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Quantum clustering (QC), is a data clustering algorithm based on quantum mechanics which is accomplished by substituting each point in a given dataset with a Gaussian. The width of the Gaussian is a 𝜎 value, a hyper-parameter which can be manually defined and manipulated to suit the application. Numerical methods are used to find all the minima of the quantum potential as they correspond to cluster centers. Herein, we investigate the mathematical task of expressing and finding all the roots of the exponential polynomial corresponding to the minima of a twodimensional quantum potential. This is an outstanding task because normally such expressions are impossible to solve analytically. However, we prove that if the points are all included in a square region of size 𝜎, there is only one minimum. This bound is not only useful in the number of solutions to look for, by numerical means, it allows to to propose a new numerical approach "per block". This technique decreases the number of particles by approximating some groups of particles to weighted particles. These findings are not only useful to the quantum clustering problem but also for the exponential polynomials encountered in quantum chemistry, Solid-state Physics and other applications.

INTRODUCTION

The primary motivation for this work stems from an important component of the area of information retrieval of the IT industry, namely data clustering. For any data of a scientific nature such as Particle Physics, pharmaceutical data, or data related to the internet, security or wireless communications, there is a growing need for data analysis and predictive analytics. Researchers regularly encounter limitations due to large datasets in complex simulations, in particular, biological and environmental research. One of the biggest problems of data analysis is data with no known a priori structure, the case of "unsupervised data" in the jargon of machine learning. This is especially germane to object or name disambiguation also called the "John Smith" problem [1]. Therefore data clustering, which seeks to find internal classes or structures within the data, is one of most difficult yet needed implementations.

It has been shown that the quantum clustering method (QC) [2] [3] can naturally cluster data originating from a number of sources whether they be: scientific (natural), engineering and even text. In particular, it is more stable and is often more accurate than the standard data clustering method known as K-means [3]. This method requires isolating the minima of a quantum potential and is equivalent to finding the roots of its gradients i.e. an expression made of exponential polynomials. Finding all the clusters within the data means finding all the potential minima. The quantum clustering method can be viewed as "dual" or inverse operation of the machine learning process known as a nonlinear support vector machines when using Gaussian functions are used as its kernel function; this machine learning approach being the very inspiration of the quantum clustering method [4]. This is not the only problem in quantum mechanics requiring such solutions. The nodal lines of any given wave function characterize it with respect to internal symmetries and level of excitation. In general, if one arranges the eigenstates in the order of increasing energies, e.g. 𝜖 1 ,𝜖 2 , 𝜖 3 , …the eigenfunctions likewise fall in the order of increasing number of nodes; the 𝑛 𝑡ℎ eigenfunction has 𝑛 -1 nodes, between each of which the following eigenfunctions have at least one node [START_REF] Messiah | Quantum Mechanics[END_REF]. In diffusion Monte-Carlo calculations for Molecules, a precise determination of the nodal structure of wave function yields greater accuracy for the energy eigenvalues [6] [7] [8]. Furthermore, solutions in terms of Gaussian functions involve the most developed mathematical "technology" of quantum chemistry (e.g. The Gaussian program [START_REF] Frisch | Gaussian Inc[END_REF]). This is not surprising for the following reasons:

1. In principle, we can get all the roots of polynomial systems. However, quantum mechanical systems need exponentials in order to ensure a square-integrable wave function over all space. About an atom, the angular components over a range (0,2𝜋) can be modeled in terms of polynomials of trigonometric quantities such as e.g. Legendre polynomials. However, the radial part extends over all space requiring exponential apodization. 2. Thanks to properties such as the Gaussian product theorem, Gaussian functions allow for exact analytical solutions of the molecular integrals of quantum chemistry [START_REF] Scott | [END_REF] [11] [12]. 3. In general, for small atoms and molecules, the nodal lines can be modeled as nodes of polynomial exponentials [START_REF] Achatz | Deciding polynomial-exponential problems[END_REF] [14] [START_REF] Mccallum | Deciding polynomial-transcendental problems[END_REF].

More recently, in the area of low temperature Physics (including superconductors), clustering within machine learning has been used in finding phases and separating the data into particular topological sectors [START_REF] Rodriguez-Nieva | Identifying topological order through unsupervised machine learning[END_REF] [17] [START_REF] Wang | Unsupervised learning of topological phase transitions using Calinski-Harabaz score[END_REF]. High accuracy of the clustering is crucial in order to precisely identify transition points in terms of e.g. temperature or pressure.

To reiterate, any insight concerning the isolation of all the roots or nodal lines of polynomial exponentials is useful for quantum clustering and computational quantum chemistry and condensed matter Physics and data analysis. This has applications in all cases for any given function covering all space in principle but whose extrema and/or roots are in a finite local region of space.

Statement of the Problem

Consider a set of particles (𝑋 𝑖 ) 𝑖=1..𝑁 , the quantum clustering is a process that detects the clusters of the distributed set (𝑋 𝑖 ) 𝑖=1..𝑁 by finding the cluster centers. Those centers are the minima of the potential energy function defined by [2] [3]:

1 2𝜎 2 1 ∑ 𝑒 - (𝑋-𝑋 𝑖 ) 2 2𝜎 2 𝑁 𝑖=1 ∑( 𝑁 𝑖=1 𝑋 -𝑋 𝑖 ) 2 𝑒 - (𝑋-𝑋 𝑖 ) 2 2𝜎 2
(1)

such that 𝑋 ∈ 𝑅 2 . This function results from injecting a Parzen window into the Schrödinger wave equation [2] [3] and balancing the resulting energy. Other methods based on energy variation may also be instructive [START_REF] Fekri | Texture Classification Approach Based on Energy Variation[END_REF]. The minima of this potential provides the cluster centers for a given standard deviation 𝜎. As stated before, we limit ourselves to two dimensions. This method is more stable and precise than the standard Kmeans method [3].

Moreover, and in contradistinction to other data clustering methods, the determination of the parameter 𝜎 gives a number of extrema. The number of minima is not determined beforehand but obtained numerically.

One main difficulty is to determine the minima of the potential energy. Nowadays, the technique used to approach the minima is through the gradient descent or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithms [3]. Some investigations have been made to improve the detection of clusters via the potential energy function. For instance, in 2018, Decheng et al. [START_REF] Decheng | Improved quantum clustering analysis based on the weighted distance and its application[END_REF] improved the quantum clustering analysis by developing a new weighted distance once a minimum had been found. Improvements are needed to capture all the minima efficiently.

The present work consists, as shown in Subsection 2.1, in simplifying the derivatives of the potential energy function such that the minima can be determined by some solution of a system of equations. Finding the extrema (minima, maxima and saddle points) of the function ( 1) is equivalent to solving a system

{ 𝑀(𝑥, 𝑦) = 0 𝐿(𝑥, 𝑦) = 0 (2)
where 𝑀(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) are bivariate exponential functions which can be expressed as polynomial in 𝑥, 𝑒 𝑥 , 𝑦 and 𝑒 𝑦 . In this scenario, the degrees of 𝑀 and 𝐿 in 𝑥 (respectively in 𝑦) are one. In Subsection 2.2, the implicit functions of 𝑀 = 0 and 𝐿 = 0 are investigated and the on going Crab example is presented Subsection 2.3. Section 3, the case 𝑁 = 2 is formally solved and a new block approach is presented in Section 4. The aim of this new method is to reduce memory and computation costs. The main formal result is given in Subsection 4.1. We prove that the function (1) has only one minimum if the set of particles (𝑋 𝑖 ) 𝑖=1..𝑁 are all included in a square of side 𝜎. Then, we propose a method based on this result and a block approach to capture all the minima in a more efficient way. The presentation of benchmarks closed Section 4. Finally, we conclude Section 5.

PROBLEM REDUCTION AND FIRST ANALYSIS

In this section, we transform the minimization problem of the potential energy function (1) to the resolution of a system of two equations in two variables and 2𝑁 parameters, namely the particles coordinates (𝑋 𝑖 ) 𝑖=1..𝑁 .

Problem reduction

It is known that the value of 𝜎 has a crucial role on the number of minima: the greater the value of 𝜎, the smaller the number of minima. To simplify the potential energy function, we denote 𝑌 = 𝑋 √2𝜎

. This variable change remove 𝜎 from the function. Discussion of 𝜎 will be presented at the end of this section.

We get

1 2𝜎 2 1 ∑ 𝑒 - (𝑋-𝑋 𝑖 ) 2 2𝜎 2 𝑁 𝑖=1 ∑( 𝑁 𝑖=1 𝑋 -𝑋 𝑖 ) 2 𝑒 - (𝑋-𝑋 𝑖 ) 2 2𝜎 2 = 1 ∑ 𝑒 -(𝑌-𝑌 𝑖 ) 2 𝑁 𝑖=1 ∑( 𝑁 𝑖=1 𝑌 -𝑌 𝑖 ) 2 𝑒 -(𝑌-𝑌 𝑖 ) 2 (3)
where for all 𝑖, 𝑌 𝑖 = 𝑋 𝑖

√2𝜎

. We denote this function ℎ(𝑌).

Theorem 1. The extrema 𝑌 = (𝑥, 𝑦) of function

ℎ(𝑥, 𝑦) = 1 ∑ 𝑒 -(𝑌-𝑌 𝑖 ) 2 𝑁 𝑖=1 ∑( 𝑁 𝑖=1 𝑌 -𝑌 𝑖 ) 2 𝑒 -(𝑌-𝑌 𝑖 ) 2 (4)
satisfy the system of the following two bivariate functions:

{ 𝑀(𝑥, 𝑦) = 0 𝐿(𝑥, 𝑦) = 0 (5)
with 𝑌 𝑖 = (𝑥 𝑖 , 𝑦 𝑖 ) for all 𝑖 = 1. . 𝑁 and

𝑀(𝑥, 𝑦) = ∑ 𝑒 -2𝑥 𝑖 2 -2𝑦 𝑖 2 𝑁 𝑖=1 𝑒 4𝑥 𝑖 𝑥+4𝑦 𝑖 𝑦 (𝑥 -𝑥 𝑖 ) + ∑ ∑ 𝑒 -𝑥 𝑖 2 -𝑦 𝑖 2 𝑁 𝑗>𝑖 𝑁 𝑖=1 𝑒 -𝑥 𝑗 2 -𝑦 𝑗 2 𝑒 2(𝑥 𝑖 +𝑥 𝑗 )𝑥+2(𝑦 𝑖 +𝑦 𝑗 )𝑦 [(2𝑥 -𝑥 𝑖 -𝑥 𝑗 )(1 -(𝑥 𝑖 -𝑥 𝑗 ) 2 ) -(𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 )(2𝑦 -𝑦 𝑖 -𝑦 𝑗 )] (6) 𝑎𝑛𝑑 𝐿(𝑥, 𝑦) = ∑ 𝑒 -2𝑥 𝑖 2 -2𝑦 𝑖 2 𝑁 𝑖=1 𝑒 4𝑥 𝑖 𝑥+4𝑦 𝑖 𝑦 (𝑦 -𝑦 𝑖 ) + ∑ ∑ 𝑒 -𝑥 𝑖 2 -𝑦 𝑖 2 𝑁 𝑗>𝑖 𝑁 𝑖=1 𝑒 -𝑥 𝑗 2 -𝑦 𝑗 2 𝑒 2(𝑥 𝑖 +𝑥 𝑗 )𝑥+2(𝑦 𝑖 +𝑦 𝑗 )𝑦 [(2𝑦 -𝑦 𝑖 -𝑦 𝑗 )(1 -(𝑦 𝑖 -𝑦 𝑗 ) 2 ) -(𝑦 𝑖 -𝑦 𝑗 )(𝑥 𝑖 -𝑥 𝑗 )(2𝑥 -𝑥 𝑖 -𝑥 𝑗 )] (7) 
Remark: We will also use the shortest expression: with

𝑀(𝑥, 𝑦) = ∑(
𝑔(𝑌) = ∑ 𝑒 -(𝑌-𝑌 𝑖 ) 2 𝑁 𝑖=1
and

𝑓(𝑌) = ∑ ( 𝑁 𝑖=1 𝑌 -𝑌 𝑖 ) 2 𝑒 -(𝑌-𝑌 𝑖 ) 2 (9) 
Since 𝑌 ∈ 𝑅 2 , 𝑌 is denoted 𝑌 = (𝑥, 𝑦), then 𝑓 and 𝑔 can also be written as The formal computation of the equations of the last system gives expressions which can be divided by 2𝑒 -𝑥 2 -𝑦 2 . We finally obtain Theorem (1).

𝑓(𝑥, 𝑦) = ∑( 𝑁 𝑖=1 (𝑥 -𝑥 𝑖 ) 2 + (𝑦 -𝑦 𝑖 ) 2 )𝑒 -(𝑥-𝑥 𝑖 ) 2 -(𝑦-𝑦 𝑖 ) 2 𝑎𝑛𝑑 𝑔(𝑥, 𝑦) = ∑ 𝑒 -(𝑥-𝑥 𝑖 ) 2 -(𝑦-𝑦 𝑖 ) 2 𝑁 𝑖=1 (10 
𝜕𝑓(𝑥, 𝑦) 𝜕𝑥 𝑔(𝑥, 𝑦) - 𝜕𝑔(𝑥, 𝑦) 𝜕𝑥 𝑓(𝑥, 𝑦) = 2∑(𝑥 -𝑥 𝑖 )𝑒 -(𝑥-𝑥 𝑖 ) 2 -(𝑦-𝑦 𝑖 ) 2 [1 -(𝑥 -𝑥 𝑖 ) 2 -(𝑦 -𝑦 𝑖 ) 2 ] × ∑𝑒 -(𝑥-𝑥 𝑖 ) 2 -(𝑦-𝑦 𝑖 ) 2 +2∑(𝑥 -𝑥 𝑖 )𝑒 -(𝑥-𝑥 𝑖 ) 2 -(𝑦-𝑦 𝑖 ) 2 × ∑[(𝑥 -𝑥 𝑖 ) 2 + (𝑦 -𝑦 𝑖 ) 2 ]𝑒 -(𝑥-𝑥 𝑖 ) 2 -(𝑦-𝑦 𝑖 ) 2 = 2 ∑( 𝑁 𝑖=1 𝑥 -𝑥 𝑖 )𝑒 -2(𝑥-𝑥 𝑖 ) 2 -2(𝑦-𝑦 𝑖 ) 2 + ∑ ∑ 2 𝑁 𝑗>𝑖 𝑁 𝑖=1
𝑐 𝑖,𝑗 (𝑥, 𝑦)𝑒 -(𝑥-𝑥 𝑖 ) 2 -(𝑦-𝑦 𝑖 ) 2 -(𝑥-𝑥 𝑗 ) 2 -(𝑦-𝑦 𝑗 ) 2 .

We have for all 𝑖, 𝑗, 𝑖 ≠ 𝑗, 𝑐 

Cylindrical decomposition

For a given set of particles (𝑌 𝑖 ) 𝑖=1..𝑁 = (𝑥 𝑖 , 𝑦 𝑖 ) 𝑖=1..𝑁 , the solutions of System (2) correspond to the intersection between the implicit functions of 𝑀(𝑥, 𝑦) = 0 and those of 𝐿(𝑥, 𝑦) = 0 (see Figure 1 The remainder of this subsection will display three useful lemmas, then, the proof of the stated results will be presented.

Lemma 1. Let 𝑞(𝑥, 𝑦) be a real bivariate function in 𝑥 and 𝑦 which can be expressed as a polynomial in the variable 𝑦 such that 𝑞(𝑥, 𝑦) = ∑ 𝑎 𝑖 𝑑 𝑖=0

(𝑥)𝑦 𝑖 with 𝑑 = 𝑑𝑒𝑔 𝑦 (𝑞). Let us denote 𝑦 = 𝛷(𝑥) as an implicit function defined by 𝑞(𝑥, 𝑦) = 0. If there exists a real 𝑥 * such that lim 𝑥→𝑥 * 𝛷(𝑥) = ±∞ then 𝑎 𝑑 (𝑥 * ) = 0. This lemma is an application of Cauchy's bound and some details are given in Ref. [START_REF] Maignan | On Symbolic-Numeric Solving of Sine-Polynomial Equations[END_REF]. It also gives the following symmetric lemma: Lemma 2. Let 𝑞(𝑥, 𝑦) be a real bivariate function in 𝑥 and 𝑦 which can be expressed as a polynomial in the variable 𝑥 such that 𝑞(𝑥, 𝑦) = ∑ 𝑏 𝑖 𝑚 𝑖=0 (𝑦)𝑥 𝑖 with 𝑚 = 𝑑𝑒𝑔 𝑥 (𝑞). The finite limits at ∞ of the implicit functions of 𝑝(𝑥, 𝑦) = 0 are contained in the solutions of the equation 𝑏 𝑚 (𝑦) = 0.

Finally, the third lemma is more known (see e.g. Ref.

[23] for the proof) which states that Lemma 3. ∀𝑠 ∈ 𝑅 + * , ln𝑥 ≤ 𝑥 𝑠 𝑠 .

We consider the implicit functions of the equation 𝑀(𝑥, 𝑦) = 0. We now prove the following theorem: Theorem 2. Let (𝑥 𝑖 ) 𝑖=1...𝑁 and (𝑦 𝑖 ) 𝑖=1...𝑁 be the sequences defining 𝑀(𝑥, 𝑦) = 0. Assume that the greatest element of (𝑦 𝑖 ) 𝑖=1...𝑁 is reached in a value named 𝑦𝑚𝑎𝑥 such that ∀𝑖 ∈ {1, … , 𝑁} -{𝑦𝑚𝑎𝑥} 𝑦 𝑦𝑚𝑎𝑥 > 𝑦 𝑖 . Then there exists an implicit function of 𝑀(𝑥, 𝑦) = 0 named 𝑥 = 𝛷(𝑦) such that 𝑙𝑖𝑚 𝑦→∞ 𝛷(𝑦) = 𝑥 𝑦𝑚𝑎𝑥 . 𝑥 𝑦𝑚𝑎𝑥 is a finite limit at +∞.

Proof. Let us proceed to the variable changes 𝑧 = 𝑒 𝑥 and 𝑡 = 𝑒 𝑦 on 𝑀(𝑥, 𝑦). By denoting

𝑎 𝑖 = 𝑒 -𝑥 𝑖 2 -𝑦 𝑖 2 , we obtain 𝑚(𝑧, 𝑡) = ∑ 𝑎 𝑖 2 𝑁 𝑖=1 𝑧 4𝑥 𝑖 𝑡 4𝑦 𝑖 (ln(𝑧) -𝑥 𝑖 ) + ∑ ∑ 𝑎 𝑖 𝑁 𝑗>𝑖 𝑁 𝑖=1 𝑎 𝑗 𝑧 2(𝑥 𝑖 +𝑥 𝑗 ) 𝑡 2(𝑦 𝑖 +𝑦 𝑗 ) [(2ln(𝑧) -𝑥 𝑖 - 𝑥 𝑗 )(1 -(𝑥 𝑖 -𝑥 𝑗 ) 2 ) -(𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 )(2ln(𝑡) -𝑦 𝑖 -𝑦 𝑗 )]
𝑚(𝑧, 𝑡) is a function of two variables 𝑧 and 𝑡. Moreover, this function can also be viewed as a univariate function of the variable 𝑡 with a parameter 𝑧. In that case, it will be denoted 𝑚 𝑧 (𝑡). This rule of notation holds for other functions derived from this proof. This proof is constructed as follows: Firstly, two univariate polynomials in 𝑡 named 𝑚 𝑧 -(𝑡) and

𝑚 𝑧 + (𝑡) are created such that 𝑚 𝑧 -(𝑡) ≤ 𝑚 𝑧 (𝑡) ≤ 𝑚 𝑧 + (𝑡).
Then, we will prove that 𝑚 -(𝑧, 𝑡) = 0 and 𝑚 + (𝑧, 𝑡) = 0 have the same finite limit in 𝑥 when 𝑦 tends to infinity. Finally, we prove that it is the same for 𝑚 𝑧 (𝑡) = 0.

𝑚 𝑧 (𝑡) bounds:

We define the condition 𝐶 𝑖𝑗 to be (𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 ) > 0. Let us consider a real 𝑠 such that 0 < 𝑠 ≤ 𝑚𝑖𝑛(|𝑦 𝑦𝑚𝑎𝑥 -𝑦 𝑗 |), and for 𝑦 > 𝑚𝑎𝑥(0, 𝑦 𝑦𝑚𝑎𝑥 ), lemma 3 gives max(0, 𝑦 𝑦𝑚𝑎𝑥 ) ≤ ln(𝑡) ≤ 𝑡 𝑠 𝑠 .

Thus, when the condition

𝐶 𝑖𝑗 holds, 2(𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 )max(0, 𝑦 𝑦𝑚𝑎𝑥 ) ≤ 2(𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 )ln(𝑡) ≤ 2(𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 ) 𝑡 𝑠 𝑠 , whereas when ¬𝐶 𝑖𝑗 holds, 2(𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 )max(0, 𝑦 𝑦𝑚𝑎𝑥 ) ≥ 2(𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 - 𝑦 𝑗 )ln(𝑡) ≥ 2(𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 ) 𝑡 𝑠 𝑠 .
Thanks to the 𝐶 𝑖𝑗 condition, 𝑚 𝑧 (𝑡) is decomposed into:

∑ 𝑎 𝑖 2 𝑁 𝑖=1 𝑧 4𝑥 𝑖 𝑡 4𝑦 𝑖 (ln(𝑧) -𝑥 𝑖 ) + ∑ ∑ 𝑎 𝑖 𝑁 𝑗>𝑖 𝑁 𝑖=1 𝑎 𝑗 𝑧 2(𝑥 𝑖 +𝑥 𝑗 ) 𝑡 2(𝑦 𝑖 +𝑦 𝑗 ) [(2ln(𝑧) -𝑥 𝑖 -𝑥 𝑗 )(1 -(𝑥 𝑖 -𝑥 𝑗 ) 2 ) + (𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 )(𝑦 𝑖 + 𝑦 𝑗 )] -2 ∑ ∑ 𝑎 𝑖 𝑁 𝑗>𝑖,𝐶 𝑖𝑗 𝑁 𝑖=1 𝑎 𝑗 𝑧 2(𝑥 𝑖 +𝑥 𝑗 ) 𝑡 2(𝑦 𝑖 +𝑦 𝑗 ) (𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 )ln(𝑡) -2 ∑ ∑ 𝑎 𝑖 𝑁 𝑗>𝑖,¬𝐶 𝑖𝑗 𝑁 𝑖=1 𝑎 𝑗 𝑧 2(𝑥 𝑖 +𝑥 𝑗 ) 𝑡 2(𝑦 𝑖 +𝑦 𝑗 ) (𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 )ln(𝑡)
and we then construct the polynomials 𝑚 𝑧 -(𝑡) and 𝑚 𝑧 + (𝑡) to be respectively:

𝑚 𝑧 -(𝑡) = ∑ 𝑎 𝑖 2 𝑁 𝑖=1 𝑧 4𝑥 𝑖 𝑡 4𝑦 𝑖 (ln(𝑧) -𝑥 𝑖 ) + ∑ ∑ 𝑎 𝑖 𝑁 𝑗>𝑖 𝑁 𝑖=1 𝑎 𝑗 𝑧 2(𝑥 𝑖 +𝑥 𝑗 ) 𝑡 2(𝑦 𝑖 +𝑦 𝑗 ) [(2ln(𝑧) -𝑥 𝑖 -𝑥 𝑗 )(1 -(𝑥 𝑖 -𝑥 𝑗 ) 2 ) + (𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 )(𝑦 𝑖 + 𝑦 𝑗 )] -2 𝑡 𝑠 𝑠 ∑ ∑ 𝑎 𝑖 𝑁 𝑗>𝑖,𝐶 𝑖𝑗 𝑁 𝑖=1 𝑎 𝑗 𝑧 2(𝑥 𝑖 +𝑥 𝑗 ) 𝑡 2(𝑦 𝑖 +𝑦 𝑗 ) (𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 ) -2max(0, 𝑦 𝑦𝑚𝑎𝑥 ) ∑ ∑ 𝑎 𝑖 𝑁 𝑗>𝑖,¬𝐶 𝑖𝑗 𝑁 𝑖=1 𝑎 𝑗 𝑧 2(𝑥 𝑖 +𝑥 𝑗 ) 𝑡 2(𝑦 𝑖 +𝑦 𝑗 ) (𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 ) 𝑎𝑛𝑑 𝑚 𝑧 + (𝑡) = ∑ 𝑎 𝑖 2 𝑁 𝑖=1 𝑧 4𝑥 𝑖 𝑡 4𝑦 𝑖 (ln(𝑧) -𝑥 𝑖 ) + ∑ ∑ 𝑎 𝑖 𝑁 𝑗>𝑖 𝑁 𝑖=1 𝑎 𝑗 𝑧 2(𝑥 𝑖 +𝑥 𝑗 ) 𝑡 2(𝑦 𝑖 +𝑦 𝑗 ) [(2ln(𝑧) -𝑥 𝑖 -𝑥 𝑗 )(1 -(𝑥 𝑖 -𝑥 𝑗 ) 2 ) + (𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 )(𝑦 𝑖 + 𝑦 𝑗 )] -2max(0, 𝑦 𝑦𝑚𝑎𝑥 ) ∑ ∑ 𝑎 𝑖 𝑁 𝑗>𝑖,𝐶 𝑖𝑗 𝑁 𝑖=1 𝑎 𝑗 𝑧 2(𝑥 𝑖 +𝑥 𝑗 ) 𝑡 2(𝑦 𝑖 +𝑦 𝑗 ) (𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 ) -2 𝑡 𝑠 𝑠 ∑ ∑ 𝑎 𝑖 𝑁 𝑗>𝑖,¬𝐶 𝑖𝑗 𝑁 𝑖=1 𝑎 𝑗 𝑧 2(𝑥 𝑖 +𝑥 𝑗 ) 𝑡 2(𝑦 𝑖 +𝑦 𝑗 ) (𝑥 𝑖 -𝑥 𝑗 )(𝑦 𝑖 -𝑦 𝑗 )
We obtain that, if 𝑦 > max(0, 𝑦 𝑦𝑚𝑎𝑥 ), then 𝑚 𝑧 -(𝑡) < 𝑚 𝑧 (𝑡) < 𝑚 𝑧 + (𝑡). and 𝑙𝑖𝑚 𝑡→∞ 𝛷 -(𝑡) = 𝑒 𝑥 𝑦𝑚𝑎𝑥 . We conclude that 𝑙𝑖𝑚 𝑡→∞ 𝛷(𝑡) = 𝑒 𝑥 𝑦𝑚𝑎𝑥 and 𝑀(𝑥, 𝑦) = 0 admit 𝑥 𝑦𝑚𝑎𝑥 has a finite limit at infinity. Remark: If (𝑦 𝑖 ) are not integers but are instead rational, it is easy to find 𝜆 such that ∀𝑖 ∈ [ Then there exists an implicit function of 𝐿(𝑥, 𝑦) = 0 named 𝑦 = 𝛷(𝑥) such that 𝑙𝑖𝑚 𝑥→-∞ 𝛷(𝑥) = 𝑦 𝑥𝑚𝑖𝑛 . 𝑦 𝑥𝑚𝑖𝑛 is a finite limit at -∞.

Again 𝐿(𝑥, 𝑦) = 0 has no infinite branches at infinity.

Crab example

To illustrate our results, we use the crab data clustering example [3] using the dataset from Refs. [24] [25]. This two dimensional case has been presented in Refs. Using the Maple computer algebra system [START_REF] Bernardin | MapleSoft[END_REF], we obtain one maximum, four minima and four saddle points. The clusters produced by using the minimum Euclidean distance from the minima are shown Figure 1 (c). For larger 𝜎, the number of solutions decreases and hence, a coarser clustering is found. A deeper analysis is provided by Table 1. It gives for some 𝜎 ranges the resulting number of clusters. It

shows that the non trivial number of clusters is more likely 4 because the corresponding 𝜎 range is the widest. This first example of 200 samples can be fully solved numerically but the corresponding function 𝑀(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) are sums of 20100 monomials in 𝑥, 𝑦, 𝑒 𝑥 and 𝑒 𝑦 . The size of 𝑀 and 𝐿 is an issue and the aim of the following section is to reduce the size of 𝑀 and 𝐿 while maintaining a good approximation of minima.

THE CASE N=2

In this section we present the case where 𝑁 = 2. The potential energy function becomes

1 2𝜎 2 1 𝑒 - (𝑋-𝑋 1 ) 2 2𝜎 2 + 𝑒 - (𝑋-𝑋 2 ) 2 2𝜎 2 ((𝑋 -𝑋 1 ) 2 𝑒 - (𝑋-𝑋 1 ) 2 2𝜎 2 + (𝑋 -𝑋 2 ) 2 𝑒 - (𝑋-𝑋 2 ) 2 2𝜎 2 ) ( 11 
)
The minimization problem is then reduced to the resolution of the System (12) defined by

{ 𝑎 1 2 𝑒 4𝑥 1 𝑥+4𝑦 1 𝑦 (𝑥 -𝑥 1 ) + 𝑎 2 2 𝑒 4𝑥 2 𝑥+4𝑦 2 𝑦 (𝑥 -𝑥 2 ) +𝑎 1 𝑎 2 𝑒 2(𝑥 1 +𝑥 2 )𝑥+2(𝑦 1 +𝑦 2 )𝑦 [(2𝑥 -𝑥 1 -𝑥 2 )(1 -(𝑥 1 -𝑥 2 ) 2 ) -(𝑥 1 -𝑥 2 )(𝑦 1 -𝑦 2 )(2𝑦 -𝑦 1 -𝑦 2 )] = 0 𝑎 1 2 𝑒 4𝑥 1 𝑥+4𝑦 1 𝑦 (𝑦 -𝑦 1 ) + 𝑎 2 2 𝑒 4𝑥 2 𝑥+4𝑦 2 𝑦 (𝑦 -𝑦 2 ) +𝑎 1 𝑎 2 𝑒 2(𝑥 1 +𝑥 2 )𝑥+2(𝑦 1 +𝑦 2 )𝑦 [(2𝑦 -𝑦 1 -𝑦 2 )(1 -(𝑦 1 -𝑦 2 ) 2 ) -(𝑥 1 -𝑥 2 )(𝑦 1 -𝑦 2 )(2𝑥 -𝑥 1 -𝑥 2 )] = 0 ( 12 
)
where 𝑎 1 = 𝑒 -𝑥 1 2 -𝑦 1 2 and 𝑎 2 = 𝑒 -𝑥 2 2 -𝑦 2 2 are constants depending on the coordinates of the particles.

In the following, we prove that (11) has one and only one minimum which is

• If (𝑋 1 -𝑋 2 ) 2 ≤ 2𝜎 2 , Function
𝑋 1 +𝑋 2 2√2𝜎 ; •
Else, Function (11) has two minima and we give a way to compute them easily.

We begin with a useful lemma dealing with the function 𝑒 𝑥 = - 𝑒𝑥𝑝(-𝑤 + 1)) + 𝑤 -1 and 𝑊 -1 (-𝑒𝑥𝑝(-𝑤 + 1)) + 𝑤 -1, where 𝑊 is the Lambert 𝑊 function [28], [29], [30], [31]. Finally, we directly obtain the lemma. ◻

The 𝑁 = 2 case brings us back to the standard Lambert 𝑊 function with applications in symmetry in the context of linear molecules namely the double-well Dirac potential problem [32], [33]. The latter provides a one-dimensional model of the diatomic molecule known as the Hydrogen molecular ion whose eigenenergies in its three-dimensional version are also in terms of a fully generalized Lambert Function [34]. It is also seen in quantum gravity [35], [36] and in semiconductor devices [37] found in applications of Solid-state Physics. The ubiquity of applications is not surprising as they all involve exponential polynomials of two physical bodies. Not surprisingly, the Lambert 𝑊 function describes the nodal structure of the lowest discrete energy states of the two-electron system, namely the Helium atom [8] and seems ubiquitous to nature. Theorem 7. System (12) has one solution if 1 ≥ (𝑥 1 -𝑥 2 ) 2 + (𝑦 1 -𝑦 2 ) 2 and the solution is

( 𝑥 1 +𝑥 2 2 , 𝑦 1 +𝑦 2 2 ). If 1 < (𝑥 1 -𝑥 2 ) 2 + (𝑦 1 -𝑦 2 ) 2 , 𝑆 2 has three solutions. One of them is ( 𝑥 1 +𝑥 2 2 , 𝑦 1 +𝑦 2 2
). The others are the (𝑥, 𝑦) solutions such that 𝑦 satisfies the univariate equations 𝑒 )(1 -𝑢) = 0 with 𝑢 = (𝑥 1 -𝑥 2 ) 2 + (𝑦 1 -𝑦 2 ) 2 and 𝑥 = (𝑦 -

𝑦 1 +𝑦 2 2 ) 𝑥 1 -𝑥 2 𝑦 1 -𝑦 2 + 𝑥 1 +𝑥 2 2 .
Proof. We first centralize the system by setting 𝛼 = 𝑥 - . Then System (12) is equivalent to the system:

{ 𝑒 4𝑥 1 𝛼+4𝑦 1 𝛽 (𝛼 - 𝑥 1 -𝑥 2 2 ) + 𝑒 4𝑥 2 𝛼+4𝑦 2 𝛽 (𝛼 + 𝑥 1 -𝑥 2 2 ) +𝑒 2(𝑥 1 +𝑥 2 )𝛼+2(𝑦 1 +𝑦 2 )𝛽 [2𝛼(1 -(𝑥 1 -𝑥 2 ) 2 ) -2𝛽(𝑥 1 -𝑥 2 )(𝑦 1 -𝑦 2 )] = 0 𝑒 4𝑥 1 𝛼+4𝑦 1 𝛽 (𝛽 - 𝑦 1 -𝑦 2 2 ) + 𝑒 4𝑥 2 𝛼+4𝑦 2 𝛽 (𝛽 + 𝑦 1 -𝑦 2 2 ) +𝑒 2(𝑥 1 +𝑥 2 )𝛼+2(𝑦 1 +𝑦 2 )𝛽 [2𝛽(1 -(𝑦 1 -𝑦 2 ) 2 ) -2𝛼(𝑥 1 -𝑥 2 )(𝑦 1 -𝑦 2 )] = 0 ⇔ { 𝑒 2(𝑥 1 -𝑥 2 )𝛼+2(𝑦 1 -𝑦 2 )𝛽 (𝛼 - 𝑥 1 -𝑥 2 2 ) + 𝑒 -2(𝑥 1 -𝑥 2 )𝛼-2(𝑦 1 -𝑦 2 )𝛽 (𝛼 + 𝑥 1 -𝑥 2 2 ) + 2𝛼(1 -(𝑥 1 -𝑥 2 ) 2 ) -2𝛽(𝑥 1 -𝑥 2 )(𝑦 1 -𝑦 2 ) = 0 𝑒 2(𝑥 1 -𝑥 2 )𝛼+2(𝑦 1 -𝑦 2 )𝛽 (𝛽 - 𝑦 1 -𝑦 2 2 ) + 𝑒 -2(𝑥 1 -𝑥 2 )𝛼-2(𝑦 1 -𝑦 2 )𝛽 (𝛽 + 𝑦 1 -𝑦 2 2 ) + 2𝛽(1 -(𝑦 1 -𝑦 2 ) 2 ) -2𝛼(𝑥 1 -𝑥 2 )(𝑦 1 -𝑦 2 ) = 0
Since the point (𝛼, 𝛽) = (0,0) is a solution of the system, (

𝑥 1 +𝑥 2 2 , 𝑦 1 +𝑦 2 2
) is a solution of the System (12).

Moreover, some linear combinations simplify System (12). Let us denote (𝐿1) and (𝐿2) as respectively the first and second lines of System (12).

(𝐿1)(𝛽 + 𝑦 1 -𝑦 2 2 ) -(𝐿2)(𝛼 + 𝑥 1 -𝑥 2 2
) gives (𝛽(𝑥 1 -𝑥 2 ) -𝛼(𝑦 1 -𝑦 2 ))(𝑒 2(𝑥 1 -𝑥 2 )𝛼+2(𝑦 1 -𝑦 2 )𝛽 + 2𝛼(𝑥 1 -𝑥 2 ) + 2𝛽(𝑦 1 -𝑦 2 ) + 1) = 0 and (𝐿1)(𝛽 -

𝑦 1 -𝑦 2 2 ) -(𝐿2)(𝛼 - 𝑥 1 -𝑥 2 2
) gives (𝛽(𝑥 1 -𝑥 2 ) -𝛼(𝑦 1 -𝑦 2 ))(𝑒 -2(𝑥 1 -𝑥 2 )𝛼-2(𝑦 1 -𝑦 2 )𝛽 -2𝛼(𝑥 1 -𝑥 2 ) -2𝛽(𝑦 1 -𝑦 2 ) + 1) = 0

Since 𝑒 -2(𝑥 1 -𝑥 2 )𝛼-2(𝑦 1 -𝑦 2 )𝛽 -2𝛼(𝑥 1 -𝑥 2 ) -2𝛽(𝑦 1 -𝑦 2 ) + 1 and 𝑒 2(𝑥 1 -𝑥 2 )𝛼+2(𝑦 1 -𝑦 2 )𝛽 + 2𝛼(𝑥 1 -𝑥 2 ) + 2𝛽(𝑦 1 -𝑦 2 ) + 1 have no common root, the System (12) is equivalent to the System (13) defined by

{ 𝑒 2(𝑥 1 -𝑥 2 )𝛼+2(𝑦 1 -𝑦 2 )𝛽 (𝛽 - 𝑦 1 -𝑦 2 2 ) + 𝑒 -2(𝑥 1 -𝑥 2 )𝛼-2(𝑦 1 -𝑦 2 )𝛽 (𝛽 + 𝑦 1 -𝑦 2 2 ) +2𝛽(1 -(𝑦 1 -𝑦 2 ) 2 ) -2𝛼(𝑥 1 -𝑥 2 )(𝑦 1 -𝑦 2 ) = 0 𝛽(𝑥 1 -𝑥 2 ) -𝛼(𝑦 1 -𝑦 2 ) = 0 (13)
Finally, System (12) is equivalent to the simplified system:

{ 𝑒 2𝛽 (𝑥 1 -𝑥 2 ) 2 +(𝑦 1 -𝑦 2 ) 2 𝑦 1 -𝑦 2 (𝛽 - 𝑦 1 -𝑦 2 2 ) + 𝑒 -2𝛽 (𝑥 1 -𝑥 2 ) 2 +(𝑦 1 -𝑦 2 ) 2 𝑦 1 -𝑦 2 (𝛽 + 𝑦 1 -𝑦 2 2 ) + 2𝛽(1 -(𝑥 1 -𝑥 2 ) 2 -(𝑦 1 -𝑦 2 ) 2 ) = 0 𝛼 = 𝛽 𝑥 1 -𝑥 2 𝑦 1 -𝑦 2 (14) 
The first equation of this last system depends only on the variable 𝛽. By denoting 𝑢 = (𝑥 1 -𝑥 2 ) 2 + (𝑦 1 -𝑦 2 ) 2 and 𝑣 = 𝑦 1 -𝑦 2 , it can be rewritten as

ℎ(𝛽) = 𝑒 2𝛽 𝑢 𝑣 (𝛽 - 𝑣 2 ) + 𝑒 -2𝛽 𝑢 𝑣 (𝛽 + 𝑣 2 ) + 2𝛽(1 -𝑢) (15) 
Assume 𝑣 > 0 without loss of generality, ℎ is a 𝐶 ∞ function such that 

THE BLOCK APPROACH

In this section, we present a new numerical approach per block. First we present the algebraic property needed to develop the new algorithm presented theoretically in the second subsection and algorithmically in the third subsection. Finally the Crab example is revisited and some other benchmarks are presented.

𝝈 estimations

We have seen (Table 1) that the 𝜎 value is of crucial importance to the number of minima. The greater 𝜎 is, the smaller the number of minima. But obviously the number of minima also depends on the data. In this subsection, we link the value of 𝜎 with the values of the initial data in order to obtain a bound from which the number of minima is one. and proceed to the variable changes 𝛼 = 𝑥 -𝑥 𝑐 and 𝛽 = 𝑦 -𝑦𝑐, 𝛼 𝑖 = 𝑥 𝑖 -𝑥 𝑐 , 𝛽 𝑖 = 𝑦 𝑖 -𝑦 𝑐 for all 𝑖 = 1. . . 𝑁. We obtain 𝑀(𝑥, 𝑦) = 𝑒 -2𝑥 𝑐 2 -2𝑦 𝑐 2 +4𝑥 𝑐 𝑥+4𝑦 𝑐 𝑦 𝑀 𝐶 (𝛼, 𝛽) where 𝑀 𝐶 (𝛼, 𝛽) is defined by the sequences (𝛼 𝑖 ) 𝑖=1..𝑁 and (𝛽 𝑖 ) 𝑖=1..𝑁 such that

𝑀 𝐶 (𝛼, 𝛽) = ∑ 𝑒 -2𝛼 𝑖 2 -2𝛽 𝑖 2 𝑁 𝑖=1 𝑒 4𝛼 𝑖 𝛼+4𝛽 𝑖 𝛽 (𝛼 -𝛼 𝑖 ) + ∑ ∑ 𝑒 -𝛼 𝑖 2 -𝛽 𝑖 2 𝑁 𝑗>𝑖 𝑁 𝑖=1 𝑒 -𝛼 𝑗 2 -𝛽 𝑗 2 𝑒 2(𝛼 𝑖 +𝛼 𝑗 )𝛼+2(𝛽 𝑖 +𝛽 𝑗 )𝛽 𝑐 𝑖𝑗 . ( 17 
)
Where 𝑐 𝑖𝑗 = (2𝛼 -𝛼 𝑖 -𝛼 𝑗 )(1 -(𝛼 𝑖 -𝛼 𝑗 ) 2 ) -(𝛼 𝑖 -𝛼 𝑗 )(𝛽 𝑖 -𝛽 𝑗 )(2𝛽 -𝛽 𝑖 -𝛽 𝑗 ). In the same way, 𝐿(𝑥, 𝑦) = 𝑒 -2𝑥 𝑐 2 -2𝑦 𝑐 2 +4𝑥 𝑐 𝑥+4𝑦 𝑐 𝑦 𝐿 𝐶 (𝛼, 𝛽) with

𝐿 𝐶 (𝛼, 𝛽) = ∑ 𝑒 -2𝛼 𝑖 2 -2𝛽 𝑖 2 𝑁 𝑖=1 𝑒 4𝛼 𝑖 𝛼+4𝛽 𝑖 𝛽 (𝛽 -𝛽 𝑖 ) + ∑ ∑ 𝑒 -𝛼 𝑖 2 -𝛽 𝑖 2 𝑁 𝑗>𝑖 𝑁 𝑖=1 𝑒 -𝛼 𝑗 2 -𝛽 𝑗
2 𝑒 2(𝛼 𝑖 +𝛼 𝑗 )𝛼+2(𝛽 𝑖 +𝛽 𝑗 )𝛽 𝑑 𝑖𝑗 . [START_REF] Wang | Unsupervised learning of topological phase transitions using Calinski-Harabaz score[END_REF] where 𝑑 𝑖𝑗 = (2𝛽 -𝛽 𝑖 -𝛽 𝑗 )(1 -(𝛽 𝑖 -𝛽 𝑗 ) 2 ) -(𝛼 𝑖 -𝛼 𝑗 )(𝛽 𝑖 -𝛽 𝑗 )(2𝛼 -𝛼 𝑖 -𝛼 𝑗 ). Now we have to prove the equivalent statement: the system { 𝑀 𝐶 (𝛼, 𝛽) = 0 𝐿 𝐶 (𝛼, 𝛽) = 0 has only one solution if for all

𝑖 ∈ [1, 𝑁], |𝛼 𝑖 | ≤ 1 2√2
and

|𝛽 𝑖 | ≤ 1 2√2
.

The proof of the last statement is decomposed into two parts. First, we prove that there is at most one minimum: ].

Secondly, we prove that at least one implicit curve of 𝑀 = 0 lies in the square [- and 𝑀 𝐶 (𝛼, 𝛽) < 0 for 𝛼 < - . With the same approach, we get

• 𝑀 𝐶 (𝛼, 𝛽) < 0 for all 𝛼 < - 1 2√2 , 𝛽 ∈ 𝑅 • 𝐿 𝐶 (𝛼, 𝛽) > 0 for all 𝛽 > 1 2√2
, 𝛼 ∈ 𝑅

• 𝐿 𝐶 (𝛼, 𝛽) < 0 for all 𝛽 < - 1 2√2
, 𝛼 ∈ 𝑅 Finally there is one implicit function of 𝑀 𝐶 (𝛼, 𝛽) = 0 for all 𝛽 ∈ 𝑅 when 𝛼 ∈ [-

] and there is one implicit function of 𝐿 𝐶 (𝛼, 𝛽) = 0 for 𝛼 ∈ 𝑅 when 𝛽 ∈ [-

] . We conclude that the two curves intersect in the square [-

] 2 and this intersection corresponds to a minimum. ◻ For instance, in the crab example, 𝑚𝑎𝑥(𝑣 𝑚𝑎𝑥 -𝑣 𝑚𝑖𝑛 , 𝑤 𝑚𝑎𝑥 -𝑤 𝑚𝑖𝑛 ) = 0.297 and without any computation, we know that if 𝜎 ≥ 0.297, the function (1) has exactly one minimum.

To serve our new block method presented next subsection, we give another formulation of Theorem 2 as a corollary

Corollary 1. The bivariate function

1 2𝜎 2 1 ∑ 𝑒 - (𝑋-𝑋 𝑖 ) 2 2𝜎 2 𝑁 𝑖=1 ∑ ( 𝑁 𝑖=1 𝑋 -𝑋 𝑖 ) 2 𝑒 - (𝑋-𝑋 𝑖 ) 2 2𝜎 2
has only one minimum if the set of points (𝑋 𝑖 ) 𝑖=1..𝑁 are all included in a square of side 𝜎.

System approximation construction

In the general case of 𝑁 particles, the functions 𝑀(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) are sums of where

𝐾 𝑖 = 𝑒 -(𝑥-𝑥 𝑖 ) 2 -(𝑦-𝑦 𝑖 ) 2 +𝑥 2 +𝑦 2 .
When 𝑁 is large, we need a strategy to decrease the length of 𝑀(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) while maintaining the main property of System (2) which is to define the cluster centers.

Let us denote 𝑅 = [𝑥 𝑚𝑖𝑛 , 𝑥 𝑚𝑎𝑥 ] × [𝑦 𝑚𝑖𝑛 , 𝑦 𝑚𝑎𝑥 ] the rectangle containing all the points (𝑌 𝑖 ) 𝑖=1..𝑁 . The basic idea is to partition 𝑅 into squares and approximate the minimum locally by considering for each square, only its particles. These new points will correspond to a weighted approximation of the particles in the square. They will therefore correspond to the weighted particles of the approximate system.

The block construction consists of subdividing 𝑅 into 𝑘 2 square blocks of length 1 𝑘 𝑚𝑎𝑥(𝑥 𝑚𝑎𝑥 -𝑥 𝑚𝑖𝑛 , 𝑦 𝑚𝑎𝑥 -𝑦 𝑚𝑖𝑛 ). Since the particles are numbered from 1 to 𝑁, we denote 𝐵(𝑖) the block containing the particle 𝑖. 𝑖 is named a representative of the block and we have: 𝐵(𝑖) = 𝐵(𝑗) if 𝑖 and 𝑗 belong to the same square. We denote 𝑅 a set containing exactly one representative of each non empty block.

Let 𝛼 ∈ 𝑅, the function 𝑀 is reduced to the particles of the block 𝐵(𝛼) which is denoted 𝑀 𝐵(𝛼) and 𝑀 𝐵(𝛼) (𝑥, 𝑦) = ∑ ( Remark (Limit preservation): the minima of System (2) are usually in the domain 𝑅. Nevertheless, the limit preservation of the approximate system is important. To do so, and according to Section 2, the four extrema (𝑥 𝑚𝑖𝑛𝑥 , 𝑦 𝑚𝑖𝑛𝑥 ), (𝑥 𝑚𝑖𝑛𝑦 , 𝑦 𝑚𝑖𝑛𝑦 ), (𝑥 𝑚𝑎𝑥𝑥 , 𝑦 𝑚𝑎𝑥𝑥 ) and (𝑥 𝑚𝑎𝑥𝑦 , 𝑦 𝑚𝑎𝑥𝑦 ) are usually not integrated into blocks and appear without any modification in the block-system.

Algorithm

The main steps of the algorithm are as follows:

• Input: the list of particles (𝑋 𝑖 ) 𝑖=1..𝑁 = ((𝑣 𝑖 , 𝑤 𝑖 )) 𝑖=1..𝑁 and the parameter 𝑘 of the block partition. . The centralization and normalization of the data is very important to avoid certain computational issues.

2-With regards to the fifth item: We have proven, thanks to Corollary 1, that { 𝑀 𝐵 = 0 𝐿 𝐵 = 0 has exactly one minimum 𝑚 𝐵 . Indeed, the size of the block 𝐵 is 𝜎 and the construction of the function 𝑀 𝐵 and 𝐿 𝐵 involves only the particles in the block 𝐵. This minimum is often close to the mass center of the cluster. Finding this minimum using a Newton-Raphson method with the mass center as a starting point has fast convergence. Moreover, one can consider a variation of our approach where 𝜎 depends on an additional parameter 𝑙 ≥ 1: 𝜎 = 𝑙 𝑘 𝑚𝑎𝑥(𝑣 𝑚𝑎𝑥 -𝑣 𝑚𝑖𝑛 , 𝑤 𝑚𝑎𝑥 -𝑤 𝑚𝑖𝑛 ). In this variation, theorem 8 holds since 𝑙 ≥ 1 and 𝜎 and 𝑘 can be chosen independently such that 𝜎𝑘 𝑚𝑎𝑥(𝑣 𝑚𝑎𝑥 -𝑣 𝑚𝑖𝑛 ,𝑤 𝑚𝑎𝑥 -𝑤 𝑚𝑖𝑛 )

≥ 1. Therefore we can consider an approximation involving more blocks without changing 𝜎.

Crab Example Revisited

The block algorithm has been tested on the crab example [3] [24] [START_REF] Ripley | Available online[END_REF] with varying values of 𝑘. For 𝑘 = 5, we have reduced the minimizing problem on 200 particles to a minimizing problem on 23 weighted particles.

These new 23 particles correspond to minima of a sub-problem reduced to blocks. Table 2 shows for various 𝑘, the number of non empty blocks it produces (column two) and the value of 𝜎 = 1 𝑘 𝑚𝑎𝑥(𝑥 𝑚𝑎𝑥 -𝑥 𝑚𝑖𝑛 , 𝑦 𝑚𝑎𝑥 -𝑦 𝑚𝑖𝑛 ) (column 3). It also shows, in the fourth column, the approximation of the minima of the block-system in the 𝑋 variable, whereas the sixth column shows the approximation of the minima of the original System (2). In the fifth and seventh column, the number of particles per clusters is given. We have compared the clusters produced by the direct method with 𝜎 = 5 and those produced by the block method with 𝑘 = 5, we observe that the result is the same except for one particle. For 𝑘 = 6 or 𝑘 = 9, we obtain the same clusters from both methods.

Benchmarks

The block method can be tested on larger set of particles. In this subsection, we propose three other examples (A fourth one dealing with exoplanet [START_REF]Exoplanet.eu-Extrasolar Planets Encyclopedia[END_REF] is presented in [START_REF] Maignan | Quantum Clustering Analysis: Minima of the Potential Energy Function[END_REF]):

Gionis et al. [START_REF] Gionis | Clustering aggregation[END_REF] propose a method consisting of an aggregation of other approaches including single linkage, complete linkage, average linkage, K-means and Ward's clustering. The dataset proposed in [START_REF] Gionis | Clustering aggregation[END_REF] is known to be difficult and the clustering outcome is usually imperfect. It has 𝑁 = 788 particles and contains narrow bridges between clusters and uneven-sized clusters that are known to create difficulties for the clustering algorithms. The aggregation method gives seven clusters. The K-means method is unstable and gives very different clusterings for this example. Figure 2 shows two different outcomes of the MATLAB K-means program using as parameter, a number of clusters equal to 7. Our quantum block method (with 𝑘 = 9, 𝜎 = 3.6889 ) gives also seven minima and thus seven clusters. Figure 3 Shows 6 drawing : The first drawing is the initial data. In the second one, the black dots corresponds to the new set of weighted particles obtained by using the block method with parameters 𝑘 = 9 and 𝑙 = 1 (Consequently, 𝜎 becomes 𝜎 = 3.6889). The red and green curves correspond to the implicit functions of 𝑀 𝐵𝑙𝑠 and 𝐿 𝐵𝑙𝑠 (The scale has been modified here following the variable changes proposed in Section 2). The determination of the clusters is done here from the minima using the Euclidean distance. Unfortunately, it faces some difficulties and some improvements could be done by using a spectral clustering. We use here a 𝜖-neighborhood graph to produce the spectral clustering as shown in the second line of Figure 3. The MATLAB algorithm used needs as input the data and the number of clusters. First, we see the level lines and the clusters of the block data. The last drawing gives the rebuilding of the clustering on the initial data. It shows that the quality of the clustering is similar to the one of the aggregation of five different clustering approaches (see [START_REF] Gionis | Clustering aggregation[END_REF]) Fu and Medico [START_REF] Fu | FLAME, a novel fuzzy clustering method for the analysis[END_REF] present an algorithm named FLAME dedicated to genome data clustering. The first step consists in the extraction of local structure information and identification of a "Cluster Supporting Object" (CSO). In this step, the proximity between each object and its k-nearest neighbors is used to calculate the object density. Here, this particular step is replaced by the computation of minima. We find two minima which correspond to the two CSOs presented in Ref. [START_REF] Fu | FLAME, a novel fuzzy clustering method for the analysis[END_REF]. In Figure 4, the original data of 𝑁 = 240 particles are presented to the left. The drawing in the middle shows the particles computed thanks to the block method and the associated implicit function with 𝑘 = 8 and 𝑙 = 2. Two minima are obtained: (7.044805245,25.30024272) and (7.359015753,17.11035066) Finally, the right plot gives the clustering. Note that in this specific example, the Euclidean distance is not the best choice to construct the clusters from the minima and a computation based on the spectral clustering is again needed to improve the result. This clustering is shown Figure 4. 130,174,134,191,165,194,143,186,139,188,175,156,190,178,132,148), 𝑥 2 = (190,176,205,210,230,192,220,235,240,230,200,218,220,210,208,225). Although the maximin method uses non-linear (constrained) optimization often requiring computational tools, such as linear programming, the conceptually simpler quantum clustering method nonetheless yields the same clusters. These are shown in Figure 5 Ref. [3] to reveal four clusters. For the MATLAB spectral clustering, we used the 'seuclidean' option for the distance metric i.e. the standardized Euclidean distance (each coordinate difference between observations is scaled by dividing by the corresponding element of the standard deviation computed from the 𝑥 1 , 𝑥 2 pairs). Also note that in three consecutive calls to MATLAB's Kmeans program yields three distinct clusterings for which only the first is correct, i.e. agrees with the quantum clustering, spectral clustering and maximin result. Unfortunately, some specific shapes such as ring-shaped or spiral-shaped clusters are challenging for numerous clustering methods including our QC block method. To overcome this issue, an approach based on optimization of an objective function, is proposed in [START_REF] Gath | Fuzzy clustering of elliptic ring-shaped clusters[END_REF] to detect specifically elliptic ring-shaped clusters. However, this approach is not appropriate when different kind of shapes coexist as for example in the case of Zahn's compounds [45]. It also requires a skilled operator to visualize the clusters. It will be a great challenge to improve the QC approach in order to detect such shapes.

Perspectives

In spite of claims to the contrary [START_REF] Ahmad | Survey of State-of-the-Art Mixed Data Clustering Algorithms[END_REF], even with extensions, K-means is no longer state-of-the-art. A means of finding all the potential minima of the quantum potential and consequently the number of clusters for a given range of 𝜎 is an essential key feature for data clustering under program control without prior visualization whilst K-means and even MATLAB's spectral clustering require the number of cluster centers on input and thus skilled operators. The quantum clustering approach yields this number for a given range. Automatic Data clustering under program control allows the processing of much bigger and more complex mixed datasets potentially providing a more robust industrial standard. It would multiply the number of platforms with large data collection tools such as Hadoop or MongoDB and thus a greater realization of patents for name of object disambiguation [1].

CONCLUSIONS

Herein, we have made considerable progress in dealing with the outstanding problem of getting all the centers of the quantum clustering method, namely finding all the minima of the quantum potential of Function (1) where 𝜎 is the standard deviation of the Gaussian distribution. The extrema of this potential are the roots of two coupled equations, which in principle are impossible to solve analytically. After simplifications, those equations become bivariate exponential polynomial equations and a number of useful properties have been proved. More precisely, limits of implicit function branches are given and the case of two particles is analytically solved. We also proved that the coupled equations have only one minimum if the data are included in a square of side 𝜎. This bound is directly useful to propose a new approach "per block". This technique decreases the number of particles by approximating some groups of particles to weighted particles. The minima of the corresponding coupled equations are then given numerically by which the number of clusters is obtained. Those minima can be used as cluster centers. However, for some complex examples, other clustering approaches such that spectral clustering gives better visual results (though they still require the number of clusters on input). On such examples, the approach consisting in the use of the block method (for the number of clusters but also for the weighted particles) gives very good results. Example 2, from Gionis et al. shows that the quality of the clustering is similar to the one of the aggregation of five approaches.
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  by denoting 𝑌 𝑖 = (𝑥 𝑖 , 𝑦 𝑖 ). The extrema of ℎ(𝑥, 𝑦) satisfy the system { , 𝑦) = 0 since 𝑔(𝑥, 𝑦) ≠ 0 everywhere.

  Finite limits: Let us denote 𝑦𝑚𝑎𝑥 the index such that ∀𝑖 ∈ {1, … , 𝑁} -{𝑦𝑚𝑎𝑥}, 𝑦 𝑦𝑚𝑎𝑥 > 𝑦 𝑖 . For 𝑦 > max(0, 𝑦 𝑦𝑚𝑎𝑥 ) ⇔ 𝑡 > max(1, 𝑒 𝑦 𝑦𝑚𝑎𝑥 ), 𝑚 𝑧 -(𝑡) and 𝑚 𝑧 + (𝑡) are constructed such that there exists at least one implicit function of 𝑚(𝑧, 𝑡) = 0 between one implicit function of 𝑚 -(𝑧, 𝑡) = 0 and 𝑚 + (𝑧, 𝑡) = 0. Moreover 𝑚 𝑧 -(𝑡) and 𝑚 𝑧 + (𝑡) are polynomials having the same leading coefficient 𝑎 𝑦𝑚𝑎𝑥 2 𝑧 4𝑥 𝑦𝑚𝑎𝑥 (ln(𝑧) -𝑥 𝑦𝑚𝑎𝑥 ) = 𝑎 𝑦𝑚𝑎𝑥 2 𝑒 4𝑥 𝑦𝑚𝑎𝑥 𝑥 (𝑥 -𝑥 𝑦𝑚𝑎𝑥 ). Lemma 2 tells us that the finite limits at +∞ of the implicit functions of 𝑚 -(𝑧, 𝑡) and 𝑚 + (𝑧, 𝑡) are contained in the solutions of the equation 𝑎 𝑦𝑚𝑎𝑥 2 𝑧 4𝑥 𝑦𝑚𝑎𝑥 (ln(𝑧) -𝑥 𝑦𝑚𝑎𝑥 ) = 0 which is equivalent to the equation 𝑥 -𝑥 𝑦𝑚𝑎𝑥 = 0. If 𝑥 > 𝑥 𝑦𝑚𝑎𝑥 , lim 𝑡→∞ 𝑚 𝑧 -(𝑡) = +∞ and lim 𝑡→∞ 𝑚 𝑧 + (𝑡) = ∞. Moreover if 𝑥 < 𝑥 𝑦𝑚𝑎𝑥 , lim 𝑡→∞ 𝑚 𝑧 -(𝑡) = -∞ and lim 𝑡→∞ 𝑚 𝑧 + (𝑡) = -∞. Hence there exists an implicit function 𝑥 = 𝛷 -(𝑦) defined by 𝑚 -(𝑧, 𝑡) = 0 and there exists an implicit function 𝑧 = 𝛷 + (𝑡) defined by 𝑚 + (𝑧, 𝑡) = 0 such that 𝑙𝑖𝑚 𝑡→∞ 𝛷 -(𝑡) = 𝑒 𝑥 𝑦𝑚𝑎𝑥

  [2] [3]. This example is composed of four classes at 50 samples each, making a total of 200 samples i.e. particles and by taking 𝜎 = 0.05, we obtain, after the variable change described in Section 2, a set of particles for which the 𝑥 and 𝑦 coordinates (𝑥 𝑖 ) 𝑖=1..200 and (𝑦 𝑖 ) 𝑖=1..200 satisfy 𝑥𝑚𝑖𝑛 = 150, 𝑥𝑚𝑎𝑥 = 65, 𝑦 𝑥𝑚𝑎𝑥 = -0.3190, 𝑦 𝑥𝑚𝑖𝑛 = 0.3640, 𝑦𝑚𝑖𝑛 = 35, 𝑦𝑚𝑎𝑥 = 105, 𝑥 𝑦𝑚𝑎𝑥 = 0.0038,𝑥 𝑦𝑚𝑖𝑛 = -0.7941. The curve 𝑀(𝑥, 𝑦) = 0 is shown, Figure 1 (a) and (b), in red and the curve 𝐿(𝑥, 𝑦) = 0 is shown in green. The intersection between the red and the green curves corresponds to the extrema of ℎ.

Figure 1 :

 1 Figure 1: Crab example with 𝜎 = 0.05: (a) the set of points (𝑥, 𝑦) 𝑖 , and the implicit curves of 𝑀(𝑥, 𝑦) = 0 and 𝐿(𝑥, 𝑦) = 0. (b) the limits of implicit curves.(c) Crab clusters produced by using the minimum Euclidean distance from the minima (𝜎 = 0.05)

.Lemma 4 .

 4 It belongs to the class of offset logarithm functions 𝑒 𝑥 𝑥-𝑤 𝑥+𝑤 = 𝑎 [27]. The function 𝑒 𝑥 = -𝑥+𝑤 𝑥-𝑤 has only one solution 𝑥 = 0 when 𝑤 ≤ 2 . If 𝑤 > 2, it has three solutions including 𝑥 = 0 . Proof. We use the derivative of ℎ(𝑥) = 𝑒 𝑥 (𝑥 -𝑤) + 𝑥 + 𝑤. 𝑑ℎ 𝑑𝑥 = 𝑒 𝑥 (𝑥 -𝑤 + 1) + 1 has no solution when 𝑤 < 2. It has 1 solution which is 𝑥 = 0 if 𝑤 = 2. if 𝑤 > 2 the two solutions of 𝑑ℎ 𝑑𝑥 = 0 are 𝑊 0 (-

2 )

 2 and there limits are lim 𝛽→+∞ ℎ(𝛽) = +∞ and lim 𝛽→-∞ ℎ(𝛽) = -∞. Its number of solutions depends on the sign of 1 -𝑢. If 1 -𝑢 ≥ 0, 𝑑ℎ 𝑑𝛽 (𝛽) > 0 and the only solution of ℎ is 0. This solution corresponds to a minimum of the initial problem. If 1 -𝑢 < 0, we have ℎ(0) = 0, 𝑑ℎ 𝑑𝛽 (0) = 4(1 -𝑢) < 0, lim 𝛽→+∞ 𝑑ℎ 𝑑𝛽 (𝛽) > 0 and lim 𝛽→-∞ 𝑑ℎ 𝑑𝛽 (𝛽) > 0.Thus ℎ has at least 3 solutions. The solution 0 corresponds to a local maximum of the initial problem. Let us prove that ℎ has exactly 3 solutions. Since the number of solution of 2(𝑢 -2). Thanks to Lemma 4, it has at most 3 solutions. Moreover, in both cases solutions (symmetric) and ℎ has three solutions. ◻

Theorem 8 .

 8 Consider a set of particles (𝑋 𝑖 ) 𝑖=1..𝑁 where for all 𝑖 = 1. . 𝑁, 𝑋 𝑖 = (𝑣 𝑖 , 𝑤 𝑖 ),

2 ( 1 2√2 , 1 2√2]

 211 𝛽) is composed of a sum of terms of the form 𝑒 -2𝛼 𝑖 2 -2𝛽 𝑖 2 𝑒 4𝛼 𝑖 𝛼+4𝛽 𝑖 𝛽 (4𝛼 𝑖 (𝛼 -𝛼 𝑖 ) + 1) 𝛼 𝑖 +𝛼 𝑗 )𝛼+2(𝛽 𝑖 +𝛽 𝑗 )𝛽 (2(𝛼 𝑖 + 𝛼 𝑗 )[(2𝛼 -𝛼 𝑖 -𝛼 𝑗 )(1 -(𝛼 𝑖 -𝛼 𝑗 )2 ) -(2𝛽 -𝛽 𝑖 -𝛽 𝑗 )(𝛼 𝑖 -𝛼 𝑗 )(𝛽 𝑖 -𝛽 𝑗 )] + 2(1 -(𝛼 𝑖 -𝛼 𝑗 ) 2 )). All those terms are positive when 𝛼 𝑖 , 𝛽 𝑖 , 𝛼, 𝛽 ∈ [-𝛽) > 0. In the same way 𝑑𝐿 𝐶 𝑑𝛽 (𝛼, 𝛽) > 0. Here again, in the phase space, there is at most one solution in 𝛼 of 𝑀 𝐶 (𝛼, 𝛽 ‾ ) for all 𝛽 ‾ ∈ 𝑅 and 𝛼 ∈ [and there is at most one solution in 𝑦 of 𝐿 𝐶 (𝛼 ‾, 𝛽) for all 𝛼 ‾ ∈ 𝑅 and 𝛽 ∈ [-

  form (𝑥 -𝑥 𝑖 )𝐾 𝑖2 , 𝑐 𝑖𝑗 𝐾 𝑖 𝐾 𝑗 or 𝑑 𝑖𝑗 𝐾 𝑖 𝐾 𝑗 . We recall System (2):

  The clusters are obtained by computing the Euclidean distance between a particle and the four minima namely 𝑚 1 , 𝑚 2 , 𝑚 3 and 𝑚 4 . A particle 𝑝 belongs to the cluster 𝑖 if |𝑝𝑚 𝑖 | = 𝑚𝑖𝑛(|𝑝𝑚 1 |, |𝑝𝑚 2 |, |𝑝𝑚 3 |, |𝑝𝑚 4 |).

Figure 2 :

 2 Figure 2: Example from [40] of 𝑁 = 788 particles: Two K-means clusterings.

Figure 3 :

 3 Figure 3: Example from of 𝑁 = 788 particles. From left to right, the initial data, the main characteristics of the corresponding block method of parameters 𝑘 = 9 and 𝑙 = 1, the clustering using the Euclidean distance from the computed center (in black). Second line: The level line of the block potential energy function, new clustering based

Figure 4 :

 4 Figure 4: Example from [41] of 240 particles. From left to right: The initial data, the main characteristics of the block algorithm, the clustering based on the spectral clustering method In our last example, we revisit the industrial optimization problem of Draper and Smith [3] [41] which originally used the maximin clustering method [43, p.1425]. The problem itself consisted of reported percentages of properly sealed bars of soap, sealer plate clearance 𝑥 1 and sealer plate temperature 𝑥 2 . This is a fairly self-contained problem of two variables in 16 measured pairs: 𝑥 1 = (130,174,134,191,165,194,143,186,139,188,175,156,190,178,132,148), 𝑥 2= (190,176,205,210,230,192,220,235,240,230,200,218,220,210,208,225). Although the maximin method uses non-linear (constrained) optimization often requiring computational tools, such as linear programming, the conceptually simpler quantum clustering method nonetheless yields the same clusters. These are shown in Figure5using the same value of 𝜎 =

  using the same value of 𝜎 = 80 4√2 = 14.1421 … as used in

Figure 5 :

 5 Figure 5: Quantum clustering (The data and the implicit functions of 𝑀 = 0 and 𝐿 = 0 after centralization and normalizalion with 𝜎 = 14.1421, the level lines and the clustering), MATLAB Spectral clustering using the standardized Euclidean distance and three consecutive calls to MATLAB's Kmeans clustering on the Smith and Draper pairs. As before, the points in black in the contour block show the cluster centers. Note that only the first Kmeans clustering agrees with both the quantum clustering and MATLAB's spectral clustering.

  for the example of crab with 𝑁 = 200). Let us denote 𝑦𝑚𝑎𝑥 (resp. 𝑥𝑚𝑎𝑥) the index the greatest element of (𝑦 𝑖 ) 𝑖=1..𝑁 (resp. (𝑥 𝑖 ) 𝑖=1..𝑁 ) such that ∀𝑖 ∈ {1, … , 𝑁} -{𝑦𝑚𝑎𝑥} 𝑦 𝑦𝑚𝑎𝑥 > 𝑦 𝑖 . In the same way, we denote 𝑦𝑚𝑖𝑛 (resp. 𝑥𝑚𝑖𝑛) the index the smallest element of (𝑦 𝑖 ) 𝑖=1..𝑁 (resp. (𝑥 𝑖 ) 𝑖=1..𝑁 ) such that ∀𝑖 ∈ {1, … , 𝑁} -{𝑦𝑚𝑖𝑛} 𝑦 𝑦𝑚𝑖𝑛 < 𝑦 𝑖 . We have the following results:•The infinite branches of the implicit functions of 𝑀(𝑥, 𝑦) tends to 𝑥 𝑦𝑚𝑖𝑛 at -∞ and 𝑥 𝑦𝑚𝑎𝑥 at +∞ • The infinite branches of the implicit functions of 𝐿(𝑥, 𝑦) tends to 𝑦 𝑦𝑚𝑖𝑛 at -∞ and 𝑦 𝑦𝑚𝑎𝑥 at +∞

  𝑒 4𝑥 𝑦𝑚𝑎𝑥 𝑥 (𝑥 -𝑥 𝑦𝑚𝑎𝑥 ). By means of lemma 2, the finite limits at +∞ of the implicit functions are contained in the solutions of the equation 𝑥 -𝑥 𝑦𝑚𝑎𝑥 = 0. if 𝑥 > 𝑥 𝑦𝑚𝑎𝑥 , lim 𝑇→∞ 𝑀 𝑧 -(𝑇) = Let (𝑥 𝑖 ) 𝑖=1...𝑁 and (𝑦 𝑖 ) 𝑖=1...𝑁 the sequences defining 𝑀(𝑥, 𝑦) = 0. Assume that the smallest element of (𝑦 𝑖 ) 𝑖=1...𝑁 is reached in an index value named 𝑦𝑚𝑖𝑛 such that ∀𝑖 ∈ {1, … , 𝑁} -{𝑦𝑚𝑖𝑛} 𝑦 𝑦𝑚𝑖𝑛 < 𝑦 𝑖 . Then there exists an implicit function of 𝑀(𝑥, 𝑦) = 0 named 𝑥 = 𝛷(𝑦) such that 𝑙𝑖𝑚 𝑦→-∞ 𝛷(𝑦) = 𝑥 𝑦𝑚𝑖𝑛 . 𝑥 𝑦𝑚𝑖𝑛 is a finite limit at -∞.Theorem 4 can be proven in a manner similar to that of theorem 2 with the variable change 𝑡 = 𝑒 -𝑦 . Let (𝑥 𝑖 ) 𝑖=1...𝑁 and (𝑦 𝑖 ) 𝑖=1...𝑁 the sequences defining 𝐿(𝑥, 𝑦) = 0. Assume that the greatest element of (𝑥 𝑖 ) 𝑖=1...𝑁 is reached in a index named 𝑥𝑚𝑎𝑥 such that ∀𝑖 ∈ {1, … , 𝑁} -{𝑥𝑚𝑎𝑥} 𝑥 𝑥𝑚𝑎𝑥 > 𝑥 𝑖 . Then there exists an implicit function of 𝐿(𝑥, 𝑦) = 0 named 𝑦 = 𝛷(𝑥) such that 𝑙𝑖𝑚 𝑦𝑥→∞ 𝛷(𝑥) = 𝑦 𝑥𝑚𝑎𝑥 . Theorem 6. Let (𝑥 𝑖 ) 𝑖=1...𝑁 and (𝑦 𝑖 ) 𝑖=1...𝑁 the sequences defining 𝐿(𝑥, 𝑦) = 0. Assume that the smallest element of (𝑥 𝑖 ) 𝑖=1...𝑁 is reached in a index named 𝑥𝑚𝑖𝑛 such that ∀𝑖 ∈ {1, … , 𝑁} -{𝑥𝑚𝑖𝑛} 𝑥 𝑥𝑚𝑖𝑛 < 𝑥 𝑖 .

	Equivalent results can be obtained for the equation 𝐿(𝑥, 𝑦) = 0		
	Theorem 5.		
	1, 𝑁], 𝜆𝑦 𝑖 ∈ + (𝑇) by -(𝑇) and 𝑀 𝑧 + (𝑡) can be easily transformed into polynomials 𝑀 𝑧 -(𝑡) and 𝑚 𝑧 𝑁 𝑎𝑛𝑑 𝜆𝑠 ∈ 𝑁, 𝑚 𝑧 applying 𝑡 = 𝑇 𝜆 . Both 𝑀 𝑧 -(𝑇) and 𝑀 𝑧 + (𝑇) have the same leading coefficient 𝑎 𝑦𝑚𝑎𝑥 2 𝑧 4𝑥 𝑦𝑚𝑎𝑥 (ln(𝑧) -
	𝑥 𝑦𝑚𝑎𝑥 ) = 𝑎 𝑦𝑚𝑎𝑥 2		
	lim 𝑡→∞ 𝑚 𝑧 -(𝑡) = +∞ lim 𝑇→∞ 𝑀 𝑧 -(𝑇) = lim 𝑡→∞ 𝑚 𝑧 and -(𝑡) = -∞ and lim 𝑇→∞ 𝑀 𝑧 lim 𝑇→∞ 𝑀 𝑧 + (𝑇) = lim 𝑡→∞ 𝑚 𝑧 + (𝑡) = ∞. + (𝑇) = lim 𝑡→∞ 𝑚 𝑧 + (𝑡) = -∞. ◻ Moreover,	if	𝑥 < 𝑥 𝑦𝑚𝑎𝑥 ,
	Since for large 𝑧 and large 𝑡, 𝑚(𝑧, 𝑡) > 𝑚 -(𝑧, 𝑡) > 0 we obtain the following theorem:		
	Theorem 3. 𝑀(𝑥, 𝑦) = 0 has no infinite branches at infinity.		

From Theorem 2 and Theorem 3, we derived that in the half-plane 𝑡 > 𝑒 𝑦 𝑦𝑚𝑎𝑥 , there is only one implicit function which is living between 𝑚 -(𝑧, 𝑡) = 0 and 𝑚 + (𝑧, 𝑡) = 0. Theorem 4.

Table 1 :

 1 Range of 𝜎 with respect to number of clusters.

  set of points (𝑥 𝑖 , 𝑦 𝑖 ) 𝑖=1..𝑁 lies in a square of side define the center of the square which is 𝐶 = (𝑥 𝑐 , 𝑦 𝑐 ) with 𝑥 𝑐 =

	Proof. To complete this proof, we prove the equivalent property: System (2) {	𝑀(𝑥, 𝑦) = 0 𝐿(𝑥, 𝑦) = 0	has only one
	solution if the 1 √2 .
	First, we 𝑥 𝑚𝑎𝑥 +𝑥 𝑚𝑖𝑛 2	and 𝑦 𝑐 =	𝑦 𝑚𝑎𝑥 +𝑦 𝑚𝑖𝑛 2
	∑ 𝑖=1 𝑁	𝑒	1 -(𝑋-𝑋 𝑖 ) 2 2𝜎 2	∑ ( 𝑁 𝑖=1 𝑋 -𝑋 𝑖 ) 2 𝑒	-(𝑋-𝑋 𝑖 ) 2 2𝜎 2	has only one minimum for
		𝜎 = 𝑚𝑎𝑥(𝑣 𝑚𝑎𝑥 -𝑣 𝑚𝑖𝑛 , 𝑤 𝑚𝑎𝑥 -𝑤 𝑚𝑖𝑛 ).	(16)

  𝛼 𝑖 ) 𝑖=1..𝑁 which satisfies for all 𝑗 > 𝑖, 𝛼 𝑖 > 𝛼 𝑗 . A simple index permutation allows us to order the sequence (𝛼 𝑖 ) 𝑖=1..𝑁 .We know that for all 𝑗 > 𝑖, 𝑐 𝑖,𝑗 (𝛼, 𝛽) = 2𝛼 -𝛼 𝑖 -𝛼 𝑗 + (𝛼 𝑖 -𝛼 𝑗 )[(𝛼 -𝛼 𝑖 ) 2 + (𝛽 -𝛽 𝑖 )2 -(𝛼 -𝛼 𝑗 ) 2 -(𝛽 -𝛽 𝑗 ) 2 ]. From the triangular inequality, we obtain 2𝛼 -𝛼 𝑖 -𝛼 𝑗 -|𝛼 𝑖 -𝛼 𝑗 |[(𝛼 𝑖 -𝛼 𝑗 ) 2 + (𝛽 𝑖 -𝛽 𝑗 ) 2 ] ≤ 𝑐 𝑖,𝑗 (𝛼, 𝛽) and 𝑐 𝑖,𝑗 (𝛼, 𝛽) ≤ 2𝛼 -𝛼 𝑖 -𝛼 𝑗 + |𝛼 𝑖 -𝛼 𝑗 |[(𝛼 𝑖 -𝛼 𝑗 ) 2 + (𝛽 𝑖 -𝛽 𝑗 ) 2 ]Since (𝛼 𝑖 -𝛼 𝑗 ) 2 + (𝛽 𝑖 -𝛽 𝑗 )

	1 2√2 : Without loss of
	generality, we set (

2 

≤ 1, we get 𝑐 𝑖,𝑗 (𝛼, 𝛽) ≥ 2𝛼 -𝛼 𝑖 -𝛼 𝑗 -(𝛼 𝑖 -𝛼 𝑗 ) = 2𝛼 -2𝛼 𝑖 and 𝑐 𝑖,𝑗 (𝛼, 𝛽) ≥ 0. Finally 𝑀 𝐶 (𝛼, 𝛽) > 0 for all 𝛼 > 1 2√2

  𝑥 𝑚𝑎𝑥 -𝑥 𝑚𝑖𝑛 , 𝑦 𝑚𝑎𝑥 -𝑦 𝑚𝑖𝑛 ), theorem 8 guarantees that the system governed by

	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦,	𝐿 𝐵(𝛼) (𝑥, 𝑦) = ∑ (	𝑦 -𝑦 𝑖 )𝐾 𝑖 2 +	∑	𝑑 𝑖𝑗	𝐾 𝑖 𝐾 𝑗	(21)
						𝑖∈𝐵(𝛼)		𝑖<𝑗,𝑖∈𝐵(𝛼),𝑗∈𝐵(𝛼)
	By setting 𝜎 = 𝑚𝑎𝑥({ 1 𝑘 𝑀 𝐵(𝛼) (𝑥, 𝑦) = 0 𝐿 𝐵(𝛼) (𝑥, 𝑦) = 0 has exactly one minimum (𝑥 𝐵(𝛼) , 𝑦 𝐵(𝛼) ).
	Therefore, 𝑀(𝑥, 𝑦) = ∑	𝛼∈𝑅	𝑀 𝐵(𝛼)	+ ∑	𝑖<𝑗,𝑗∉𝐵(𝑖)	𝑐 𝑖𝑗	𝐾 𝑖 𝐾 𝑗 and we approximate 𝑀(𝑥, 𝑦) by
	𝑀 𝐵𝑙𝑠 (𝑥, 𝑦) = ∑ 𝑝 𝐵(𝛼)	(𝑥 -𝑥 𝐵(𝛼) )𝐾 𝐵(𝛼) 2	+	∑	𝑝 𝐵(𝛼)	𝑝 𝐵(𝛽) 𝑐 𝐵(𝛼)𝐵(𝛽) 𝐾 𝐵(𝛼) 𝐾 𝐵(𝛽) (22)
	𝛼							𝑘∈𝑅,𝑙∈𝑅,𝛼<𝛽
	where 𝑝 𝐵(𝛼) corresponds to the number of particles inside 𝐵(𝛼). Equivalently, we approximate 𝐿(𝑥, 𝑦) by
	𝐿 𝐵𝑙𝑠 (𝑥, 𝑦) to obtain the block-system { 𝑀 𝐵𝑙𝑠 = 0 𝐿 𝐵𝑙𝑠 = 0 exponential polynomials and 𝑘 2 << 𝑁.	. 𝑀 𝐵𝑙𝑠 and 𝐿 𝐵𝑙𝑠 are now sums of at most	𝑘 2 (𝑘 2 +1) 2
						𝑥 -𝑥 𝑖 )𝐾 𝑖 2 +	∑	𝑐 𝑖𝑗	𝐾 𝑖 𝐾 𝑗	(20)
				𝑖∈𝐵(𝛼)			𝑖<𝑗; 𝑖∈𝐵(𝛼),𝑗∈𝐵(𝛼)

Table 2 :

 2 Comparison of the minima and the clusters using the block method and the direct method.

The approach used here is potentially useful for other types of exponential polynomials found in numerous Physical applications such as, for example, quantum mechanical diffusion Monte-Carlo calculations, where a precise knowledge of the nodal lines ensures accurate energy eigenvalues.