiresidual. If A is not a real domain then it
follows from Remark 5.2 that A→ C and C → B are trivially sc-subintegral. Assume now A is a real
domain. By equiresiduality (Remark 5.3) then A→ B is birational and thus A→ C and C → B are
also both birational. By Proposition 4.3 the maps C-SpecB → C-SpecC and C-SpecC → C-SpecA
are surjective, and since the composition is bijective then they are both bijective. Let q ∈ C-SpecB
then we have the following sequence of extensions of residue fields k(q∩A) → k(q∩C) → k(q), it
shows that C-SpecB → C-SpecC and C-SpecC → C-SpecA are both equiresidual.

The converse implication is clear. �

By Lemma 5.18 a subextension of a centrally subintegral extension is still centrally subintegral, so
we may consider maximal centrally subintegral subextensions.

Definition 5.19. Let A → C → B be a sequence of two extensions of domains. We say that C
is centrally seminormal (or sc-normal for short) between A and B if A → C is sc-subintegral and
moreover if for every intermediate domain C ′ between C and B with C 6= C ′ then A → C ′ is not
sc-subintegral. We say that A is sc-normal in B if A is sc-normal between A and B.

From Lemma 5.18, we get an equivalent definition of a centrally seminormal ring (between A and
B):

Proposition 5.20. Let A → C → B be a sequence of two extensions of domains. Then, C is
sc-normal between A and B if and only A→ C is sc-subintegral and C is sc-normal in B.

From Definition 5.19 we easily deduce the following property:

Proposition 5.21. Let A → C → B be a sequence of two extensions of domains. If A is sc-normal
in B then A is sc-normal in C.

Definition 5.22. Let A be a ring and let I be an ideal of A.
(1) The real Jacobson radical of A, denoted by RadR(A), is the intersection of the maximal and

real ideals of A.
(2) The central Jacobson radical of A, denoted by RadC(A), is the intersection of the maximal

and central ideals of A.

In view to the classical case (see the previous section), we state the following problem:
Given an extension A → B of domains, is there a unique intermediate domain C which is sc-normal
between A and B?

We define the central seminormalization (or sc-normalization) of A in B as the ring which would
give a solution to this problem. In the classical case, the problem is solved by Theorem 5.17.

Definition 5.23. Let A → B be an extension of domains. In case there exists a unique maximal
element among the intermediate domains C between A and B such that A→ C is sc-subintegral then
we denote it by Asc,∗B and we call it the central seminormalization or sc-normalization of A in B. In
case B = A′ then we omit B and we call Asc,∗ the sc-normalization of A.

The existence of a central seminormalization is already proved in [9] in the special case B = A′.

5.4. Central gluing over a ring. In view of the classical case (see Theorem 5.17), a candidate to
be the sc-normalization of A in B when A→ B is integral is the following ring.

Definition 5.24. Let A→ B be an integral extension of domains. The ring

AscB = {b ∈ B| ∀ p ∈ C-SpecA, bp ∈ Ap +RadC(Bp)}
is called the central gluing of B over A.
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The central gluing is not the sc-normalization.

Example 5.25. Consider the finite extension A = R[x]→ R[x, y]/(y2 + x2 + 1) = B. Then AscB = B
since C-SpecB = ∅ and A→ B is not centrally subintegral.

In the following, if r is a prime ideal of a ring C, we denote by c(r) the class of c ∈ C in k(r).
The central gluing satisfies the following universal property again related to the notion of "radiciel"

morphism of schemes introduced by Grothendieck [11, I Def. 3.7.2]:

Theorem 5.26. Let A→ B be an integral extension of domains. The central gluing AscB of B over A
is the biggest intermediate ring C between A and B satisfying the following properties:

(1) If q1, q2 ∈ C-SpecB ly over p ∈ C-SpecA then q1 ∩C = q2 ∩C.
(2) If q ∈ C-SpecB then the residue fields extension k(q∩A)→ k(q∩C) is an isomorphism.

Proof. We first prove that AscB satisfies (1) and (2). Let p ∈ C-SpecA and let q1, q2 ∈ C-SpecB
lying over p. Since q1Bp and q2Bp are two maximal and central ideals of Bp then, by definition of
AscB , we get q1 ∩AscB = q2 ∩AscB = (pAp + RadC(Bp)) ∩ AscB . Since k(p) = Ap/ pAp = (AscB )p/((pAp +

RadC(Bp)) ∩AscB )p then the first part of the proof is done.
To end the proof, it is sufficient to show that if C is intermediate between A and B and satisfies

(1) and (2) then C ⊂ AscB . We have to show that if p ∈ C-SpecA then C ⊂ (Ap +RadC(Bp)). If there
is no central prime ideal of B lying over p then C ⊂ Ap + RadC(Bp) = Bp. Assume now there is at
least one central prime ideal of B, say q, lying over p. Since C satisfies (1) then q∩C is the unique
central prime of C lying over p that is the contraction of a central prime ideal of B. It follows that
(q∩C)Bp ⊂ RadC(Bp). We use the following commutative diagram

k(p) ' k(q∩C)
↑ ↑
Ap → Cp

Let c ∈ C. By (2) there exist a ∈ A and s ∈ A \ p such that (a/s)(q∩C) = c(q∩C). Hence
a − sc ∈ q∩C and thus c − a/s ∈ (q∩C)Cp = ker(Cp → k(q∩C)). We get c ∈ Ap + RadCBp. This
concludes the proof. �

For integral extensions, the central gluing contains every centrally subintegral subextensions.

Corollary 5.27. Let A → C → B be a sequence of integral extensions of domains. If A → C is
sc-subintegral then

C ⊂ AscB .

Proof. If A → C is sc-subintegral then it is easy to see that C satisfies the properties (1) and (2) of
Theorem 5.26. We conclude by Theorem 5.26. �

5.5. Birational closure.

5.5.1. Definition.

Definition 5.28. Let A → B and C → B be two extensions of rings. The fibre product A ×B C is
the ring defined by the following pull-back diagram

A×B C → A
↓ ↓
C → B

Definition 5.29. Let A → B be an extension of domains and let K(A) → K(B) be the associated
extension of fields. We denote by ÃB the fibre product B ×K(B) K(A) and we call it the birational
closure of A in B.



14 JEAN-PHILIPPE MONNIER

The birational closure of A in B is the biggest intermediate ring between A and B which is birational
with A.

Proposition 5.30. Let A → B be an extension of domains and let K(A) → K(B) be the associated
extension of fields. Then, ÃB is intermediate between A and B with A→ ÃB birational and moreover
if C is an intermediate ring between A and B and A→ C is birational then C → B factorizes uniquely
through ÃB.

Proof. The following commutative diagram

A → B
↓ ↓
K(A) → K(B)

gives a factorization of A→ B through ÃB by universal property of the fibre product. Since we have an
extension ÃB → K(A) then K(ÃB) = K(A) and thus A→ ÃB is birational. Let C be an intermediate
domain between A and B such that A→ C is birational. We get the following commutative diagram

A → C = C → B
↓ ↓ ↓
K(A) = K(C) = K(A) → K(B)

By universal property of the fibre product then the extension C → B factorizes uniquely through
ÃB. �

5.5.2. Integral and birational closure. We prove that the operations "integral closure" and "birational
closure" commute together.

Proposition 5.31. Let A→ B be an extension of domains. Then

A′
ÃB

= ÃA′B

Proof. The extension A → A′
ÃB

is integral so A → A′B factorizes uniquely through A′
ÃB

. Since

A → A′
ÃB

is also birational then A → ÃA′B factorizes uniquely through A′
ÃB

by Proposition 5.30.

Conversely, the extension A→ ÃA′B is birational so A→ ÃB factorizes uniquely through ÃA′B . Since
A→ ÃA′B is also integral then A→ A′

ÃB
factorizes uniquely through ÃA′B . �

Definition 5.32. Let A → B be an extension of domains. We simply denote by Ã′B the ring
A′
ÃB

= ÃA′B and we call it the integral and birational closure of A in B.

From above results we easily get an universal property for the integral and birational closure.

Proposition 5.33. Let A→ B be an extension of domains. Then, Ã′B is intermediate between A and
B with A → Ã′B integral and birational and moreover if C is an intermediate ring between A and B
and A→ C is integral and birational then C → B factorizes uniquely through Ã′B.

5.6. Resolution of the Central Seminormalization Existence Problem for rings. We prove
the existence of the central seminormalisation of a ring in another one in the following theorem 5.34.

Theorem 5.34. Let A → B be an extension of domains. The central seminormalization Asc,∗B of A
in B exists and moreover we have:

1) If A is a real domain then

Asc,∗B = Asc
Ã′B

= {b ∈ Ã′B| ∀ p ∈ C-SpecA, bp ∈ Ap +RadC((Ã′B)p)}
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2) If A is not a real domain then

Asc,∗B = A′B = Asc
A′B

Proof. Assume A is not a real domain. It follows from Remark 5.2 that A → A′B is trivially sc-
subintegral. Since a sc-subintegral extension is integral then we get 2).

Let us prove 1). We assume A is a real domain. Let C be an intermediate domain between A and
B such that A→ C is sc-subintegral. By Remark 5.3, it follows that A→ C is integral and birational
and thus from Proposition 5.33 we get C ⊂ Ã′B. By Corollary 5.27, we get C ⊂ Asc

Ã′B
.

To end the proof it is sufficient to prove A → Asc
Ã′B

is sc-subintegral. We know that Asc
Ã′B

satisfies

the properties (1) and (2) of Theorem 5.26 for the extension A → Ã′B. It means that the map
C-SpecAsc

Ã′B
→ C-SpecA is injective and equiresidual by restriction to the image of C-Spec(Ã′B) →

C-SpecAsc
Ã′B

. Since A→ Asc
Ã′B

and Asc
Ã′B
→ Ã′B are integral and birational then the maps C-SpecAsc

Ã′B
→

C-SpecA and C-Spec(Ã′B) → C-SpecAsc
Ã′B

are surjective (Proposition 4.3) and it gives the desired
conclusion. �

For integral and birational extensions, we do not have to distinguish the empty case and we get:

Corollary 5.35. Let A → B be an integral and birational extension of domains. The central semi-
normalization of A in B and the central gluing of B over A coincide i.e

Asc,∗B = AscB

Remark 5.36. In the special case B = A′, Corollary 5.35 gives [9, Prop. 2.23].

Corollary 5.37. Let A→ B be an extension of domains. The following properties are equivalent:
1) A is sc-normal in B.

2)

{
A = Asc

Ã′B
if A is a real domain,

A is integrally closed in B else.

Example 5.38. Consider the extension A = R[x, y]/(y2 − x3(x − 1)2(2 − x)) → R[x, z, u, v]/(z2 −
x(2 − x), u4 + z2 + 1) = B such that x 7→ x, y 7→ zx(x − 1). We may decompose A → B in the
following way:
1. A→ R[x, Y ]/(Y 2 − x(x− 1)2(2− x)) = C such that x 7→ x and y 7→ Y x. This extension is clearly
sc-subintegral.
2. C → R[x, z]/(z2 − x(2 − x)) = D such that x 7→ x and Y 7→ z(x − 1). This extension is integral
and birational. Remark that D is the integral and birational closure of A and that C is sc-normal in
D.
3. D → R[x, z, u]/(z2 − x(2− x), u4 + z2 + 1) = E. This extension is integral but not birational.
4. E → B = E[v].
We get here that A′B = E, Ã′B = D and Asc,∗B = C. Since C-SpecE = ∅ then AscE = E and thus

Asc,∗B = Asc
Ã′B
6= Asc

A′B
= A′B

and it proves that in 1) of Theorem 5.34 it is necessary to consider the integral and birational closure
and not only the integral closure before doing the central gluing.

6. Traverso’s type structural decomposition theorem

We have already proved the existence of a central seminormalization of a ring in another one. If
we take an explicit geometric example i.e a finite extension of coordinate rings of two irreducible
affine algebraic varieties over R, due to the fact that when we do the central gluing then we glue
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together infinitely many ideals, it is in general not easy to compute the central seminormalization. In
the main result of the paper, we prove that, under reasonable hypotheses, we can obtain the central
seminormalization by only a finite number of central gluings and a birational gluing. More precisely,
consider a finite extension A → B of noetherian domains with A a real domain. We want to show
that the sc-normalization Asc,∗B of A in B can be obtained from B by the standard gluing over the null
ideal of A followed by a finite sequence of elementary central gluings over a finite set of central prime
ideals of A like Traverso’s decomposition theorem for classical seminormal extensions [27]. This result
allows to prove in the next section that the processes of central seminormalization and localization
commute together. In this section, we make strong use of the results developed in Section 3.

6.1. Central seminormality and conductor. We prove in this section that the sc-normality of an
extension is strongly related to a property of the conductor.

Let A→ B be an extension of rings. We recall that the conductor of A in B, denoted by (A : B),
is the set {a ∈ A| aB ⊂ A}. It is an ideal in A and also in B.

Proposition 6.1. Let A → B be an extension of domains with A a real domain. If A is sc-normal
in B then (A : Ã′B) is a central ideal in Ã′B.

Proof. Assume A is sc-normal in B. From Proposition 5.21, we know that A is sc-normal in Ã′B. For
the rest of the proof, we replace B by Ã′B. Let I = (A : B), it is the biggest ideal in B contained in
A. By Corollary 3.15, we have to show that C

√
I ⊂ A where C

√
I is the central radical of I in B. Let

b ∈ B such that b ∈ C
√
I and let p ∈ C-SpecA.

• Assume I ⊂ p. Since b ∈ C
√
I then b ∈

⋂
q∈C-SpecB, q∩A=p q . Thus b ∈ RadC(Bp).

• Assume I 6⊂ p. Then Bp = Ap.
We have proved that b ∈ AscB . The proof is done since A = AscB (Corollary 5.35). �

Corollary 6.2. Let A → B be an extension of domains with A a real domain. If A is sc-normal in
B then (A : Ã′B) is a central ideal in A.

Proof. Since the contraction of a central ideal remains central (Proposition 4.1) then the proof follows
from Proposition 6.1. �

Proposition 6.3. Let A→ B → C be a sequence of integral and birational extensions of domains. If
A is sc-normal in B and B is sc-normal in C then A is sc-normal in C.

Proof. Let c ∈ AscC and let q ∈ C-SpecB. Let p = q∩A ∈ C-SpecA. We have c = α + β with
α ∈ Ap and β ∈ RadC(Cp). Since the central prime ideals of C lying over q ly over p we get
RadC(Cp) ⊂ RadC(Cq) (the inclusion is seen in K(A) = K(B) = K(C)). Since Ap ⊂ Bq ⊂ K(A) then
c ∈ Bq + RadC(Cq). It follows that b ∈ Bsc

C = B (Corollary 5.35) and thus AscC ⊂ B. Since A → AscC
is sc-subintegral then we get AscC ⊂ AscB . Since A is sc-normal in B then we get A = AscC i.e A is is
sc-normal in C. �

Proposition 6.4. Let A→ B be an extension of domains. Let C be an intermediate ring between A
and Asc,∗B . If C 6= Asc,∗B then C is not sc-normal in B.

Proof. Assume C 6= Asc,∗B and C is sc-normal in B. By Proposition 5.18 we get that C → Asc,∗B is
sc-subintegral contradicting the sc-normality of C in B. �

6.2. Elementary central gluings. We will adapt and revisit the definition of elementary gluing
developed by Traverso [27] in the central case.

6.2.1. Non-trivial elementary central gluings. Throughout this section we consider the following situ-
ation: Let A→ B be an integral extension of domains with A a real domain and let p ∈ C-SpecA. We
assume the set of central prime ideals of B lying over p is finite and non-empty (it follows from Propo-
sitions 3.16 and 4.1 that B is also a real domain), we denote by q1, . . . , qt these prime ideals. Remark
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that by Proposition 4.3 the previous condition is met if A→ B is finite and birational. We denote by
γi : k(p) → k(qi) i = 1, . . . , t the canonical extensions of the residue fields. Let Q =

∏t
i=1 k(qi) and

γ =
∏t
i=1 γi be the injection k(p) → Q. Remark that γ identifies k(p) with a subset of the diagonal

of Q.

Definition 6.5. We define the “central gluing of B over p”, denoted by Asc,pB defined as the fibre
product B ×Q k(p) i.e the domain defined by the following pull-back diagram of commutative rings

Asc,pB
i→ B

h ↓ ↓ g
k(p)

γ→ Q

where g is the composite B →
∏t
i=1B/ qi → Q. A central gluing over a central prime ideal of this

type is called a “non-trivial elementary central gluing”.

Remark 6.6. The term "non-trivial" in the previous definition corresponds to the fact that the set
of central primes of B lying over p is non-empty and thus we really glue something.

Remark 6.7. Back to the diagram of Definition 6.5. The map i is an injection and i(Asc,pB ) is the
set of elements b in B such that g(b) ∈ γ(k(p)). In particular we have that i(Asc,pB ) contains A. We
identify Asc,pB with i(Asc,pB ). From the above commutative diagram, the ring Asc,pB is determined by

Asc,pB = {b ∈ B| ∀i ∈ {1, . . . , t} b(qi) ∈ k(p) (∗) and∀(i, j) ∈ {1, . . . , t}2 b(qi) = b(qj) (∗∗) }.

Proposition 6.8. We set q = ∩ti=1 qi ∩A
sc,p
B . We have:

1) ∩ti=1 qi ⊂ A
sc,p
B so q = ∩ti=1 qi and q ⊂ (Asc,pB : B).

2) ∀i ∈ {1, . . . , t}, qi ∩A
sc,p
B = q and thus q is a central prime ideal of Asc,pB lying over p.

3) The extension k(p)→ k(q) is an isomorphism.

Proof. Let b ∈ ∩ti=1 qi. We have ∀i ∈ {1, . . . , t}, b(qi) = 0 ∈ k(p) so b ∈ Asc,pB and we get 1).
Let b ∈ q1 ∩A

sc,p
B . We have b(q1) = 0 and h(b) ∈ k(p). Thus ∀i ∈ {1, . . . , t} we get (γi ◦ h)(b) =

(γ1 ◦ h)(b) = b(qi) = 0. It follows that γ ◦ h(b) = (0, . . . , 0) ∈ Q. It means g(b) = (0, . . . , 0) and thus
b ∈ q = ker g. Hence q1 ∩A

sc,p
B ⊂ q and thus q1 ∩A

sc,p
B = q. Since q = q1 ∩A

sc,p
B and q1 is central then

q is also central (Proposition 4.1). It is clear that q is an ideal in Asc,pB and B and thus q ⊂ (Asc,pB : B).
Therefore the assertion 2) is true.

Since q = ker(g ◦ i) then it follows from the above commutative diagram that (Asc,pB / q) ⊂ k(p) and
thus k(q) ⊂ k(p). Since by 2) q is a prime ideal of Asc,pB lying over p then we get k(p) ⊂ k(q), and it
gives 3). �

A non-trivial elementary central gluing satisfies the following universal property.

Proposition 6.9. The ring Asc,pB is the biggest intermediate ring C between A and B satisfying:
(1) ∀(i, j) ∈ {1, . . . , t}2, qi ∩C = qj ∩C.
(2) ∀i ∈ {1, . . . , t}, k(p)→ k(qi ∩C) is an isomorphism.

Proof. The ring Asc,pB satisfies (1) and (2) by Proposition 6.8. It is clear that a subring of B containing
A satisfying (1) and (2) satisfies (∗) and (∗∗) and thus is contained in Asc,pB . �

Proposition 6.10. We have

Asc,pB = {b ∈ B| b ∈ Ap +RadC(Bp)}.

Proof. Let D denote the ring {b ∈ B| b ∈ Ap +RadC(Bp)}.
From the proof of Theorem 5.26 we see that D is the biggest subring of B satisfying properties (1)

and (2) of Proposition 6.9, therefore we get the proof. �
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In case A→ B is birational with A a real domain then any elementary central gluing is non-trivial
and we can strengthen the universal property of (non-trivial) elementary central gluings.

Proposition 6.11. Under the above notation and hypotheses, we assume in addition A → B is
birational. The ring Asc,pB defined above is the biggest element among the subrings C of B containing
A satisfying:

a) There exists a unique ideal q′ in C-SpecC lying over p.
b) k(p)→ k(q′) is an isomorphism.

Proof. We first prove that Asc,pB satisfies the properties a) and b) of the proposition. Let q′ ∈
C-SpecAsc,pB lying over p. By Proposition 4.3 there exists a central prime ideal q′′ of B lying over q′.
Since q′ is lying over p then q′′ must be one of the qi and thus q′ = qi ∩A

sc,p
B . The properties a) and

b) comes from (1) and (2) of Proposition 6.9.
Let C be an intermediate ring between A and B satisfying a) and b). Let q′ be the unique central

prime ideal of C lying over p. As above arguments there exists one of the qi lying over q′. By unicity
we must have ∀(i, j) ∈ {1, . . . , t}2, qi ∩C = qj ∩C = q′ and thus C satisfies (1) of Proposition 6.9. By
b) we get that C satisfies (2) of Proposition 6.9 and thus C ⊂ Asc,pB . �

We give some properties of non-trivial elementary central gluings. We start with a sc-normality
property.

Proposition 6.12. We have Asc,pB = (Asc,pB )scB and thus Asc,pB is sc-normal in B.

Proof. By Theorem 5.26 it is clear that (Asc,pB )scB satisfies the properties (1) and (2) of Proposition 6.9
and thus Asc,pB = (Asc,pB )scB . By Corollary 5.27, it follows that Asc,pB is sc-normal in B. �

We prove that the operations of localization and non-trivial elementary central gluings commute
together.

Proposition 6.13. We assume S is a multiplicative closed subset of A. We have:
1) If S ∩ p 6= ∅ then S−1(Asc,pB ) = S−1B.
2) If S ∩ p = ∅ then S−1(Asc,pB ) is the non-trivial elementary central gluing of S−1B over S−1 p

i.e
S−1Asc,pB = (S−1A)sc,S

−1 p
S−1B

.

In particular,
S−1(Asc,pB ) = (S−1(Asc,pB ))sc

S−1B

and thus S−1(Asc,pB ) is sc-normal in S−1B.

Proof. Let q = ∩ti=1 qi. If S ∩ p 6= ∅ then S−1 q = S−1(Asc,pB ). The conductor commutes with
localization so S−1(Asc,pB : B) = (S−1(Asc,pB ) : S−1B) contains S−1 q = S−1(Asc,pB ) (Proposition 6.8)
and thus S−1(Asc,pB ) = S−1B.

Assume S ∩ p = ∅. Since S−1 p, S−1 q, are central prime ideals, since the S−1 qi, i = 1, . . . , t, are
the central prime ideals of S−1B lying over S−1 p, since S−1 q = ∩ti=1(S

−1 qi), localization commutes
with quotient, and since k(p) = k(S−1 p), k(q) = k(S−1 q), k(qi) = k(S−1 qi) for i = 1, . . . , t then

(S−1A)sc,S
−1 p

S−1B
= S−1B ×S−1Q k(S

−1 p) = S−1B ×Q k(p) = S−1(B ×Q k(p)) = S−1Asc,pB .

It shows that the following diagram

Asc,pB
i→ B

h ↓ ↓ g
k(p)

γ→ Q

commutes with localization by S. The end of the proof comes from Proposition 6.12. �
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Proposition 6.14. Let p′ ∈ SpecA such that p 6⊂ p′. The prime ideals of Asc,pB lying over p′ are
in bijection with the prime ideals of B lying over p′ and moreover they have the same nature: real,
non-real, central, non-central.

Proof. Let q = ∩ti=1 qi. By 1) of Proposition 6.8, we have q ⊂ (Asc,pB : B) thus p ⊂ (Asc,pB : B)∩A and
therefore (Asc,pB : B) ∩A 6⊂ p′. Thus (Asc,pB )p′ = Bp′ and the proof is done. �

6.2.2. Generalized elementary central gluings, the birational gluing and examples. We generalize the
concept of elementary central gluing.

Definition 6.15. Let A→ B be a finite extension of domains with A a real domain. Let p ∈ C-SpecA.
We define the “central gluing of B over p”, denoted by Asc,pB defined as:

• If the set of central prime ideals of B lying over p is non-empty then Asc,pB is the ring defined
in Definition 6.5 and we say that it is a non-trivial elementary central gluing.
• If not then Asc,pB := B and we say that it is a trivial elementary central gluing.

We can easily generalize Proposition 6.10 and show that central gluings over rings can be written
in terms of elementary central gluings.

Proposition 6.16. Let A→ B be a finite extension of domains with A a real domain.
1) Let p ∈ C-SpecA. We have

Asc,pB = {b ∈ B| b ∈ Ap +RadC(Bp)}.
2) The central gluing AscB of B over A can be seen as simultaneous elementary central gluings of

B over all the central prime ideals of A. Namely, we have

AscB =
⋂

p∈C-SpecA

Asc,pB .

The following property will be useful in the next section.

Proposition 6.17. Let A → C → B be a sequence of two finite extensions of domains such that A
is a real domain and A → C is sc-subintegral. Let p ∈ C-SpecA and let p′ ∈ C-SpecC be the unique
central prime ideal lying over p. We have

Asc,pB = Csc,p
′

B .

Proof. If the set of central prime ideals of B lying over p is empty then the set of central prime ideals
of B lying over p′ is empty and Asc,pB = Csc,p

′

B = B.
Assume the set of central prime ideals of B lying over p is non-empty. Let q be one of these ideals.

Since p′ is the unique central ideal of C lying over p and since q∩C is central then q lies over p′. We
have proved that the central prime ideals of B lying over p or p′ are the same, since k(p) = k(p′), it
follows from Definition 6.5 that Csc,p

′

B = B ×Q k(p′) = B ×Q k(p) = Asc,pB . �

Elementary central gluings are not sufficient to get a decomposition theorem due to the presence
of the birational closure in Theorem 5.34. Let A → B be an integral extension of domains and let
p ∈ SpecA. The elementary Traverso’s gluing of B over p can be defined similarly as in Definition 6.5
but here we consider all the prime ideals of B lying over p and not only the central ones. Following
the proof of Proposition 6.10, this gluing is

{b ∈ B| b ∈ Ap +Rad(Bp)}
From above and Definition 5.29, we see that the birational closure is an elementary Traverso’s gluing:

Proposition 6.18. Let A→ B be an integral extension of domains. Then, the birational closure ÃB
of A in B is the elementary Traverso’s gluing of B over the null ideal of A.
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In the sequel, the "birational closure" will be also called the "birational gluing". The birational
gluing is sometimes an elementary central gluing:

Proposition 6.19. Let A→ B be an integral extension of real domains. The central gluing Asc,(0)B of
B over the null ideal of A is the birational closure ÃB of A in B.

Proof. By Proposition 3.1, the null ideal of B is the unique central prime ideal of B lying over the
null ideal of A. The commutative diagram of Definition 6.5 becomes in this situation

A
sc,(0)
B

i→ B
h ↓ ↓ g
K(A) γ→ K(B)

and thus Asc,(0)B = B ×K(B) K(A) = ÃB. �

Example 6.20. Consider the following finite extension of real domains A = R[x]→ B = R[x, y]/(y2−
x) sending x to itself. Then A is the central gluing of B over the null ideal of A i.e A = B×K(B)K(A)
(Proposition 6.19). Indeed, if f ∈ B then we may write f = p + yq with p, q ∈ R[x] and if moreover
f ∈ K(A) then q = 0.

Example 6.21. Consider the following finite extension of domains A = R[x]→ B = R[x, y]/(y2+x2)
sending x to itself. Remark that the null ideal of B is not a central ideal since −1 is a square in K(B)
(see Proposition 3.1). As in the previous example, we can prove that A is the birational gluing of B
over A but here the birational gluing is not an elementary central gluing.

Example 6.22. Let V be the Whitney umbrella i.e the affine algebraic surface over R with coordinate
ring R[V ] = R[x, y, z]/(y2 − zx2) and let V ′ be its normalization. The coordinate ring of V ′ is
R[V ′] = R[x, Y, z]/(Y 2−z) and consider the finite birational extension R[V ]→ R[V ′] given by sending
x to x, y to Y x, z to z. We claim R[V ] is equal to the central gluing of R[V ′] over the central prime
ideal p = (x, y) of R[V ]. There is a unique prime ideal of R[V ′] lying over p, that we denote by q,
and q = (x, Y 2 − z) is also a central ideal. We have k(p) = R(z) and k(q) = R(z)[Y ]/(Y 2 − z). Let
f ∈ R[V ]sc,pR[V ′] = R[V ′] ×k(q) k(p), we may write f = g + Y v with g, v ∈ R[x, z]. From the following
commutative diagram

R[V ]sc,pR[V ′]
i→ R[V ′]

h ↓ ↓ g
R(z) γ→ R(z)[Y ]/(Y 2 − z)

we see that x must divide v and thus v = xs with s ∈ R[x, z]. It follows that f = g+ Y xs = g+ ys ∈
R[V ] and it proves the claim.

6.3. Structural decomposition theorem. As announced, we show that if a noetherian domain A
is centrally seminormal in a domain B which is a finite A-module then A can be obtained from B by
the birational gluing followed by a finite number of successive non-trivial elementary central gluings.

Theorem 6.23. Let A → B be a finite extension of domains and assume A is a noetherian ring. If
A is sc-normal in B then there is a finite sequence (Bi)i=0,...,n of real domains such that:

1) A = Bn ⊂ · · · ⊂ B1 ⊂ B0 = B.
2) B1 is the birational gluing of B over A.
3) for i ≥ 1, Bi+1 is the central gluing of Bi over a central prime ideal of A.

Proof. We assume A is sc-normal in B. If A is not a real domain then A = B (Corollary 5.37) and
there is nothing to do. In the sequel of the proof we assume A is a real domain.

First remark that B is also a noetherian ring since it is a noetherian A-module. Indeed a finite
module over a noetherian ring is a noetherian module.
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Since A is sc-normal in B then A is sc-normal in ÃB (Proposition 5.21). Since ÃB is the birational
gluing of B over A (Proposition 6.18) and since A → ÃB is finite (every submodule of a noetherian
module is finite) then we may assume A→ B is birational in the rest of the proof.

Assume we have already builded the sequence from B0 to Bi and moreover that Bi 6= A. We denote
(A : Bi) simply by I. By Proposition 5.21 then A is sc-normal in Bi. By Proposition 6.1 and Corollary
6.2 then I is central in Bi and also in A. By Propositions 3.12 and 3.14, the minimal prime ideals
of A containing I (in finite number by noetherianity) are all central ideals and their intersection is I.
Let p be one of these minimal prime ideals. Set Bi+1 = Asc,pBi

the central gluing of Bi over p and set
J = (A : Bi+1).
We claim that J 6⊂ p:
Suppose J ⊂ p. We have I ⊂ J and since p is a minimal prime ideal of A containing I then p is
also a minimal prime ideal of A containg J . Since A is sc-normal in B then A is sc-normal in Bi+1

(Proposition 5.21) and thus J is a central ideal (Proposition 6.1 and Corollary 6.2). We denote by q
the unique central prime ideal of Bi+1 lying over p given by Proposition 6.11. We localize in p, we
have Jp = (Ap : (Bi+1)p) = pAp since p is a primary component of J . Since Jp is a central ideal
in (Bi+1)p then it is the intersection of the central prime ideals of (Bi+1)p containing it (Proposition
3.14) so

(1) Jp = pAp = q(Bi+1)p

By Proposition 6.11 we have k(p) = k(q) and thus

(2) (Ap/ pAp) = ((Bi+1)p/ q(Bi+1)p)

Let b ∈ (Bi+1)p. By (2) (we may also use Proposition 6.16 and 2) of Proposition 6.8) we may write
b = α+ β with α ∈ Ap and β ∈ q(Bi+1)p. By (1), we get β ∈ pAp and thus b ∈ Ap. We have proved
that Ap = (Bi+1)p, this is impossible (since J ⊂ p by hypothesis) and we get the claim.

We have I ⊂ J , I ⊂ p and J 6⊂ p. Therefore I 6= J and we may build a strictly ascending sequence
of ideals as soon as Bi 6= A. By noetherianity of A, we get the proof of the theorem. �

Corollary 6.24. Let A→ B be a finite extension of real domains and assume A is a noetherian ring.
If A is sc-normal in B then A can be obtained from B by a finite number of successive elementary
central gluings over central prime ideals of A.

Proof. Since here A and B are real domains then the birational gluing of B over A is an elementary
central gluing (Proposition 6.19) and thus the proof follows from Theorem 6.23. �

From Theorem 6.23 we get a structural decomposition theorem for the central seminormalization
of A in B with gluings over central prime ideals of Asc,∗B and the birational gluing. We prove now a
structural decomposition theorem for the central seminormalization of A in B using only gluings over
central prime ideals of A and the birational gluing.

Theorem 6.25. Let A→ B be a finite extension of domains and assume A is a noetherian ring. The
central seminormalization Asc,∗B of A in B is B (if A is not a real domain) or can be obtained from
B by the birational gluing over A followed by a finite number of successive elementary central gluings
over central prime ideals of A.

Proof. If A is not a real domain then Asc,∗B = B by Theorem 5.34 and there is nothing to do in that
case. We assume A is a real domain in the sequel of the proof.

The extension A→ Asc,∗B is finite since every submodule of a noetherian module is finite. It follows
that Asc,∗B is a noetherian ring and it is also a real domain (see Remark 5.3). By Theorem 5.34, Asc,∗B is
sc-normal in B. From Theorem 6.23, Asc,∗B can be obtained from B by the birational gluing of B over
Asc,∗B followed by a finite number of successive elementary central gluings over central prime ideals of
Asc,∗B . Since A→ Asc,∗B is birational, it follows from Proposition 5.30 that the birational gluings of B
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over A and Asc,∗B are the same. Since A→ Asc,∗B is sc-subintegral then it follows from Proposition 6.17
that an elementary central gluing (of an intermediate ring between Asc,∗B and B) over a central prime
ideal of Asc,∗B is an elementary central gluing over a central prime ideal of A. The proof is done. �

Corollary 6.26. Let A→ B be a finite extension of real domains and assume A is a noetherian ring.
The central seminormalization Asc,∗B of A in B can be obtained from B by a finite number of successive
elementary central gluings over central prime ideals of A.

From Corollaries 5.35 and 6.26 we get:

Corollary 6.27. Let A → B be a finite and birational extension of real domains and assume A is a
noetherian ring. The central gluing AscB of B over A can be obtained from B by a finite number of
successive elementary central gluings over central prime ideals of A.

We want to replace the word "successive" by "simultaneous" in the statement of Corollary 6.27.

Lemma 6.28. Let A→ C → B be a sequence of two integral and birational extensions of real domains.
Let p ∈ C-SpecA. Then

Asc,pC = Asc,pB ∩ C = C ×B Asc,pB

Proof. Since C → B is integral and birational then it follows from 4) of Proposition 4.3 that RadCBp∩
Cp = RadCCp. From Proposition 6.10 it follows that

Asc,pC = {c ∈ C| b ∈ Ap +RadC(Cp)} = {c ∈ C| b ∈ Ap + (RadC(Bp) ∩ C)}

= ({b ∈ B| b ∈ Ap +RadC(Bp)}) ∩ C = Asc,pB ∩ C = C ×B Asc,pB

�

Proposition 6.29. Let A→ B be a finite and birational extension of real domains and assume A is
a noetherian ring. If A is sc-normal in B and A 6= B then there exist a finite number p1, . . . , pn of
central prime ideals of A such that A can be obtained by simultaneous elementary central gluings of B
over p1, . . . , pn, namely

A =
n⋂
i=1

A
sc,pi
B

Proof. By Corollary 6.24, there are a finite sequence (Bi)i=0,...,n (n > 0 since A 6= B) of real domains
and a finite number p1, . . . , pn of central prime ideals of A such that:

1) A = Bn ⊂ · · · ⊂ B1 ⊂ B0 = B.
2) Bi+1 is the elementary central gluing of Bi over pi+1 for i = 0, . . . , n− 1.

By successive applications of Lemma 6.28, for i = 0, . . . , n− 1 we get that

Bi+1 =

i+1⋂
j=1

A
sc,pj
B

�

From Corollary 6.27 and Proposition 6.29, we get:

Corollary 6.30. Let A → B be a finite and birational extension of real domains and assume A is a
noetherian ring. The central gluing AscB of B over A is the intersection of a finite number of elementary
central gluings of B over central prime ideals of A.

Example 6.31. Let V be the Kollár surface i.e the affine algebraic surface over R with coordinate
ring R[V ] = R[x, y, z]/(y3 − (1 + z2)x3) and let V ′ be its normalization. The coordinate ring of V ′ is
R[V ′] = R[x, Y, z]/(Y 3 − (1 + z2)) and consider the finite birational extension R[V ]→ R[V ′] given by
sending x to x, y to Y x, z to z. Remark that V and V ′ are both central. Let p = (x, y) ∈ C-SpecR[V ],
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we have k(p) = R(z). Let q be the unique real (and central) ideal of R[V ′] lying over p, we have k(q) =
R(z)(3

√
1 + z2). Let W be the affine algebraic surface over R with coordinate ring R[V ][y2/x]. Since

y2/x ∈ R0(V (R)) then it follows from Theorem 5.12 that R[V ]→ R[W ] is sc-subintegral. To ilustate
Theorem 6.23, we claim that R[W ] can be obtained from R[V ′] by a unique elementary central gluing,
namely R[W ] = R[V ]sc,pR[V ′]. Since R[V ] → R[W ] is sc-subintegral then R[W ] ⊂ R[V ]sc,∗ = R[V ]scR[V ′].
By Proposition 6.12 we get R[V ]sc,∗ ⊂ (R[V ]sc,pR[V ′])

sc,∗ = R[V ]sc,pR[V ′] and thus we have

R[W ] ⊂ R[V ]sc,pR[V ′].

Let f ∈ R[V ]sc,pR[V ′], we may write f = g + Y h + Y 2t with g, h, t ∈ R[x, z]. From the following
commutative diagram

R[V ]sc,pR[V ′]
i→ R[V ′]

h ↓ ↓ g
R(z) γ→ R(z)[Y ]/(Y 3 − (1 + z2))

we see that x must divide h and also t and thus h = xs, t = xr with s, r ∈ R[x, z]. It follows that
f = g + Y xs + Y 2xr = g + ys + (y2/x)r ∈ R[W ] and it proves the claim. Since R[V ] → R[W ] is
sc-subintegral, it follows from Proposition 6.12 that R[W ] is the sc-normalization of R[V ] i.e

R[W ] = R[V ]sc,∗.

Example 6.32. Let n ∈ N \{0} and let C be the affine plane algebraic curve over R with coordinate
ring R[C] = R[x, y]/(y2 − x

∏n
i=1(x − i)2). Let C ′ be the normalization of C, we have R[C ′] =

R[x, Y ]/(Y 2 − x) and the finite birational extension R[C] → R[C ′] is given by sending x to x and y
to Y

∏n
i=1(x − i). The curve C ′ is smooth and the curve C has only nodal and central singularities

corresponding to the maximal ideals mi = (x− i, y) of R[C] for i = 1, . . . , n. We denote by m′i and m′′i
the two distincts ideals of R[C ′] lying over mi, we have m′i = (x− i, Y −

√
i) and m′′i = (x− i, Y +

√
i).

Since k(mi) = k(m′i) = k(m′′i ) = R then it is clear that R[C] is sc-normal in R[C ′] i.e
R[C] = R[C]scR[C′] = {f ∈ R[C ′]| for i = 1, . . . , n, f(m′i) = f(m′′i )}.

We set C0 = C ′ and, for i = 1, . . . , n, we set Ci to be the affine plane algebraic curve over R with
coordinate ring R[Ci] = R[x, Yi]/(Y 2

i − x
∏i
j=1(x− j)2). Remark that R[C] = R[Cn] ⊂ · · · ⊂ R[C1] ⊂

R[C0] = R[C ′]. Since the extension R[Ci+1]→ R[Ci] is given by sending x to x and Yi+1 to Yi(x−(i+1))
then we have

R[Ci+1] = R[C]sc,mi+1

R[Ci]
= {f ∈ R[Ci]| for i = 1, . . . , n, f(m′i+1 ∩R[Ci]) = f(m′′i+1 ∩R[Ci])}.

We have illustrated Theorem 6.23 by showing that R[C] can be obtained from R[C ′] by n successive
non-trivial elementary central gluings. It is clear that the number n of elementary central gluings is
the lowest we can obtain in this case.

7. Central seminormalization and localization

We may wonder if the processes of central seminormalization and localization commute together.
It is known to be true for geometric rings in the special case we take the central seminormalization in
the standard integral closure (i.e B = A′) and moreover we only localize at a central prime ideal [9,
Thm. 4.23]. The goal of this section is to show that it is true more generally.

An extension A → B of rings is called essentially of finite type if B is a localization of C with
A → C an extension of finite type [23, Def. 53.1]. A domain A is called Japanese if for any finite
extension K(A)→ L of fields the integral closure of A in L is a finitely generated A-module [23, Def.
159.1]. A ring A is a Nagata ring if A is Noetherian and for any prime ideal p of A then the domain
A/ p is Japanese [23, Def. 160.1]. As a representative example, a finitely generated algebra over a field
is a Nagata ring [23, Prop. 160.3].
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Proposition 7.1. Let A → B be an essentially of finite type extension of domains and assume A is
a Nagata ring. Let S be a multiplicative closed subset of A. If A is sc-normal in B then S−1A is
sc-normal in S−1B.

Proof. Assume A is sc-normal in B. By Proposition 5.21 A is sc-normal in the integral closure A′B of
A in B. By [23, Lem. 160.2] A′B is a finitely generated A-module. By Theorem 6.23 there is a finite
sequence (Bi)i=0,...,n of real domains such that:

1) A = Bn ⊂ · · · ⊂ B1 ⊂ B0 = A′B.
2) B1 = Ã′B is the birational gluing of A′B over A.
3) For i ≥ 1, Bi+1 is the central gluing of Bi over a central prime ideal of A.

By Proposition 6.13, ∀i ≥ 1, S−1Bi+1 is sc-normal in S−1Bi. By Proposition 6.3 it follows that S−1A
is sc-normal in S−1B1 = S−1(A′B ×K(A′B) K(A)) = (S−1A′B) ×K(A′B) K(A). Let S−1A → D → S−1B

be a sequence of extensions such that S−1A→ D is sc-subintegral (remark that D = S−1C for C an
intermediate domain between A and B). By [23, Lem. 35.1] then S−1A′B is the integral closure of S−1A
in S−1B. Since a sc-subintegral extension is birational and integral then D ⊂ (S−1A′B)×K(A′B) K(A)
and thus D = S−1A. It proves that S−1A is sc-normal in S−1B. �

Let A → B be an extension of domains and let S be a multiplicative closed subset of A. Since
A→ Asc,∗B is sc-subintegral then S−1A→ S−1(Asc,∗B ) is also sc-subintegral. By Definition 5.23, we get
the following integral extension of domains

(3) S−1(Asc,∗B )→ (S−1A)sc,∗
S−1B

One problem is to know if the extension (3) is an isomorphism.

Theorem 7.2. Let A → B be an essentially of finite type extension of domains and assume A is a
Nagata ring. Let S be a multiplicative closed subset of A. Then

S−1(Asc,∗B ) = (S−1A)sc,∗
S−1B

.

Proof. We already know that S−1(Asc,∗B ) ⊂ (S−1A)sc,∗
S−1B

by (3). Since S−1A → (S−1A)sc,∗
S−1B

is sc-
subintegral then from Lemma 5.18 it follows that S−1A→ S−1(Asc,∗B ) and S−1(Asc,∗B )→ (S−1A)sc,∗

S−1B

are both sc-subintegral. From Proposition 7.1 then S−1(Asc,∗B ) is sc-normal in S−1B. From above
arguments the proof is done. �

In particular, we get:

Corollary 7.3. Let A → B be an essentially of finite type extension of domains and assume A is a
Nagata ring. Let p ∈ SpecA. Then

(Asc,∗B )p = (Ap)
sc,∗
Bp

.

From Corollary 5.35 and Theorem 7.2 we generalize [9, Thm. 4.23].

Corollary 7.4. Let A→ B be a finite and birational extension of domains and assume A is a Nagata
ring. Let S be a multiplicative closed subset of A. Then

S−1(AscB ) = (S−1A)sc
S−1B

.

Corollary 7.5. Let A → B be an essentially of finite type extension of domains and assume A is a
Nagata ring. We have

Asc,∗B =
⋂

p∈SpecA
(Ap)

sc,∗
Bp

.

Proof. The proof follows from the equality Asc,∗B =
⋂

p∈SpecA(A
sc,∗
B )p and Corollary 7.3. �
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8. Central seminormalization of real algebraic varieties

8.1. Central seminormalization of affine real algebraic variety. In this section, we focus on the
existence problem of a central seminormalization of an affine real algebraic variety in another one. Let
us introduce the problem. Let Y → X be a dominant morphism of finite type between two irreducible
affine algebraic varieties over R. Does there exists a unique real algebraic variety Z such that Y → X
factorizes through Z, satisfying the following property: for any irreducible affine algebraic variety V
over R such that Y → X factorizes through V then π : V → X is centrally subintegral if and only if
Z → X factorizes through V ?

Definition 8.1. Let Y → X be a dominant morphism between two affine real algebraic varieties over
R. We say that an affine algebraic variety Z over R is intermediate between X and Y if Y → X
factorizes through Z or equivalently if R[Z] is intermediate between R[X] and R[Y ] (by considering
the associated ring extension R[X]→ R[Y ]).

We define the central seminormalization (or sc-normalization) of X in Y as the variety which would
give a solution to the problem posed here.

Definition 8.2. Let Y → X be a dominant morphism of finite type between two irreducible affine
real algebraic varieties over R. In case there exists a unique maximal element among the intermediate
varieties V between X and Y such that V → X is centrally subintegral then we denote it by Xsc,∗

Y
and we call it the central seminormalization or sc-normalization of X in Y . In case Y = X ′ the
normalization ofX then we omit Y and we callXsc,∗ the central seminormalization or sc-normalization
of X.

We need the following:

Lemma 8.3. Let π : Y → X be a finite morphism between two irreducible affine algebraic varieties
over R. Let A be a ring such that R[X] ⊂ A ⊂ R[Y ]. Then A is the coordinate ring of a unique
irreducible affine algebraic variety over R and π factorizes through this variety.

Proof. Since R[Y ] is a finite module over the noetherian ring R[X] then it is a noetherian R[X]-module.
Thus the ring A is a finite R[X]-module as a submodule of a noetherian R[X]-module. It follows that
A is a finitely generated algebra over R and the proof is done. �

Some finiteness results:

Proposition 8.4. Let Y → X be a dominant morphism of finite type between two irreducible affine
real algebraic varieties over R. The integral closure R[X]′R[Y ] and the birational and integral closure

R̃[X]
′
R[Y ] of R[X] in R[Y ] are finite R[X]-modules.

Proof. By [23, Prop. 160.16] coordinate rings of irreducible affine real algebraic varieties over R are
Nagata domains and thus R[X]′R[Y ] is a finite R[X]-module by [23, Prop. 160.2]. The finiteness of

R̃[X]
′
R[Y ] as a R[X]-module is a consequence of Lemma 8.3. �

From the above proposition, we can define the normalization and the birational normalization of a
variety in another one.

Definition 8.5. Let Y → X be a dominant morphism of finite type between two irreducible affine
real algebraic varieties over R.

1) The variety with coordinate ring R[X]′R[Y ] is called the normalization of X in Y and is denoted
by X ′Y .

2) The variety with coordinate ring R̃[X]
′
R[Y ] is called the birational normalization of X in Y and

is denoted by X̃ ′Y .
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We prove now the existence of a central seminormalization of an affine real algebraic variety in
another one.

Theorem 8.6. Let Y → X be a dominant morphism of finite type between two irreducible affine
real algebraic varieties over R. Then, the central seminormalization Xsc,∗

Y of X in Y exists and its
coordinate ring is the central seminormalization R[X]sc,∗R[Y ] of R[X] in R[Y ], namely

R[Xsc,∗
Y ] = R[X]sc,∗R[Y ]

Proof. Assume Xreg(R) = ∅. By Theorem 5.34, Propositions 3.16 and 8.4 then the theorem is proved
in that case and we get Xsc,∗

Y = X ′Y .
Assume Xreg(R) 6= ∅ i.e R[X] is a real domain (Proposition 3.16). By Theorems 5.12 and 5.34, we

have to prove that R[X]sc,∗R[Y ] is a finitely generated algebra over R. By Theorem 5.34, we have

R[X]sc,∗R[Y ] = R[X]sc
R̃[X]

′
R[Y ]

= R[X]sc
R[X̃′Y ]

By Lemma 8.4, the morphism X̃ ′Y → X is finite and thus by Lemma 8.3 we get the proof. �

Similarly to the classical normalization, the central normalization is a geometric process associated
to an algebraic integral closure. It generalizes [9, Thm. 4.16].

Theorem 8.7. Let Y → X be a dominant morphism of finite type between two irreducible affine real
algebraic varieties over R.

1) If Xreg(R) 6= ∅ then R[Xsc,∗
Y ] is the integral closure of R[X] in R0(CentX)×K(Y ) R[Y ].

2) If Xreg(R) = ∅ then R[Xsc,∗
Y ] is the integral closure of R[X] in R[Y ].

Proof. Assume Xreg(R) = ∅. Looking at the proof of Theorem 8.6 then we get 2).
Assume Xreg(R) 6= ∅. From the proof of Theorem 8.6 then we get

R[Xsc,∗
Y ] = R[X]sc

R[X̃′Y ]

From the following commutative diagram

R[X] → R[X̃ ′Y ] → R[X ′Y ] → R[Y ]
↓ ↓

R0(CentX) → R0(Cent X̃ ′Y ) ↓ ↓
↓ ↓
K(X) ' K(X̃ ′Y ) → K(X ′Y ) → K(Y )

we see that the integral closure of R[X] in R0(CentX) ×K(Y ) R[Y ] is R0(CentX) ×K(X) R[X̃ ′Y ] and
we denote this latest domain by B. Let g ∈ R[Xsc,∗

Y ]. Let π denote the morphism Xsc,∗
Y → X. We

have g ∈ R[X̃ ′Y ]. By Theorem 5.12 there exists f ∈ R0(CentX) such that f ◦ π = g on CentXsc,∗
Y . It

follows that g ∈ B.
By Lemma 8.3 then B = R[Z] for an irreducible affine algebraic variety over R and we get a finite

birational morphism Z → X factorizing Y → X. Since B ⊂ R0(CentX) then by 5) of Theorem 5.12
then R[X]→ B is sc-subintegral and thus B ⊂ R[Xsc,∗

Y ]. �

8.2. Central seminormalization of real schemes. In this section, we prove the existence of a
central seminormalization of a real scheme in another one. It can be seen as a real or central version
of Andreotti and Bombieri’s construction of the classical seminormalization of a scheme in another
one [1].
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8.2.1. Central locus of a scheme over R. Let X = (X,OX) be an integral scheme of finite type over
R with field of rational functions K(X). We say that x ∈ X is real if the residue field k(x) is a real
field. By [11, Prop. 6.4.2] the residue field at a closed point of X is R or C, consequently the residue
field at a real closed point is the field of real numbers. We denote by X(R) (resp. Xreg(R)) the set of
(resp. smooth) real closed points of X. We denote by η the generic point of X, we have k(η) = K(X).
Note that if U = SpecA is a non-empty affine open subset of X then U is (Zariski) dense in X and η
is also the generic point of U i.e A is a domain. We say that x ∈ X is central if there exists an affine
neighborhood U = SpecA of x such that x ∈ C-SpecA seeing x as a prime ideal of A. We denote by
C-SpecOX the set of central points of X. By Proposition 3.16 then η is central if and only if K(X)
is a real field if and only if Xreg(R) 6= ∅. We denote by CentX the set of central closed points of X,
by Theorem 3.6 and the definition we get CentX = Xreg(R)

E
with Xreg(R)

E
denoting the euclidean

closure of the set of smooth real closed points.
From Propositions 4.1 and 4.3, we get:

Proposition 8.8. Let π : Y → X be a dominant morphism between integral and finitely generated
schemes over R. Then π(C-SpecOY ) ⊂ C-SpecOX . If π is finite and birational then π(C-SpecOY ) =
C-SpecOX .

8.2.2. Normalization and birational normalization of a scheme in another one. Let π : Y → X be a
dominant morphism of finite type between integral schemes of finite type over R. The integral closure
(OX)′π∗(OY ) of OX in π∗(OY ) is a coherent sheaf [24, Lem. 52.15] and by [12, II Prop. 1.3.1] it is the
structural sheaf of a scheme denoted X ′Y called the normalization of X in Y . We get a finite morphism
π′ : X ′Y → X factorizing π. If U = SpecA ⊂ X then H0(π′−1(U),OX′Y ) is the integral closure of
H0(U,OX) = A in H0(π−1(U),OY ). If Y = SpecK(X) then we simply denote X ′Y by X ′ and we call
it the normalization of X. We have the universal property that any finite morphism Z → X, with Z
an integral scheme over R, factorizing π factorizes π′.

From definition the birational and integral closure ÕX
′
π∗(OY ) of OX in π∗(OY ) is a quasi-coherent

sheaf. Since OX′Y is coherent then it follows from Lemma 8.4 that ÕX
′
π∗(OY ) is also coherent. By [12,

Prop. 1.3.1] it is the structural sheaf of a scheme denoted X̃ ′Y called the birational normalization of
X in Y . We have the universal property that any finite and birational morphism Z → X, with Z an
integral scheme over R, factorizing π factorizes X̃ ′Y → X.

8.2.3. Central gluing of a scheme over R over another one. Let X be an integral scheme of finite type
over R. For x ∈ X, we denote by mx the maximal ideal of the local ring OX,x. Since K(OX,x) = K(X)
then it follows directly from Definition 3.2 that:

Proposition 8.9. Let x ∈ X. Then x ∈ C-SpecOX if and only if mx ∈ C-SpecOX,x.

We define an OX -algebra that corresponds to the central simultaneous gluings.

Definition 8.10. Let π : Y → X be a finite morphism with Y an integral scheme over R. The
central gluing of π∗(OY ) over OX is the OX -subalgebra of π∗(OY ), denoted by (OX)scY , whose sections
f ∈ H0(U, (OX)scY ) on an open subset U of X are the f ∈ H0(U, π∗(OY )) such that for any x in U
then

fx ∈ OX,x+RadC(π∗(OY ))x

Remark that if x 6∈ C-SpecOX then OX,x+RadC(π∗(OY ))x = (π∗(OY ))x.

Proposition 8.11. Let π : Y → X be a finite morphism with Y an integral scheme over R. Then
(OX)scY the central gluing of π∗(OY ) over OX is a sheaf.

Proof. From Definition 8.10, we easily see that (OX)scY is a presheaf. To get now that it is a sheaf use
that π∗(OY ) is a sheaf. �
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Remark 8.12. Let π : Y → X be a finite morphism with Y an integral scheme over R and assume
X = SpecA and Y = SpecB are affine. From above we get

(OX)scY = AscB

Lemma 8.13. Let π : Y → X be a finite morphism with Y an integral scheme over R. Let x ∈ X.
We have

mx(π∗OY ) ⊂ (((OX)scY )x : (π∗OY )x)

Proof. By [21, Lem. 2, Ch. 2, Sect. 9] and Definition 8.10, we get

mx(π∗OY ) ⊂ Rad(π∗OY )x ⊂ RadC(π∗OY )x ⊂ ((OX)scY )x

�

Theorem 8.14. Let π : Y → X be a finite morphism with Y an integral scheme over R. Then (OX)scY
is a coherent sheaf on X.

Proof. It is sufficient to prove (OX)scY is quasi-coherent since the finiteness property is given by Lemma
8.3. Since the property to be quasi-coherent can be verified locally, we assumeX = SpecA, Y = SpecB
with A and B denoting respectively the coordinate rings of X and Y . We have now to check the two
properties c 1) and c 2) given by Grothendieck in [11, I Thm. 1.4.1].

Let f ∈ A and set D(f) = {x ∈ X | f 6∈ px} (here we identify x ∈ X with the corresponding prime
ideal px ∈ SpecA). Let U be an open subset of X such that D(f) ⊂ U and let s ∈ H0(D(f), (OX)scY ).
We have to show that there exists n ∈ N such that (f|D(f))ns extends as a section in H0(U, (OX)scY ).

For x ∈ D(f), we have sx ∈ ((OX)scY )x = Apx + RadCBpx ⊂ (π∗OY )x = Bpx . Since π∗OY is
quasi-coherent then, by [11, Thm. 1.4.1, d1)] there exists n ∈ N∗ such that (f|D(f))n−1s extends as a
section t ∈ H0(U, π∗OY ). So, if x ∈ D(f) then tx ∈ ((OX)scY )x = Apx +RadCBpx and if x ∈ U \ D(f)
then tx ∈ (π∗OY )x = Bpx .

We claim that f|U t ∈ H0(U, (OX)scY ). If x ∈ D(f) then clearly fxtx = fnx sx ∈ ((OX)scY )x. Assume
now x ∈ U \ D(f). Since fx ∈ mx = pxApx then it follows from Lemma 8.13 that fxtx ∈ ((OX)scY )x
and we have proved the claim.

It follows that (f|D(f))ns extends as a section in H0(U, (OX)scY ) and we have checked the property
c 1) of [11, I Thm. 1.4.1]. Since π∗OY is quasi-coherent then obviously (OX)scY satisfies the property
c 2) of [11, I Thm. 1.4.1] and the proof is done. �

From [12, II Prop. 1.3.1] and Theorem 8.14, we get:

Corollary 8.15. Let π : Y → X be a finite morphism with Y an integral scheme over R. There exists
an integral scheme Xsc

Y over R, called the central gluing of Y over X, with a finite and birational
morphism πscY : Xsc

Y → Y factorizing π such that (πscY )∗OXsc
Y

= (OX)scY i.e

Xsc
Y = Spec(OX)scY

8.2.4. Central seminormalization of a scheme over R in another one. From Theorem 5.34, Proposi-
tions 3.16 and above constructions we state the following definition:

Definition 8.16. Let π : Y → X be a dominant morphism of finite type with Y an integral scheme
over R. The central seminormalization of OX in π∗(OY ) is the OX -algebra denoted by (OX)sc,∗Y
defined by:

1) (OX)sc,∗Y = (OX)sc
X̃′Y

if Xreg(R) 6= ∅.
2) (OX)sc,∗Y = (OX)′π∗(OY ) if Xreg(R) = ∅.

From above constructions and results we are able to prove the existence of the central seminormal-
ization of a real scheme in another one:
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Theorem 8.17. Let π : Y → X be dominant morphism of finite type with Y an integral scheme over
R.

1) The OX-algebra (OX)sc,∗Y , is a coherent sheaf on X.
2) There exists an integral scheme Xsc,∗

Y over R, called the central seminormalization of X in Y ,
with a finite morphism πsc,∗Y : Xsc,∗

Y → Y factorizing π such that (πsc,∗Y )∗OXsc,∗
Y

= Osc,∗Y i.e

Xsc,∗
Y = SpecOsc,∗Y

Proof. If Xreg(R) = ∅ then (OX)sc,∗Y , is a coherent sheaf on X by [24, Lem. 52.15]. From 8.2.2 and
Theorem 8.14 then (OX)sc,∗Y , is a coherent sheaf on X in the case Xreg(R) 6= ∅. The rest of the proof
follows from [12, II Prop. 1.3.1]. �

Remark 8.18. Let π : Y → X be a dominant morphism of finite type with Y an integral scheme
over R and assume X = SpecA and Y = SpecB are affine. From Theorems 5.34 and 8.17 we get

Osc,∗Y = Asc,∗B

Definition 8.19. Let π : Y → X be a dominant morphism of finite type with Y an integral scheme
over R. We say that π is sc-subintegral or centrally subintegral if π is finite and the induced map
C-SpecOY → C-SpecOX is bijective and equiresidual (∀y ∈ C-SpecY we have k(π(y)) ' k(y)).

Remark 8.20. This notion of centrally subintegral morphism has similarities with the concept of
universal homeomorphism introduced by Grothendieck [11, I 3.8].

Since a point x ∈ X is central if and only if it is a central point in an affine neighborhood of x then
we derive from Theorems 5.12 and 8.6:

Theorem 8.21. Let π : Y → X be a dominant morphism of finite type with Y an integral scheme
over R. A morphism Z → X factorizing π, with Z an integral scheme over R, is centrally subintegral
if and only if it factorizes through πsc,∗Y : Xsc,∗

Y → X.
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