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ABSTRACT

The RTD theory is commonly used for describing flow patterns in a large class of applications, and par-
ticularly for ventilated enclosures. Experimental RTD curves are used for modelling these premises with
an application in the nuclear industry for predicting the airborne pollutant transfers in order to prevent
radiological risk. An approach based on a superstructure involving interlinked elementary flow patterns
such as CSTRs, P FRsrecycles and by-passes is implemented. In order to propose a generic and easy to
use tool, the associated large-scale MI NLP problem is solved by using the GAMS package. After a vali-
dation phase on examples with known solutions, a laboratory enclosure, called MELANIE, used in the
nuclear industry is modelled. The comparison between experimental RTD curve and the ones obtained
from models extracted from superstructures shows good agreement. The superstructure-based solution
procedure constitutes an efficient and intermediate way between numerical simulations using C Flxodes
and experimental determinations of characteristic parameters, which are both difficult to implement in

the case of large and cluttered systems which are typical of the nuclear industry.

1. Introduction

In many industrial premises, particularly in the nuclear indus-
try to prevent the radiological risk, the control of the airborne
contamination transfers is an essential feature for operator pro-
tection and facility safety. Since the ventilation constitutes a widely
used system of contamination containment, tools to assess airborne
contamination transfers inside a ventilated enclosure have been
developed by many researchers. These works are mainly based on
the one hand on numerical simulation using computational fluid
dynamics (CFD), and on the other hand on experimental determi-
nation of characteristic parameters. In real world applications, the
experimental approach is generally difficult to implement, because
a greatnumberofinterdependent parameters have to be estimated,
so the results are often not representative of the physical phe-
nomenon. In the case of large and cluttered systems which are the
scope of this study, the predictive methods based on CFD codes
would require a too thin meshing of the premise for obtaining
results with an acceptable level of accuracy.

Abbreviations: CAD, computer aided design; CSTR, continuous stirred tank
reactor; GAMS, general algebraic modelling system; PFR, plug flow reactor; CFD,
computational fluid dynamics; MINLP, mixed-integer nonlinear programming; RTD,
residence time distribution.

* Corresponding author.
E-mail address: Luc.Pibouleau@ensiacet.fr (L. Pibouleau).

doi:10.1016/j.compchemeng.2008.05.002

This paper proposes an intermediate way between the purely
numerical approach and the experimental characterization of the
contamination transfers. The method lies on the determination of
the experimental residence time distribution (RTD) curve, gen-
erally obtained through the response of the system to a tracer
release. RTD theory (Danckwerts, 1953) is commonly used to
describe the flow patterns in a wide variety of applications. Then
a model is built up from a combination of elementary ideal flow
patterns such as perfect mixing (CSTR), plug flow (PFR), by-pass
and recycling (Levenspiel, 1972). Each elementary cell is char-
acterized by specific parameters such as mean residence time
and volume. The adjustment of the model is derived from the
comparison between the simulated response of the model to a
stimulus and the experimental RTD curve. The parameters of vari-
ous candidate structures are optimized, in terms of volumes and
flow rates, in order to fit as well as possible the experimental
curve.

In most of the previous works, only softwares performing the
identification of a little number of parameters for models of which
structures are provided by the user were available (Berne & Blet,
1998; Leclerc, Detrez, Bernard, & Schweich, 1995; Thereska, 1998).
UntiltheworkofLaquerbe, Laborde, Soares, Floquet, etal.(2001),no
software allowing a complete computeraided design of this type of
structures has already been developed. The establishment of aRTD
model liesfirst in the experimental determination of the residence
time distribution curve, obtained generally through the response
of the system to a tracer release, classically helium in ventilation
applications. Then the simulated response of a proposed model to



Nomenclature

Cé‘xp experimental concentration at step time k

Cexp(t) experimental concentration at time ¢

Ci" concentration of elementary cell i at step time k

Ci’; input concentration at step time k

C r’; od concentration obtained from the model at step time
k

C’geg positive real variable at step time k

Cé‘ut output concentration at step time k

C’Eos positive real variable at step time k

DZ dead zone

FcsTtr input flow rate of a CSTR

F; flow rate associated with elementary cell i

Fin input flow rate on the network

Fprr input flow rate of a PFR

h step time

Kmax number of discretization points in the time space

M positive constant

S sigmoid function

tk time at step k

t time

Tﬂl‘eg positive real variable at step time k

TI’J‘OS positive real variable at step time k

Vestr volume of a CSTR

Vi volume of reactor i

VpER volume of a PFR

VTotal total volume of the enclosure

Vi binary variable associated with elementary cell i

P binary variable at step time h

Greek letters

o positive constant
0 penalty coefficient
Indexes

in input

k step time

out output

mod model

exp experimental

a stimulus is compared with the experimental curve in order to test
if the model fits well the experimental conditions.

As suggested by Walter and Pronzato (1994), the definition of a
RTD model can be characterized as follows:

¢ modelling is performed in differed time;

e structures of the models are variable;

¢ the model is essentially a compartmental one, but constraints can
be introduced to provide a phenomenological significance.

The problem involves two interlinked sub-problems: the struc-
tural identification of the models and the parametric identification
of each proposed model. So the problem makes part of the MINLP
optimization problem class, insofar as discrete variables related to
the model structures (number and type of model components) and
continuous ones translating operating conditions (volumes, flow
rates) of the various model items simultaneously appear in the
problem formulation.

In the chemical engineering field two classes of methods for
solving MINLP problems can be distinguished. The determinis-

tic way, where the MINLP problem is solved by means of the
generalized Bender’s decomposition (Yuan, Zhang, Pibouleau, &
Domenech, 1988), or the outer-approximation/equality-relaxation
(OA/ER) procedure, first proposed by Duran and Grossmann
(1986), Kocis and Grossmann (1987), and improved by Kocis and
Grossmann (1988), or the branch and bound procedure (Gupta,
1980; Gupta & Ravindram, 1981). In the other class of methods,
the stochastic ones, a two-level optimization method is carried out
(Laquerbe, Laborde, Soares, Floquet, et al., 2001; Laquerbe, Laborde,
Soares, Ricciardi, et al., 2001; Montastruc, Azzaro-Pantel, Pibouleau,
& Domenech, 2004). At the upper level the model structure is deter-
mined from a stochastic procedure, like the simulated annealing
method or a genetic algorithm, and the operating conditions of the
model units are optimized with a classical NLP code at the lower
level.

In the previous study on ventilated enclosures of Laquerbe,
Laborde, Soares, Ricciardi, et al. (2001), the model was built step
by step by merging elementary patterns series cascade, recycling
loop, parallel distribution, intermediate distribution of ideal com-
ponents: CSTR, PFR, Short-circuit, and the resulting MINLP problem
was solved by using a stochastic method. An alternative method,
where on the one hand the model is searched within a pre-defined
superstructure, and on the other hand the MINLP problem is solved
by means of a deterministic procedure is proposed in this study.

The paper is organized as follows. In the first section, the prob-
lem of searching for an optimal solution within a superstructure
composed of CSTR, PFR, recycles and by-passes, is formulated. The
balance equations and the relations translating the existence or not
an elementary unit give birth to a mixed-integer nonlinear pro-
gramming problem (MINLP). Based on a previous study of Hocine
(2006), the following part is related to the choice of a GAMS solver,
namely the package SBB. In the fourth section, the approach com-
bining the superstructure-based approach with the solver SBB is
validated on two examples of which solution are known. In the
fifth part, a real ventilated enclosure, the laboratory enclosure
MELANIE is modelled for a step-up stimulus carried out by a helium
release. Several numerical studies are performed and the results
are compared with the one obtained by Laquerbe, Laborde, Soares,
Ricciardi, et al. (2001), where the solution was built step by step by
assembling elementary patterns. Finally, the significant contribu-
tions of this study and its potential use for modelling the dynamic
behaviour of other chemical devices are summarized in a conclud-
ing part.

2. Problem formulation

For the synthesis of reactor networks, two solution approaches
can be distinguished. The solving strategy in which the network
is built step by step without embedding the set of potential solu-
tions within a superstructure, was proposed by Athier, Floquet,
Pibouleau, and Domenech (1997) and Laquerbe, Laborde, Soares,
Floquet, et al. (2001). In these two-step procedures, the master
problem, solved by a stochastic method like simulated annealing
or a genetic algorithm, proposes network structures to the slave
problem, where the continuous operating variables on the net-
work under consideration (generally flow rates, concentrations and
volumes) are optimized by a NLP method, QP or SQP according
the type of constraints. However, in this strategy the infeasibility
of some structures proposed by the stochastic procedure has to
the detected. This detection, lying on physical concepts is strongly
linked to the problem under consideration, and suffers of a lack
of applicability. Furthermore, the solutions provided by a stochas-
tic procedure are without any doubt good solutions, but they are
not optimal ones. That are the reasons why a procedure based on a
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Fig. 1. Superstructure of the problem.

superstructure approach and a deterministic MINLP algorithm have
been retained in this study.

The superstructure proposed by Hocine (2006) is used for
searching the best model according to an experimental RTD curve.
It involves six CSTR, two PFR, a by-pass and a recycle stream (see
Fig. 1), that is to say 10 elementary modules, leading to a MINLP
problem involving 210 = 1024 potential solutions. In the case where
the flow rates passing through an elementary cell are null, the cell is
considered as a dead-zone. The binary variable y; associated with
each elementary pattern translate the absence or not of the pat-
tern. The continuous variables for each elementary module i are
the flow rate F;, the concentration C}‘ where the index k refers to
discretization step in the time interval (see below) and for a reactor,
its volume V; (Figs. 2a and 3b).

The mathematical formulation of the problem involves the fol-
lowing equations.

e Volume constraint:

8
Zvi = V1otal ( )
i=1

¢ Input node constraint:

Fn+F+FB+FB+Fy=F+F+F (2a)

4
CE Fin + CEF5 + ClFe + CloaF7 = C§> Ry (2b)
i=1

V=10 V=20

@ g Wi
—1=] {==]
F=1
V=125 V=165
(b) P (i L |
= F=1.03

Fig. 2. (a) Reference model; (b) solution for a step-up stimulus.
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Fig. 3. (a) Reference model; (b) solution for a step-up stimulus.

Output node constraint:
7
Cr’;odZFk = CKFy + CYFy + CKF3 + CEFy (3)
i=5
Existence of reactors:
0 < Vi =< yiVrotal (4)
Existence of flows (for example flow 3):

F3 < M(y1 +¥2)Fin (5)

This constraint expresses the flow rate existence, but also bounds
the value of this flow rate. After numerous numerical trials, the
value 10 was assigned to M.

Bounds on variables:

0<Ck<1, i=0, 8 (6a)
0<Ck =<1 (6b)
0 <V; < Vrotal (6¢)
0<F<MF,, i=1, 4 (6d)
0<F < %I-}n, i=5, 6, 7 (6e)

Egs. (6d) and (6e) are used to bound the search space for the flow
rates. As in the previous case, the value M =10 was chosen. So in
the direct sense it is assumed that each flow rate cannot be larger
than 10 times as the input flow rate, and for the reverse sense this
value is reduced to five.

In addition to this general set of constraints, specific equations
have to be added for reactors.
PFR reactors:

For a step-up stimulus, the PFR output concentration Coyt iS
expressed in terms of its input concentration Cj, by

. v
Cour =0 if t< TR (7a)
in,PFR
Cout = Ci if t > 7VPFR (7b)
in,PFR

At each step time k, these equations are approximated by the
following continuous function derived from the classical sigmoid
function (noted s):

C(’)‘ut:Ci’;xs {a {t"—VPFR”

7c
Fin,prR (70)

where « is a coefficient used to adjust the slope of the curve. The
value 100 has been assigned to «.



For an impulse stimulus, the PFR output is given by

Cout =0 if t#£— (8a)
Fper
Cour =Gy if £ = 2R (8b)
Fprr

In that case, the representation of the PFR output by means of a
continuous mathematical function a rather difficult. To overcome
this difficulty, the PFR response is defined according to a set of
binary and continuous variables at each step time k. Let us define:

V
tk— F[l:::::: = Tgos Tll1<eg (8c)

with the constraints

Ckp<1-2 (8d)
C{;os Crlieg <27¢ (8e)
V
k k PFR k
Th  + They < [Max (t o )} z (8f)
C(’)cut Ck = Cll;os Cgeg (8g)

where z is a binary variable, and C¥ys, Cheg. Tios: Theg €9t
If ZX=0, it comes:

Cgos C’;eg (8h)

Cout = Cify (8i)

Tpos = Treg =0 (8i)

k= VPR (8k)
Fprr

In the same way, if z{ = 1, we have:

Cke=0 (81)
TE 4Tk < Max (k= VPR (8m)
pos neg = FPFR
g _ Ver < Max (t" - @) (8n)
Fper Fppr

e CSTR reactors:

The output of a CSTR is expressed as a function of its input by
the classical ODE equation:

dCout  Festr A
dr — Vestr X (Cm - Cout) (9&)
By using the classical Euler’s method, it comes:
hF
Cg:fg = (%) X (Cﬁl —Ck)+ (9b)
CSTR

where h is the step time, h=t¢*1 — ¢k,

According to the set of constraints above described, the MINLP
problem consists in extracting from the superstructure shown in
Fig. 1, the model fitting as well as possible an experimental RTD
curve, discretized in kngx equidistant points in the time space. In
addition to the variables defined at each step time (C" i=0to8,Ck

mod
for a step-up stimulus and C¥,i=0t08,Ck .. Cke, C’SOS, Keg» Thoss
Z! for an impulse stimulus), the problem involves seven flow rates
F;, eight volumes V; and 10 binary variables y; related to the eight
reactors, the by-pass and the recycle.

The objective function is given by

+ Zy, (10)

k max

f=px Z( modfcé{xp

k=1

where p is a positive coefficient introduced to balance the orders of
magnitude of the two terms of the sum. From this objective func-
tion, the goal is to obtain the simplest model (by minimizing the
sum of y;, giving also a concentration as close as possible of the

experimental concentration by minimizing Zk K Cé‘xp)z.
After numerous trials, the value 1000 has been a551gned to p for
realizing a trade-off between the two terms of the objective func-
tion.

The applicability of the optimal model defined by Egs. (1)-(10)is
quite general. It can be used for any ventilated enclosure of volume
Vrotal, but the results strongly depend on the volume value and the

shape of the RTD curve.

3. Numerical solution

In the previous works of Montastruc et al. (2004) and Laquerbe,
Laborde, Soares, Floquet, et al. (2001) and Laquerbe, Laborde,
Soares, Ricciardi, et al. (2001), a two-step procedure combining a
stochastic procedure (simulated annealing or genetic algorithm)
for building models, and a NLP algorithm for optimizing the oper-
ating conditions of the elementary cells of the current model, was
implemented. This approach appears to be attractive, but the han-
dling of the NLP problem for each model structure proposed at the
upper level by the stochastic method, poses non-trivial numerical
problems. Indeed, the dimensions of the NLP problem may vary
according to the proposed models, in terms of some variables and
constraints that may disappear or come back into the problem.
Furthermore, the stochastic procedures are unable to provide an
optimal solution. For these reason a general purpose MINLP solver
was used in this paper. Insofar as it constitutes now a standard in
process engineering, as well as in research and teaching fields, the
GAMS package was chosen.

From handling MINLP problems, GAMS (2004) proposes two
codes for solving the master problem. DICOPT++, based on the
OA/ER procedure, first proposed by Duran and Grossmann (1986)
and Kocis and Grossmann (1987), and improved by Kocis and
Grossmann (1988) for partially non-convex problems is the old-
est MINLP procedure of GAMS. Simple Branch and Bound (SBB) is
the other code implemented more recently in the GAMS library.
It is based on an implicit enumeration procedure first proposed
by Gupta (1980) and Gupta and Ravindram (1981). At each node
of the tree representing the mixed-integer linear programming
(MILP) problem, corresponding to the master problem in the gen-
eral MINLP solution procedure, a continuous NLP problem obtained
by assimilating some discrete variables to continuous ones, is
solved. This solution provides a lower bound value on the objec-
tive function, used for defining the branching scheme (two options
are provided - depth first or breadth first branching) or to cut
a branch (Floudas, 1995). The pseudo-cost method can be used
for the selection of the next variable or the next node to branch.
However the pseudo-cost computation, based on a measure of the
NLP unfeasibility may require high computational times (Broke,
Kendrick, Meeraus, & Raman, 1998). In the most classical version of
SBB with a depth first scanning procedure, the well-known back-
tracking method is implemented for identifying the next node to
be separated. Whatever the algorithm used for solving the master
problem, AO/ER or SBB, a NLP problem has to be solved at each
iteration of the MILP. For this purpose, the solver used is the classi-
cal CONOPTS3, based on the GRG method first proposed by Abadie
(1968) and Abadie and Carpentier (1969). The GRG implementation
is detailed in the paper of Drud (1985).

In the thesis of Hocine (2006), the two solvers have been com-
pared on the basis of various types of benchmark problems found in
the literature (Floquet, Pibouleau, & Domenech, 1989; Himmelblau



Table 1
Reference example for a step-up stimulus

Reference model Solution

Case 1: two reactors in series of Idem, QD=0
volume 50

Case 2: two reactors in parallel of
volumes 10 and 15, flow rates =2
on the two branches

Fig. 2a

Fig. 3a

Idem, QD=3.2 x 10-1°

Fig. 2b,QD=13 x 108
Fig. 3b, QD=8 x 10>

& Edgar, 1986). It follows from this study that SBB seems to be less
influenced by the variable initialization than DICOPT++, so it has
been retained for solving the problem considered in this paper.

4. Validation on theoretical examples

In this section, the problem consists in trying to find again a
given solution from the superstructure shown in Fig. 1. The dimen-
sionless volumes and flow rates of this reference solution were fixed
arbitrarily, the RTD curves were simulated in an Excel file, the value
one is assigned to the step time h, and the time interval is [0,50].

For a step-up stimulus (respectively for an impulse stimulus),
the reference model is given in cases listed in the first column
of Table 1 (respectively of Table 2), and the corresponding solu-

tions found by GAMS are reported in cases listed in the second
column. In these Tables, the term QD = ZII: maX(Cl’;od,ngp)z rep-

resents the total quadratic deviation betweégl experimental and
modelled points. For illustrative sake, the RTD curves correspond-
ing to an impulse stimulus and models for cases 1 and 2 of
Tables 1 and 2 are respectively reported in Figs. 4 and 5, where the
experimental and modelled responses cannot be distinguished.

This preliminary study shows that good solutions, with a very
slight difference between the experimental and modelled RTD
curves, can be extracted from the superstructure of Fig. 1 by means
of the SBB GAMS's solver. In most cases, the modelled solutions
are identical to the reference, and when they differ, because the
GAMS solver has reached a different local optimum, the quadratic
deviation is always very low.

For the superstructure of Fig. 1 the previous study shows that
GAMS gives good results, but these solutions probably depend to a
certain extent on the superstructure. The study of the superstruc-

Table 2
Reference example for an impulse stimulus

Reference model Solution

Case 1 Idem, QD=4.6 x 10-1°
Case 2 Idem, QD=4.2 x 1010
Fig. 2a Idem, QD=2.9 x 10-12
Fig. 3a Idem, QD=1.9 x 107

0204

=

S 016

2

g

5 0124

o

H

o 0.084
0,04

T
0 10 20 30 40 50
Time

Fig. 4. RTD curve for an impulse stimulus and model of case 1.
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Fig. 5. RTD curve for an impulse stimulus and model of case 2.
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Fig. 6. Reference model of Ameur.

ture influence on the obtained solutions is now carried out through
a problem proposed by Ameur (1983). The reference solution is
shown in Fig. 6. Ameur (1983) has shown that the response of the
reactor network of Fig. 6 to a step-up stimulus was given by the
following equation:

Cexp(t) = [1 — 0.21113 exp(—0.74641t) — 0.78867 exp(—0.05359¢)]
(11)

The experience was carried out in the time interval [0,125] min,
the corresponding RTD curve is plotted in Fig. 7. In addition to the
superstructure of Fig. 1, another superstructure shown in Fig. 8 was
studied. Insofar as the superstructure of Fig. 8 does not involve any
PFR, one can think that this type of superstructure would be more
adequate for modelling the Ameur’s example. The results obtained
with the two superstructures and for 10 and 250 discretization
points in the time space are reported in Table 3. If follows from this

-
-
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Fig. 7. RTD curve for the Ameur’'s example (step-up stimulus).
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Fig. 8. Superstructure for Ameur’s example.



Table 3
Results for the Ameur’s problem

Number of Superstructure Superstructure of
discretization points of Fig. 1 Fig. 10
10 Fig. 9, Same as Fig. 9 with
QD=56x 10" V1=6.14, F2=1.63,
F3=063,V>=8.26
QD=5.610-"
250 Fig. 10, Fig. 10,QD=2 x 10-°
QD=2x10"*
Vv, 580
Iy 154
[—— >
Kyl Fyel
—_— 1,-9.20 —
[ I-0.54
< —

Fig. 9. Solution for the Ameur's example with the superstructure of Fig. 1 and 10
points of discretization.

study that for a given number of discretization points, the super-
structure has no influence on the topology of the solution found,
the only differences between the solutions lies in the values of the
operating conditions. Indeed, different superstructures may lead to
different local optima with the same reactor network. Inopposition
to the superstructure, the number of discretization points seems to
have a significant effect on the solution topology. For example, with
10 points the obtained topology (Fig. 9) is the same as the reference
(Fig. 6), even though with 250 points, the topologies (Figs. 6 and 10)
are different. In Fig. 10 the lower branch is in the opposite direc-
tion than the lower branches of Figs. 6 and 9. This behaviour may
be explained by possible several local numerical solutions that can
be obtained with the SBB solver. According to the discretization
scheme of the CSTR (Eq. (9b)), the path leading to a solution may
be different.

5. Application to a ventilated laboratory enclosure:
MELANIE facility

5.1. Experimental conditions

The ventilation system is made up of blowing fans and exhaust
fans, leaks or infiltrations can occur, the enclosure being in depres-
sion or in overpressure with adjacent spaces. The contaminant
transfers after an accidental pollutant release or in standard work-
ing conditions can be evaluated through an adequate flow model.
This allows to predict the amount of contaminant that workers can
breathe, to predict also the concentrations recorded by the contam-
inant monitors located somewhere in the indoor space, and then
to validate the pertinence of the measures given by the monitors.

V, 1463

1

[ ¥y 077

I 13-0.23)

Fig. 10. Solution for the Ameur’s example with the superstructure of Fig. 1 and 10
and 250 points of discretization.
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Fig. 11. MELANIE laboratory facility.

A real ventilated room of volume 100 m3, the laboratory enclo-
sure of the CEA (Grenoble, France), called MELANIE is now used to
illustrate the application of the superstructure-based solution pro-
cedure for modelling a ventilation system. The room is shown in
Fig. 11, and corresponds to an exhaust flow rate equal to 1100 m3/h
at 20°C, that is to say 0.305m3/s, and to the classical location of
blowing and exhaust openings found in the nuclear applications:
blowing in the upper part of the room and exhaust in the lower part.
However inside this room, it is possible to obtain various air flows
and residence time distributions by either changing the positions of
the blowing and exhaust openings, or modifying the exhaust flow
rate (Espi, 2000).

The experimental conditions correspond to a helium release
used as a tracer gas, with the blowing and exhaust opening kept
in open position. In this section, only the step-up stimulus is stud-
ied, because on the lack of experimental conditions concerning an
impulse stimulus (tracer quantity, duration of the tracer release),
which are essential to carry out a pertinent simulation. The exper-
imental curve, obtained on a time horizon of 900s, is shown in
Fig. 12.

5.2. Numerical studies

In all the numerical studies carried out in this section, the mean
quadraticdeviation (total quadraticdeviation divided by the num-
ber of discretization points) is always in the order of magnitude of
10-5, and it is not reported on the various solutions presented.

For the superstructure shown in Fig. 1, the MINLP dimension
in terms both of variables and constraints is quite important, and
depends on the number of discretization points in the time space,
as reported in Table 4. More than the number of variables, the
presence of numerous bilinear constraints affects the convergence
because it introduces non-convexities in the problem formulation
and may penalize the convergence. The solution obtained for the
two discretization schemes (45 and 180 points) are indicated in
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Fig. 12. Experimental response of the MELANIE room (step-up stimulus).



Table 4
Dimensions of the MINLP for the superstructure of Fig. 1

Number of Binary Volumes V; Flow rates F; Concentrations Linear constraints Egs. (1), Bilinear constraints Eqs.
discretization points variables y; G G C:wd (2a),8(4),7(5) (2b), (3), 2 (7c), 6 (9b)
45 10 8 7 450 17 450
180 10 8 7 1800 17 1800
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Fig. 13. (a) Results for the MELANIE enclosure with 45 points and superstructure of
Fig. 1. (b) Results for the MELANIE enclosure with 180 points and superstructure of
Fig. 1.

Fig. 13a and b, respectively. In Fig. 13b corresponding to the solu-
tion obtained with 180 discretization points, there is a deficiency
of volume of 4.40 m3, which is interpreted as a dead zone. As in
the previous example, the solutions provided by 45 and 180 dis-
cretization points are structurally different, but they are equivalent
in terms of results accuracy. In both cases, the modelled points
are superposed on the curve of Fig. 12. For the step-up stimulus
considered here, the equivalence of results provided by the two
discretization schemes in terms of accuracy of the mean quadratic
deviation can be explained by the smooth (non stiff) shape of the
output concentration of a CSTR expressed as a function of its input
concentration (Eq. (9b)).

In order to try to improve the solution, two other studies about
the superstructure influence are now presented. From the super-
structure of Fig. 1, a solution involving at least a CSTR and a PFR on
the same branch cannot be obtained. So, in addition to the super-
structure reported in Fig. 1, two other schemes are presented in
Figs. 14 and 15. The superstructure of Fig. 14 is inspired by the
one proposed by Brienne, Montastruc, Martinov, and Nikov (2006)
for solving a similar problem. However from the previous study of
Hocine (2006) that showed that the branch proliferation does not
provide any improvement on the solution, only four branches have
been considered for this superstructure. The last superstructure of
Fig. 15 has been built from the one of Fig. 14. As it can be noted in
Tables 5 and 6, the dimensions of the MINLP problems for super-
structures of Figs. 14 and 15 are more important than the dimension
of the MINLP problem corresponding with the superstructure of
Fig. 1. The ratios of dimensions are in the order of magnitude of
about two.

About the results obtained with these two superstructures and
with two discretization schemes, contrary to the Ameur’s example,
both superstructures and number of discretization points have an
influence on the solution reached by the solver SBB of GAMS. The

Table 5
Dimensions of the MINLP for the superstructure of Fig. 14
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Fig. 14. Superstructure 2.
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Fig. 15. Superstructure 3.

accuracy of results is always in the same range, that is to say that the
mean quadratic deviation is in the order of magnitude of 10-3 for
all the solutions presented. Although the sizes of MINLP problems
are more important for superstructures of Figs. 14 and 15 than the
one obtained with superstructure of Fig. 1, these new superstruc-
tures do not provide any gain with respect to the mean quadratic
deviation.

Concerning the CPU times obtained on a classical PC, they vary
for one minute for the simplest case (superstructure of Fig. 1,
45 discretization points) to 2800 min for the most complex case
(superstructure of Fig. 14, 180 discretization points). The CPU time
grows polynomially versus the problem complexity expressed in
terms of number of variables and constraints.

The solution obtained by Laquerbe, Laborde, Soares, Ricciardi,
et al. (2001) by implementing a step by step strategy by merging

Number of Binary Volumes V;  Flowrates F;  Concentrations Linear constraints Eqs. (1),  Bilinear constraints Eqs.
discretization points variables y; Cgl, .. CI’;4, Ck, Cf, ..., Ch, Ck o (2a),20(4),4(5) (2b), (3),4 (7c), 16 (9b)
45 20 20 4 990 26 990

180 20 20 4 3960 26 3960




Table 6
Dimensions of the MINLP for the superstructure of Fig. 15

Number of Binary Volumes V; Flow rates F; Concentrations Linear constraints Egs. (1), Bilinear constraints Eqs.
discretization points variables y; @ @ € o000 To @ (2a), 17 (4), 4 (5) (2b), (3), (7c), 16 (9b)
45 17 17 4 855 23 855

180 17 17 4 3420 23 3420
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Fig. 16. Solution of Laquerbe, Laborde, Soares, Ricciardi, et al. (2001).

elementary patterns, is recalled in Fig. 16. The numerical proce-
dure of Laquerbe, Laborde, Soares, Ricciardi, et al. (2001) combines
a genetic algorithm at the upper level with a SQP at the lower one.
Due to the stochastic nature of the genetic algorithm, the solution
optimality cannot be established for the Laquerbe’s solution. The
solutions obtained in this study by using the GAMS package are
structurally simpler in terms of number of elementary reactors
and number of streams than the solution reported by Laquerbe,
Laborde, Soares, Ricciardi, et al. (2001). In terms of solution accu-
racy, that is to say the mean quadratic deviation between modelled
and experimental points, the solutions obtained in this study are
about 10 times as better than the one of Laquerbe, Laborde, Soares,
Ricciardi, et al. (2001).

6. Conclusion

In order to characterize flow patterns and associated transfer for
ventilated enclosures, this paper presents a simple and useful tool
to build residence time distribution models. For large and cluttered
rooms that commonly appear in the nuclear field, the proposed
solution is of great interest to prevent radiological risk. It consti-
tutes an alternative between the experimental approach difficult to
implement in real cases, and the classical CFD solution procedure
which would need a very thin meshing of the enclosure to provide
accurate results. Based on a superstructure were potential solu-
tions are extracted, the method aims at fitting as well as possible
an experimental residence time distribution curve. The solutions,
determined by implementing the GAMS package, are composed of
elementary patterns (CSTR, PFR, recycles, by-passes). The GAMS
environment was chosen for solving the MINLP problem because
GAMS constitutes now a standard in process engineering, as well
as in research and teaching fields. The MINLP problem is described
in a very simple way through a high level input language, and
according to the study of Hocine (2006), the SBB solver based of a

branch and bound procedure, has been retained instead of an AO/ER
strategy.

Areal ventilated room, the laboratory enclosure called MELANIE,
is used to illustrate the application of the superstructure-based
solution procedure for modelling a ventilation system. The MINLP
problem involves a lot of local optima which are all equivalent
in terms of mean quadratic deviation between experimental and
modelled points.

In addition to the industrial ventilation, this CAD tool will have
useful applications in many chemical engineering fields which
commonly use the analysis of RTD curves, especially when the
model representing the physico-chemical phenomena are diffi-
cult to build by hand. For example, diagnostic and design of
reactors, fluidized beds and waste water plants can be men-
tioned.
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