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ABSTRACT 

Quantum clustering (QC), is a data clustering algorithm based on quantum mechanics which is accomplished by 

substituting each point in a given dataset with a Gaussian. The width of the Gaussian is a 𝜎 value, a hyper-parameter 

which can be manually defined and manipulated to suit the application. Numerical methods are used to find all the 

minima of the quantum potential as they correspond to cluster centers. Herein, we investigate the mathematical task 

of expressing and finding all the roots of the exponential polynomial corresponding to the minima of a two-

dimensional quantum potential. This is an outstanding task because normally such expressions are impossible to 

solve analytically. However, we prove that if the points are all included in a square region of size 𝜎, there is only one 

minimum. This bound is not only useful in the number of solutions to look for, by numerical means, it allows to to 

propose a new numerical approach “per block”. This technique decreases the number of particles by approximating 

some groups of particles to weighted particles. These findings are not only useful to the quantum clustering problem 

but also for the exponential polynomials encountered in quantum chemistry, Solid-state Physics and other 

applications. 
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1. INTRODUCTION 

The primary motivation for this work stems from an important component of the area of information 

retrieval of the IT industry, namely data clustering. For any data of a scientific nature such as Particle 

Physics, pharmaceutical data, or data related to the internet, security or wireless communications, there is a 

growing need for data analysis and predictive analytics. Researchers regularly encounter limitations due to 

large datasets in complex simulations, in particular, biological and environmental research. One of the 

biggest problems of data analysis is data with no known a priori structure, the case of “unsupervised data” 

in the jargon of machine learning. This is especially germane to object or name disambiguation also called 

the “John Smith” problem [1]. Therefore data clustering, which seeks to find internal classes or structures 

within the data, is one of most difficult yet needed implementations. 

It has been shown that the quantum clustering method (QC) [2] [3] can naturally cluster data originating 

from a number of sources whether they be: scientific (natural), engineering and even text. In particular, it is 

more stable and is often more accurate than the standard data clustering method known as K-means [3]. 

This method requires isolating the minima of a quantum potential and is equivalent to finding the roots of 
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its gradients i.e. an expression made of exponential polynomials. Finding all the clusters within the data 

means finding all the potential minima. The quantum clustering method can be viewed as “dual” or inverse 

operation of the machine learning process known as a nonlinear support vector machines when using 

Gaussian functions are used as its kernel function; this machine learning approach being the very inspiration 

of the quantum clustering method [4]. 

This is not the only problem in quantum mechanics requiring such solutions. The nodal lines of any given 

wave function characterize it with respect to internal symmetries and level of excitation. In general, if one 

arranges the eigenstates in the order of increasing energies, e.g. 𝜖1 ,𝜖2 , 𝜖3, …the eigenfunctions likewise 

fall in the order of increasing number of nodes; the 𝑛𝑡ℎ eigenfunction has 𝑛 − 1 nodes, between each of 

which the following eigenfunctions have at least one node [5]. In diffusion Monte-Carlo calculations for 

Molecules, a precise determination of the nodal structure of wave function yields greater accuracy for the 

energy eigenvalues [6] [7] [8]. Furthermore, solutions in terms of Gaussian functions involve the most 

developed mathematical “technology” of quantum chemistry (e.g. The Gaussian program [9]). This is not 

surprising for the following reasons: 

1. In principle, we can get all the roots of polynomial systems. However, quantum mechanical systems 

need exponentials in order to ensure a square-integrable wave function over all space. About an atom, 

the angular components over a range (0,2𝜋) can be modeled in terms of polynomials of trigonometric 

quantities such as e.g. Legendre polynomials. However, the radial part extends over all space requiring 

exponential apodization. 

2. Thanks to properties such as the Gaussian product theorem, Gaussian functions allow for exact 

analytical solutions of the molecular integrals of quantum chemistry [10] [11] [12]. 

3. In general, for small atoms and molecules, the nodal lines can be modeled as nodes of polynomial 

exponentials [13] [14] [15]. 

More recently, in the area of low temperature Physics (including superconductors), clustering within 

machine learning has been used in finding phases and separating the data into particular topological sectors 

[16] [17] [18]. High accuracy of the clustering is crucial in order to precisely identify transition points in 

terms of e.g. temperature or pressure. 

To reiterate, any insight concerning the isolation of all the roots or nodal lines of polynomial exponentials 

is useful for quantum clustering and computational quantum chemistry and condensed matter Physics and 

data analysis. This has applications in all cases for any given function covering all space in principle but 

whose extrema and/or roots are in a finite local region of space. 

1.1 Statement of the Problem 

Consider a set of particles (𝑋𝑖)𝑖=1..𝑁, the quantum clustering is a process that detects the clusters of the 

distributed set (𝑋𝑖)𝑖=1..𝑁 by finding the cluster centers. Those centers are the minima of the potential energy 

function defined by [2] [3]: 
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such that 𝑋 ∈ 𝑅2. This function results from injecting a Parzen window into the Schrödinger wave equation 

[2] [3] and balancing the resulting energy. Other methods based on energy variation may also be instructive 

[19]. The minima of this potential provides the cluster centers for a given standard deviation 𝜎. As stated 

before, we limit ourselves to two dimensions. This method is more stable and precise than the standard K-

means method [3]. 



Moreover, and in contradistinction to other data clustering methods, the determination of the parameter 𝜎 

gives a number of extrema. The number of minima is not determined beforehand but obtained numerically. 

One main difficulty is to determine the minima of the potential energy. Nowadays, the technique used to 

approach the minima is through the gradient descent or the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

algorithms [3]. Some investigations have been made to improve the detection of clusters via the potential 

energy function. For instance, in 2018, Decheng et al. [20] improved the quantum clustering analysis by 

developing a new weighted distance once a minimum had been found. Improvements are needed to capture 

all the minima efficiently. 

The present work consists, as shown in Subsection 2.1, in simplifying the derivatives of the potential energy 

function such that the minima can be determined by some solution of a system of equations. Finding the 

extrema (minima, maxima and saddle points) of the function (1) is equivalent to solving a system 

{
𝑀(𝑥, 𝑦) = 0

𝐿(𝑥, 𝑦) = 0
                     (2) 

where 𝑀(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) are bivariate exponential functions which can be expressed as polynomial in 𝑥, 

𝑒𝑥, 𝑦 and 𝑒𝑦. In this scenario, the degrees of 𝑀 and 𝐿 in 𝑥 (respectively in 𝑦) are one. In Subsection 2.2, 

the implicit functions of 𝑀 = 0 and 𝐿 = 0 are investigated and the on going Crab example is presented 

Subsection 2.3. Section 3, the case 𝑁 = 2 is formally solved and a new block approach is presented in 

Section 4. The aim of this new method is to reduce memory and computation costs. The main formal result 

is given in Subsection 4.1. We prove that the function (1) has only one minimum if the set of particles 

(𝑋𝑖)𝑖=1..𝑁 are all included in a square of side 𝜎. Then, we propose a method based on this result and a block 

approach to capture all the minima in a more efficient way. The presentation of benchmarks closed Section 

4. Finally, we conclude Section 5. 

2. PROBLEM REDUCTION AND FIRST ANALYSIS 

In this section, we transform the minimization problem of the potential energy function (1) to the resolution 

of a system of two equations in two variables and 2𝑁 parameters, namely the particles coordinates 

(𝑋𝑖)𝑖=1..𝑁. 

2.1 Problem reduction 

It is known that the value of 𝜎 has a crucial role on the number of minima: the greater the value of 𝜎, the 

smaller the number of minima. To simplify the potential energy function, we denote 𝑌 =
𝑋

√2𝜎
. This variable 

change remove 𝜎 from the function. Discussion of 𝜎 will be presented at the end of this section. 

We get 
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where for all 𝑖, 𝑌𝑖 =
𝑋𝑖

√2𝜎
. We denote this function ℎ(𝑌). 

Theorem 1.  The extrema 𝑌 = (𝑥, 𝑦) of function 
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satisfy the system of the following two bivariate functions: 

{
𝑀(𝑥, 𝑦) = 0

𝐿(𝑥, 𝑦) = 0
                    (5) 

with 𝑌𝑖 = (𝑥𝑖 , 𝑦𝑖) for all 𝑖 = 1. . 𝑁 and 

𝑀(𝑥, 𝑦) = ∑𝑒−2𝑥𝑖
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 (7) 

 

Remark: We will also use the shortest expression: 

𝑀(𝑥, 𝑦) =∑(
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2
𝑒2(𝑥𝑖+𝑥𝑗)𝑥, and for all 𝑖, 𝑗, 𝑖 < 𝑗, 𝑐𝑖𝑗 = (2𝑥 − 𝑥𝑖 − 𝑥𝑗)(1 − (𝑥𝑖 − 𝑥𝑗)

2) − (𝑥𝑖 −

𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)(2𝑦 − 𝑦𝑖 − 𝑦𝑗) and 𝑑𝑖𝑗 = (2𝑦 − 𝑦𝑖 − 𝑦𝑗)(1 − (𝑦𝑖 − 𝑦𝑗)
2) − (𝑦𝑖 − 𝑦𝑗)(𝑥𝑖 − 𝑥𝑗)(2𝑥 − 𝑥𝑖 −

𝑥𝑗). 
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Since 𝑌 ∈ 𝑅2, 𝑌 is denoted 𝑌 = (𝑥, 𝑦), then 𝑓 and 𝑔 can also be written as 
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by denoting 𝑌𝑖 = (𝑥𝑖 , 𝑦𝑖). The extrema of ℎ(𝑥, 𝑦) satisfy the system {

𝜕ℎ(𝑥,𝑦)

𝜕𝑥
= 0

𝜕ℎ(𝑥,𝑦)

𝜕𝑦
= 0

 which is equivalent to: 

{

𝜕𝑓(𝑥,𝑦)

𝜕𝑥
𝑔(𝑥, 𝑦) −

𝜕𝑔(𝑥,𝑦)

𝜕𝑥
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𝜕𝑦
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  since 𝑔(𝑥, 𝑦) ≠ 0 everywhere. 

The formal computation of the equations of the last system gives expressions which can be divided by 

2𝑒−𝑥
2−𝑦2. We finally obtain Theorem (1). 
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We have for all 𝑖, 𝑗, 𝑖 ≠ 𝑗, 

𝑐𝑖,𝑗(𝑥, 𝑦) = 2𝑥 − 𝑥𝑖 − 𝑥𝑗 + (𝑥𝑖 − 𝑥𝑗)[(𝑥 − 𝑥𝑖)
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By dividing this result by 2𝑒−𝑥
2−𝑦2, we obtain 
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Proceeding in the same way on the equation (𝐿2), we find that finding the extrema of Function (1) is 

equivalent to solve the system {
𝑀(𝑥, 𝑦) = ∑ (𝑁

𝑖=1 𝑥 − 𝑥𝑖)𝐾𝑖
2 +∑ 𝑐𝑖𝑗𝑖<𝑗 𝐾𝑖𝐾𝑗 = 0

𝐿(𝑥, 𝑦) = ∑ (𝑁
𝑖=1 𝑦 − 𝑦𝑖)𝐾𝑖

2 + ∑ 𝑑𝑖𝑗𝑖<𝑗 𝐾𝑖𝐾𝑗 = 0
 

with 𝑑𝑖𝑗 = (2𝑦 − 𝑦𝑖 − 𝑦𝑗)(1 − (𝑦𝑖 − 𝑦𝑗)
2) − (𝑦𝑖 − 𝑦𝑗)(𝑥𝑖 − 𝑥𝑗)(2𝑥 − 𝑥𝑖 − 𝑥𝑗) ◻ 

2.2 Cylindrical decomposition 

For a given set of particles (𝑌𝑖)𝑖=1..𝑁 = (𝑥𝑖 , 𝑦𝑖)𝑖=1..𝑁, the solutions of System (2) correspond to the 

intersection between the implicit functions of 𝑀(𝑥, 𝑦) = 0 and those of 𝐿(𝑥, 𝑦) = 0 (see Figure 1 for the 

example of crab with 𝑁 = 200). Let us denote 𝑦𝑚𝑎𝑥 (resp. 𝑥𝑚𝑎𝑥) the index the greatest element of 

(𝑦𝑖)𝑖=1..𝑁 (resp. (𝑥𝑖)𝑖=1..𝑁) such that ∀𝑖 ∈ {1,… ,𝑁} − {𝑦𝑚𝑎𝑥} 𝑦𝑦𝑚𝑎𝑥 > 𝑦𝑖. In the same way, we denote 

𝑦𝑚𝑖𝑛 (resp. 𝑥𝑚𝑖𝑛) the index the smallest element of (𝑦𝑖)𝑖=1..𝑁 (resp. (𝑥𝑖)𝑖=1..𝑁) such that ∀𝑖 ∈ {1, … , 𝑁} −
{𝑦𝑚𝑖𝑛} 𝑦𝑦𝑚𝑖𝑛 < 𝑦𝑖. We have the following results: 

• The infinite branches of the implicit functions of 𝑀(𝑥, 𝑦) tends to 𝑥𝑦𝑚𝑖𝑛 at −∞ and 𝑥𝑦𝑚𝑎𝑥  at +∞ 

• The infinite branches of the implicit functions of 𝐿(𝑥, 𝑦) tends to 𝑦𝑦𝑚𝑖𝑛 at −∞ and 𝑦𝑦𝑚𝑎𝑥  at +∞ 

The remainder of this subsection will display three useful lemmas, then, the proof of the stated results will 

be presented. 

Lemma 1.  Let 𝑞(𝑥, 𝑦) be a real bivariate function in 𝑥 and 𝑦 which can be expressed as a polynomial in 

the variable 𝑦 such that 𝑞(𝑥, 𝑦) = ∑ 𝑎𝑖
𝑑
𝑖=0 (𝑥)𝑦𝑖 with 𝑑 = 𝑑𝑒𝑔𝑦(𝑞). Let us denote 𝑦 = 𝛷(𝑥) as an implicit 

function defined by 𝑞(𝑥, 𝑦) = 0. If there exists a real 𝑥∗ such that lim𝑥→𝑥∗𝛷(𝑥) = ±∞ then 𝑎𝑑(𝑥
∗) = 0. 

This lemma is an application of Cauchy’s bound and some details are given in Ref. [21]. It also gives the 

following symmetric lemma: 



Lemma 2.  Let 𝑞(𝑥, 𝑦) be a real bivariate function in 𝑥 and 𝑦 which can be expressed as a polynomial in 

the variable 𝑥 such that 𝑞(𝑥, 𝑦) = ∑ 𝑏𝑖
𝑚
𝑖=0 (𝑦)𝑥𝑖  with 𝑚 = 𝑑𝑒𝑔𝑥(𝑞). The finite limits at ∞ of the implicit 

functions of 𝑝(𝑥, 𝑦) = 0 are contained in the solutions of the equation 𝑏𝑚(𝑦) = 0. 

Finally, the third lemma is more known (see e.g. Ref. [23] for the proof) which states that 

Lemma 3.  ∀𝑠 ∈ 𝑅+∗,  ln𝑥 ≤
𝑥𝑠

𝑠
. 

We consider the implicit functions of the equation 𝑀(𝑥, 𝑦) = 0. We now prove the following theorem: 

Theorem 2.  Let (𝑥𝑖)𝑖=1...𝑁 and (𝑦𝑖)𝑖=1...𝑁 be the sequences defining 𝑀(𝑥, 𝑦) = 0. Assume that the greatest 

element of (𝑦𝑖)𝑖=1...𝑁 is reached in a value named 𝑦𝑚𝑎𝑥 such that ∀𝑖 ∈ {1,… ,𝑁} − {𝑦𝑚𝑎𝑥} 𝑦𝑦𝑚𝑎𝑥 > 𝑦𝑖. 

Then there exists an implicit function of 𝑀(𝑥, 𝑦) = 0 named 𝑥 = 𝛷(𝑦) such that 𝑙𝑖𝑚𝑦→∞𝛷(𝑦) = 𝑥𝑦𝑚𝑎𝑥 . 

𝑥𝑦𝑚𝑎𝑥  is a finite limit at +∞.  

Proof. Let us proceed to the variable changes 𝑧 = 𝑒𝑥 and 𝑡 = 𝑒𝑦 on 𝑀(𝑥, 𝑦). By denoting 𝑎𝑖 = 𝑒−𝑥𝑖
2−𝑦𝑖

2
, 

we obtain 𝑚(𝑧, 𝑡) = ∑ 𝑎𝑖
2𝑁

𝑖=1 𝑧4𝑥𝑖𝑡4𝑦𝑖(ln(𝑧) − 𝑥𝑖) + ∑ ∑ 𝑎𝑖
𝑁
𝑗>𝑖

𝑁
𝑖=1 𝑎𝑗𝑧

2(𝑥𝑖+𝑥𝑗)𝑡2(𝑦𝑖+𝑦𝑗) [(2ln(𝑧) − 𝑥𝑖 −

𝑥𝑗)(1 − (𝑥𝑖 − 𝑥𝑗)
2) − (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)(2ln(𝑡) − 𝑦𝑖 − 𝑦𝑗)] 

𝑚(𝑧, 𝑡) is a function of two variables 𝑧 and 𝑡. Moreover, this function can also be viewed as a univariate 

function of the variable 𝑡 with a parameter 𝑧. In that case, it will be denoted 𝑚𝑧(𝑡). This rule of notation 

holds for other functions derived from this proof. 

This proof is constructed as follows: Firstly, two univariate polynomials in 𝑡 named 𝑚𝑧
−(𝑡) and 𝑚𝑧

+(𝑡) are 

created such that 𝑚𝑧
−(𝑡) ≤ 𝑚𝑧(𝑡) ≤ 𝑚𝑧

+(𝑡). 

Then, we will prove that 𝑚−(𝑧, 𝑡) = 0 and 𝑚+(𝑧, 𝑡) = 0 have the same finite limit in 𝑥 when 𝑦 tends to 

infinity. Finally, we prove that it is the same for 𝑚𝑧(𝑡) = 0. 

𝑚𝑧(𝑡) bounds:  

We define the condition 𝐶𝑖𝑗 to be (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) > 0. Let us consider a real 𝑠 such that 0 < 𝑠 ≤

𝑚𝑖𝑛(|𝑦𝑦𝑚𝑎𝑥 − 𝑦𝑗|), and for 𝑦 > 𝑚𝑎𝑥(0, 𝑦𝑦𝑚𝑎𝑥), lemma 3 gives max(0, 𝑦𝑦𝑚𝑎𝑥) ≤ ln(𝑡) ≤
𝑡𝑠

𝑠
. 

Thus, when the condition 𝐶𝑖𝑗 holds, 2(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)max(0, 𝑦𝑦𝑚𝑎𝑥) ≤ 2(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)ln(𝑡) ≤

2(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)
𝑡𝑠

𝑠
, whereas when ¬𝐶𝑖𝑗 holds, 2(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)max(0, 𝑦𝑦𝑚𝑎𝑥) ≥ 2(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 −

𝑦𝑗)ln(𝑡) ≥ 2(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)
𝑡𝑠

𝑠
. 

Thanks to the 𝐶𝑖𝑗 condition, 𝑚𝑧(𝑡) is decomposed into: 

∑𝑎𝑖
2

𝑁

𝑖=1

𝑧4𝑥𝑖𝑡4𝑦𝑖(ln(𝑧) − 𝑥𝑖) +∑∑𝑎𝑖

𝑁

𝑗>𝑖

𝑁

𝑖=1

𝑎𝑗𝑧
2(𝑥𝑖+𝑥𝑗)𝑡2(𝑦𝑖+𝑦𝑗)[(2ln(𝑧) − 𝑥𝑖 − 𝑥𝑗)(1 − (𝑥𝑖 − 𝑥𝑗)

2) + (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)(𝑦𝑖 + 𝑦𝑗)]

−2∑ ∑ 𝑎𝑖

𝑁

𝑗>𝑖,𝐶𝑖𝑗

𝑁

𝑖=1

𝑎𝑗𝑧
2(𝑥𝑖+𝑥𝑗)𝑡2(𝑦𝑖+𝑦𝑗)(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)ln(𝑡) − 2∑ ∑ 𝑎𝑖

𝑁

𝑗>𝑖,¬𝐶𝑖𝑗

𝑁

𝑖=1

𝑎𝑗𝑧
2(𝑥𝑖+𝑥𝑗)𝑡2(𝑦𝑖+𝑦𝑗)(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)ln(𝑡)

 

and we then construct the polynomials 𝑚𝑧
−(𝑡) and 𝑚𝑧

+(𝑡) to be respectively: 𝑚𝑧
−(𝑡) = 



∑𝑎𝑖
2

𝑁

𝑖=1

𝑧4𝑥𝑖𝑡4𝑦𝑖(ln(𝑧) − 𝑥𝑖) + ∑∑𝑎𝑖

𝑁

𝑗>𝑖

𝑁

𝑖=1

𝑎𝑗𝑧
2(𝑥𝑖+𝑥𝑗)𝑡2(𝑦𝑖+𝑦𝑗)[(2ln(𝑧) − 𝑥𝑖 − 𝑥𝑗)(1 − (𝑥𝑖 − 𝑥𝑗)

2) + (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)(𝑦𝑖 + 𝑦𝑗)]

−2
𝑡𝑠

𝑠
∑ ∑ 𝑎𝑖

𝑁

𝑗>𝑖,𝐶𝑖𝑗

𝑁

𝑖=1

𝑎𝑗𝑧
2(𝑥𝑖+𝑥𝑗)𝑡2(𝑦𝑖+𝑦𝑗)(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) − 2max(0, 𝑦𝑦𝑚𝑎𝑥)∑ ∑ 𝑎𝑖

𝑁

𝑗>𝑖,¬𝐶𝑖𝑗

𝑁

𝑖=1

𝑎𝑗𝑧
2(𝑥𝑖+𝑥𝑗)𝑡2(𝑦𝑖+𝑦𝑗)(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)

 

𝑎𝑛𝑑 𝑚𝑧
+(𝑡) =

∑𝑎𝑖
2

𝑁

𝑖=1

𝑧4𝑥𝑖𝑡4𝑦𝑖(ln(𝑧) − 𝑥𝑖) +∑∑𝑎𝑖

𝑁

𝑗>𝑖

𝑁

𝑖=1

𝑎𝑗𝑧
2(𝑥𝑖+𝑥𝑗)𝑡2(𝑦𝑖+𝑦𝑗)[(2ln(𝑧) − 𝑥𝑖 − 𝑥𝑗)(1 − (𝑥𝑖 − 𝑥𝑗)

2) + (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)(𝑦𝑖 + 𝑦𝑗)]

−2max(0, 𝑦𝑦𝑚𝑎𝑥)∑ ∑ 𝑎𝑖

𝑁

𝑗>𝑖,𝐶𝑖𝑗

𝑁

𝑖=1

𝑎𝑗𝑧
2(𝑥𝑖+𝑥𝑗)𝑡2(𝑦𝑖+𝑦𝑗)(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗) − 2

𝑡𝑠

𝑠
∑ ∑ 𝑎𝑖

𝑁

𝑗>𝑖,¬𝐶𝑖𝑗

𝑁

𝑖=1

𝑎𝑗𝑧
2(𝑥𝑖+𝑥𝑗)𝑡2(𝑦𝑖+𝑦𝑗)(𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)

 

We obtain that, if 𝑦 > max(0, 𝑦𝑦𝑚𝑎𝑥), then 𝑚𝑧
−(𝑡) < 𝑚𝑧(𝑡) < 𝑚𝑧

+(𝑡). 

Finite limits: Let us denote 𝑦𝑚𝑎𝑥 the index such that  ∀𝑖 ∈ {1, … , 𝑁} − {𝑦𝑚𝑎𝑥}, 𝑦𝑦𝑚𝑎𝑥 > 𝑦𝑖. 

For 𝑦 > max(0, 𝑦𝑦𝑚𝑎𝑥) ⇔ 𝑡 > max(1, 𝑒𝑦𝑦𝑚𝑎𝑥), 𝑚𝑧
−(𝑡) and 𝑚𝑧

+(𝑡) are constructed such that there exists at 

least one implicit function of 𝑚(𝑧, 𝑡) = 0 between one implicit function of 𝑚−(𝑧, 𝑡) = 0 and 𝑚+(𝑧, 𝑡) = 0. 

Moreover 𝑚𝑧
−(𝑡) and 𝑚𝑧

+(𝑡) are polynomials having the same leading coefficient 

𝑎𝑦𝑚𝑎𝑥
2 𝑧4𝑥𝑦𝑚𝑎𝑥(ln(𝑧) − 𝑥𝑦𝑚𝑎𝑥) = 𝑎𝑦𝑚𝑎𝑥

2 𝑒4𝑥𝑦𝑚𝑎𝑥𝑥(𝑥 − 𝑥𝑦𝑚𝑎𝑥). 

Lemma 2 tells us that the finite limits at +∞ of the implicit functions of 𝑚−(𝑧, 𝑡) and 𝑚+(𝑧, 𝑡) are contained 

in the solutions of the equation 𝑎𝑦𝑚𝑎𝑥
2 𝑧4𝑥𝑦𝑚𝑎𝑥(ln(𝑧) − 𝑥𝑦𝑚𝑎𝑥) = 0 which is equivalent to the equation 𝑥 −

𝑥𝑦𝑚𝑎𝑥 = 0. 

If 𝑥 > 𝑥𝑦𝑚𝑎𝑥, lim𝑡→∞𝑚𝑧
−(𝑡) = +∞ and lim𝑡→∞𝑚𝑧

+(𝑡) = ∞. Moreover if 𝑥 < 𝑥𝑦𝑚𝑎𝑥 , lim𝑡→∞𝑚𝑧
−(𝑡) =

−∞ and lim𝑡→∞𝑚𝑧
+(𝑡) = −∞. Hence there exists an implicit function 𝑥 = 𝛷−(𝑦) defined by 𝑚−(𝑧, 𝑡) = 0 

and there exists an implicit function 𝑧 = 𝛷+(𝑡) defined by 𝑚+(𝑧, 𝑡) = 0 such that 𝑙𝑖𝑚𝑡→∞𝛷
−(𝑡) = 𝑒𝑥𝑦𝑚𝑎𝑥 

and 𝑙𝑖𝑚𝑡→∞𝛷
−(𝑡) = 𝑒𝑥𝑦𝑚𝑎𝑥. We conclude that 𝑙𝑖𝑚𝑡→∞𝛷(𝑡) = 𝑒

𝑥𝑦𝑚𝑎𝑥 and 𝑀(𝑥, 𝑦) = 0 admit 𝑥𝑦𝑚𝑎𝑥 has 

a finite limit at infinity. 

Remark: If (𝑦𝑖) are not integers but are instead rational, it is easy to find 𝜆 such that ∀𝑖 ∈ [1,𝑁], 𝜆𝑦𝑖 ∈
𝑁 𝑎𝑛𝑑 𝜆𝑠 ∈ 𝑁, 𝑚𝑧

−(𝑡) and 𝑚𝑧
+(𝑡) can be easily transformed into polynomials 𝑀𝑧

−(𝑇) and 𝑀𝑧
+(𝑇) by 

applying 𝑡 = 𝑇𝜆. Both 𝑀𝑧
−(𝑇) and 𝑀𝑧

+(𝑇) have the same leading coefficient 𝑎𝑦𝑚𝑎𝑥
2 𝑧4𝑥𝑦𝑚𝑎𝑥(ln(𝑧) −

𝑥𝑦𝑚𝑎𝑥) = 𝑎𝑦𝑚𝑎𝑥
2 𝑒4𝑥𝑦𝑚𝑎𝑥𝑥(𝑥 − 𝑥𝑦𝑚𝑎𝑥). By means of lemma 2, the finite limits at +∞ of the implicit 

functions are contained in the solutions of the equation 𝑥 − 𝑥𝑦𝑚𝑎𝑥 = 0. if 𝑥 > 𝑥𝑦𝑚𝑎𝑥 , lim𝑇→∞𝑀𝑧
−(𝑇) =

lim𝑡→∞𝑚𝑧
−(𝑡) = +∞ and lim𝑇→∞𝑀𝑧

+(𝑇) = lim𝑡→∞𝑚𝑧
+(𝑡) = ∞. Moreover, if 𝑥 < 𝑥𝑦𝑚𝑎𝑥 , 

lim𝑇→∞𝑀𝑧
−(𝑇) = lim𝑡→∞𝑚𝑧

−(𝑡) = −∞ and lim𝑇→∞𝑀𝑧
+(𝑇) = lim𝑡→∞𝑚𝑧

+(𝑡) = −∞. ◻ 

Since for large 𝑧 and large 𝑡, 𝑚(𝑧, 𝑡) > 𝑚−(𝑧, 𝑡) > 0 we obtain the following theorem: 

Theorem 3.  𝑀(𝑥, 𝑦) = 0 has no infinite branches at infinity. 

From Theorem 2 and Theorem 3, we derived that in the half-plane 𝑡 > 𝑒𝑦𝑦𝑚𝑎𝑥, there is only one implicit 

function which is living between 𝑚−(𝑧, 𝑡) = 0 and 𝑚+(𝑧, 𝑡) = 0. 



Theorem 4.  Let (𝑥𝑖)𝑖=1...𝑁 and (𝑦𝑖)𝑖=1...𝑁 the sequences defining 𝑀(𝑥, 𝑦) = 0. Assume that the smallest 

element of (𝑦𝑖)𝑖=1...𝑁 is reached in an index value named 𝑦𝑚𝑖𝑛 such that ∀𝑖 ∈ {1,… ,𝑁} − {𝑦𝑚𝑖𝑛} 𝑦𝑦𝑚𝑖𝑛 <

𝑦𝑖. Then there exists an implicit function of 𝑀(𝑥, 𝑦) = 0 named 𝑥 = 𝛷(𝑦) such that 𝑙𝑖𝑚𝑦→−∞𝛷(𝑦) =

𝑥𝑦𝑚𝑖𝑛. 𝑥𝑦𝑚𝑖𝑛  is a finite limit at −∞. 

Theorem 4 can be proven in a manner similar to that of theorem 2 with the variable change 𝑡 = 𝑒−𝑦. 

Equivalent results can be obtained for the equation 𝐿(𝑥, 𝑦) = 0 

Theorem 5.  Let (𝑥𝑖)𝑖=1...𝑁 and (𝑦𝑖)𝑖=1...𝑁 the sequences defining 𝐿(𝑥, 𝑦) = 0. Assume that the greatest 

element of (𝑥𝑖)𝑖=1...𝑁 is reached in a index named 𝑥𝑚𝑎𝑥 such that ∀𝑖 ∈ {1,… ,𝑁} − {𝑥𝑚𝑎𝑥} 𝑥𝑥𝑚𝑎𝑥 > 𝑥𝑖 . 
Then there exists an implicit function of 𝐿(𝑥, 𝑦) = 0 named 𝑦 = 𝛷(𝑥) such that 𝑙𝑖𝑚𝑦𝑥→∞𝛷(𝑥) = 𝑦𝑥𝑚𝑎𝑥.  

Theorem 6.  Let (𝑥𝑖)𝑖=1...𝑁 and (𝑦𝑖)𝑖=1...𝑁 the sequences defining 𝐿(𝑥, 𝑦) = 0. Assume that the smallest 

element of (𝑥𝑖)𝑖=1...𝑁 is reached in a index named 𝑥𝑚𝑖𝑛 such that ∀𝑖 ∈ {1, … , 𝑁} − {𝑥𝑚𝑖𝑛} 𝑥𝑥𝑚𝑖𝑛 < 𝑥𝑖. 
Then there exists an implicit function of 𝐿(𝑥, 𝑦) = 0 named 𝑦 = 𝛷(𝑥) such that 𝑙𝑖𝑚𝑥→−∞𝛷(𝑥) = 𝑦𝑥𝑚𝑖𝑛. 

𝑦𝑥𝑚𝑖𝑛 is a finite limit at −∞. 

Again 𝐿(𝑥, 𝑦) = 0 has no infinite branches at infinity. 

2.3 Crab example 

To illustrate our results, we use the crab data clustering example [3] using the dataset from Refs. [24] [25]. 

This two dimensional case has been presented in Refs. [2] [3]. This example is composed of four classes at 

50 samples each, making a total of 200 samples i.e. particles and by taking 𝜎 = 0.05, we obtain, after the 

variable change described in Section 2, a set of particles for which the 𝑥 and 𝑦 coordinates (𝑥𝑖)𝑖=1..200 and 

(𝑦𝑖)𝑖=1..200 satisfy 𝑥𝑚𝑖𝑛 = 150, 𝑥𝑚𝑎𝑥 = 65, 𝑦𝑥𝑚𝑎𝑥 = −0.3190, 𝑦𝑥𝑚𝑖𝑛 = 0.3640, 𝑦𝑚𝑖𝑛 = 35, 𝑦𝑚𝑎𝑥 =
105, 𝑥𝑦𝑚𝑎𝑥 = 0.0038,𝑥𝑦𝑚𝑖𝑛 = −0.7941. The curve 𝑀(𝑥, 𝑦) = 0 is shown, Figure 1 (a) and (b), in red and 

the curve 𝐿(𝑥, 𝑦) = 0 is shown in green. The intersection between the red and the green curves corresponds 

to the extrema of ℎ. 

 

Figure 1: Crab example with 𝜎 = 0.05: (a) the set of points (𝑥, 𝑦)𝑖, and the implicit curves of 𝑀(𝑥, 𝑦) = 0 and 

𝐿(𝑥, 𝑦) = 0. (b) the limits of implicit curves.(c) Crab clusters produced by using the minimum Euclidean distance 

from the minima (𝜎 = 0.05) 

Using the Maple computer algebra system [26], we obtain one maximum, four minima and four saddle 

points. The clusters produced by using the minimum Euclidean distance from the minima are shown 

Figure 1 (c). For larger 𝜎, the number of solutions decreases and hence, a coarser clustering is found. A 

deeper analysis is provided by Table 1. It gives for some 𝜎 ranges the resulting number of clusters. It 

shows that the non trivial number of clusters is more likely 4 because the corresponding 𝜎 range is the 

widest. 



 

Table 1: Range of 𝜎 with respect to number of clusters. 

This first example of 200 samples can be fully solved numerically but the corresponding function 𝑀(𝑥, 𝑦) 
and 𝐿(𝑥, 𝑦) are sums of 20100 monomials in 𝑥, 𝑦, 𝑒𝑥 and 𝑒𝑦. The size of 𝑀 and 𝐿 is an issue and the aim 

of the following section is to reduce the size of 𝑀 and 𝐿 while maintaining a good approximation of minima. 

3. THE CASE N=2 

In this section we present the case where 𝑁 = 2. The potential energy function becomes 

1

2𝜎2
1

𝑒
−
(𝑋−𝑋1)2

2𝜎2 + 𝑒
−
(𝑋−𝑋2)2

2𝜎2

((𝑋 − 𝑋1)
2𝑒

−
(𝑋−𝑋1)

2

2𝜎2 + (𝑋 − 𝑋2)
2𝑒

−
(𝑋−𝑋2)

2

2𝜎2 )           (11) 

The minimization problem is then reduced to the resolution of the System (12) defined by 

{
 
 

 
 𝑎1

2𝑒4𝑥1𝑥+4𝑦1𝑦(𝑥 − 𝑥1) + 𝑎2
2𝑒4𝑥2𝑥+4𝑦2𝑦(𝑥 − 𝑥2)

+𝑎1𝑎2𝑒
2(𝑥1+𝑥2)𝑥+2(𝑦1+𝑦2)𝑦[(2𝑥 − 𝑥1 − 𝑥2)(1 − (𝑥1 − 𝑥2)

2) − (𝑥1 − 𝑥2)(𝑦1 − 𝑦2)(2𝑦 − 𝑦1 − 𝑦2)] = 0

𝑎1
2𝑒4𝑥1𝑥+4𝑦1𝑦(𝑦 − 𝑦1) + 𝑎2

2𝑒4𝑥2𝑥+4𝑦2𝑦(𝑦 − 𝑦2)

+𝑎1𝑎2𝑒
2(𝑥1+𝑥2)𝑥+2(𝑦1+𝑦2)𝑦[(2𝑦 − 𝑦1 − 𝑦2)(1 − (𝑦1 − 𝑦2)

2) − (𝑥1 − 𝑥2)(𝑦1 − 𝑦2)(2𝑥 − 𝑥1 − 𝑥2)] = 0

   (12) 

where 𝑎1 = 𝑒−𝑥1
2−𝑦1

2
 and 𝑎2 = 𝑒

−𝑥2
2−𝑦2

2
 are constants depending on the coordinates of the particles. 

In the following, we prove that 

• If (𝑋1 − 𝑋2)
2 ≤ 2𝜎2, Function (11) has one and only one minimum which is 

𝑋1+𝑋2

2√2𝜎
; 

• Else, Function (11) has two minima and we give a way to compute them easily. 

We begin with a useful lemma dealing with the function 𝑒𝑥 = −
𝑥+𝑤

𝑥−𝑤
. It belongs to the class of offset 

logarithm functions 𝑒𝑥
𝑥−𝑤

𝑥+𝑤
= 𝑎 [27]. 

Lemma 4.  The function 𝑒𝑥 = −
𝑥+𝑤

𝑥−𝑤
 has only one solution 𝑥 = 0 when 𝑤 ≤ 2 . If  𝑤 > 2, it has three 

solutions including 𝑥 = 0 . 

Proof. We use the derivative of ℎ(𝑥) = 𝑒𝑥(𝑥 − 𝑤) + 𝑥 + 𝑤. 
𝑑ℎ

𝑑𝑥
= 𝑒𝑥(𝑥 − 𝑤 + 1) + 1 has no solution 

when 𝑤 < 2. It has 1 solution which is 𝑥 = 0 if 𝑤 = 2. if 𝑤 > 2 the two solutions of 
𝑑ℎ

𝑑𝑥
= 0 are 

𝑊0(−𝑒𝑥𝑝(−𝑤 + 1)) + 𝑤 − 1 and 𝑊−1(−𝑒𝑥𝑝(−𝑤 + 1)) + 𝑤 − 1, where 𝑊 is the Lambert 𝑊 function 

[28], [29], [30], [31]. Finally, we directly obtain the lemma. ◻ 

The 𝑁 = 2 case brings us back to the standard Lambert 𝑊 function with applications in symmetry in the 

context of linear molecules namely the double-well Dirac potential problem [32], [33]. The latter provides 

a one-dimensional model of the diatomic molecule known as the Hydrogen molecular ion whose 

eigenenergies in its three-dimensional version are also in terms of a fully generalized Lambert Function 

[34]. It is also seen in quantum gravity [35], [36] and in semiconductor devices [37] found in applications 

of Solid-state Physics. The ubiquity of applications is not surprising as they all involve exponential 

polynomials of two physical bodies. Not surprisingly, the Lambert 𝑊 function describes the nodal structure 



of the lowest discrete energy states of the two-electron system, namely the Helium atom [8] and seems 

ubiquitous to nature. 

Theorem 7.  System (12) has one solution if 1 ≥ (𝑥1 − 𝑥2)
2 + (𝑦1 − 𝑦2)

2 and the solution is 

(
𝑥1+𝑥2

2
,
𝑦1+𝑦2

2
). If 1 < (𝑥1 − 𝑥2)

2 + (𝑦1 − 𝑦2)
2, 𝑆2 has three solutions. One of them is (

𝑥1+𝑥2

2
,
𝑦1+𝑦2

2
). The 

others are the (𝑥, 𝑦) solutions such that 𝑦 satisfies the univariate equations 𝑒
2

𝑦

𝑦1−𝑦2
𝑢−𝑢

(𝑦 − 𝑦1) +

𝑒
−2

𝑦

𝑦1−𝑦2
𝑢+𝑢

(𝑦 − 𝑦2) + 2(𝑦 −
𝑦1+𝑦2

2
)(1 − 𝑢) = 0 with 𝑢 = (𝑥1 − 𝑥2)

2 + (𝑦1 − 𝑦2)
2 and 𝑥 = (𝑦 −

𝑦1+𝑦2

2
)
𝑥1−𝑥2

𝑦1−𝑦2
+
𝑥1+𝑥2

2
. 

Proof. We first centralize the system by setting 𝛼 = 𝑥 −
𝑥1+𝑥2

2
 and 𝛽 = 𝑦 −

𝑦1+𝑦2

2
. Then System (12) is 

equivalent to the system: 

{
 
 

 
 𝑒

4𝑥1𝛼+4𝑦1𝛽 (𝛼 −
𝑥1 − 𝑥2
2

) + 𝑒4𝑥2𝛼+4𝑦2𝛽(𝛼 +
𝑥1 − 𝑥2
2

)

+𝑒2(𝑥1+𝑥2)𝛼+2(𝑦1+𝑦2)𝛽[2𝛼(1 − (𝑥1 − 𝑥2)
2) − 2𝛽(𝑥1 − 𝑥2)(𝑦1 − 𝑦2)] = 0

𝑒4𝑥1𝛼+4𝑦1𝛽 (𝛽 −
𝑦1 − 𝑦2
2

) + 𝑒4𝑥2𝛼+4𝑦2𝛽(𝛽 +
𝑦1 − 𝑦2
2

)

+𝑒2(𝑥1+𝑥2)𝛼+2(𝑦1+𝑦2)𝛽[2𝛽(1 − (𝑦1 − 𝑦2)
2) − 2𝛼(𝑥1 − 𝑥2)(𝑦1 − 𝑦2)] = 0

 

⇔

{
 
 

 
 𝑒

2(𝑥1−𝑥2)𝛼+2(𝑦1−𝑦2)𝛽 (𝛼 −
𝑥1−𝑥2

2
) + 𝑒−2(𝑥1−𝑥2)𝛼−2(𝑦1−𝑦2)𝛽 (𝛼 +

𝑥1−𝑥2

2
) + 2𝛼(1 − (𝑥1 − 𝑥2)

2) − 2𝛽(𝑥1 − 𝑥2)(𝑦1 − 𝑦2) = 0

𝑒2(𝑥1−𝑥2)𝛼+2(𝑦1−𝑦2)𝛽 (𝛽 −
𝑦1−𝑦2

2
) + 𝑒−2(𝑥1−𝑥2)𝛼−2(𝑦1−𝑦2)𝛽(𝛽 +

𝑦1−𝑦2

2
) + 2𝛽(1 − (𝑦1 − 𝑦2)

2) − 2𝛼(𝑥1 − 𝑥2)(𝑦1 − 𝑦2) = 0
  

Since the point (𝛼, 𝛽) = (0,0) is a solution of the system, (
𝑥1+𝑥2

2
,
𝑦1+𝑦2

2
) is a solution of the System (12). 

Moreover, some linear combinations simplify System (12). Let us denote (𝐿1) and (𝐿2) as respectively 

the first and second lines of System (12). 

(𝐿1)(𝛽 +
𝑦1−𝑦2

2
) − (𝐿2)(𝛼 +

𝑥1−𝑥2

2
) gives (𝛽(𝑥1 − 𝑥2) − 𝛼(𝑦1 − 𝑦2))(𝑒

2(𝑥1−𝑥2)𝛼+2(𝑦1−𝑦2)𝛽 + 2𝛼(𝑥1 −

𝑥2) + 2𝛽(𝑦1 − 𝑦2) + 1) = 0 and (𝐿1)(𝛽 −
𝑦1−𝑦2

2
) − (𝐿2)(𝛼 −

𝑥1−𝑥2

2
) gives (𝛽(𝑥1 − 𝑥2) − 𝛼(𝑦1 −

𝑦2))(𝑒
−2(𝑥1−𝑥2)𝛼−2(𝑦1−𝑦2)𝛽 − 2𝛼(𝑥1 − 𝑥2) − 2𝛽(𝑦1 − 𝑦2) + 1) = 0 

Since 𝑒−2(𝑥1−𝑥2)𝛼−2(𝑦1−𝑦2)𝛽 − 2𝛼(𝑥1 − 𝑥2) − 2𝛽(𝑦1 − 𝑦2) + 1 and 𝑒2(𝑥1−𝑥2)𝛼+2(𝑦1−𝑦2)𝛽 + 2𝛼(𝑥1 −

𝑥2) + 2𝛽(𝑦1 − 𝑦2) + 1 have no common root, the System (12) is equivalent to the System (13) defined 

by 

{

𝑒2(𝑥1−𝑥2)𝛼+2(𝑦1−𝑦2)𝛽 (𝛽 −
𝑦1 − 𝑦2
2

) + 𝑒−2(𝑥1−𝑥2)𝛼−2(𝑦1−𝑦2)𝛽(𝛽 +
𝑦1 − 𝑦2
2

) 

+2𝛽(1 − (𝑦1 − 𝑦2)
2) − 2𝛼(𝑥1 − 𝑥2)(𝑦1 − 𝑦2) = 0

𝛽(𝑥1 − 𝑥2) − 𝛼(𝑦1 − 𝑦2) = 0

    (13) 

Finally, System (12) is equivalent to the simplified system: 



{
𝑒
2𝛽

(𝑥1−𝑥2)
2+(𝑦1−𝑦2)

2

𝑦1−𝑦2 (𝛽 −
𝑦1−𝑦2

2
) + 𝑒

−2𝛽
(𝑥1−𝑥2)

2+(𝑦1−𝑦2)
2

𝑦1−𝑦2 (𝛽 +
𝑦1−𝑦2

2
) + 2𝛽(1 − (𝑥1 − 𝑥2)

2 − (𝑦1 − 𝑦2)
2) = 0

𝛼 = 𝛽
𝑥1−𝑥2

𝑦1−𝑦2
                                                                                                                                                                                 (14)

 

The first equation of this last system depends only on the variable 𝛽. By denoting 𝑢 = (𝑥1 − 𝑥2)
2 + (𝑦1 −

𝑦2)
2 and 𝑣 = 𝑦1 − 𝑦2, it can be rewritten as 

ℎ(𝛽) = 𝑒2𝛽
𝑢
𝑣 (𝛽 −

𝑣

2
) + 𝑒−2𝛽

𝑢
𝑣 (𝛽 +

𝑣

2
) + 2𝛽(1 − 𝑢)         (15) 

Assume 𝑣 > 0 without loss of generality, ℎ is a 𝐶∞ function such that 
𝑑ℎ

𝑑𝛽
(𝛽) = 2

𝑢

𝑣
𝛽(𝑒2𝛽

𝑢

𝑣 − 𝑒−2𝛽
𝑢

𝑣) +

(1 − 𝑢)(𝑒2𝛽
𝑢

𝑣 + 𝑒−2𝛽
𝑢

𝑣 + 2) and there limits are lim𝛽→+∞ℎ(𝛽) = +∞ and lim𝛽→−∞ℎ(𝛽) = −∞. Its 

number of solutions depends on the sign of 1 − 𝑢. 

If 1 − 𝑢 ≥ 0, 
𝑑ℎ

𝑑𝛽
(𝛽) > 0 and the only solution of ℎ is 0. This solution corresponds to a minimum of the 

initial problem. 

If 1 − 𝑢 < 0, we have ℎ(0) = 0, 
𝑑ℎ

𝑑𝛽
(0) = 4(1 − 𝑢) < 0, lim𝛽→+∞

𝑑ℎ

𝑑𝛽
(𝛽) > 0 and lim𝛽→−∞

𝑑ℎ

𝑑𝛽
(𝛽) >

0.Thus ℎ has at least 3 solutions. The solution 0 corresponds to a local maximum of the initial problem. Let 

us prove that ℎ has exactly 3 solutions. Since the number of solution of 
𝑑2ℎ

𝑑2𝛽
(𝛽) =

2𝑢

𝑣
𝑒−2𝑢𝛽/𝑣(𝑒4𝑢𝛽/𝑣(

2𝑢

𝑣
𝛽 − 𝑢 + 2) +

2𝑢

𝑣
𝛽 + 𝑢 − 2) is equal to that of 

𝑑2ℎ∗

𝑑2𝛽
(𝛽) = 𝑒4𝑢𝛽/𝑣(

2𝑢

𝑣
𝛽 − 𝑢 + 2) +

2𝑢

𝑣
𝛽 + 𝑢 − 2. 

𝑑2ℎ∗

𝑑2𝛽
= 0 is of the form 𝑒𝑥 = −

𝑥+𝑤

𝑥−𝑤
 by setting 𝑥 =

4𝑢𝛽

𝑣
 and 𝑤 = 2(𝑢 − 2). Thanks to Lemma 

4, it has at most 3 solutions. Moreover, in both cases 
𝑑ℎ

𝑑𝛽
(0) < 0, lim𝛽→+∞

𝑑ℎ

𝑑𝛽
(𝛽) > 0 and 

lim𝛽→−∞
𝑑ℎ

𝑑𝛽
(𝛽) > 0 meaning that 

𝑑ℎ

𝑑𝛽
 has exactly two solutions (symmetric) and ℎ has three solutions. 

 ◻ 

4. THE BLOCK APPROACH 

In this section, we present a new numerical approach per block. First we present the algebraic property 

needed to develop the new algorithm presented theoretically in the second subsection and algorithmically 

in the third subsection. Finally the Crab example is revisited and some other benchmarks are presented. 

4.1  𝝈 estimations 

We have seen (Table 1) that the 𝜎 value is of crucial importance to the number of minima. The greater 𝜎 is, 

the smaller the number of minima. But obviously the number of minima also depends on the data. In this 

subsection, we link the value of 𝜎 with the values of the initial data in order to obtain a bound from which 

the number of minima is one. 

Theorem 8.  Consider a set of particles (𝑋𝑖)𝑖=1..𝑁 where for all 𝑖 = 1. . 𝑁, 𝑋𝑖 = (𝑣𝑖 , 𝑤𝑖), the potential 

energy function 
1

2𝜎2
1

∑ 𝑒
−
(𝑋−𝑋𝑖)

2

2𝜎2𝑁
𝑖=1

∑ (𝑁
𝑖=1 𝑋 − 𝑋𝑖)

2𝑒
−
(𝑋−𝑋𝑖)

2

2𝜎2  has only one minimum for  

𝜎 = 𝑚𝑎𝑥(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛).                    (16) 



Proof. To complete this proof, we prove the equivalent property: System (2) {
𝑀(𝑥, 𝑦) = 0

𝐿(𝑥, 𝑦) = 0
 has only one 

solution if the set of points (𝑥𝑖 , 𝑦𝑖)𝑖=1..𝑁 lies in a square of side 
1

√2
. 

First, we define the center of the square which is 𝐶 = (𝑥𝑐 , 𝑦𝑐) with 𝑥𝑐 =
𝑥𝑚𝑎𝑥+𝑥𝑚𝑖𝑛

2
 and 𝑦𝑐 =

𝑦𝑚𝑎𝑥+𝑦𝑚𝑖𝑛

2
 and 

proceed to the variable changes 𝛼 = 𝑥 − 𝑥𝑐 and 𝛽 = 𝑦 − 𝑦𝑐, 𝛼𝑖 = 𝑥𝑖 − 𝑥𝑐, 𝛽𝑖 = 𝑦𝑖 − 𝑦𝑐 for all 𝑖 = 1. . . 𝑁. 

We obtain 𝑀(𝑥, 𝑦) = 𝑒−2𝑥𝑐
2−2𝑦𝑐

2+4𝑥𝑐𝑥+4𝑦𝑐𝑦𝑀𝐶(𝛼, 𝛽) where 𝑀𝐶(𝛼, 𝛽) is defined by the sequences (𝛼𝑖)𝑖=1..𝑁 

and (𝛽𝑖)𝑖=1..𝑁 such that 

𝑀𝐶(𝛼, 𝛽) =∑𝑒−2𝛼𝑖
2−2𝛽𝑖

2

𝑁

𝑖=1

𝑒4𝛼𝑖𝛼+4𝛽𝑖𝛽(𝛼 − 𝛼𝑖) +∑∑𝑒−𝛼𝑖
2−𝛽𝑖

2

𝑁

𝑗>𝑖

𝑁

𝑖=1

𝑒−𝛼𝑗
2−𝛽𝑗

2

𝑒2(𝛼𝑖+𝛼𝑗)𝛼+2(𝛽𝑖+𝛽𝑗)𝛽𝑐𝑖𝑗 .   (17) 

Where 𝑐𝑖𝑗 = (2𝛼 − 𝛼𝑖 − 𝛼𝑗)(1 − (𝛼𝑖 − 𝛼𝑗)
2) − (𝛼𝑖 − 𝛼𝑗)(𝛽𝑖 − 𝛽𝑗)(2𝛽 − 𝛽𝑖 − 𝛽𝑗). In the same way, 

𝐿(𝑥, 𝑦) = 𝑒−2𝑥𝑐
2−2𝑦𝑐

2+4𝑥𝑐𝑥+4𝑦𝑐𝑦𝐿𝐶(𝛼, 𝛽) with 

𝐿𝐶(𝛼, 𝛽) = ∑𝑒−2𝛼𝑖
2−2𝛽𝑖

2

𝑁

𝑖=1

𝑒4𝛼𝑖𝛼+4𝛽𝑖𝛽(𝛽 − 𝛽𝑖) +∑∑𝑒−𝛼𝑖
2−𝛽𝑖

2

𝑁

𝑗>𝑖

𝑁

𝑖=1

𝑒−𝛼𝑗
2−𝛽𝑗

2

𝑒2(𝛼𝑖+𝛼𝑗)𝛼+2(𝛽𝑖+𝛽𝑗)𝛽𝑑𝑖𝑗.    (18) 

where 𝑑𝑖𝑗 = (2𝛽 − 𝛽𝑖 − 𝛽𝑗)(1 − (𝛽𝑖 − 𝛽𝑗)
2) − (𝛼𝑖 − 𝛼𝑗)(𝛽𝑖 − 𝛽𝑗)(2𝛼 − 𝛼𝑖 − 𝛼𝑗). 

Now we have to prove the equivalent statement: the system {
𝑀𝐶(𝛼, 𝛽) = 0

𝐿𝐶(𝛼, 𝛽) = 0
 has only one solution if for all 

𝑖 ∈ [1,𝑁], |𝛼𝑖| ≤
1

2√2
 and |𝛽𝑖| ≤

1

2√2
. 

The proof of the last statement is decomposed into two parts. First, we prove that there is at most one 

minimum: 
𝑑𝑀𝐶

𝑑𝛼
(𝛼, 𝛽) is composed of a sum of terms of the form 𝑒−2𝛼𝑖

2−2𝛽𝑖
2
𝑒4𝛼𝑖𝛼+4𝛽𝑖𝛽(4𝛼𝑖(𝛼 − 𝛼𝑖) + 1) 

and 𝑒−𝛼𝑖
2−𝛽𝑖

2
𝑒−𝛼𝑗

2−𝛽𝑗
2

𝑒2(𝛼𝑖+𝛼𝑗)𝛼+2(𝛽𝑖+𝛽𝑗)𝛽(2(𝛼𝑖 + 𝛼𝑗)[(2𝛼 − 𝛼𝑖 − 𝛼𝑗)(1 − (𝛼𝑖 − 𝛼𝑗)
2) − (2𝛽 − 𝛽𝑖 −

𝛽𝑗)(𝛼𝑖 − 𝛼𝑗)(𝛽𝑖 − 𝛽𝑗)] + 2(1 − (𝛼𝑖 − 𝛼𝑗)
2)). All those terms are positive when 𝛼𝑖 , 𝛽𝑖 , 𝛼, 𝛽 ∈ [−

1

2√2
,
1

2√2
] 

thus 
𝑑𝑀𝐶

𝑑𝛼
(𝛼, 𝛽) > 0. In the same way 

𝑑𝐿𝐶

𝑑𝛽
(𝛼, 𝛽) > 0. Here again, in the phase space, there is at most one 

solution in 𝛼 of 𝑀𝐶(𝛼, 𝛽‾) for all 𝛽‾ ∈ 𝑅 and 𝛼 ∈ [−
1

2√2
,
1

2√2
] and there is at most one solution in 𝑦 of 

𝐿𝐶(𝛼‾, 𝛽) for all 𝛼‾ ∈ 𝑅 and 𝛽 ∈ [−
1

2√2
,
1

2√2
]. 

𝑑𝑀𝐶(𝛼,𝛽

𝑑𝛼
>

𝑑𝑀1,2(𝛼,𝛽

𝑑𝛼
> 0 and 

𝑑𝐿𝐶

𝑑𝛽
(𝛼, 𝛽) >

𝑑𝐿1,2

𝑑𝛽
(𝛼, 𝛽) > 0 

meaning that there is at most one solution in [−
1

2√2
,
1

2√2
]. 

Secondly, we prove that at least one implicit curve of 𝑀 = 0 lies in the square [−
1

2√2
,
1

2√2
]2. To do it, it is 

enough to prove that 𝑀𝐶(𝛼, 𝛽) > 0 for 𝛼 >
1

2√2
 and 𝑀𝐶(𝛼, 𝛽) < 0 for 𝛼 < −

1

2√2
: Without loss of 

generality, we set (𝛼𝑖)𝑖=1..𝑁 which satisfies for all 𝑗 > 𝑖, 𝛼𝑖 > 𝛼𝑗 . A simple index permutation allows us to 

order the sequence (𝛼𝑖)𝑖=1..𝑁. 

We know that for all 𝑗 > 𝑖, 𝑐𝑖,𝑗(𝛼, 𝛽) = 2𝛼 − 𝛼𝑖 − 𝛼𝑗 + (𝛼𝑖 − 𝛼𝑗)[(𝛼 − 𝛼𝑖)
2 + (𝛽 − 𝛽𝑖)

2 − (𝛼 − 𝛼𝑗)
2 −

(𝛽 − 𝛽𝑗)
2]. From the triangular inequality, we obtain 2𝛼 − 𝛼𝑖 − 𝛼𝑗 − |𝛼𝑖 − 𝛼𝑗|[(𝛼𝑖 − 𝛼𝑗)

2 + (𝛽𝑖 −

𝛽𝑗)
2] ≤ 𝑐𝑖,𝑗(𝛼, 𝛽) and  𝑐𝑖,𝑗(𝛼, 𝛽) ≤ 2𝛼 − 𝛼𝑖 − 𝛼𝑗 + |𝛼𝑖 − 𝛼𝑗|[(𝛼𝑖 − 𝛼𝑗)

2 + (𝛽𝑖 − 𝛽𝑗)
2]Since (𝛼𝑖 − 𝛼𝑗)

2 +

(𝛽𝑖 − 𝛽𝑗)
2 ≤ 1, we get 𝑐𝑖,𝑗(𝛼, 𝛽) ≥ 2𝛼 − 𝛼𝑖 − 𝛼𝑗 − (𝛼𝑖 − 𝛼𝑗) = 2𝛼 − 2𝛼𝑖 and 𝑐𝑖,𝑗(𝛼, 𝛽) ≥ 0. Finally 

𝑀𝐶(𝛼, 𝛽) > 0 for all 𝛼 >
1

2√2
. With the same approach, we get 



• 𝑀𝐶(𝛼, 𝛽) < 0 for all 𝛼 < −
1

2√2
, 𝛽 ∈ 𝑅 

• 𝐿𝐶(𝛼, 𝛽) > 0 for all 𝛽 >
1

2√2
, 𝛼 ∈ 𝑅 

• 𝐿𝐶(𝛼, 𝛽) < 0 for all 𝛽 < −
1

2√2
, 𝛼 ∈ 𝑅 

Finally there is one implicit function of 𝑀𝐶(𝛼, 𝛽) = 0 for all 𝛽 ∈ 𝑅 when 𝛼 ∈ [−
1

2√2
,
1

2√2
] and there is one 

implicit function of 𝐿𝐶(𝛼, 𝛽) = 0 for 𝛼 ∈ 𝑅 when 𝛽 ∈ [−
1

2√2
,
1

2√2
] . We conclude that the two curves 

intersect in the square [−
1

2√2
,
1

2√2
]2 and this intersection corresponds to a minimum. ◻ 

For instance, in the crab example, 𝑚𝑎𝑥(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛, 𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛) = 0.297 and without any 

computation, we know that if 𝜎 ≥ 0.297, the function (1) has exactly one minimum. 

To serve our new block method presented next subsection, we give another formulation of Theorem 2 as a 

corollary 

Corollary 1.  The bivariate function 
1

2𝜎2
1

∑ 𝑒
−
(𝑋−𝑋𝑖)

2

2𝜎2𝑁
𝑖=1

∑ (𝑁
𝑖=1 𝑋 − 𝑋𝑖)

2𝑒
−
(𝑋−𝑋𝑖)

2

2𝜎2  has only one minimum if the 

set of points (𝑋𝑖)𝑖=1..𝑁 are all included in a square of side 𝜎. 

4.2 System approximation construction 

In the general case of 𝑁 particles, the functions 𝑀(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) are sums of 
𝑁(𝑁+1)

2
 exponential 

polynomials of the form (𝑥 − 𝑥𝑖)𝐾𝑖
2, 𝑐𝑖𝑗𝐾𝑖𝐾𝑗  or 𝑑𝑖𝑗𝐾𝑖𝐾𝑗 . We recall System (2): {

𝑀(𝑥, 𝑦) = 0

𝐿(𝑥, 𝑦) = 0
 

such that 

𝑀(𝑥, 𝑦) =∑(

𝑁

𝑖=1

𝑥 − 𝑥𝑖)𝐾𝑖
2 +∑𝑐𝑖𝑗

𝑖<𝑗

𝐾𝑖𝐾𝑗    𝑎𝑛𝑑      𝐿(𝑥, 𝑦) = ∑(

𝑁

𝑖=1

𝑦 − 𝑦𝑖)𝐾𝑖
2 +∑𝑑𝑖𝑗

𝑖<𝑗

𝐾𝑖𝐾𝑗      (19) 

where 𝐾𝑖 = 𝑒
−(𝑥−𝑥𝑖)

2−(𝑦−𝑦𝑖)
2+𝑥2+𝑦2. 

When 𝑁 is large, we need a strategy to decrease the length of 𝑀(𝑥, 𝑦) and 𝐿(𝑥, 𝑦) while maintaining the 

main property of System (2) which is to define the cluster centers. 

Let us denote 𝑅 = [𝑥𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥] × [𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥] the rectangle containing all the points (𝑌𝑖)𝑖=1..𝑁. The basic 

idea is to partition 𝑅 into squares and approximate the minimum locally by considering for each square, 

only its particles. These new points will correspond to a weighted approximation of the particles in the 

square. They will therefore correspond to the weighted particles of the approximate system. 

The block construction consists of subdividing 𝑅 into 𝑘2 square blocks of length 
1

𝑘
𝑚𝑎𝑥(𝑥𝑚𝑎𝑥 −

𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛). Since the particles are numbered from 1 to 𝑁, we denote 𝐵(𝑖) the block containing the 

particle 𝑖. 𝑖 is named a representative of the block and we have: 𝐵(𝑖) = 𝐵(𝑗) if 𝑖 and 𝑗 belong to the same 

square. We denote 𝑅 a set containing exactly one representative of each non empty block. 

Let 𝛼 ∈ 𝑅, the function 𝑀 is reduced to the particles of the block 𝐵(𝛼) which is denoted 𝑀𝐵(𝛼) and 

𝑀𝐵(𝛼)(𝑥, 𝑦) = ∑ (

𝑖∈𝐵(𝛼)

𝑥 − 𝑥𝑖)𝐾𝑖
2 + ∑ 𝑐𝑖𝑗

𝑖<𝑗; 𝑖∈𝐵(𝛼),𝑗∈𝐵(𝛼)

𝐾𝑖𝐾𝑗           (20) 



𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦, 𝐿𝐵(𝛼)(𝑥, 𝑦) = ∑ (

𝑖∈𝐵(𝛼)

𝑦 − 𝑦𝑖)𝐾𝑖
2 + ∑ 𝑑𝑖𝑗

𝑖<𝑗,𝑖∈𝐵(𝛼),𝑗∈𝐵(𝛼)

𝐾𝑖𝐾𝑗            (21) 

By setting 𝜎 =
1

𝑘
𝑚𝑎𝑥(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛), theorem 8 guarantees that the system governed by 

{
𝑀𝐵(𝛼)(𝑥, 𝑦) = 0

𝐿𝐵(𝛼)(𝑥, 𝑦) = 0
 has exactly one minimum (𝑥𝐵(𝛼), 𝑦𝐵(𝛼)). 

Therefore, 𝑀(𝑥, 𝑦) = ∑ 𝑀𝐵(𝛼)𝛼∈𝑅 +∑ 𝑐𝑖𝑗𝑖<𝑗,𝑗∉𝐵(𝑖) 𝐾𝑖𝐾𝑗 and we approximate 𝑀(𝑥, 𝑦) by 

𝑀𝐵𝑙𝑠(𝑥, 𝑦) =∑𝑝𝐵(𝛼)
𝛼

(𝑥 − 𝑥𝐵(𝛼))𝐾𝐵(𝛼)
2 + ∑ 𝑝𝐵(𝛼)

𝑘∈𝑅,𝑙∈𝑅,𝛼<𝛽

𝑝𝐵(𝛽)𝑐𝐵(𝛼)𝐵(𝛽)𝐾𝐵(𝛼)𝐾𝐵(𝛽)     (22) 

where 𝑝𝐵(𝛼) corresponds to the number of particles inside 𝐵(𝛼). Equivalently, we approximate 𝐿(𝑥, 𝑦) by 

𝐿𝐵𝑙𝑠(𝑥, 𝑦) to obtain the block-system {
𝑀𝐵𝑙𝑠 = 0
𝐿𝐵𝑙𝑠 = 0

   . 𝑀𝐵𝑙𝑠 and 𝐿𝐵𝑙𝑠 are now sums of at most 
𝑘2(𝑘2+1)

2
 

exponential polynomials and 𝑘2 << 𝑁. 

Remark (Limit preservation): the minima of System (2) are usually in the domain 𝑅. Nevertheless, the limit 

preservation of the approximate system is important. To do so, and according to Section 2, the four extrema 

(𝑥𝑚𝑖𝑛𝑥 , 𝑦𝑚𝑖𝑛𝑥), (𝑥𝑚𝑖𝑛𝑦 , 𝑦𝑚𝑖𝑛𝑦), (𝑥𝑚𝑎𝑥𝑥, 𝑦𝑚𝑎𝑥𝑥) and (𝑥𝑚𝑎𝑥𝑦 , 𝑦𝑚𝑎𝑥𝑦) are usually not integrated into blocks 

and appear without any modification in the block-system. 

4.3. Algorithm 

The main steps of the algorithm are as follows: 

• Input: the list of particles (𝑋𝑖)𝑖=1..𝑁 = ((𝑣𝑖 , 𝑤𝑖))𝑖=1..𝑁 and the parameter 𝑘 of the block partition. 

• Compute 𝜎 =
1

𝑘
𝑚𝑎𝑥(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛). 

• Normalize (𝑋𝑖)𝑖=1..𝑁 by setting ∀𝑖 ∈ {1. . 𝑁}, 𝑌𝑖 =
𝑋𝑖

√2𝜎
. 

• Set 𝐿 = (𝑌𝑖)𝑖=1..𝑁 = ((𝑥𝑖 , 𝑦𝑖))𝑖=1..𝑁. 

• For all (𝛼, 𝛽) ∈ {1. . 𝑘}2 

– Compute 𝐵 = [𝑥𝑚𝑖𝑛 + 𝛼𝜎, 𝑥𝑚𝑖𝑛 + (𝛼 + 1)𝜎] × [𝑦𝑚𝑖𝑛 + 𝛽𝜎, 𝑦𝑚𝑖𝑛 + (𝛽 + 1)𝜎]. 
– Find the list 𝐿𝐵 of all the particles of 𝐿 belonging to 𝐵. 

– If 𝐿𝐵 ≠ ∅ compute the minimum 𝑚𝐵 of the block-system {
𝑀𝐵 = 0
𝐿𝐵 = 0

 involving only the particles 

of 𝐿𝐵. 

– The weight 𝑝𝐵 of this minimum corresponds to the number of particles inside the square. 𝑝𝐵 =
𝑐𝑎𝑟𝑑(𝐿𝐵). 

• Consider the list 𝐿𝑚 of all the minima with their corresponding weight. Compute the minima of the 

corresponding block system {
𝑀𝐵𝑙𝑠 = 0
𝐿𝐵𝑙𝑠 = 0

 involving 𝐿𝑚. 

•  Deduce the cluster centers in the 𝑋 −variable. 

Remarks: 

1-With regards to the third item: If needed, one can also centralize the data by setting 𝐶 =

(
𝑣𝑚𝑖𝑛+𝑣𝑚𝑎𝑥

2
,
𝑤𝑚𝑖𝑛+𝑤𝑚𝑎𝑥

2
) and ∀𝑖 ∈ {1. . 𝑁}, 𝑌𝑖 =

𝑋𝑖−𝐶

√2𝜎
. The centralization and normalization of the data is 

very important to avoid certain computational issues. 



2-With regards to the fifth item: We have proven, thanks to Corollary 1, that {
𝑀𝐵 = 0
𝐿𝐵 = 0

 has exactly one 

minimum 𝑚𝐵. Indeed, the size of the block 𝐵 is 𝜎 and the construction of the function 𝑀𝐵 and 𝐿𝐵 involves 

only the particles in the block 𝐵. This minimum is often close to the mass center of the cluster. Finding this 

minimum using a Newton-Raphson method with the mass center as a starting point has fast convergence. 

Moreover, one can consider a variation of our approach where 𝜎 depends on an additional parameter 𝑙 ≥ 1: 

𝜎 =
𝑙

𝑘
𝑚𝑎𝑥(𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛 , 𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛). In this variation, theorem 8 holds since 𝑙 ≥ 1 and 𝜎 and 𝑘 can 

be chosen independently such that 
𝜎𝑘

𝑚𝑎𝑥(𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛,𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛)
≥ 1. Therefore we can consider an 

approximation involving more blocks without changing 𝜎. 

4.4 Crab Example Revisited 

The block algorithm has been tested on the crab example [3] [24] [25] with varying values of 𝑘. For 𝑘 = 5, 

we have reduced the minimizing problem on 200 particles to a minimizing problem on 23 weighted particles. 

These new 23 particles correspond to minima of a sub-problem reduced to blocks. Table 2 shows for various 

𝑘, the number of non empty blocks it produces (column two) and the value of 𝜎 =
1

𝑘
𝑚𝑎𝑥(𝑥𝑚𝑎𝑥 −

𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛) (column 3). It also shows, in the fourth column, the approximation of the minima of 

the block-system in the 𝑋 variable, whereas the sixth column shows the approximation of the minima of the 

original System (2). In the fifth and seventh column, the number of particles per clusters is given.  

 
Table 2: Comparison of the minima and the clusters using the block method and the direct method. 

 

The clusters are obtained by computing the Euclidean distance between a particle and the four minima 

namely 𝑚1, 𝑚2, 𝑚3 and 𝑚4. A particle 𝑝 belongs to the cluster 𝑖 if |𝑝𝑚𝑖| =
𝑚𝑖𝑛(|𝑝𝑚1|, |𝑝𝑚2|, |𝑝𝑚3|, |𝑝𝑚4|). 
We have compared the clusters produced by the direct method with 𝜎 = 5 and those produced by the block 

method with 𝑘 = 5, we observe that the result is the same except for one particle. For 𝑘 = 6 or 𝑘 = 9, we 

obtain the same clusters from both methods. 

4.5 Benchmarks 

The block method can be tested on larger set of particles. In this subsection, we propose three other examples 

(A fourth one dealing with exoplanet [38] is presented in [39]): 

Gionis et al. [40] propose a method consisting of an aggregation of other approaches including single 

linkage, complete linkage, average linkage, K-means and Ward’s clustering. The dataset proposed in [40] 

is known to be difficult and the clustering outcome is usually imperfect. It has 𝑁 = 788 particles and 



contains narrow bridges between clusters and uneven-sized clusters that are known to create difficulties for 

the clustering algorithms. The aggregation method gives seven clusters. The K-means method is unstable 

and gives very different clusterings for this example. Figure 2 shows two different outcomes of the 

MATLAB K-means program using as parameter, a number of clusters equal to 7. 

 

Figure 2: Example from [40] of 𝑁 = 788 particles: Two K-means clusterings. 

Our quantum block method (with 𝑘 = 9, 𝜎 = 3.6889 ) gives also seven minima and thus seven clusters. 

Figure 3 Shows 6 drawing : The first drawing is the initial data. In the second one, the black dots corresponds 

to the new set of weighted particles obtained by using the block method with parameters 𝑘 = 9 and 𝑙 = 1 

(Consequently, 𝜎 becomes 𝜎 = 3.6889). The red and green curves correspond to the implicit functions of 

𝑀𝐵𝑙𝑠 and 𝐿𝐵𝑙𝑠 (The scale has been modified here following the variable changes proposed in Section 2). 

The determination of the clusters is done here from the minima using the Euclidean distance. Unfortunately, 

it faces some difficulties and some improvements could be done by using a spectral clustering. We use here 

a 𝜖-neighborhood graph to produce the spectral clustering as shown in the second line of Figure 3. The 

MATLAB algorithm used needs as input the data and the number of clusters. First, we see the level lines 

and the clusters of the block data. The last drawing gives the rebuilding of the clustering on the initial data. 

It shows that the quality of the clustering is similar to the one of the aggregation of five different clustering 

approaches (see [40]) 

 
Figure 3: Example from  of 𝑁 = 788 particles. From left to right, the initial data, the main characteristics of the 

corresponding block method of parameters 𝑘 = 9 and 𝑙 = 1, the clustering using the Euclidean distance from the 

computed center (in black). Second line: The level line of the block potential energy function, new clustering based 



on the spectral clustering method on the block data, reconstruction of the clustering on the initial data.  The points in 

black in the contour plot show the cluster centers. 

Fu and Medico [41] present an algorithm named FLAME dedicated to genome data clustering. The first 

step consists in the extraction of local structure information and identification of a “Cluster Supporting 

Object” (CSO). In this step, the proximity between each object and its k-nearest neighbors is used to 

calculate the object density. Here, this particular step is replaced by the computation of minima. We find 

two minima which correspond to the two CSOs presented in Ref. [41]. In Figure 4, the original data of 𝑁 =
240 particles are presented to the left. The drawing in the middle shows the particles computed thanks to 

the block method and the associated implicit function with 𝑘 = 8 and 𝑙 = 2. Two minima are obtained: 

(7.044805245,25.30024272) and (7.359015753,17.11035066) Finally, the right plot gives the 

clustering. Note that in this specific example, the Euclidean distance is not the best choice to construct the 

clusters from the minima and a computation based on the spectral clustering is again needed to improve the 

result. This clustering is shown Figure 4. 

 

Figure 4: Example from [41] of 240 particles. From left to right: The initial data, the main characteristics 

of the block algorithm, the clustering based on the spectral clustering method 

In our last example, we revisit the industrial optimization problem of Draper and Smith [3] [41] which 

originally used the maximin clustering method [43, p.1425]. The problem itself consisted of reported 

percentages of properly sealed bars of soap, sealer plate clearance 𝑥1 and sealer plate temperature 𝑥2. This 

is a fairly self-contained problem of two variables in 16 measured pairs:  
𝑥1 = (130,174,134,191,165,194,143,186,139,188,175,156,190,178,132,148),

𝑥2 = (190,176,205,210,230,192,220,235,240,230,200,218,220,210,208,225).
   

Although the maximin method uses non-linear (constrained) optimization often requiring computational 

tools, such as linear programming, the conceptually simpler quantum clustering method nonetheless yields 

the same clusters.  These are shown in Figure 5 using the same value of 𝜎 =
80

4√2
= 14.1421… as used in 

Ref. [3] to reveal four clusters. For the MATLAB spectral clustering, we used the ‘seuclidean’ option for 

the distance metric i.e. the standardized Euclidean distance (each coordinate difference between 

observations is scaled by dividing by the corresponding element of the standard deviation computed from 

the 𝑥1, 𝑥2 pairs). Also note that in three consecutive calls to MATLAB’s Kmeans program yields three 

distinct clusterings for which only the first is correct, i.e. agrees with the quantum clustering, spectral 

clustering and maximin result. 



 

Figure 5: Quantum clustering (The data and the implicit functions of 𝑀 = 0 and 𝐿 = 0 after centralization and 

normalizalion with 𝜎 = 14.1421, the level lines and the clustering), MATLAB Spectral clustering using the 

standardized Euclidean distance and three consecutive calls to MATLAB’s Kmeans clustering on the Smith and 

Draper pairs. As before, the points in black in the contour block show the cluster centers. Note that only the first 

Kmeans clustering agrees with both the quantum clustering and MATLAB’s spectral clustering. 

Unfortunately, some specific shapes such as ring-shaped or spiral-shaped clusters are challenging for 

numerous clustering methods including our QC block method. To overcome this issue, an approach based 

on optimization of an objective function, is proposed in [44] to detect specifically elliptic ring-shaped 

clusters. However, this approach is not appropriate when different kind of shapes coexist as for example in 

the case of Zahn’s compounds [45]. It also requires a skilled operator to visualize the clusters. It will be a 

great challenge to improve the QC approach in order to detect such shapes. 

4.6 Perspectives 

In spite of claims to the contrary [46], even with extensions, K-means is no longer state-of-the-art. A means 

of finding all the potential minima of the quantum potential and consequently the number of clusters for a 

given range of 𝜎 is an essential key feature for data clustering under program control without prior 

visualization whilst K-means and even MATLAB’s spectral clustering require the number of cluster centers 

on input and thus skilled operators. The quantum clustering approach yields this number for a given range. 

Automatic Data clustering under program control allows the processing of much bigger and more complex 

mixed datasets potentially providing a more robust industrial standard. It would multiply the number of 

platforms with large data collection tools such as Hadoop or MongoDB and thus a greater realization of 

patents for name of object disambiguation [1]. 

5. CONCLUSIONS 

Herein, we have made considerable progress in dealing with the outstanding problem of getting all the 

centers of the quantum clustering method, namely finding all the minima of the quantum potential of 

Function (1) where 𝜎 is the standard deviation of the Gaussian distribution. The extrema of this potential 

are the roots of two coupled equations, which in principle are impossible to solve analytically. After 

simplifications, those equations become bivariate exponential polynomial equations and a number of useful 

properties have been proved. More precisely, limits of implicit function branches are given and the case of 

two particles is analytically solved. We also proved that the coupled equations have only one minimum if 



the data are included in a square of side 𝜎. This bound is directly useful to propose a new approach “per 

block”. This technique decreases the number of particles by approximating some groups of particles to 

weighted particles. The minima of the corresponding coupled equations are then given numerically by which 

the number of clusters is obtained. Those minima can be used as cluster centers. However, for some complex 

examples, other clustering approaches such that spectral clustering gives better visual results (though they 

still require the number of clusters on input). On such examples, the approach consisting in the use of the 

block method (for the number of clusters but also for the weighted particles) gives very good results. 

Example 2, from Gionis et al. shows that the quality of the clustering is similar to the one of the aggregation 

of five approaches. 

The approach used here is potentially useful for other types of exponential polynomials found in numerous 

Physical applications such as, for example, quantum mechanical diffusion Monte-Carlo calculations, where 

a precise knowledge of the nodal lines ensures accurate energy eigenvalues. 
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