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ABSTRACT

This paper deals with a mathematical and numerical investigation of double-diffusive natural convective heat and mass transfer in a cavity
filled with Newtonian fluid with significant density and mass diffusivity changes. In such a situation, the assumption of the Boussinesq
approximation is not justified, and an appropriate model based on a set of Low Mach Number equations is used. The active parts of two ver-
tical walls of the cavity are maintained at fixed but different temperatures and concentrations, while the other two walls, as well as inactive
areas of the sidewalls, are considered to be adiabatic and impermeable to mass transfer. The coupled momentum, energy, and solute transfer
equations in binary mixtures of ideal gases are solved through a global iterative procedure based on the finite volume methods in the context
of the low Mach number approximation. The study includes the effect of the buoyancy ratio N with the aim to find its application limit in
the Boussinesq conditions. The results show that if we use the Boussinesq approximation to study double-diffusive convection, the value of
parameter N must be between �6 and 27.

NOMENCLATURE

C concentration, kg=kg
cp specific heat
D binary mass diffusion coefficient, m2=s
g gravitational acceleration, m=s2

H height of the enclosure, m
k thermal conductivity, W=mK
Le ¼ a=D Lewis number
M molecular weight, kg=kmol
M� molecular weight ratio,M� ¼ M1=M2

n unit outward normal to surface dS
N Buoyancy ratio
Nu convective Nusselt number
p dynamic pressure, Pa
�p mean thermodynamic pressure, Pa
Pr ¼ �=a Prandtl number
Ra ¼ gbDTH3=ð�aÞ Rayleigh number

Sh local Sherwood number

t time, s
T temperature, K
U ; V dimensionless velocity-components
u, v velocity-components, m=s
W mass fraction
X; Y dimensionless coordinates

GREEK SYMBOLS

a ¼ k=q:cp thermal diffusivity
b thermal expansion coefficient,

K�1

eT non-Boussinesq thermal
parameter eT ¼ DT=2T0

em non-Boussinesq solutal param-
eter em ¼ DC1ð1�M�Þ

M�þC10ð1�M�Þ
� kinematic viscosity, m2=s
P ¼ ðp� �p þ q0gyÞ=q0ða0=HÞ2 dimensionless dynamic

pressure
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l dynamic viscosity, kg m-1 s-1

q fluid density, kg m�3

s dimensionless time

SUBSCRIPTS

avg average value
BS Boussinesq model
c cold
CP constant properties
h hot
max maximum value
mid midplane
min minimum value
0 reference state
1 for gas
2 for air
� dimensionless parameters

I. INTRODUCTION

Compressible low-Mach number flows of double diffusive con-
vection appear frequently in nature and industrial processes such as
atmospheric and oceanographic flows, combustion, vapor deposition,
and natural gas storage. The compressible low-Mach number flow
(Ma� 1) is defined as such when pressure variations are small, but
temperature/concentration (and hence density) gradients are large.

Natural convection in enclosures filled with binary mixtures due
to combined thermal and solutal body forces has been investigated
extensively both experimentally and numerically and has received
increasing attention. Over the past decades, a considerable body of
research has thus been conducted in this field, both experimentally
and numerically.1–5

The greatest portion of the more pertinent binary gas literature
has focused on analytical and numerical investigations of natural
convection due to horizontal temperature and concentration
gradients.6–12

With the exception of some works using the non-Boussinesq
model,13–17 it appears that the Boussinesq approximation was used in
both cases of aiding and opposing buoyancy forces, which states that
variations of density in the equations of motion can safely be ignored
everywhere except in its association with the external force. The
approximation is well justified in the case of incompressible fluids.

Ferziger and Peric18 assert that the use of the Boussinesq approxi-
mation in the Navier–Stokes equations introduces errors of the order
of 1% if the temperature differences are less than 2 �C for water. These
errors are led to augment for more important difference of tempera-
ture and can lead to qualitatively wrong resolutions.

The effect of buoyancy ratio on the flow structure was investi-
gated numerically for a binary mixture gas in a rectangular enclosure
by many authors.19–23

In most of the works studying double-diffusive convection, a
wide range of the buoyancy ratio N was considered. The question that
arises is whether the buoyancy ratio N has a limit when using the
Boussinesq approximation. Such a ratio N denotes the relative
strengths of the thermal and solutal buoyancy forces, and it is based
on the concentration and temperature differences between left and
right vertical walls. In this study, we will try to answer this question by

taking into account the variation of the thermophysical properties of
the studied fluid.

When the fluids are compressible, the equations governing the
system become quite complicated. In such situations, all assumptions
used to justify the Boussinesq approximation fail and a different
modeling approach is required, one that accounts for realistic nonlin-
ear fluid property variations. The Low Mach Number approximation
(Ma� 1) suggested by Paolucci24 was developed in our previous
works for natural convection; natural convection coupled with surface
radiation and combined natural convection-volumetric radiation.25–28

This approach is used in this study to solve the momentum, heat, and
solute equations, which lead to take into account fluid flows under
large temperature/concentration gradients and variable transport
coefficients.

The purpose of the present paper is twofold: the first is to develop
a mathematical model describing the double diffusive convection
under non-Boussinesq conditions and the other is to investigate the
limit of the buoyancy ratio of the double-diffusive convection in verti-
cal enclosures under the Boussinesq approximation.

II. MATHEMATICAL FORMULATION

The aim of this section is to provide the governing equations to
be solved by the low-Mach number solver for the double-diffusive
convection. The low-Mach number approximation is carried out,
enabling the full low-Mach number system of equations to be written.

The geometry investigated as shown in Fig. 1 is an enclosure
filled with a gas mixture in which natural convection is driven by ther-
mal and solutal gradients. The left wall is kept at high temperature
(Th) and high concentration (C1h), the right wall at low temperature
(Tc) and low concentration (C1c) and the bottom and top walls
are adiabatic and impermeable. No-slip conditions are applied on all
boundaries. The kinematic viscosity, the thermal diffusivity, and the
concentration diffusivity are determined by the properties of this
binary gas mixture.

A. Governing equations

Since we are interested in the case of large thermal and solutal
gradients, the low-Mach-number equations are adopted24,27 in order
to describe such a flow.

FIG. 1. The flow configuration and coordinate system.
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Stemming from the compressible Navier–Stokes equations, the
Low Mach Number (LMN) approximation constitutes an important
numerical problem for low speed compressible flows and has the
advantage that it presents the same mathematical structure as the
incompressible Navier–Stokes equations.

In this approximation, and as shown in Ref. 24, the total pressure
is divided into two components: a mean thermodynamic pressure �pðtÞ
which is spatially uniform and depends only on time and a dynamic
pressure pdyn. Since for Low Mach number (Ma� 1), the thermody-
namic pressure is very high compared to the dynamic pressure, and this
decomposition leads to elimination of the acoustic waves while large
variations of density with temperature and concentration are allowed.

The conservation equations of mass, momentum, energy, and
species for laminar double-diffusive convection in the horizontal cavity
can be expressed as follows:

@q

@t
þr:qV ¼ 0; (1)

q
@V

@t
þ VrV

� �

¼ qg �rpdyn þr:lrV þ 1

3
rlr:V ; (2)

qcp
@T

@t
þ VrT

� �

¼ r:krTð Þ þ d�p

dt
; (3)

q
@C

@t
þ VrC

� �

¼ r:qDrCð Þ; (4)

V is the velocity vector of components (u, v).
The system of conservation equations is completed by the ideal

gas law used in order to determine the mixture density field q for a
binary mixture of gases with molecular weightsM1 andM2,

�p ¼
X

N

i¼1

�pi ¼
nRT

X
¼ RT

X

X

N

i¼1

ni ¼
RT

X

X

N

i¼1

mi

Mi
; (5)

Mi: molecular weight of the ith component.mi: mass of component (i).
ni: number of moles of component (i). With: m ¼ n:M total mass and
q ¼ m

X
mix density.

We therefore have

�p ¼ RT

X

X

N

i¼1

mi

Mi
¼ qRT

m

X

N

i¼1

mi

Mi
;

�p ¼ RT

X

X

N

i¼1

mi

Mi
¼ qRT

X

N

i¼1

mi

m

� �

Mi
¼ qRT

X

N

i¼1

Ci

Mi
;

(6)

Ci is the concentration, mass fraction.
Since we only have two constituents (air and an other gas), we

will have:

�p ¼ qRT
X

N

i¼1

Ci

Mi
¼ qRT

C1

M1
þ C2

M2

� �

¼ q
R

M1
T C1 þ

M1

M2
C2

� �

¼ q
R

M1
T C1 þ

M1

M2
1� C1ð Þ

� �

:

Therefore,

�p ¼ qR�T C1 1�M�ð Þ þM�� �

: (7)

with

R� ¼ R

M1
andM� ¼ M1

M2
:

It is also assumed that the dynamic viscosity is, depending on the
case studied, taken either constant lðTÞ ¼ lðT0Þ ¼ l0 or given by
the Sutherland law29

lðTÞ
l0

¼ T

T0

� �3=2
T0 þ Sl

T þ Sl
; (8)

where Sl ¼ 110:5K; l0 ¼ 1:68� 10�5 kgm�1 s�1.30

Thermal conductivity is given by

kðTÞ ¼ lðTÞ cp0k0
�0

: (9)

More generally, the diffusion coefficient of gases into the air can
be approximated by the following formula:31

D ¼ D0
p0
�p

T

T0

� �1:685

: (10)

The non-slip boundary conditions are imposed over the walls, so
the boundary and initial conditions can be expressed as

u ¼ v ¼ T ¼ C1 ¼ 0 at t ¼ 0;

u ¼ v ¼ 0; T ¼ Th; C1 ¼ C1h for 0 � y � H and x ¼ 0;

u ¼ v ¼ 0; T ¼ Tc; C1 ¼ C1c for 0 � y � H and x ¼ H;

u ¼ v ¼ 0;
@T

@y
¼ 0;

@C1

@y
¼ 0 for 0 � x � H and y ¼ 0;

u ¼ v ¼ 0;
@T

@y
¼ 0;

@C1

@y
¼ 0 for 0 � x � H and y ¼ H:

B. Additional equations

In the numerical resolution of Eqs. (1)–(5), the problem that
arises is that there are more unknowns than equations (at 2D, there
are seven unknowns). This comes from the decomposition of the
pressure, which introduces the thermodynamic pressure �p as an
additional unknown. In order to close the problem, we need an
additional equation representing the initial state, that of the conser-
vation of the mass.

1. Calculation of �p

In an open cavity, the thermodynamic pressure is the ambient
pressure

�pðtÞ ¼ p0;8t: (11)

In a closed cavity, it is determined by the conservation of the total
mass

ð

X

qdX ¼ M0 ¼
ð

X

q0dX ; 8 t: (12)

X is the volume of the system and M0 is defined as the initial
mass of the system.
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Using Eq. (7), we get

ð

X

�p

R�T C1ð1�M�Þ þM�ð Þ dX ¼
ð

X

p0

R�T0 C10ð1�M�Þ þM�ð Þ dX:

(13)

Therefore,

�p ¼ p0

Ð

X

1

T0 M� þ C10ð1�M�Þð Þ dX
Ð

X

1

T M� þ C1ð1�M�Þð Þ dX
: (14)

2. Calculation of d�P
dt

The second additional equation is given by the calculation of the
term d�p=dt.The mass conservation equation, associated with the
energy equation and the equation of state, allows writing the diver-
gence of the velocity. According to Eq. (7), we have

dq

dt
¼ 1

R�T M� þ C1ð1�M�Þð Þ
d�p

dt
�

�p

R�T2 M� þ C1ð1�M�Þð Þ
dT

dt

�
�pð1�M�Þ

R�T M� þ C1ð1�M�Þð Þ2
dC1

dt
:

(15)

From equations of continuity, energy, and concentration, we get

r:V ¼ � 1

q

dq

dt
; (16)

dT

dt
¼ 1

qcp
r:krT þ 1

qcp

d�p

dt
; (17)

dC1

dt
¼ 1

q
r:qDrC1; (18)

with cp ¼ cR�

c�1
,

So,

r:V¼� 1

qR�T M�þC1ð1�M�Þð Þ
d�p

dt
þ

�p

qR�T2 M�þC1ð1�M�Þð Þ
dT

dt

þ
�pð1�M�Þ

qR�T M�þC1ð1�M�Þð Þ2
dC1

dt
: (19)

Taking into account the equation of state given by (7), Eq. (19)
becomes then:

r:V ¼ 1

�p

c� 1

c
M� þC1ð1�M�Þð Þ � 1

� �

d�p

dt
þ c� 1

c

�

� M� þC1ð1�M�Þð Þr:krTþR�Tð1�M�Þr:qDrC1

�

:

(20)

For impermeable wall conditions,
ð

X
�
r:VdX ¼

ð

S

V:n:dS ¼ 0: (21)

So,

ð

X

r:VdX¼
ð

X

1

�p

c�1

c
M�þC1ð1�M�Þð Þ�1

� �

d�p

dt
þc�1

c

�

� M�þC1ð1�M�Þð Þr:krTþR�Tð1�M�Þr:qDrC1�;
(22)

�p depends only on time. The application of the divergence theorem
gives

d�p

dt
¼ 1

ð

X

dX�
ð

X

c� 1

c
M� þ C1ð1�M�Þð ÞdX

� c� 1

c
M� þ C1ð1�M�Þð Þ

ð

S

k
@T

@n
dSþ c2

c
ð1�M�Þ

�

�
ð

S

qD
@C1

@n
dS

�

; (23)

where the speed of sound in an ideal gas c is given by: c ¼ ffiffiffiffiffiffiffiffiffiffiffi

cR�T
p

.

C. Dimensionless form of equations

The following parameters are used to put the equations in dimen-
sionless form:

s ¼ at

H2
; X ¼ x

H
; Y ¼ y

H
; U ¼ uH

a
; V ¼ vH

a
;

P ¼ p� �p þ q0gyð Þ=q0ða0=HÞ2; �P ¼
�p

p0
; h ¼ T � T0

DT
;

W ¼ C1 � C10

DC1
orDT ¼ Th � Tc; T0 ¼

Th þ Tc

2
and

DC1 ¼ C1h � C1c; C10 ¼
C1h þ C1c

2
:

The thermo-physical properties (density, dynamic viscosity, ther-
mal conductivity, thermal diffusivity, and mass diffusivity) are scaled,
respectively, by q0;l0; k0; a0;D0 where the subscript 0 denotes values
at the reference temperature T0. The influence of the temperature on
the specific heat is assumed to be negligible so that cp=cp0 ¼ 1.24

The system of equations is expressed in non-dimensional conser-
vative form27 as

@q�

@s
þ @q�U

@X
þ @q�V

@Y
¼ 0; (24)

q�
@U

@s
þ U

@U

@X
þ V

@U

@Y

� �

¼

� @P

@X
þ Pr

@

@X
l�

@U

@X

� �

þ @

@Y
l�

@U

@Y

� �

þ 1

3
rl�r:V�

	 


;

(25)

q�
@V

@s
þ U

@V

@X
þ V

@V

@Y

� �

¼ � @P

@Y
� RaPr

q� � 1

2eT
þ

Pr
@

@X
l�

@V

@X

� �

þ @

@Y
l�

@V

@Y

� �

þ 1

3
rl�r:V�

	 


;

(26)
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q�
@h

@s
þ U

@h

@X
þ V

@h

@Y

� �

¼ @

@X
k�

@h

@X

� �

þ @

@Y
k�

@h

@Y

� �

þ c� 1

2eTc

d�P

ds
; (27)

q�
@W

@t
þ U

@W

@X
þ V

@W

@Y

� �

¼ 1

Le

@

@X
q�D� @W

@X

� ��

þ @

@Y
q�D� @W

@Y

� �
�

; (28)

�p ¼
Ð

X
dX�

Ð

X
�

1

2eThþ 1ð Þ 1þ emWð Þ dX
�
; (29)

q� ¼
�p

1þ 2eThð Þ 1þ emWð Þ ; (30)

d�P

ds
¼ 1

Ð

X
�

dX�

M� þ C10ð1�M�Þ �
ð

X
�

c� 1

c
1þ emWð ÞdX�

� 2eT 1þ emWð Þ
Ð

S�k
� @h

@n
dS� þ em

Le

ð

S�
q�D� @W

@n
dS�

� �

;

(31)

TABLE I. Air benchmark test cases.33,34

Heuveline33 Vierendeels34 Present work

Test case 1 (Ra¼ 106, eb ¼ 0:6, and constant properties)

Nu(h) 8.859 778 8.85 978 8.85 847

Nu(c) 8.85 978 8.85 978 8.85 847
�p=p0 0.85 634 0.856 340 0.85 584

Test case 2 (Ra¼ 106, eb ¼ 0:6, and Sutherland law)

Nu(h) 8.6889 8.6866 8.70 078 8.68 451

Nu(c) 8.6831 8.6866 8.70 057 8.68 316
�p=p0 0.9249 0.924 489 0.92 498 0.92 425

Type of Mesh 400 000 2048� 2048 300� 300 202� 202

TABLE II. Buoyancy ratio parameter as a function of M� and em

N 5 2 1 0.5 0.1 0 �0.1 �0.5 �1 �2 �5

M� 0.524 0.744 0.855 0.922 0.984 1 1.017 1.09 1.196 1.476 4.333

em 0.167 0.0667 0.0333 0.0167 0.00333 0 �0.0033 �0.0167 �0.0333 �0.0667 �0.167

FIG. 2. Evolution of (a) N and (b) em as a function of M�(N).
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where em ¼ DC1ð1�M�Þ
M�þC10ð1�M�Þ and eT ¼ DT

2T0
.

Note that

M� ! 0; em ! DC1

C10
; (32)

M� ! 1; em ! DC1

C10 � 1
: (33)

with C10 ¼ DC1

2

M� ! 0; em ! 2; (34)

M� ! 1; em ! DC1

DC1

2
� 1

: (35)

The corresponding boundary conditions are

U ¼ V ¼ 0; h ¼ hc ¼ 0:5; W ¼ Wc ¼ 0:5 atX ¼ 0; 0 � Y � 1;

U ¼ V ¼ 0; h¼ hh ¼�0:5; W ¼Wh ¼�0:5 atX ¼ 1; 0 � Y � 1;

TABLE III. Average Nusselt and Sherwood numbers along the hot wall, Le¼ 1, Pr¼ 0.71, and Ra ¼ 107.

M� 1.00167 1.017 1.0344 1.09 1.1515 1.1734 1.196 1.3226 4.3333

em �0.0003 �0.0033 �0.0067 �0.0167 0.0267 �0.03 �0.033 �0.05 �0.167

N �0.01 �0.1 �0.2 �0.5 �0.8 �0.9 �1 �1.5 �5.0

Nu( Sh) present study 16.465 16.049 15.55 13.69 10.67 8.81 2.88 13.69 23.86
35 16.4 16.0 15.5 13.6 10.6 8.8 13.6 23.7
20 16.3 15.9 15.4 13.5 10.5 8.6 13.5 13.6
36 16.7 16.0 15.3 13.6 10.6 8.8 13.5 23.7

FIG. 3. Distributions of local Nusselt numbers on the hot wall in (a) present study and (b)35 at Ra ¼ 107 and Le ¼ 1.
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U ¼ V ¼ 0;� @h

@Y
¼ 0;� @W

@Y
¼ 0 atY ¼ 0; 0 � X � 1;

U ¼ V ¼ 0;
@h

@Y
¼ 0;

@W

@Y
¼ 0; atY ¼ 1; 0 � X � 1:

The transport coefficients l�ðhÞ and k�ðhÞ are given, respectively,
by

l� ¼ 2eThþ 1ð Þ3=2 1þ Sl=T0

� �

2eThþ 1þ Sl=T0
; (36)

k� ¼ l�

Pr
: (37)

The mass diffusion coefficient is given by

D� ¼ 1
�P

2eThþ 1ð Þ1:685: (38)

To characterize heat and mass transfer of the double-diffusive
convection in the cavity, the local Nusselt number Nu and Sherwood
number Sh on the heated vertical surface are defined by

Nu ¼ � @h

@X

�

�

�

�

X¼0

; (39)

Sh ¼ �q�D� @W

@X

�

�

�

�

X¼0

: (40)

The average convective Nusselt number and Sherwood number
are calculated by integrating the temperature and concentration gradi-
ent over the vertical wall as

Nucavg ¼
ð1

0

NuðXÞdX; (41)

Shavg ¼
ð1

0

ShðXÞdX: (42)

D. Boussinesq approximation recovery

Boussinesq’s approximation is characterized by a small difference
in temperature and concentration (eT ! 0, em ! 0), a zero velocity
divergence (r:~V ¼ 0), and thermodynamic pressure tending toward
unity (�P ¼ 1).

If we hold these hypotheses, Eq. (39) becomes

q� ¼ 1

1þ 2eThð Þ 1þ emWð Þ

�

�

�

�

� eT ! 0
em ! 0

: (43)

The term q��1
2eT

in Eq. (35) becomes

q� � 1

2eT
¼ � emW

2eT
� h� emhW: (44)

So, for (eT ! 0, em ! 0)

FIG. 4. Distributions of local Sherwood numbers on the hot wall in (a) present study
and (b)35 at Ra ¼ 107 and N ¼ �0:1.

FIG. 5. Near-wall refinement for grid using exponential distribution.
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q� � 1

2eT
! � emW

2eT
� h; (45)

where em
2eT

tend toward a value N (positive or negative, depending on
the sign of em) and which represents buoyancy ratio N ¼ bsDC1

btDT
¼ em

2eT
,

and where

bs ¼
ð1�M�Þ

M� þ C10ð1�M�Þ and bt ¼
1

T0
:

We get

@U

@X
þ @V

@Y
¼ 0; (46)

@U

@s
þ U

@U

@X
þ V

@U

@Y
¼ � @P

@X
þ PrrU ; (47)

@V

@s
þ U

@V

@X
þ V

@V

@Y
¼ � @P

@Y
þ PrrV þ RaPr hþ NWð Þ; (48)

@h

@s
þ U

@h

@X
þ V

@h

@Y
¼ rh; (49)

@W

@t
þ U

@W

@X
þ V

@W

@Y
¼ 1

Le
DW: (50)

III. NUMERICAL SIMULATION

The numerical solution of the governing differential equations
for the velocity, pressure, and temperature fields is obtained by using a
finite volume technique. A power scheme was also used in approxi-
mating advection–diffusion terms. The SIMPLER algorithm whose
details can be found in Patankar32 with a staggered grid is employed to
solve the coupling between pressure and velocity. The discretization
equations were solved by the Gauss–Seidel method. The iteration
method used in this program is a line-by-line procedure, which is a
combination of the direct method and the resulting Tri Diagonal
Matrix Algorithm (TDMA).

IV. VALIDATION

In order to check on the accuracy of the numerical technique
employed for the solution of the problem considered in the pre-
sent study, we have first validated our numerical code to ensure
that it delivers correct results. The code has been verified by com-
paring our results with those available in the literature.20,33–36

Results for the problem of the pure natural convection for a large
temperature gradients and for the problem of the double-diffusive
convection for a low temperature and solutal concentration gra-
dients are compared with those obtained by33,34 and,20,35,36

respectively. For the case of thermal convection for large

FIG. 6. Rate of change of (a) q� and (b) D� as a function of M� (N) at Ra ¼ 106 and Le ¼ 1.

FIG. 7. Variation of the thermodynamic pressure �P as a function of M� (N) at
Ra ¼ 106 and Le ¼ 1.
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temperature gradients, calculations were carried out for air ini-
tially at temperature T0 ¼ 600K and for Ra ¼ 106 and eT ¼ 0:6.
The test cases include problems with constant and variable prop-
erties. Data presented in Table I, including average Nusselt num-
bers at the active walls and the pressure ratio �p=p0, show a good
agreement with results of Heuveline33 and Vierendeels.34

For double-diffusive convection, we used specified values of the
molecular weight ratio M�, which correspond to values of buoyancy
ratio N widely used in the literature. We also used weak thermal and
solutal gradients to obtain quantitative bounds for the validity of the
Boussinesq approximation.

Table II shows the values of buoyancy ratio N ¼ em
2eT

correspond-
ing to the different values of molecular weight ratio M� and non-
Boussinesq solutal parameter em.

The quantities N and em are inversely proportional to M� and
following a hyperbolic trajectory (Fig. 2), so that

M� ! 0; em ! DC

C0
¼ 2 or; N ¼ em

2eT
¼ 60;

M� ! 1; em ! DC

C0 � 1
¼ �0:222 or; N ¼ em

2eT
¼ �6:66:

Table III shows the values of average Nusselt and Sherwood
numbers along the hot wall for Le¼ 1, Pr¼ 0.71, and Ra ¼ 107.
Figures 3 and 4 show the distributions of the local Nusselt (Nu) and
Sherwood (Sh) numbers on the hot wall for over a range for buoyancy
ratio N and for Le¼ 1, Pr¼ 0.71, and Ra ¼ 107.

It can be seen from the comparison that the solution found by
the low Mach number approximation approaches the Boussinesq

FIG. 9. Variation of the maximum and minimum (a) density and (b) mass diffusivity as a function of M�(N) at Ra ¼ 106 and Le ¼ 1.

FIG. 8. Maximum and minimum (a) horizontal and (b) vertical velocities as a function of M�(N) at Ra ¼ 106 and Le ¼ 1.
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solution, the present work is in a very good agreement with the previ-
ous works. Note that for the case N¼�1 (M*¼ 1.196) a slight devia-
tion between the results is observed, which means that the non-
Boussinesq effect begins to affect the flow. In this special case, the ther-
mal and solutal buoyancy forces are canceled. Thereby, the convection
motion disappears, and the heat and mass transfers are induced only
by diffusion.

V. RESULTS AND DISCUSSION

This section is devoted to find a limit value for the buoyancy
ratioN in the Boussinesq approximation for natural convection flows
evolving inside a close and differentially heated cavity, which is filled
with an air-gas mixture, both for assisting and opposing flows depend-
ing on the molecular weight ratio parameterM�.

The grid independence test is carried out to examine the depen-
dence of numerical accuracy on grid sizes. The distribution of grids in
the near walls was done using an exponential bunching methodology
chosen in such a way that there is a greater mesh density near the wall
as shown in Fig. 5. It turns out that the solution becomes independent
of grid size at 202� 202; this is a best trade-off between the accuracy
and the computation time

Therefore, Prandtl (Pr), Rayleigh (Ra), Lewis (Le) numbers, non-
Boussinesq thermal parameter eT , and concentration gradient (DC)
are fixed to Pr ¼ 0:71, Ra ¼ 106, Le ¼ 1, eT ¼ 0:017(DT ¼ 10K),
and DC ¼ 0:2 (20%, C0 ¼ 0:1), respectively. The controlled variables
are the molecular weight ratio 0 � M� � 20, which corresponds to
non-Boussinesq solutal parameter em, �0:21 � em � 1:07 and to
buoyancy ratio N , �6:3 � N � 32. The thermophysical properties
are estimated at a reference temperature of 300K.

It should be noted that for Boussinesq conditions, the solutions
remain symmetric, and consequently we always have the following
results: q�max 	 q�min, D�

max 	 D�
min, Umax 	 Umin, Vmax 	 Vmin,

�P 	 1, Nu 	 Sh for Le ¼ 1, and also isotherms merge with
isoconcentrations.

Depending on the molecular weight ratio, M� (M� 
 1,
M� � 1), the definition of em implies negative values of em when the
molecular weight of the gas which diffuses into the cavity is higher
than that of the inert gas (M� 
 1, opposing flows) and vice versa
(M� � 1, aiding flows). The solutal body force can either augment or
oppose to the thermal body force.

The value Le ¼ 1 was used for the Lewis number to yield a simi-
lar distribution of the Nusselt and Sherwood numbers, as well as for
the distribution of isovalues of temperature and concentration, this is
only true in the Boussinesq approximation.

It is considered that the Boussinesq approximation is valid as
long as the temperature/solutal difference in the fluid does not modify
the physical properties by more than 10% compared to their values at
the reference temperature T0.

37

The results are presented in terms of streamlines, isotherms, local
and average Nusselt and Sherwood numbers, and cross section of tem-
perature and velocity profiles. To check the symmetry of the solution
when the Boussinesq approximation is achieved, the results are also
presented, as a function of molecular weight ratioM�, in terms of rates
of change of density Dq� and mass diffusivity DD�, maximum and
minimum horizontal (Umax, Umin) and vertical (Vmax, Vmin) velocities,
maximum and minimum density q� and mass diffusivity D�, and
thermodynamic pressure �P .

The deviation from the Boussinesq approximation is investi-
gated according to the value of M� in the range
0 � M� � 20(�6:3 � N � 32) for a mass fraction at the walls
DC ¼ 20%. Whatever their values, the thermal conductivity and kine-
matic viscosity always remain constant and equal to their values given
by Sutherland’s law. The thermophysical properties which change by
changing the parameterM� are the density and the mass diffusivity.

According to Figs. 6(a) and 6(b), it can be seen that the effect of
M� on the variation in mass diffusivity is greater than that on density.

Figures 6(a) and 6(b) show the evolution of the change rate in
percentage of the density and of the mass diffusivity compared to their
values in the reference state. It can be seen that the effect ofM� on the
variation in mass diffusivity is greater than that on density. The results
show that for values of M� � 0:105 (N � 27), the rate of variation of
the density exceeds 10%, while the rate of change of mass diffusivity

FIG. 11. Local Nusselt and Sherwood numbers on the hot wall M�(N) at Ra ¼ 106 

and Le ¼ 1.

FIG. 10. Variation of the average Nusselt and Sherwood numbers at the heated
surface as a function of M�(N) at Ra ¼ 106 and Le ¼ 1.
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FIG. 12. (a) Streamlines, (b) temperature, and (c) concentration contours as a function of M�(N) at Ra ¼ 106 and Le ¼ 1.
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exceeds 10% for values ofM� � 0:178(N � 18). For this range of var-
iation ofM�, Fig. 7 shows a significant decrease in the thermodynamic
pressure, varying up to 17% from its reference value due to a loss of a
large number of molecules between the initial and steady-state, while
it is almost constant and tends toward unity if M� � 0:5.This indi-
cates that in the context of the Boussinesq approximation, the ratio
M� must not be less than 0.105 corresponding to N¼ 27. For values of
M� less than 0.105 (i.e., for very light gases) compressibility has a con-
siderable effect on the flow and the Boussinesq approximation is no
longer valid and the lowMach number model must be used to account
for the effects of compressibility.

ForM� � 0:105, a small decrease in M� leads to a large increase
in velocities (Fig. 8) and a large decrease in thermodynamic pressure
because the number of molecules within the cavity becomes much
small. On the other hand, the pressure does not vary much for M� �
0:35 (N � 9:4). A very important variation is also observed on the
density and the mass diffusivity [Figs. 9(a) and 9(b)], compared to
their reference values.

The local and average Nusselt and Sherwood numbers (Figs. 10
and 11) do not present a large deviation [2.66% for M� ¼ 0.08
(N¼ 32)].

When the Boussinesq approximation is invoked, the temper-
ature [Fig. 12(b)] and concentration [Fig. 12(c)] fields merge, it is
difficult to delineate between isotherms and isoconcentration, the
energy and mass fluxes at the walls are the same (Fig. 10). This
symmetry is also found on the streamlines [Fig. 12(a)] plotted for
very weak compressible flows. The deviation of the thermody-
namic pressure from its value in the Boussinesq approximation
(�P ¼ 1) is small (Fig. 7).

For values ofM� close to 1, results show that the steady-state Nu
does not differ much from the Boussinesq value (Nu¼ 8.82, for the
case of pure natural convection).27 The variation in density [Figs. 6(a)
and 9(a)] and mass diffusivity [Figs. 6(b) and 9(b)] with respect to
their reference values is negligible. The predictions of incompressible
and compressible models did not differ significantly, and the solutions
remain symmetric. These results are clearly seen in Figs. 12–15 for iso-
contours of streamlines, temperature and concentration, temperature
at mid-height cavity, vertical velocity at the horizontal cross section,

and horizontal velocity at the vertical cross section, respectively. It can
be seen that the temperature (Fig. 13) and vertical velocity (Fig. 14)
profiles are centro-symmetric with zero values at the cavity center.
This symmetry is also found on the horizontal velocity (Fig. 15).

At this limit of M�, M� � 0:105, the variation in density and
mass diffusivity [Figs. 9(a) and 9(b)] with respect to their reference val-
ues is no longer considerable. The maximum and minimum values of
the horizontal and vertical velocities [Figs. 8(a) and 8(b)] approach
increasingly indicating symmetry in their profiles.

For low M�, higher temperature and concentration gradients are
present in the region close to the lower part of the hot wall and top part
of the cold wall as shown in Figs. 12(a) and 12(b) (M�¼ 0.2 and 0.08).

For a considerable M�, higher temperature and concentration
gradients are observed near the top part of the hot wall and near the
lower part of the cold wall [Figs. 12(a) and 12(b) for M� � 4:33],
which indicates higher heat and mass transfer by convection and diffu-
sion, the velocity gradients become steeper at both vertical sides of the

FIG. 13. Cross section of the temperature at mid-height cavity at Y ¼ 0.5 for Ra ¼ 
106 and Le ¼ 1.

FIG. 14. Vertical velocity at the horizontal cross section at Y¼ 0.5 for Ra ¼ 106

and Le ¼ 1.

FIG. 15. Horizontal velocity at the vertical cross section at X¼ 0.5 for Ra ¼ 106

and Le ¼ 1.
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enclosure [Figs. 9(a) and 9(b) for M� � 4:33 and M� � 0:2]. These
higher gradients in temperature and concentration cannot be observed
if we use the Boussinesq model.

For very low values of M�, M�� 0.105, The symmetry seen in
the previous case is broken due to the non-linear density and mass dif-
fusivity variations whose role is gradually strengthened as the flow
becomes more compressible.

On the other hand, for values of M� � 0:178 (N � 18:95), the
rate of change of mass diffusivity exceeds 10%, [Fig. 6(b)], at which the
thermodynamic pressure deviates by 8%, (Fig. 7), compared to its
value considered in the Boussinesq approximation (�P ¼ 1),the sym-
metrical property of the solution is lost by 8%.

VI. CONCLUSIONS

Mathematical and numerical modeling of double-diffusive natu-
ral convection in an enclosure region is considered. The mathematical
model has been formulated using the low Mach number formulation.

Numerical solution of the governing differential equations for
the velocity, pressure, temperature, and concentration fields is
obtained by using a finite volume technique. A power scheme was
also used in approximating advection–diffusion terms. The
SIMPLER algorithm with a staggered grid is employed to solve the
coupling between pressure and velocity.

For large values of M�, the low Mach number approximation
approaches the Boussinesq Model for incompressible flows. Therefore,
the solution schemes are usually based on numerical methods devel-
oped for incompressible flows.

Validation tests on the model have shown that the numerical
simulation results in Boussniesq approximation are in good agreement
compared with the numerical data available in literature.

Results show that the Boussinesq approximation is not sufficient
to simulate double-diffusive natural convective flow when the buoy-
ancy ratio exceeds the values between�6 and 27 and the flow becomes
more compressible.

The changes in the thermal and dynamic fields introduced by the
non-Boussinesq formulation are considerably larger than those for the
aiding case.

If we take into account the variation of the mass diffusivity, it is
preferable to use values of N, which must not exceed N¼ 19.

Outside this range of N, all assumptions used to justify the
Boussinesq approximation fail and a different modeling approach is
required, one that accounts for realistic nonlinear fluid property
variations.

It is interesting to note that there are a number of avenues which
still remain to be explored or which have opened up during this work;
we can mention the extension to the 3Dmodeling problem.
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