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Objective: Recent research suggests that sleep disorders or changes in sleep stages or

EEG waveform precede over time the onset of the clinical signs of pathological cognitive

impairment (e.g., Alzheimer’s disease). The aim of this study was to identify biomarkers

based on EEG power values and spindle characteristics during sleep that occur in the

early stages of mild cognitive impairment (MCI) in older adults.

Methods: This study was a case-control cross-sectional study with 1-year follow-up

of cases. Patients with isolated subjective cognitive complaints (SCC) or MCI were

recruited in the Bordeaux Memory Clinic (MEMENTO cohort). Cognitively normal controls

were recruited. All participants were recorded with two successive polysomnography 1

year apart. Delta, theta, and sigma absolute spectral power and spindle characteristics

(frequency, density, and amplitude) were analyzed from purified EEG during NREM and

REM sleep periods during the entire second night.

Results: Twenty-nine patients (8 males, age = 71 ± 7 years) and 29 controls were

recruited at T0. Logistic regression analyses demonstrated that age-related cognitive

impairment were associated with a reduced delta power (odds ratio (OR) 0.072, P <

0.05), theta power (OR 0.018, P< 0.01), sigma power (OR 0.033, P< 0.05), and spindle

maximal amplitude (OR 0.002, P < 0.05) during NREM sleep. Variables were adjusted

on age, gender, body mass index, educational level, and medication use. Seventeen

patients were evaluated at 1-year follow-up. Correlations showed that changes in

self-reported sleep complaints, sleep consolidation, and spindle characteristics (spectral

power, maximal amplitude, duration, and frequency) were associated with cognitive

impairment (P < 0.05).

Conclusion: A reduction in slow-wave, theta and sigma activities, and a modification in

spindle characteristics during NREM sleep are associated very early with a greater risk

of the occurrence of cognitive impairment. Poor sleep consolidation, lower amplitude,

and faster frequency of spindles may be early sleep biomarkers of worsening cognitive

decline in older adults.
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INTRODUCTION

Western societies are marked by aging of the general
population which favors the increasing prevalence of
neurological and sleep disorders. These disorders contribute to
the morbidity and the mortality of the general population, in
particular through daily life activities.

Recent evidence suggests that sleep disorders or modifications
in sleep stage or electroencephalogram (EEG) waveform precede
over time the onset of the clinical signs of mild cognitive
impairment (MCI). This may be viewed as a transitional stage
from normal cognition to dementia and Alzheimer’s disease
(AD), a neurodegenerative disorder characterized by progressive
decline in memory and other cognitive domains.

A study (1) suggested that older adults suffering from sleep-
disordered breathing, characterized by repeated episodes of
hypoxemia and brief arousal, had a higher risk of developing
long-term cognitive decline. An underlying mechanism of this
relationship would seem to be hypoxemia rather than sleep
fragmentation or sleep duration. However, a longitudinal study
(2) showed that subsequent cognitive decline was associated with
reduced sleep efficiency, greater wake after sleep onset (WASO),
greater number of long wake episodes, and poor self-reported
sleep quality. A recent study (3) showed that long sleep latency
could also serve as an early marker of cognitive decline in MCI.

In addition to the sleep architecture or presence of
sleep disorders, a new line of research is moving toward
electroencephalogram oscillations as being involved in age-
related cognitive decline.

The “Active System Consolidation theory of memory”
posits that sleep, especially NREM sleep, promotes long-
term consolidation of memories involving a dialog between
the hippocampus and neocortex. (4–7) The key factor in
hippocampal to neocortical transmission is the triple-phase that
locks slow oscillations (cortex)-spindles (thalamus)-sharp wave-
ripples (hippocampus) (7–9). Depolarizing slow oscillation up-
states are involved in the generation of fast spindle (13–15Hz)
and sharp wave ripples, thus leading to the constitution of
“spindle-ripple events” (9–11). Slow spindles (11–13Hz) coincide
with the slow oscillation up to down state transition but
their role in memory consolidation is less well-documented.
On the other hand, slow spindles are accompanied by an
increase in lower frequencies, especially in the 5–8Hz theta
range (11). Theta oscillations during NREM might also
be involved in strengthening memories (12). A study (13)
demonstrated that reactivation of memory not only occurred
in synchrony with spindles but was modulated by spindle
amplitude: the higher amplitude, the stronger was the activity in
the hippocampus.

There is growing evidence that sleep spindles, especially
spindle characteristics (frequency, density, and/or amplitude),
participate in memory formation, learning and synaptic plasticity
(9, 14, 15).

The synaptic homeostasis hypothesis postulates that NREM
sleep, especially slow wave sleep, restores synaptic, and cellular
homeostasis that has been potentiated toward saturation during
wakefulness (16). This theory predicts that the process of synaptic

renormalization during sleep increases the capacity to acquire
information during the following day (16, 17).

Healthy aging is accompanied by changes in sleep quantity,
especially a decreased total sleep time, increased WASO, and
decreased sleep efficiency (18, 19).

A highly important change in sleep with aging is a reduction
in slow-wave sleep and in EEG slow-wave activity (18, 20–
23). Sigma activity during NREM is decreased and the number,
density and amplitude of sleep spindles are also reduced (23, 24).

A meta-analysis on sleep in patients with MCI showed
less total sleep time and sleep efficiency and longer sleep
latency (25). Another study (26) in patients with amnestic
MCI demonstrated that slow wave sleep, delta, and theta
power during NREM sleep were dramatically reduced. REM
sleep, REM latency and sleep efficiency were also reduced.
Spindle density, especially among fast spindles, was reduced.
A recent study confirmed that parietal fast spindle density is
decreased inMCI patients (27). AsMCI progresses to Alzheimer’s
disease, sleep disturbances worsen. The amount of SWS is
greatly reduced and spindles diminish in frequency (28–31)
especially fast spindles (27, 29). The development of dementia
in Parkinson patients was linked with sleep spindle density
in posterior regions and sleep spindle amplitude in parietal
regions. Lower sleep spindle amplitude in posterior regions was
associated with poorer visuo-spatial abilities in patients who
developed dementia at follow-up (32). The K-complex (KC)
density during stage N2 decreases in AD patients but not in
MCI patients (33, 34). KC density is positively correlated with
cognitive deterioration. KC density cannot be considered as an
early biomarker of AD but as a measure of cognitive decline
(33). The reduction in KC density could reflect a dysfunction
in synaptic plasticity linked with a deterioration in memory
consolidation (34).

Slow oscillatory transcranial direct current stimulation inMCI
patients led to enhanced endogenous slow wave-spindle coupling
in the following way: spindle amplitude was significantly
amplified during the depolarizing slow oscillation up-phases
and synchronization between slow oscillation and fast spindle
amplitude, involving an enhancement of visual declarative
memory (35).

Moreover, alteration in sleep quantity, and quality facilitates
the accumulation of amyloid-β, potentially initiating earlier

cognitive decline and conversion to Alzheimer’s disease.

The disturbance of NREM sleep may represent a novel

pathway though which cortical amyloid-β impairs hippocampus-
dependent memory consolidation (31).

The aim of the SCOAL study is to determine
polysomnographic biomarkers that occur at a very early
stage of MCI. The objectives are the following:

- To compare the sleep architecture and/or presence of sleep
disorders and neuropsychological performance in patients
with isolated subjective cognitive complaints (SCC) or MCI,

vs. cognitively normal controls.
- To study the prospective association of sleep and cognitive
decline in patients with isolated SCC or MCI over a 1-year

follow-up period.
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METHODS

Study Population
Patients
The patients in the SCOAL study were recruited from the
MEMENTO cohort at the University Hospital of Bordeaux from
October 2011 to October 2015. MEMENTO (deterMinants and
Evolution of AlzheiMer’s disEase aNd relaTed disOrders) is a
5-year prospective large cohort of patients with either isolated
SCC or recently diagnosed MCI while not demented attending
an outpatient memory clinics (CMRR—Center Mémoire de
Ressource et de Recherche) of public hospitals in France (36). The
medical staff from the Bordeaux Memory Clinic invited eligible
patients to participate in the SCOAL protocol (see Figure 1),
which involved a 2-day stay in hospital and neuropsychological
testing on attentional and executive functions (not detailed here).

MEMENTO inclusion criteria were as follows:

- Having at least MCI defined by a performance of more than
1.5 standard deviation from the mean (defined according to
age, gender and level of education) in one or more cognitive
domains (assessed from a battery of neuropsychological
tests exploring memory, language, praxis, vision, executive
functions), the deficit being identified for the first time by tests
performed <6 months before the inclusion date;

- Or presenting an isolated cognitive complaint if the
participant was over 60 years old;

- Having a clinical dementia rating [CDR] (37) Scale score≤0.5
and being non-demented (DSM-IV).

As part of the MEMENTO study, participants completed
a battery of neuropsychological tests administered by a
trained neuropsychologist. In particular, the Mini-Mental State
Examination (MMSE), which tests global cognition (38), the Free
and Cued Selective Reminding Test (FCSRT) (39), the Trail-
Making Test (TMT) (40) and the CDR (37) were administered.
To assess the presence and severity of neuropsychiatric
symptoms, the Neuropsychiatric Inventory (NPI) was used.

MCI was diagnosed using the Petersen Criteria (41).
The specific inclusion criteria for patients in the SCOAL study

were as follows:

- Being at least 18 years old
- Having stable health (i.e., no medical condition involving
imminent care or hospitalization)

- Being treated for obstructive sleep apnea syndrome (OSAS),
if diagnosed.

Controls
Healthy controls considered cognitively normal at baseline
and matched on age, gender, and level of education with
patients underwent clinical and cognitive assessment. To verify
the absence of objective cognitive deficit, participants were
administered the MMSE (38), FCSRT (39), TMT (40), and CDR
(37) by a trained neuropsychologist.

Design
The 1-year follow-up SCOAL study was a case-control cross-
sectional study with follow-up at 1 year.

Patients with isolated SCC or MCI from the MEMENTO
cohort in Bordeaux and cognitively normal controls were
recruited. The controls with patients were matched on age,
gender, and level of education.

Participants were recorded with 2-night polysomnography
(PSG) monitoring and were tested on a battery of
neuropsychological tests assessing attention and executive
functions at T0 and T+1 year.

To determine usual sleep patterns, volunteers’ sleep was
recorded via an actimeter over 3 days in a natural environment.

To assess sleep disorders, participants underwent a first night
of polysomnographic sleep recording (PSG) at the hospital.
Questionnaires were used to capture sleep complaints and
excessive daytime sleepiness.

The participants also completed a battery of
neuropsychological tests.

The second night of PSG recording was used for sleep and
EEG analysis.

Information on current pathologies and medical treatment
was also collected.

All participants gave written informed consent. The study was
approved by the local ethical committee (consultative committee
for the protection of persons participating in biomedical research,
CPP Sud-Ouest et Outre Mer III). The study was registered with
ClinicalTrials.gov, identifier: NCT01650454.

Neuropsychological Evaluation
Patients completed their neuropsychological evaluation as part
of their cognitive follow-up at the Memory Clinic, at T0
and then after 1 year of follow-up. Controls completed a
neuropsychological evaluation at the time of the inclusion visit.

Subjective cognitive complaints (SCC) were assessed by visual
analog scales ranging from 0 to 10 on several domains (e.g.,
memory, attention, language).

The Mini-Mental State Examination (MMSE) (42) is one of
the most widely used psychometric tests for quantifying global
cognitive functioning and cognitive change in population-based
longitudinal studies (total score, range 0–30).

The free and cued selective reminding test (FCSRT) (39)
evaluates the ability to learn a list of 16 written words that are
presented with a semantic cue to control for memory encoding.
It distinguishes between simple difficulties in retrieval of stored
information (facilitated by cuing) and genuine storage deficits
characterizing typical Alzheimer’s disease (not facilitated by
cuing). The learning phase is followed by three trials of recall,
each consisting in retrieving the words first spontaneously (“free
recall”) and then with the help of a semantic cue (“cued recall”)
for those items not retrieved by free recall. The three measures
evaluated were free recall (the cumulative sum of free recall from
the three trials; range 0–48), total recall (the cumulative sum of
free recall + cued recall from the three trials, range 0–48), and
delayed recall (sum of delayed free recall + delayed cued recall,
range 0–16).

The Trail-Making Test (TMT) (43) is a two-part paper
and pencil neuropsychological test which assesses executive
function. Participants are required to connect numbered circles
in a sequential order in the TMT-A, whereas they have to
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FIGURE 1 | Flow charts SCOAL study.

connect numbered and lettered circles in alternating sequential-
alphabetical order in the TMT-B (i.e., 1-A-2-B, etc.). TMT-A time
is taken as a measure of processing speed, while TMT-B time is
considered an index of flexibility. The dependent variables are
the number of seconds needed to complete the sequence and the

number of correct responses for Part B and an interference index
(Part A/Part B).

The Clinical Dementia Rating (CDR) (37) is a global scale
developed to clinically denote the presence of dementia of the
Alzheimer type and stage its severity. The clinical protocol
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incorporates semi-structured interviews with the patient and
informant to obtain information necessary to rate the SCC in six
domains (memory, orientation, judgment and problem solving,
community affairs, home and hobbies, and personal care). The
score is the CDR Scale Sum of Boxes (CDR-SOB).

Self-Reported Sleep Measures
Participants completed questionnaires during the
follow-up visits.

The Epworth Sleepiness Scale (ESS) (44), a self-administered
questionnaire, is used to measure subjective daytime sleepiness.
Scores range from 0 to 24, a score of >10 indicating excessive
daytime sleepiness.

The Pittsburgh Sleep Quality Index (PSQI) (45) is a 19-item
questionnaire assessing subjective sleep quality and disturbances
over the past month. Scores range from 0 to 21, a score of >5
indicating poor sleep quality.

The Insomnia Severity Index (ISI) (46) is a seven-item
questionnaire assessing the nature, severity and impact of
insomnia symptoms over the past month. The total score ranges
from 0 to 28.

Objective Sleep Measures
Actigraphy
Participants had 3 days ofmonitoring with actimeters (Actiwatch,
Cambridge Neurotechnology, Cambridge, United Kingdom). To
study disrupted daily activity/rest cycles (47), the criteria assessed
were as follows:

- Inter-daily stability (IS): measure of stability across days.
- Intra-daily variability (IV): relative consolidation within days.
- Rhythm amplitude (RA): difference in activity level between
the 10 most active and five least active hours in the day.

Polysomnography
Participants slept two successive nights at the sleep unit.
Polysomnographic signals were recorded with a Braintronics
Brainbox EEG-1042 digital sleep recorder (Almere, The
Netherlands, resolution 16-bit, stop band frequency 100Hz,
passband ripple 0.027 dB, stopband ripple −40 dB) at a sampled
rate of 256Hz. Nine Ag-AgCl electrodes were placed according
to the international 10–20 System (F4, C4, O2, F3, C3, O1, Fz,
Cz, Pz, Oz, M1, and M2) and referenced to linked-mastoids.
Additionally, an electro-occulogram (EOG), an electromyogram
(EMG, chin), and an electrocardiogram (ECG) were recorded
as recommended by AASM (48) for the routine scoring of
polysomnography. During the first night, nasal pressure, rib cage
and abdominal movements, snoring sounds, transcutaneous
finger pulse oximeter, and leg movements were also recorded.
The first night was for adaptation and to identify the presence
of any organic sleep disorders, while the second night was
used for sleep and EEG analysis. Following the application of a
notch filter (50Hz) and a band pass filtered at 0.53–35Hz, sleep
stages and associated events were visually scored according to
standard procedures (48) by the same experienced technician.
The analyses of sleep EEG recordings were performed after
an automatic artifact rejection using the ASEEGA software
(version 3.30.14, Physip, France) (49–52). Artifacts are detected

automatically based on both temporal and frequential criteria,
where non-physiological abrupt variations are discarded. EEG
spectral power per 30 s artifact-free epoch (Cz-Oz) was calculated
using the fast Fourier transform with the Hanning window after
an automatic artifact rejection. The spectral power was computed
in the frequency bands delta (0.1–4Hz), theta (4–8Hz), alpha
(8–12Hz), sigma (12–16Hz), and beta (16–50Hz), for all the
automatically scored R and NREM epochs. After their automatic
detection, the spindles were characterized by their duration (s),
power (squared microvolts), maximum amplitude (microvolts),
and frequency (Hz) [for more details on spindle detection
method see (53)]. The density of spindles was computed as the
average number of detected spindles per 30 s epoch for each
subject. The spindle maximal amplitude is measured on the EEG
filtered in the sigma frequency band and corresponds to the
maximum of the filtered signal envelope. Spindles falling within
the 11–13Hz frequency range were considered as “slow spindles,”
and those falling in the 13–15Hz range as “fast spindles” (27, 54).
In addition, delta, theta, alpha, and beta spectral power and
variations in spindle activity were computed for each successive
NREM sleep cycles as defined by Feinberg and Floyd criteria (55).

STATISTICAL ANALYSES

Quantitative variables were expressed as mean ± standard
deviation (SD), and qualitative variables were expressed as
relative frequency.

Cross-Sectional Analyses at T0
First, univariate analyses with t-test comparisons for continuous
variables or chi-square tests (χ2) for categorical variables were
used to compare demographic, clinical, neuropsychological,
polysomnographic and log-transformed EEG characteristics in
subjects with isolated SCC or MCI, with those characterized as
cognitively normal.

Variables were expressed as continuous variables or as
categorical variables as follows:

Age; Gender; Body mass index (BMI); Educational level; Self-
reported pathologies: diabetes or hypertension; Self-reported
current medication use: antidepressants, benzodiazepines
or non-benzodiazepine anxiolytics; Neuropsychological
performance: MMSE score, number of words at Free recall,
Total recall and Delayed recall, TMT-B scores, TMT interference
index; CDR score; ESS score; PSQI score; ISI score; Actimetric
parameters: inter-daily stability (IS), intra-daily variability (IV),
rhythm amplitude (RA); Polysomnographic characteristics:
Time in bed (TIB); Total sleep time (TST); Sleep structure:
Sleep latency, Stages N1, N2, N3, REM, sleep efficiency; Wake
after sleep onset (WASO-PTS): >58, index of micro-arousals:
>20 events/h; Apnea/Hypopnea Index (AHI): >10 events/h,
>30 events/h; Apnea/Hypopnea central index; Periodic limb
movements (PLM) index: >15 events/h; Respiratory effort-
related arousals index (RERAs); Respiratory disorder index
(RDI); Snoring; Mean SaO2; Minimum SaO2; SaO2 <90%;
Oxygen desaturation index.

Then, multivariate analyses with logistic regression models
were conducted to control for potential confounding factors
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on the association between sleep parameters and cognitive
impairment. Multivariate models were adjusted on age, gender,
BMI, education level, use of antidepressant, benzodiazepine and
non-benzodiazepine anxiolytics.

Results are presented as odds ratios (ORs) with 95%
confidence intervals (CIs).

The alpha risk threshold was set at P = 0.05.

Longitudinal Analyses
Yearly changes in self-reported and objective sleep variables and
cognitive variables were computed as the subtraction of the T0
score from the T+1-year score for individual performance.

Then, non-parametric correlations (Spearman) were
computed for patients between sleep and cognitive
variables scores.

All statistical analyses were performed using the SPSS
statistical software package (PASWR Statistics 18).

RESULTS

Characteristics of Patients vs. Controls at
T0
Population
Twenty-nine patients with isolated SCC or MCI enrolled
from the MEMENTO cohort received the intervention at
T0 (see Figure 1).

Concerning cognitive status, 21% had amnestic MCI (17%
single-domain amnestic MCI), 48% non-amnestic MCI (79%
single-domain non-amnestic MCI) and 31% had isolated SCC.

Twenty-nine matched controls characterized as cognitively
normal were recruited after the clinical and neuropsychological
examination at baseline (see Figure 1).

Demographic Characteristics
Concerning patients, most were female (n= 21; 72.4%), they had
amean age of 71 (SD= 7) years (range: 58–85 years), a mean BMI
of 24.1 (SD= 3.9), and an education level of 12.4 (SD= 3.8) years.
69% had graduated from high school and attended university.

The latter were matched on age, gender, and educational level
with cognitively normal controls. Most were female (n = 21;
72.4%), had a mean age of 68.1 ± 4.4 years (range: 58–77 years)
and an education level of 11.8 ± 4.2 years. 48.3% had graduated
from high school and attended university.

Participants with isolated SCC or MCI did not differ
from cognitively normal controls on demographic parameters
(see Table 1).

Clinical Characteristics
Regarding cardiovascular risk factors, there was no difference
in the proportion of individuals suffering from diabetes or
hypertension between those with isolated SCC or MCI and
the controls.

Regardingmedication use, a significantly higher proportion of
patients with isolated SCC or MCI used antidepressants (12.1%)
compared to controls (0%) (P < 0.01). There was no difference in
the proportion of patients with isolated SCC orMCI and controls

TABLE 1 | Demographic, clinical, neuropsychological and polysomnographic

characteristics (Mean ± SD) in patients with isolated subjective cognitive

complaints or mild cognitive impairment, and in cognitively normal controls, at first

intervention (T0). Statistical significance (P values) for independent groups with

T-tests for continuous variables or Chi-square test (χ2) for categorical variables.

Patients with

isolated cognitive

complaints or mild

cognitive impairment

T0 (n = 29)

Controls T0

(n = 29)

P value

DEMOGRAPHIC AND CLINICAL CHARACTERISTICS

Age (years) 71.0 ± 7.0 68.1 ± 4.4 ns

Gender (%

females)

72.4 72.4 ns

Body Mass Index

(BMI) (kg/m2)

24.1 ± 3.9 23.9 ± 4.3 ns

Educational level

(years)

12.4 ± 3.8 11.8 ± 4.2 ns

PATHOLOGIES (%)

Diabetes 0.0 3.5 ns

Hypertension 15.8 8.8 ns

CURRENT MEDICATION USE (%)

Antidepressants 12.3 0.0 <0.01

Benzodiazepines 3.5 1.8 ns

Non-

benzodiazepine

anxiolytics

1.8 0.0 ns

MINI-MENTAL STATE EXAMINATION (MMSE)

Score 28.1 ± 1.5 28.2 ± 1.6 ns

≥24 100% 100% ns

FREE AND CUED SELECTIVE REMINDING TEST

Free recall 29.1 ± 6.8 31.5 ± 6.9 ns

Total recall 45.3 ± 5.4 46.1 ± 2.5 ns

Delayed recall 15.6 ± 1.2 12.3 ± 2.5 <0.001

TRAIL-MAKING TEST (TMT)

TMT-B (RTs) 96.9 ± 40.8 107.1 ±

79.0

ns

TMT-B (correct) 22.5 ± 4.3 22.4 ± 2.4 ns

TMT interference

index (RTs)

0.5 ± 0.1 0.4 ± 0.2 ns

CLINICAL DEMENTIA RATING (CDR)

0.40 ± 0.21 0.01 ± 0.09 <0.001

SELF-REPORTED QUESTIONNAIRES

Epworth

Sleepiness Scale

(ESS) score

8.6 ± 4.7 6.8 ± 3.9 ns

>10 34% 17%

Pittsburgh Sleep

Quality Index

(PSQI)

7.4 ± 3.8 6.8 ± 3.6 ns

>5 66% 55%

Insomnia Severity

Index (ISI)

8.7 ± 5.1 8.9 ± 6.5 ns

≥15 17% 21%

ACTIMETRIC PARAMETERS

Inter-daily stability

(IS)

0.73 ± 1.09 0.70 ± 0.10 ns

Intra-daily

variability (IV)

0.77 ± 0.23 0.82 ± 0.20 ns

(Continued)
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TABLE 1 | Continued

Patients with

isolated cognitive

complaints or mild

cognitive impairment

T0 (n = 29)

Controls T0

(n = 29)

P value

Rhythm amplitude

(RA)

0.92 ± 0.05 0.93 ± 0.03 ns

POLYSOMNOGRAPHIC CHARACTERISTICS

Time in bed (min) 478 ± 19.8 472 ± 23.7 ns

Total sleep time

(min)

382 ± 62.7 391 ± 52.4 ns

Sleep latency (min) 9.0 ± 9.0 10.6 ± 10.4 ns

Stage N1 (%) 7.1 ± 3.3 7.1 ± 4.4 ns

Stage N2 (%) 50.2 ± 11.2 48.8 ± 8.4 ns

Stage N3 (%) 20.5 ± 8.1 20.8 ± 10.0 ns

Stage REM (%) 22.1 ± 6.8 23.3 ± 5.2 ns

Sleep efficiency

(%)

80.0 ± 13.0 82.7 ± 9.2 ns

Wake After Sleep

Onset—PTS

(WASO)

74.6 ± 57.7 51.8 ± 29.3 ns

>58 (min)

(median)

58.6% 39.3% ns

Index of

micro-arousals

25.7 ± 13.2 25.6 ± 14.3 ns

>20 events/h (n) 65.5% 55.2% ns

Apnea/Hypopnea

Index (AHI)

19.1 ± 14.1 19.4 ± 13.6 ns

>10 events/h (n) 72.4% 65.5% ns

>30 events/h (n) 13.8% 20.7% ns

Apnea/Hypopnea

Central Index

0.24 ± 1.1 1.25 ± 6.4 ns

Periodic Limb

Movements (PLM)

Index

16.6 ± 20.3 9.2 ± 15.9 ns

>15 events/h (n) 37.9% 17.2% ns

Respiratory Effort

Related Arousals

Index (RERAs)

1.25 ± 1.8 0.81 ± 1.3 ns

Respiratory

Disorder Index

(RDI)

20.3 ± 13.9 20.2 ± 19.6 ns

Snoring 5.5 ± 10.2 2.2 ± 4.8 ns

Mean SaO2 (%) 92.9 ± 2.2 93.0 ± 1.4 ns

Minimum SaO2

(%)

83.7 ± 7.2 85.9 ± 5.4 ns

SaO2 <90% (n) 47.1 ± 88.5 30.1 ± 41.4 ns

Oxygen

desaturation

index, events/h

19.2 ± 16.9 17.1 ± 14.0 ns

SD, Standard Deviation; n, Number; SaO2, Oxygen saturation.

regarding benzodiazepine or non-benzodiazepine anxiolytic use
(see Table 1).

Regarding the baseline neuropsychological evaluation, the
CDR score was higher in patients with isolated SCC or MCI than
in controls (see Table 1).

TABLE 2 | Log-transformed EEG characteristics (Mean ± SD), in patients with

isolated subjective cognitive complaints or mild cognitive impairment, and in

cognitively normal controls, at first intervention (T0).

Patients with isolated

cognitive complaints or

mild cognitive

impairment T0 (n = 29)

Controls T0

(n = 29)

P value

EEG CHARACTERISTICS

Spindle spectral power

During total stage 2 1.247 ± 0.281 1.420 ± 0.291 <0.05

In stage 2 cycle 1 1.309 ± 0.285 1.466 ± 0.309 =0.051

In stage 2 cycle 2 1.240 ± 0.281 1.392 ± 0.290 =0.053

In stage 2 cycle 3 1.228 ± 0.279 1.389 ± 0.299 =0.052

In stage 2 cycle 4 1.143 ± 0.342 1.374 ± 0.292 ns

During total stage 3 1.112 ± 0.270 1.257 ± 0.287 =0.055

In stage 3 cycle 1 1.197 ± 0.224 1.322 ± 0.293 ns

In stage 3 cycle 2 1.097 ± 0.302 1.241 ± 0.282 ns

In stage 3 cycle 3 1.046 ± 0.281 1.235 ± 0.284 <0.05

In stage 3 cycle 4 1.005 ± 0.384 1.182 ± 0.304 ns

Spindle maximal amplitude

During total stage 2 0.915 ± 0.137 1.003 ± 0.142 <0.05

In stage 2 cycle 1 0.947 ± 0.138 1.027 ± 0.152 <0.05

In stage 2 cycle 2 0.912 ± 0.135 0.993 ± 0.140 <0.05

In stage 2 cycle 3 0.907 ± 0.137 0.987 ± 0.148 <0.05

In stage 2 cycle 4 0.866 ± 0.167 0.983 ± 0.141 =0.052

During total stage 3 0.847 ± 0.133 0.923 ± 0.142 <0.05

In stage 3 cycle 1 0.883 ± 0.104 0.957 ± 0.144 <0.05

In stage 3 cycle 2 0.844 ± 0.141 0.916 ± 0.138 ns

In stage 3 cycle 3 0.810 ± 0.133 0.912 ± 0.140 <0.05

In stage 3 cycle 4 0.782 ± 0.177 0.901 ± 0.145 ns

Spindle duration

During total stage 2 −0.078 ± 0.031 −0.073 ± 0.027 ns

In stage 2 cycle 1 −0.082 ± 0.039 −0.081 ± 0.042 ns

In stage 2 cycle 2 −0.078 ± 0.028 −0.077 ± 0.029 ns

In stage 2 cycle 3 −0.080 ± 0.040 −0.071 ± 0.031 ns

In stage 2 cycle 4 −0.077 ± 0.032 −0.072 ± 0.035 ns

During total stage 3 −0.098 ± −0.042 −0.099 ± 0.031 ns

In stage 3 cycle 1 −1.107 ± 0.040 −1.008 ± 0.041 ns

In stage 3 cycle 2 −0.101 ± 0.059 −0.100 ± 0.053 ns

In stage 3 cycle 3 −0.101 ± 0.055 −0.082 ± 0.078 ns

In stage 3 cycle 4 −0.093 ± 0.054 −0.066 ± 0.061 ns

Spindle frequency

During total stage 2 1.136 ± 0.023 1.130 ± 0.018 ns

In stage 2 cycle 1 1.135 ± 0.023 1.129 ± 0.018 ns

In stage 2 cycle 2 1.136 ± 0.023 1.130 ± 0.017 ns

In stage 2 cycle 3 1.133 ± 0.023 1.130 ± 0.017 ns

In stage 2 cycle 4 1.136 ± 0.022 1.126 ± 0.018 ns

During total stage 3 1.132 ± 0.023 1.126 ± 0.017 ns

In stage 3 cycle 1 1.131 ± 0.025 1.123 ± 0.016 ns

In stage 3 cycle 2 1.131 ± 0.023 1.127 ± 0.016 ns

In stage 3 cycle 3 1.130 ± 0.024 1.125 ± 0.023 ns

In stage 3 cycle 4 1.134 ± 0.026 1.124 ± 0.023 ns

Spindle counts

Slow 0.468 ± 0.759 0.499 ± 0.665 ns

(Continued)
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TABLE 2 | Continued

Patients with isolated

cognitive complaints or

mild cognitive

impairment T0 (n = 29)

Controls T0

(n = 29)

P value

Fast 1.793 ± 1.077 1.583 ± 0.959 ns

NREM delta spectral power

During total NREM 2.365 ± 0.310 2.558 ± 0.321 <0.05

In NREM cycle 1 2.434 ± 0.347 2.488 ± 0.338 ns

In NREM cycle 2 2.272 ± 0.337 2.601 ± 0.371 <0.05

In NREM cycle 3 2.234 ± 0.299 2.491 ± 0.368 <0.05

In NREM cycle 4 2.091 ± 0.443 2.371 ± 0.370 ns

NREM theta spectral power

During total NREM 1.290 ± 0.280 1.497 ± 0.219 <0.05

In NREM cycle 1 1.327 ± 0.290 1.521 ± 0.262 <0.05

In NREM cycle 2 1.270 ± 0.290 1.496 ± 0.216 <0.05

In NREM cycle 3 1.294 ± 0.308 1.458 ± 0.227 <0.05

In NREM cycle 4 1.253 ± 0.355 1.509 ± 0.201 <0.05

NREM alpha spectral power

During total NREM 0.936 ± 0.285 1.094 ± 0.235 <0.05

In NREM cycle 1 0.982 ± 0.289 1.119 ± 0.267 ns

In NREM cycle 2 0.938 ± 0.292 1.087 ± 0.243 <0.05

In NREM cycle 3 0.923 ± 0.286 1.094 ± 0.249 <0.05

In NREM cycle 4 0.864 ± 0.350 1.073 ± 0.207 ns

NREM sigma spectral power

During total NREM 0.518 ± 0.264 0.672 ± 0.266 <0.05

In NREM cycle 1 0.560 ± 0.255 0.687 ± 0.285 ns

In NREM cycle 2 0.523 ± 0.277 0.643 ± 0.272 ns

In NREM cycle 3 0.474 ± 0.268 0.677 ± 0.289 <0.05

In NREM cycle 4 0.460 ± 0.315 0.652 ± 0.258 ns

NREM beta spectral power

During total NREM 0.437 ± 0.280 0.524 ± 0.227 ns

In NREM cycle 1 0.431 ± 0.262 0.519 ± 0.240 ns

In NREM cycle 2 0.387 ± 0.282 0.484 ± 0.236 ns

In NREM cycle 3 0.341 ± 0.290 0.537 ± 0.249 <0.05

In NREM cycle 4 0.317 ± 0.315 0.491 ± 0.233 ns

REM theta spectral power

During total REM 1.150 ± 0.323 1.321 ± 0.245 <0.05

In REM cycle 1 1.154 ± 0.318 1.330 ± 0.251 <0.05

In REM cycle 2 1.176 ± 0.336 1.340 ± 0.254 <0.05

In REM cycle 3 1.159 ± 0.331 1.307 ± 0.266 ns

In REM cycle 4 1.107 ± 0.424 1.344 ± 0.229 ns

REM alpha spectral power

During total REM 0.824 ± 0.327 1.007 ± 0.258 <0.05

In REM cycle 1 0.811 ± 0.318 1.016 ± 0.269 ns

In REM cycle 2 0.850 ± 0.355 1.047 ± 0.267 <0.05

In REM cycle 3 0.854 ± 0.324 1.000 ± 0.276 ns

In REM cycle 4 0.828 ± 0.381 0.971 ± 0.229 ns

REM beta spectral power

During total REM 0.591 ± 0.319 0.731 ± 0.302 ns

In REM cycle 1 0.629 ± 0.340 0.770 ± 0.301 ns

In REM cycle 2 0.606 ± 0.316 0.728 ± 0.311 ns

In REM cycle 3 0.551 ± 0.320 0.729 ± 0.318 =0.052

In REM cycle 4 0.483 ± 0.285 0.635 ± 0.247 ns

Statistical significance (P values) for independent groups with T-tests for

continuous variables.

SD, Standard Deviation.

Patients with isolated SCC or MCI do not report more
excessive daytime sleepiness, or insomnia complaints
than controls.

Actimetric Parameters
There was no difference in actimetric data between patients with
isolated SCC or MCI and controls (see Table 1).

EEG Characteristics (PSG)
The PSG was not correctly recorded in one patient.

Out of 28 patients, 11 presented at least 4 NREM sleep periods
(vs. 18 controls) and 24 presented at least 3 NREM sleep periods
(vs. 26 controls) during their PSG recording.

Macro-architecture of sleep
Two-thirds to three-quarters of the participants (65.5% of
controls and 72.4% of patients, respectively) met the criteria for
sleep-disordered breathing with an AHI of 10 or more events
per hour.

37.9%met the criteria for PLM disorder with an index of 15 or
more events per hour vs. 17.2% in controls (P = 0.08).

There was no difference in sleep structure (% stage 1, 2, 3,
and REM), sleep duration (TST), sleep propensity (sleep onset
latency) between patients with isolated SCC or MCI and controls
(see Table 1).

Regarding sleep consolidation parameters, the mean WASO
was of greater duration in patients with isolated SCC or MCI
(74.6 ± 57.7min) than in cognitively intact controls (51.8 ±

29.3min, P = 0.07, tendency). There was no difference in
sleep efficiency between patients with isolated SCC or MCI
and controls.

Micro-architecture of sleep
Delta power, theta power and sigma power during NREM sleep
periods were lower in patients with isolated SCC or MCI than in
cognitively normal controls (see Table 2, Figure 2).

Theta power and alpha power during REM sleep periods were
lower in patients with isolated SCC or MCI than in cognitively
normal controls (see Table 2, Figure 2).

Regarding spindle parameters across NREM, spindle maximal
amplitude was lower in patients with isolated SCC or MCI in
the four NREM sleep periods than in controls. There was no
difference in spindle density, duration and frequency between the
groups (see Table 2).

Association Between Cognitive Impairment and

Sleep Parameters
Logistic regression analyses showed that a reduced spindle
maximal amplitude (OR = 0.002, p < 0.05), delta power (OR
= 0.072, p < 0.05), theta power (OR = 0.018, p < 0.01), and
sigma power (OR= 0.033, p < 0.05) during NREM sleep periods
were risk factors associated with isolated SCC or MCI in aging.
Variables were adjusted on age, gender, BMI, educational level,
and medication use (see Table 3).

One-Year Follow-Up Analyses
Seventeen patients were evaluated in follow-up.
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FIGURE 2 | Whole-night EEG power spectral densities during NREM sleep and REM sleep in controls (gray) or SSC and MCI patients (black). Mean absolute values

(expressed in logarithmic scale) are plotted in the frequency range from 0 to 20Hz for 0.25Hz bins.

TABLE 3 | Multivariate logistic regression results for predicting isolated subjective

cognitive complaints or mild cognitive impairment in older volunteers at first

intervention (T0). Figures are adjusted odds ratios and 95% confidence intervals

(CI) for multivariate model.

Odds ratio (95 %CI) P-value

SPINDLE MAXIMAL AMPLITUDE

During total

stage 2

0.002 (0.000–0.354) <0.05

NREM DELTA SPECTRAL POWER

During total

NREM

0.072 (0.008–0.621) <0.05

NREM THETA SPECTRAL POWER

During total

NREM

0.018 (0.001–0.321) <0.01

NREM SIGMA SPECTRAL POWER

During total

NREM

0.033 (0.002–0.527) <0.05

Multivariate models were adjusted on age, gender, BMI, education level, use of

antidepressant, benzodiazepine, and non-benzodiazepine anxiolytics.

CI, Confidence Intervals; BMI, Body Mass Index; NREM, Non-Rapid Eye Movement.

Bold values correspond to Odds ratio (no unit)

Concerning their cognitive status, 35% had amnestic MCI
(33% single-domain aMCI), 35% non-amnesticMCI (67% single-
domain naMCI), and 30% had isolated SCC.

Considering decline at group level in patients with isolated
SCC or MCI, there was no difference in neuropsychological
performance during the 1-year follow-up.

Considering decline at an individual level, there were
significant correlations between changes on self-reported or
objective sleep parameters and cognitive impairment in patients
with isolated SCC or MCI during the 1-year follow-up (see
Table 4).

MMSE score was positively correlated with EEG spindle
amplitude during NREM, with higher cognitive degradation for
1 year associated with smaller spindle amplitude.

FCSRT (total recall) was correlated with awakenings during
the night measured by sleep efficiency with higher memory
degradation associated with weaker sleep consolidation.

TMT (TMT-B RTs) was correlated with EEG spindle
frequency activity with higher impairment in executive function
associated with faster spindle frequency or with a lower number
of slow spindles or with a higher number of fast spindles.

DISCUSSION

To our knowledge, this study is the first to examine prospectively
whether electroencephalogram (EEG) power values and
sleep architecture measured by highly controlled in lab
polysomnography are directly or indirectly informative of
progressive cognitive decline in patients with isolated SCC
or MCI.

The cross-sectional investigation (i.e., patients with isolated
SCC or MCI/cognitively normal controls) demonstrates that
during NREM sleep, a reduction in delta (slow wave), theta and
sigma activities and in spindle maximal amplitude are associated
very early with an increased risk of the occurrence of isolated SCC
or MCI (25–32).

The present findings confirm that changes in NREM sleep
patterns seem to be predisposing factors for the early onset of
MCI. No difference was observed in sleep architecture, sleep
apnea, or periodic limb movement indices between the groups.

Our results showed amarked decline in NREM and REM sleep
EEG power in SSC and MCI patients. As reported previously
(21, 22, 56), the decrease in power spectral density associated
with normal aging was not limited to slow wave activity but also
affected theta and sigma activity in NREM and in REM. These
EEGmodifications, especially low-frequency delta activity during
both NREM and REM sleep, were associated with thinning of
the frontal and prefrontal gray matter (56, 57). In contrast to
our results and the change in EEG with age, Latreille et al. (58)
observed that Parkinson’s patients who developed dementia had
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a slowing of EEG in NREM sleep (higher power in delta and
theta bands).

The 1-year follow-up demonstrates that the worsening
cognitive decline in SCC/MCI patients is associated with changes
in spindle characteristics (spectral power, maximal amplitude,
and frequency) and with the impairment of sleep consolidation.
In particular, a decrease in spindle maximal amplitude was
associated with overall cognitive decline (i.e., MMSE), while an
increase in spindle frequency was associated with a decline in
executive functions. Moreover, changes in sleep consolidation
parameters (i.e., sleep efficiency and WASO) together with
changes in subjective sleep complaints (i.e., sleep quality and
insomnia) were associated with episodic memory decline.
Therefore, sleep consolidation and/or spindle characteristics
(amplitude and frequency) could be early biomarkers that
determine which SCC/MCI patients are at the greatest risk of
suffering impaired cognitive or memory functions.

Sleep, especially slow-wave sleep plays an important role in
the consolidation of long-term memory (5). Slow-wave activity
reflects neural synchrony mainly within the prefrontal cortex,
which may increase cortical connections that are important for
cognition (57). A study has shown that sleep increases beta
amyloid peptide (Aβ) clearance in interstitial fluid, promoting the
removal of Aβ from the brain (59). Therefore, sleep disturbances,
or modifications may be related to impairment of Aβ clearance
and Aβ accumulation in the central nervous system, which leads
to amyloid plaques, a characteristic of AD. Amyloid deposition
in the preclinical stage of AD appears to be associated with
worse sleep quality, especially sleep consolidation (60).Moreover,
reduced SWS is associated with high cerebrospinal fluid Aβ in
cognitively normal elderly (61). Finally, a recent study linked
Aβ pathology with a reduction of SWS and the associated
sleep-dependent memory consolidation, further supporting the
existence of links between Aβ pathology, cognitive decline and
sleep disturbances (62). Increased WASO and decreased SWS
lead to relative increases in synaptic and metabolic neuronal
activity, increased soluble CSF Aβ levels during the sleep period,
increased Aβ aggregation, and sequestration into plaques, and
attenuation of the Aβ diurnal pattern (63). Mander et al. (62)
propose that sleep fragmentation and sleep efficiency quantified
by actigraphy recorded during more than 10 days may be an early
independent or complementary biomarker of AD risk. Although
our results do not demonstrate that sleep fragmentation and
efficiency differs between patients and controls, 1-year follow-up
shows that more than a reduction in delta activity, it is above all
the increase in wake time during sleep which is responsible for
the worsening of memory in SCC/MCI patients.

In a recent study that examined the association between
quantitative sleep EEG changes measured at home and clinical
manifestations of MCI and/or incident dementia, 64 baseline
EEG power values were higher in the group that developed
dementia/MCI. Values were higher in the alpha and theta bands
in NREM sleep, and in the alpha and sigma bands in REM sleep.

Like Djonlagic et al. (64), we did not find relationship between
worsening of memory andmodification in the delta bands during
NREM. Either the association between EEG delta activity and
cognition across the lifespan is more complex, reflecting an
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age-related dissociation of the functional relationship between
delta activity and cognition, or it is the alteration of delta activity
which precedes the clinical onset of cognitive decline.

Our results confirm that sigma activity and spindle
characteristics are the marker of cognitive functioning in
older adults. Like Djonlagic et al. (64), we found that the
worsening of memory in MCI patients is not associated with
a modification of sigma activity during NREM. On the other
hand, we show that the worsening of memory in MCI patients
is associated with a modification of spindle characteristics
(amplitude and frequency). A decrease in spindle maximal
amplitude is associated with overall cognitive deterioration (i.e.,
MMSE) and we confirm that spindle amplitude is positively
correlated with cognitive ability (65).

We found that a higher density of fast spindles or an increase
in spindle frequency during NREM were associated with poorer
performance on executive function (i.e., mental flexibility). This
result is in disagreement with one of the few studies to focus
on changes in the density of spindle subtypes in association
with overall cognitive decline (27). However, studies in children
and adolescents have shown an association between slow spindle
activity, learning efficiency, and general cognitive abilities (66)
or a negative association between spindle activity and cognitive
performance (67).

These results are seemingly at odds with findings in younger
adults. However, Bang et al. (68) demonstrated that slow sigma
activity corresponding to slow spindles was involved in the
consolidation of a texture discrimination task. Further studies
should investigate the relationships between sleep spindles,
episodic memory, and overall cognitive abilities in aging and/or
during life time. Moreover, the local specificity of alterations in
slow and fast spindle activity and its relation to the severity of
specific cognitive decline remain unclear.

An important question is whether slow wave activity or
sleep spindle activity could be stimulated to prevent, or at least
slow down, cognitive decline in the elderly. Slow oscillatory
transcranial direct current stimulation in MCI (35) would be a
good approach to improve the physiology of disordered sleep and
memory deficits.

Sleep-disordered breathing is frequent among elderlies and
is known to alter cognition in aging (69). We observed a
high apnea/hypopnea index and high measures of sleep-related
hypoxemia in both our groups. Therefore, the impact of sleep-
disordered breathing on cognitive impairment could not be
investigated here.

The strengths of this study are the examination of self-
reported and objectively measured sleep parameters in the
laboratory on several nights in the least severely affected patients
of a cohort with isolated SCC or MCI. Moreover, we adjusted on
potentially important confounding factors such as age, gender,
BMI, education level, use of antidepressant, benzodiazepine, and
non-benzodiazepine anxiolytics.

To overcome the limitations of our study, additional studies
with larger sample sizes and a longer follow-up period involving
clear clinical deterioration are required. Patients with SCC or
MCI and controls suffered from psychiatric, cardiovascular,
metabolic, and sleep (especially Obstructive Sleep Apnea

Hypopnea) disorders and were receiving treatment (especially
antidepressants). These disorders can modify sleep patterns and
cognitive measures. We believe that the sleep EEG modifications
or cognitive impairments in patients with SCC or MCI might
not have been caused by these disorders, since there was no
difference in the proportion of individuals suffering from these
disorders between those with isolated SCC or MCI and the
controls. Antidepressants can modify REM sleep parameters, but
they did not differ between MCI patients and controls in this
study. To account for these factors (pathologies and treatments),
we adjusted the regression analyses. EEGwas analyzed only at the
CzOz localization, yet power activity and spindle characteristics
were localized according to age. A study demonstrated that
changes in sleep spindles related to age follow topographical
patterns that are specific to each spindle characteristic, and
that age-related changes in spindle density and frequency differ
between men and women homogeneously across brain regions
(70). Moreover, it would have been interesting to evaluate
which of these patients will develop Alzheimer’s disease in the
future to determine whether sleep disturbances are key to an
early diagnosis.

To conclude, our results demonstrate the following: (1)
cognitive decline in SCC/MCI patients is associated with a
reduction in slow-wave delta, theta and sigma (spindle) activities,
and in spindle maximal amplitude during NREM sleep; (2)
spindle characteristics (amplitude and frequency) and sleep
consolidation parameters (sleep efficiency or WASO) could
potentially serve as early sleep biomarkers for worsening
cognitive decline with aging. Memory decline is associated with
an increase in wake time during sleep. Overall cognitive decline
is associated with a decrease in spindle amplitude, and the
impairment of executive functions is associated with an increase
in spindle frequency.

The findings of this study support the use of quantitative
sleep EEG analysis as a promising biomarker for older people
at risk of cognitive decline. An algorithm for the automatic
detection of MCI and dementia markers in sleep EEG would be a
welcome development.

Further research is necessary to unravel more precisely the
associations between specific sleep modifications, sleep disorders
and pre-dementia and their impact on the progression of
cognitive and behavioral impairment.
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