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Computational Aspects of Geometric Alge-
bra Products of Two Homogeneous Multi-
vectors

Stephane Breuils, Vincent Nozick and Akihiro Sugimoto

Abstract. Studies on time and memory costs of products in geometric al-
gebra have been limited to cases where multivectors with multiple grades
have only non-zero elements. This allows to design efficient algorithms for
a generic purpose; however, it does not reflect the practical usage of geo-
metric algebra. Indeed, in applications related to geometry, multivectors
are likely to be full homogeneous, having their non-zero elements over a
single grade. In this paper, we provide a complete computational study
on geometric algebra products of two full homogeneous multivectors,
that is, the outer, inner, and geometric products of two full homogeneous
multivectors. We show tight bounds on the number of the arithmetic
operations required for these products. We also show that algorithms exist
that achieve this number of arithmetic operations.

Mathematics Subject Classification (2010). Primary 99Z99; Secondary
00A00.

Keywords. Geometric Algebra, Clifford Algebra, Computational com-
plexity, Arithmetic operations.

1. Introduction

Geometric algebra presents intuitive solutions for problems related to geom-
etry. Its theory is more and more investigated in various research fields like
physics, mathematics or computational geometry, see [21, 22, 9] for some ex-
amples. In contrast, in the computer science field, the study of computational
aspects of the geometric algebra operators is still limited. Studying computa-
tional aspects through complexity study has started thanks to the pioneering
work of Fontijne et al. [13, 14], which gave some results about complexity of
geometric algebra products in the worst case. The worst case here means all
the elements of a multivector with multiple grades are non-zero.
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Their study is based on the most used approach to deal with products
in geometric algebras, using fast binary indices and per-bit operators like the
exclusive OR operator, called XOR. This method is originally based on the
Walsh function presented by Hagmark et al. in [19], to iteratively construct
Clifford algebra products. Hereafter, we refer to such an approach as the
XOR-Walsh method.

The most commonly used GA implementations are based on this XOR-
Walsh method using fast binary indices and per-bit operators, to generate
products, see [2, 7, 10, 13] or GATL [11] for example.

1.1. Notation
The major part of the notation used in this paper is the same as in [5]. For
the sake of clarity, we remind these notations. Following the state-of-the-art
usages of [10] and [25], lower-case bold letters refer to vectors (vector a) and
lower-case non-bold to multivector coordinates (coefficient ai). Upper-case
bold letters denote blades (blade A). Non-homogeneous multivectors are
denoted with upper-case non-bold letters (multivector A). Lower-case and
Frakture letters denote multivector expressed over a tree structure. For exam-
ple, a represents a multivector over a tree structure, this notion is detailed
in Section 6. The part of grade k of a multivector A is denoted by 〈A〉k. The
total number of basis blades is 2d, where d is the number of basis blades ei of
grade 1.

Throughout this paper, a basis blade of grade k will be denoted using set
theory notation. Similarly to the notation in [25], we consider an orthogonal
basis called B = {e1, e2, . . . , ed}, with d being the vector space dimension.
Thus, a basis blade of grade g is denoted by

e{µ} = eµ1 ∧ eµ2 ∧ · · · ∧ eµg , where µ = {µ1, µ2, . . . , µg} (1)

with a greek letter as the subscript. We note that µ ⊆ P(B) where P is the
power set (the set of all the subsets of a set). For example, the blade e234 can
be referred to as eµ with µ = 2,3,4.

Finally, the notation (n
p) represents the binomial coefficients (choose p

from n).

1.2. Full homogeneous multivectors
Multivectors are, in its practical usage, likely to be homogeneous, i.e. have
their non-zero elements concentrated in a single grade, see, for example, the
representation of any geometric objects in conformal geometric algebra [10].
Some other commonly encountered elements, like versors, are also very
limited in terms of their variety of grades and can also be efficiently repre-
sented by a sum of homogeneous multivectors. Note that considering full
multivectors for geometric algebra products always lead to the worst case
complexity, which is not relevant for practical usage. Moreover, considering
a multivector as a list of basis blades and coefficients leads to extremely
complicated complexity study. For these reasons, this paper deals only with
homogeneous multivectors. This assumption does not limit the scope of the
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paper. Indeed, in case the multivector is not homogeneous, then it is still
defined as the sum of homogeneous multivectors. Furthermore, the operators
of geometric algebra are distributive with respect to the addition. Then, any
products between non-homogeneous multivectors can be reduced to some
products of homogeneous multivectors.

We also assume that all the elements of the homogeneous multivectors
are non-zero. More precisely, we call a full homogeneous multivector a mul-
tivector with only a single grade and having non-zero coefficients only. In
most applications dealing with geometry such as in computer vision [21],
computer graphics [8], robotics [22] or physics [3], multivectors usually con-
tain only non-zero elements in each non empty grade. However, we remark
that some non-full homogeneous multivectors can also be commonly encoun-
tered, like a line or an atomic versor (just a rotation, or just a translation,
etc.) in conformal geometric algebra [10], or in the Clifford Algebra coding
of a network in [27]. Nevertheless, the zero components are usually few
compared to the non-zero components of the same grade, so that this study
may still be relevant for most non-full homogeneous multivectors.

Over these full homogeneous multivectors, we focus on only three
operators, namely, the outer product denoted by ∧, the inner product denoted
by ‘·’ and the geometric product denoted by ∗. There exist more operators
such as the dual, inverse, see [10] for a more exhaustive list. However, all
these operators can be obtained from the three aforementioned operators,
see [20].

1.3. Orthogonal and non-orthogonal basis

Although section 1.1 refers to “the set theory notation” associated with an
orthogonal basis, this paper covers non-orthonormal, non-orthogonal as
well as degenerated metrics. Indeed, all the methods presented in this paper
handles Euclidean metrics and most of them support diagonal metric without
additional computational cost.

On the other hand, non-diagonal metrics can be either supported di-
rectly on a product algorithm, or computed via a basis change before and
after the computation. In this situation, the product is performed with a diag-
onal metric. This basis change can be computed automatically by a matrix
product applied to the two input multivectors and an inverse matrix basis
change for the resulting multivector [5]. Such a basis change theoretically
has a O(n2) complexity where n is the size of the homogeneous multivector.
However in practice, the basis change matrices are sparse and the product
is often optimized in O(n). Another very common approach to perform the
basis change consists in just defining multivector variables to specify the
basis transformation for the considered element, which obviously implies
additional products.
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1.4. Contributions
Geometric algebra is more and more investigated in various research fields
like physics, mathematics or computational geometry. However, in the com-
puter science field, the study of computational aspects of the geometric alge-
bra operators is still limited. To address this lack of study on the product’s
complexity, this paper focuses on the comparison between the theoretical
minimum arithmetic operations for each product, and the practical exist-
ing algorithms complexity to compute such products. Theoretical minimum
arithmetic operations refers to the minimum number of operations resulting
in the development of a product by keeping only the relevant operations.
In practice, it is precisely the operations found in an optimal pre-computed
source code for a specified product. On the other hand, existing algorithms
are either dedicated to produce this source code or to compute the products
at run-time (without pre-computed products). Thus, in addition to the cost
of the product itself, these algorithms have to support beforehand some
supplementary tasks like finding some product sign or selecting the right
coefficients. These tasks produce a residual complexity cost that can be conse-
quent in the performances. This paper aims to study the existing algorithms’
complexity in regards to the theoretical best performance.

The paper is organized as follows: section 2 reviews existing algorithms
to compute Clifford algebra products and shows that the residual cost men-
tioned above is usually consequent. Sections 3, 4 and 5 present the theoretical
minimum arithmetic operations respectively for the outer, inner and geomet-
ric product. These results are summarized in Table 1 and are considered as the
target results for our complexity study. Then, section 6 focuses on a specific
state of the art algorithm [5] to detail its complexity for each product. This
study shows that the resulting complexity reaches the complexity obtained
by the theoretical approach. This result, summarized in Table 2, is strictly
smaller than the other state of the art approaches.

TABLE 1. Numbers of arithmetic operations required for
products of two full homogeneous multivectors where I is
the set {|ga − gb|, |ga − gb|+ 2, . . . , ga + gb}. Note that a full
homogeneous multivector is a multivector with only one
grade and all of the components of the grade are non-zero
coefficients.

Outer product 2
(

d
ga + gb

)(
ga + gb

ga

)
Inner product 2

(
d
gc

)( d− gc
ga + gb − gc

2

)
Geometric product 2 ∑

gc∈I

(
d
gc

)(
gc

ga−gb+gc
2

)(
d− gc

ga+gb−gc
2

)
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TABLE 2. Complexity of the products by the recursive ap-
proach over a prefix tree .

Recursive outer product O
((

d
ga + gb

)(
ga + gb

ga

))

Recursive inner product O
((

d
gc

)( d− gc
ga + gb − gc

2

))

Recursive geometric product O
((

d
ga

)(
d
gb

))

2. State-of-the-arts on Clifford Algebra products
There exist various algorithms to compute Clifford algebra products. They
differ on the theoretical support used to design the computation as well
as on their resulting complexity. A good algorithm should lead to a fast
implementation, numerically accurate, robust and memory efficient. This
paper focuses on the speed aspect of the implementations via their algorithm
complexity study.

The following sections present various algorithms to compute Clifford
Algebra products, and their respective complexity. For the sake of conciseness,
we focus on the geometric product.

2.1. Double sum over homogeneous multivectors
Most of the Clifford algebra products’ computation are based on a double
sum over the components of the two operands. In the full homogeneous
multivectors case, any multivectors A of grade ga can be represented by

A =

( d
ga)

∑
i=1

aie{µi}, (2)

where d is the dimension of the vector space. Given two full homogeneous
multivectors A and B, a straightforward solution to compute the number of
operations required for their product is to sum over the ( d

ga
) elements of the

first multivector A, combined to the sum over the ( d
gb
) elements of the second

multivector B, like in

A ∗ B =

( d
ga)

∑
i=1

( d
gb
)

∑
i=j

aibje{µi} ∗ e{νj}, (3)

where µi and νj are defined in section 1.1. Hereafter, this method will be
referred as the double sum computation. Each iteration of this double sum
results in a product of scalars and one addition or subtraction. Thus, the total
number of required arithmetic operations pds

∧ (where ds stands for double
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sum) is

pds
∧ = pDS

· = pds
∗ = 2

(
d
ga

)(
d
gb

)
. (4)

This number of operations corresponds to the ideal case, i.e. the number of
operations encountered in a pre-computed source code. However, in practical
situations, for all elements of the double sum (Eq. 3), one actually may have
to identify the right coefficients ai and bj, have to compute the adequate
sign associated to the product aibj, as well as the resulting blade that will
receive this computed coefficient. The way to perform these tasks makes all
the difference between the existing algorithms.

2.2. Chevalley’s recursive method
Chevalley’s recursive method is often presented in textbooks to introduce the
theory or Clifford algebra products. Considering homogeneous multivectors,
the recursive formula can be presented as:

eµ1···µga−1µga ∗ eν1···νgb−1νgb

= eµ1···µga−1

(
(eµga ceν1···νgb−1νgb

) + eµga ∧ eν1···νgb−1νgb

)
= eµ1···µga−2

((
eµga−1c(eµga ceν1···νgb−1νgb

) + eµga ∧ eν1···νgb−1νgb

)
+ eµga−1 ∧

(
(eµga ceν1···νgb−1νgb

) + eµga ∧ eν1···νgb−1νgb

))
(5)

where c denotes the left contraction of two blades, see [10].

Complexity: Abłamowicz et al. in [1] presented an implementation of this
method between two blades A and B of grade ga and gb, and by linearity of
the products to general multivectors. In the proposed implementation, the
sign associated with the product is stored in tables. A fair comparison with
other methods should include the sign computation complexity, which is at
least O(gb) since each outer product requires up to grade of B permutations.
Concerning the core of the algorithm, at each recursive depth, two products
are performed. Hence, the complexity of the product between two blades is
exponential with respect to the grade ga of the first blade, i.e. in O(2ga). This
algorithm product is repeated for each blade of both multivectors. Thus, the
complexity of this product for full homogeneous multivectors is in

O
(

gb

(
d
ga

)(
d
gb

)
2ga

)
(6)

Although very beautiful, Chevalley’s method leads to multiple travels over
the same recursive sub-trees, resulting in an exponential complexity, that
makes it one of the slowest methods to compute a product in Clifford algebra.
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2.3. Rota-Stein method
The paper [1] also presents an iterative algorithm based on Rota-Stein func-
tions. The key formula to compute the geometric product between a blade eµ

and eν is to decompose the product as follows

eµ ∗ eν =
|µ|

∑
i=1

|ν|

∑
j=1

sign× e(i)µe(j)ν (7)

where e(i)µ and e(j)ν refers to the fine subsets of the sets µ and ν, whose
cardinal (grade) are i and j. The “fine subsets” are selected according to
some constraints related to considered product, among all possible subsets
of cardinal i and j supported by eµ and eν.

Complexity: Here again, the computation of the sign is performed using
a table. The most computationally expensive part of the algorithm is the
decomposition of the blades. By considering only orthogonal basis, the de-
composition can be performed linearly with respect to the grades of the two
multivectors. Finally, using the bilinearity of the products, the complexity of
the product for any homogeneous multivectors is

O
((

d
ga

)(
d
gb

)
ga × g2

b

)
(8)

Here, gb is raised to the power of 2 since the computational cost of the
sign involves up to gb permutations for each decomposition. Although this
method performs exponentially better than Chevalley’s method (section 2.2),
its complexity is still far less effective than the state of the art methods
described later in this paper.

2.4. XOR-Walsh
The XOR-Walsh method consists in representing any basis blades as an
ordered array where each element is associated to a basis vector (of grade 1)
of the algebra. An array element gets the binary value 1 if the corresponding
basis vector is used to describe the considered basis blade, and 0 otherwise.
In the following example, the basis blade represented is e134.

e1 e2 e3 e4
1 0 1 1 → e134

Given a set of d = p + q basis vectors where p basis vectors square to 1 and
q basis vectors square to -1, let’s consider the geometric product between
two basis blades A and B with respective binary representation a and b. The
Walsh method, introduced by Hagmark and Lounesto in [19], consists in first
computing the sign of the product between A and B, and then to compute
the binary representation of the resulting basis blade using a XOR operator
between a and b:

ea ∗ eb = (−1)∑
p
i=1 aibi walsh

(
a, h(b)

)
eaXORb (9)
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The Walsh function is defined as:

walsh(a, b) = (−1)∑d
i=1 aibi (10)

and h(b) corresponds to the inverse of the gray code of b, computed as

h(b)i =

( i

∑
j=1

bj

)
mod(2) (11)

Fontijne et al. [13] proposed an simpler and more computer friendly
alternative based on a “convolution” between the two binary indices a and
b. The convolution consists of right-shifting each bit of a until it is zero. At
each iteration, the number of ones in common between the shifted index and
the other index (i.e. the Hamming weight) is counted. The sign is obtained
by raising −1 to the power of this sum. Like for Walsh method, this method
computes the resulting blade with a XOR operator between a and b.

Complexity: Walsh method and the convolution approach have both the
same time complexity. In both methods, the computational cost of these
operations is linear to the dimension d. Indeed, for any grades, the number of
right-shifting is d. Again, this computation is repeated for each blade of the
multivectors. Hence, the complexity for full homogeneous multivectors is:

O
(

d
(

d
ga

)(
d
gb

))
(12)

2.5. Matrix based multivector products
Leopardi [24] introduces a matrix based approach to design the products of
the template library GluCat [23]. It consists in a fast conversion of both input
multivectors into matrices and of the resulting matrix converted back into
multivector. The concept of the conversion is based on a recursive process
that could be compared to a fast Fourier transform. It was proved in the
paper that the complexity to compute the conversion is in O(d× 2d). With
this method, the products are performed in the matrix space.

Complexity: The cost to compute the real matrix representation of the prod-
uct is negligible compared to the product itself. Then, the computational
complexity of the product is the cost of a matrix multiplication. With the two
homogeneous multivectors, the resulting complexity would be in

O
((

d
ga

)(
d
gb

)(
d
gc

))
. (13)

2.6. Multiplicative basis method
Fontijne in [13] defined a framework where blades are represented as outer or
geometric products of basis vectors. Sousa and Fernandes in [26] developed
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this approach and demonstrated impressive performances in high dimen-
sional vector spaces; however, this approach is limited to k-blades and does
not handle general k-vectors.

2.7. Recursive method over prefix trees
Finally, Breuils et al. [5] present a recursive scheme to compute Clifford
algebra products over prefix trees. This algorithm is based on a previous
method using binary trees [4]. Let us consider the product of two multivec-
tors A and B, Equation (3) describes the double loop over their respective
components. For each couple of components, one first has to check if the
result is non zero (unlike in e1 ∧ e12) before computing the product, sign and
resulting basis blade. This test can actually be avoided by representing a
multivector over a prefix tree and by using the proper recursive formulas, as
presented in [5]. This recursive scheme targets only the couple of components
that are not intrinsically zero, saving a significant amount of time. Moreover,
this recursive approach embeds a constant time sign computation. A large
part of this paper (Section 6) is dedicated to its complexity study for full
homogeneous multivectors.

3. Outer product
This section is about the number of arithmetic operations required to compute
an outer product between two full homogeneous multivectors. In implemen-
tations, the sign computation has a cost, i.e. the cost of counting the number
of required permutations to have resulting basic vectors in the canonical
order. In contrast, the number of arithmetic operations computed below cor-
responds to the number of operations found on a pre-computed code doing
the product between two homogeneous multivectors. For this reason, the
result given below omits the sign computation.

3.1. Properties
We denote by A ∧ B the outer product between two homogeneous multivec-
tors A and B with grades ga and gb in the d-dimensional vector space. This
product C = A ∧ B can be defined from its property of distributivity over
the addition:

C =

( d
gc)

∑
k=1

cke{λk} =

( ( d
ga)

∑
i=1

aie{µi}

)
∧
( ( d

gb
)

∑
j=1

bje{νj}

)
. (14)

As shown in [18], the resulting multivector is homogeneous and its grade gc
is

gc = ga + gb. (15)
Note that the grade of the resulting multivector has to be lower than or equal
to the dimension of the vector space:

ga + gb ≤ d. (16)
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3.2. Number of arithmetic operations
As mentioned in Section 2.7, there exist products that result in zero, even
though their respective components are non-zero. In this section, we give
a formula on the number of products that ignores such products resulting
in zero intrinsically. In practice, this number corresponds to the number of
operations found on a pre-computed code doing the outer product between
two homogeneous multivectors.

Theorem 3.1. Let A and B be homogeneous multivectors with grades ga and gb.
The theoretical number pth

∧ of the arithmetic operations involved in the outer product
C = A∧B with grade gc, where gc = ga + gb ≤ d (d is the dimension of the vector
space) is given by

pth
∧ = 2

(
d

ga + gb

)(
ga + gb

ga

)
. (17)

Proof. The outer product consists in splitting two basis blades into all possible
basis blades of grade ga + gb of the resulting multivector. This is equivalent to
finding all the sub-blades whose grade is ga of the basis blades of C. We know
that there are ( d

ga+gb
) possible blades whose grade is ga + gb. On the other

hand, the number of possible sub-blades of grade ga in any blade whose
grade is ga + gb is given as follows:(

ga + gb
ga

)
. (18)

Note that the above equation remains the same if we replace ga by gb. This
comes from the fact that by definition gb = gc − ga. From the symmetry
property of the binomial coefficient, we have(

ga + gb
ga

)
=

(
ga + gb

ga + gb − ga

)
=

(
ga + gb

gb

)
. (19)

Each product requires one addition. Hence, we obtain the total number of
the required arithmetic operations by

2
(

d
ga + gb

)(
ga + gb

ga

)
. (20)

�

3.3. Comparison with the double sum computation

To compare the outer product complexity using the double sum pds
∧ of Equa-

tion (4), with the really required operations pth
∧ of Equation (17), let us com-

pute the ratio between the two formulas as follows:

pth
∧

pds
∧

=

(
d

ga + gb

)(
ga + gb

ga

)
(

d
ga

)(
d
gb

) . (21)
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Using the trinomial revision property as defined in Chapter 5 of [17], we
have

pth
∧

pds
∧

=

(
d
ga

)(
d− ga

gb

)
(

d
ga

)(
d
gb

) . (22)

After simplification
(
∀0 ≤ ga ≤ d, ( d

ga
) 6= 0

)
, we have

pth
∧

pds
∧

=

(
d− ga

gb

)
(

d
gb

) . (23)

The binomial coefficient (n
k) increases as n increases when k is fixed. Hence,

this fraction is less than 1. In practice, Equation (17) may result in high
improvements with respect to Equation (4). As an example, let us assume that
we compute the outer products of two trivectors in the algebra allowing to
apply projective transformation of quadric surface, i.e. 8-dimensional vector
space [16]. Then, the product using a double sum as in Equation (4) requires
approximately 5 times more arithmetic operations than with Equation (17):
560 outer products instead of 3136 in a 8-dimensional vector space, meaning
that a large part of the double sum iterations are useless.

4. Inner product

4.1. Properties

The inner product C between two multivectors A and B with grades ga and
gb is defined by

C =

( d
gc)

∑
k=1

cke{λk} =

( ( d
ga)

∑
i=1

aie{µi}

)
·
( ( d

gb
)

∑
j=1

bje{νj}

)
. (24)

This product is also distributive with respect to the addition. The resulting
multivector is homogeneous and its grade is

gc = |ga − gb|. (25)

Note that when ga > gb, the product corresponds to the left contraction as
defined in [10]. Whereas, when gb > ga, the resulting product is the right
contraction. When gb = ga, on the other hand, the product becomes the scalar
product.
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4.2. Number of arithmetic operations
Theorem 4.1. The number pth

· of the arithmetic operations involved in the inner
product A · B between two homogeneous multivectors A and B with respective
grades ga and gb is given by

pth
· = 2

(
d

|ga − gb|

)( d− |ga − gb|
ga + gb − |ga − gb|

2

)
. (26)

Proof. Using the set notation defined in Section 1.1, the inner product between
any two basis blades can be written as

eλ = eµ · eν λ, µ, ν ∈ P(B). (27)

By definition of the inner product in an orthogonal basis, we have two cases
for µ and ν that lead to non-zero components.

The first case is µ ⊆ ν, with |λ| = |ν| − |µ|. By definition, the operation
consists in the left contraction. Then

∃β, γ ∈ P(B) \ {∅}, β ∩ γ = ∅, eλ = eβ · eβ∪γ. (28)

In such a case, gc = |λ| = |γ| and λ = γ. Computing the number of the
products is reduced to determining the number of different possibilities
for β and γ. If we set γ = λ, then there is only one possibility for γ. As
|β|+ |γ| ≤ d⇒ |β| ≤ d− |γ| = d− gc, any possible grades of β lower than
or equal to d− gc is possible. As |β| = ga, any combination of ga in d− gc is
possible.

In a similar way as for the outer product, any combination of |λ| = gc
in d is possible, which results in the number of the products as follows.(

d
gc

)(
d− gc

ga

)
. (29)

Furthermore, as ga ≤ gb, |ga − gb| = gb − ga. Then, Equation (29) can be
rewritten as (

d
gc

)(d− gc
2ga

2

)
=

(
d
gc

)( d− gc
ga + gb − gb + ga

2

)

=

(
d
gc

)( d− gc

ga + gb − |ga − gb|
2

)
.

(30)

The second case is the symmetric case ν ⊆ µ. In this configuration,

∃β, γ ∈ P(B) \ {∅}, β ∩ γ = ∅, eλ = eβ∪γ · eβ. (31)

In this case, |λ| = |µ| − |ν|. By definition, the operation results in the right
contraction. Reasoning as in the previous paragraph leads us to gc = |λ| =
|γ| and λ = γ. Computing the number of the products is then reduced to
determining the number of different possibilities for β and γ. If we set γ = λ,
there is only one possibility for γ. As |β|+ |γ| ≤ d⇒ |β| ≤ d− |γ| = d− gc.
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Therefore, any possible grade of β lower than or equal to d− gc is possible.
As |β| = gb, any combination of gb in d− gc is possible.

In a similar way as for the outer product, any combinations of |λ| = gc
in d is possible, resulting in the number of the products as follows.(

d
gc

)(
d− gc

gb

)
. (32)

Furthermore, as gb ≤ ga, |ga − gb| = ga − gb, Equation (32) can be rewritten
as (

d
gc

)(d− gc
2gb
2

)
=

(
d
gc

)( d− gc
ga + gb − ga + gb

2

)

=

(
d
gc

)( d− gc

ga + gb − |ga − gb|
2

)
.

(33)

Finally, since one product requires one addition, the total number of the
required arithmetic operations is

2
(

d
|ga − gb|

)( d− |ga − gb|
ga + gb − |ga − gb|

2

)
. (34)

�

4.3. Comparison with the double sum computation
In a similar way as in Section 3.3, let us compute the ratio between the
effectively required operations pth

· of Equation (26) and the number of opera-
tions pds

· used for the same product using a double sum as in Equation (4):

pth
·

pds·
=

(
d

|ga − gb|

)( d− |ga − gb|
ga + gb − |ga − gb|

2

)
(

d
ga

)(
d
gb

) . (35)

After the development of this formula, we find the gain as follows

pth
·

pds·
=

(
d−min(gb, ga)

|ga − gb|

)
(

d
max(gb, ga)

) , (36)

For the sake of readability, the details of the development are shown in
Appendix A. As for the outer product case, Equation (26) may result in high
improvements with respect to Equation (4). As an example, let us assume that
we compute the inner products of two trivectors in a 8-dimensional vector
space. Then, Equation (4) requires 28 times more arithmetic operations than
Equation (26): 112 arithmetic operations instead of 3136 required to compute
the inner product of two trivectors in a 8-dimensional vector space. Again,
the double sum involves a large part of useless iterations.
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5. Geometric product
5.1. Properties
This section deals with the geometric product. As mentioned in [25], the
possible grades of the resulting multivector are

gc ∈ I = {|ga − gb|, |ga − gb|+ 2, . . . , ga + gb}. (37)

The geometric product between two multivectors is then defined by

C = ∑
gc∈I

( d
gc)

∑
k=1

cke{λk} =

( ( d
ga)

∑
i=1

aie{µi}

)
∗
( ( d

gb
)

∑
j=1

bje{νj}

)
. (38)

Note that in contrast to a multivector obtained by the outer product or the in-
ner product, the resulting multivector might not be homogeneous. One might
note that this contradicts the assumption that we deal with only full homo-
geneous multivectors. However, as stated in Section 1, a non-homogeneous
multivector is merely the sum of homogeneous multivectors. Moreover, the
resulting homogeneous multivectors are also full. Thus, the assumptions still
hold.

5.2. Number of arithmetic operations
Theorem 5.1. The number pth

∗ of the arithmetic operations involved in the geometric
product A ∗ B between two homogeneous multivectors A and B with respective
grades ga and gb is given by

pth
∗ = 2 ∑

gc∈I

(
d
gc

)( gc
ga − gb + gc

2

)( d− gc
ga + gb − gc

2

)
, (39)

where I = {|ga − gb|, |ga − gb|+ 2, . . . , ga + gb}.

Proof. The geometric product between any two basis blades can be written as

eλ = eµ ∗ eν λ, µ, ν ∈ P(B). (40)

There are four cases with respect to µ and ν.

The first case is µ ∩ ν = ∅, where the geometric product results in the outer
product between the basis blades, and the number of products is already
shown.

The second case corresponds to µ ⊆ ν, with |λ| = |ν| − |µ|. By definition,
the operation results in the left contraction. The number of the products is
addressed in Section 4.2.

The third case corresponds to ν ⊆ µ, with |λ| = |µ| − |ν|. By definition, the
operation is reduced to the right contraction. The computation of the number
of products is already addressed in Section 4.2.

Finally, the last case is the situation where µ ∩ ν 6= ∅ but ν * µ nor µ * ν.
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More precisely, this corresponds to

∃α, β, γ ∈ P(B) \ {∅}, α ∩ β = ∅, β ∩ γ = ∅, eλ = eα∪β ∗ eβ∪γ. (41)

In such a case, gc = |λ| = |α|+ |γ| and λ = α ∪ γ. Computing the number of
products is reduced to determining the number of different possibilities for
α, β, and γ. Let us start with β. The union of the two blades of Equation (40)
results in

eλ = eα∪β∪β∪γ. (42)

Therefore,
|αβ|+ |βγ| − |ββ| = |αβ|+ |βγ| − 2|β|,

gc = ga + gb − 2|β|. (43)

Hence, we have

|β| = ga + gb − gc

2
. (44)

Due to the fact that β ∩ γ = ∅ and β ∩ α = ∅, we get β ∩ λ = ∅. Thus,

β ∈ P(B) \ {λ,∅}, |β| = ga + gb − gc

2
. (45)

Furthermore,
β ∈ P(B) \ P(λ). (46)

Since the set of maximal cardinality in P(B) \ P(λ) is d− gc, the number of
possibilities for β is the number of possible combinations of |β| in d− gc:( d− gc

ga + gb − gc

2

)
. (47)

Note that we have to ensure that ga+gb−gc
2 is an integer. Two cases exist: either

ga and gb have the same parity or not.

If both ga and gb have the same parity, then

∃n ∈ Z, ga + gb = 2n,
∃n′ ∈ Z, |ga − gb| = 2n′. (48)

Furthermore, gc is the sum of |ga − gb| and an even number, thus gc is also
even. Since the sum of two even numbers is also even, ga + gb − gc is even.

Now let assume that ga and gb do not have the same parity. Then, their
sum and their difference are both odds. On the other hand, gc is the sum
of |ga − gb| and an even number, indicating that the gc is odd. Since the
difference of two odd numbers is even, ga + gb − gc is even. Hence, in both
cases, ga + gb − gc is even.

The number of the combinations for α and γ is now computed. We know
that gc = |λ| = |α|+ |γ| and λ = αγ. Thus, the number of the combinations
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in this case is merely equivalent to the number of possibilities of the outer
product associated to gc and α, γ:(

gc

|α|

)
=

(
gc

|γ|

)
. (49)

Furthermore, ga = |α|+ |β| ⇒ |α| = ga − |β| and using the definition of |β|
in Equation (44) results in a number of possibilities(

gc

|α|

)
=

(
gc

ga − |β|

)
=

( gc

ga −
ga + gb − gc

2

)

=

( gc
ga − gb + gc

2

)
.

(50)

Note that for the same reason as in the above paragraphs, the term ga −
gb + gc is even. Furthermore ga − gb + gc ≥ 0 because by assumption gc >
|ga − gb|. This results in a number of products of(

d
gc

)( gc
ga − gb + gc

2

)( d− gc
ga + gb − gc

2

)
. (51)

Equation (38) shows that the geometric product is the sum over all possible
grades gc ∈ I . Accordingly, Equation (51) yields

∑
gc∈I

(
d
gc

)( gc
ga − gb + gc

2

)( d− gc
ga + gb − gc

2

)
. (52)

Finally, as each product requires one addition, the total number of the arith-
metic operations is

2 ∑
gc∈I

(
d
gc

)( gc
ga − gb + gc

2

)( d− gc
ga + gb − gc

2

)
. (53)

�

5.3. Comparison with the double sum computation
As presented for the outer and inner product in Sections 3.3 and 4.3, the
comparison between the double sum and the really required operations
indicates a significant amount of useless operations for the double sum. In
the case of the geometric product, the development of Equation (53) leads to
the same result as for the double sum of Equation (4).

Proposition 5.2.

∑
gc∈I

(
d
gc

)( gc
ga − gb + gc

2

)( d− gc
ga + gb − gc

2

)
=

(
d
ga

)(
d
gb

)
. (54)
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For the sake of readability of this paper, this proof is shown in Appen-
dix B.

6. Clifford Algebra products and recursive approach over a
prefix tree

There exist several recursive methods to compute Clifford algebra products.
As stated in Section 2, they are not equivalent in term of complexity. This
section focuses on the prefix tree algorithm introduced by Breuils et al., used
in the library Garamon [5]. This section aims to show that this method reaches
the complexity related to the theoretical numbers of arithmetic operations for
products between two full homogeneous multivectors presented in Sections 3,
4 and 5.

To make the paper self-contained, let us briefly review in Section 6.1
the recursive formulation [5] to define multivectors and geometric algebra
products (see [5] for more details). We start with the definition of multivectors
using the prefix tree structure.

6.1. Multivectors
In the context of [5], each basis blade is associated to a node of a prefix tree
and the nodes of depth k in the prefix tree correspond to the basis blades of
grade k. The scalar basis blade, denoted by 1, is associated with the root node.
The vector basis blades are associated with the children of the root node, the
bivector basis blades are associated with the children of those nodes, and so
on, as illustrated on Figure 1. By construction of the prefix tree, the index of
a basis blade associated with a node is prefixed by the indexes of the basis
blades associated with its parent nodes. Note that the breadth-first search of

1

e1 e2 e3

e12 e13 e23

e123

FIGURE 1. Prefix tree structure of the basis blades for a geo-
metric algebra whose underlying vector space is of dimen-
sion 3.

the basis blades over the prefix tree results in the list of basis blades in the
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canonical order. For instance, the list obtained from the prefix tree in Figure 1
is (1, e1, e2, e3, e12, e13, e23, e123).

Given a multivector A, let us assume that aγ represents a node of the
prefix tree, where γ is the set of basis vectors present in the basis blade. For
example, the node aγ = a{1,2} corresponds to the node associated with the
blade e12 of A. Then, the set of children of any node aγ can be recursively
defined from depth n to the next depth n + 1 as follows:

a node at depth: n → aγ,
its children at depth: n + 1 → aγ+µ, µ ∈ [max(γ) + 1, · · · , d], (55)

where d is the dimension of the vector space. Note that the function max()
is self-sufficient since the integer is a totally ordered set. Furthermore, the
addition sign between two sets (greek letters) denotes the concatenation
of the two sets. However, note that in expressions like “max(γ) + 1”, the
addition sign is really an addition on the highest element of the set γ. An
illustration of the recursion from a node to its children is given in Figure 2.
The starting call of the recursive formula for the breadth-first search is a0 at a
depth of 0 (grade 0 or scalar). The end of recursion is achieved when a node
is a leaf (i.e. max(γ) = d).

aγ

aγ+(max(γ)+1) · · ·aγ+(max(γ)+2) aγ+d

FIGURE 2. Labelling of the siblings of a child node.

6.2. Recursive outer product over trees
The recursive outer product used in the prefix tree was introduced by Fuchs
and Thry [15] and defined over the binary tree in [4], then it was adapted for
the prefix tree in [5]. The resulting complexity of this recursive method for
full multivectors in d-dimensional space is O(3d) instead of O(d× 4d) for
the XOR-Walsh method, see proof in [5]. This section aims at computing the
complexity for full homogeneous multivectors. In the following sections, we
first remind the recursive outer product for general multivectors and then
detail this product for homogeneous multivectors.

Definition 6.1 (Outer product over a prefix tree for general multivectors).
Given two general multivectors A and B, the recursive outer product associ-
ated with C = A ∧ B is expressed as

at depth n
computation: cλ += aγ ∧ bδ

recursive calls: cλ+σ = aγ+σ ∧ bδ + aγ ∧ bδ+σ, σ ∈ [max(λ) + 1, · · · , d]
(56)

where the overline denotes the anticommutativity property of the product.
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The starting call of this recursive formula is c0 = a0 ∧ b0, i.e. at a depth
of 0 (grade 0 or scalar). The end of recursion is achieved when a node is a
leaf, i.e. when max(λ) = d.

Definition 6.2 (Anticommutativity). The recursive construction of the anti-
commutativity of multivector A is

n → aγ

n + 1 → −aγ+µ, µ ∈ [max(γ) + 1, · · · , d] . (57)

In the case of homogeneous multivectors, the grades ga, gb, and gc of
the multivectors are known in advance. The recursive product C = A ∧ B
can then be slightly modified so that any update of c are performed only at
depth gc = ga + gb.

Definition 6.3 (Recursive outer product of homogeneous multivectors over
a prefix tree). Given two full homogeneous multivectors A and B of respec-
tive grade ga and gb, the recursive outer product associated with C = A ∧ B
of expected grade gc is expressed as

at depth n
computation: cλ += aγ ∧ bδ, if |λ| = gc

recursive calls: cλ+σ = aγ+σ ∧ bδ + aγ ∧ bδ+σ, σ ∈ [max(λ) + 1, · · · , d]
,

(58)
where |λ| denotes the cardinality of the set λ.

Thus, for homogeneous multivectors, the end of recursion is achieved
when a node is a leaf (i.e. max(λ) = d) or when the targeted grade gc
is reached (i.e. |λ| = gc). Algorithm 1 presents a straightforward way to
implement the recursive formulas presented in Definitions 6.1 and 6.3.

Algorithm 1: Pseudocode of the recursive outer product C = A ∧ B

1 Function outer
Input: aγ, bδ: nodes of multivectors A and B,

cλ: nodes of the resulting multivector C
complement: recursive value ( ±1).
sign: recursive sign coefficient ( ±1).

2 if |λ| = gc then // condition to remove for general multivectors
3 cλ += sign× aγ × bδ

4 foreach σ ∈ [max(λ) + 1, · · · , d] do
5 // aγ+σ ∧ bδ

6 outer(aγ+σ, bδ, cλ+σ, sign× complement, complement)
7 // aγ ∧ bδ+σ

8 outer(aγ, bδ+σ, cλ+σ, sign,−complement)

9 First call: outer( a0, b0, c0, 1, 1)
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a0 ∧ b0

a1 ∧ b0 + a0 ∧ b1 a2 ∧ b0 + a0 ∧ b2 a3 ∧ b0 + a0 ∧ b3

a12 ∧ b0
−a2 ∧ b1
+a1 ∧ b2
−a0 ∧ b12

a13 ∧ b0
−a3 ∧ b1
+a1 ∧ b3
−a0 ∧ b13

a23 ∧ b0
−a3 ∧ b2
+a2 ∧ b3
−a0 ∧ b23

a123 ∧ b0 +a12 ∧ b3
+a23 ∧ b1 −a2 ∧ b13
−a13 ∧ b2 +a1 ∧ b23
+a3 ∧ b12+a0 ∧ b123

FIGURE 3. Prefix tree structure associated with the recursive
outer product for a geometric algebra whose underlying
vector space is of dimension 3. Note that for a given depth,
each node presents the same number of outer products.

Figure 3 illustrates an example of the development of all the recursive
outer products in the 3-dimensional vector space. The number of recursive
calls depends only on the depth of the recursion, as stated with the following
lemma whose proof is given in Appendix C.

Lemma 6.4. During the recursive product C = A ∧ B, all the children cλ+σ of
a node cλ of the the prefix tree corresponding to C generate the same number of
recursive outer products calls. In other words, the siblings at any depth of the prefix
tree of C generate the same number of products.

Theorem 6.5. The complexity crec
∧ of the recursive outer product C = A ∧ B

between two homogeneous multivectors A and B of respective grade ga and gb, with
resulting grade gc = ga + gb, is expressed as

crec
∧ = O

((
d

ga + gb

)(
ga + gb

ga

))
, (59)

where d is the dimension of the vector space.

Proof. Lemma 6.4 shows that during a recursive outer product, the siblings at
any depth (grade) of the resulting prefix tree have the same number of outer
products, i.e. the same number of recursive calls. Furthermore, there are ( d

gc
)

nodes of grade gc in the prefix tree represented in the d-dimensional vector
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space. The number of products of a given depth is thus the multiplication of
the binomial coefficient and ngc ,ga (the number of outer products per node of
grade gc). Hence, the overall complexity is

crec
∧ = O

((
d
gc

)
ngc ,ga

)
. (60)

We may focus on the computation of ngc ,ga , accordingly. The recursive for-
mula of Definition 6.3 shows that at any depth of recursion, there is a sum of
two recursive calls to be executed. Both the recursive calls increase the grade
of the result. One increases the grade of a and the other leaves it unchanged.
Applying the recursion in the forward order yields

n0,0 = n1,1 + n1,0,
n1,1 = n2,2 + n2,1,
n1,0 = n2,1 + n2,0,

...
ngc−2,ga−1 = ngc−1,ga + ngc−1,ga−1,

ngc−1,ga = ngc ,ga ,
ngc−1,ga−1 = ngc ,ga .

(61)

When the final recursion is reached for the grade of gc, two recursive calls
ngc ,ga−1 and ngc ,ga+1 (corresponding to the respective ending conditions of
the two terms of Equation (58)) are not executed. Now, going backward from
the two final recursion equations ngc ,ga yields the recursive formula

ngc ,ga = ngc−1,ga + ngc−1,ga−1. (62)

We verify that the cases where either gc = ga or ga = 0 correspond to a final
recursion condition, and, thus, we have ngc ,ga = 1. This recursive definition
corresponds to the recursive definition of the binomial coefficient:(

gc

ga

)
=

(
gc − 1

ga

)
+

(
gc − 1
ga − 1

)
. (63)

Hence, the number of recursive calls is thus

ngc ,ga =

(
gc

ga

)
=

(
ga + gb

ga

)
. (64)

The complexity of the recursive outer product is

crec
∧ = O

((
d
gc

)
ngc ,ga

)
= O

((
d

ga + gb

)(
ga + gb

ga

))
. (65)

�

Remark (Recursive outer product in actual implementation). In practice,
there are some obvious speed-up ways for Algorithm 1 on homogeneous
multivectors, as stated in [5]. The first way is to avoid recursive calls on nodes
where the operand a and b lead to grade ga + gb > gc. This is introduced
in Definition (58) as well as in Algorithm 1, line 2. An additional and more
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sophisticated speed-up is to discard a recursive call on a branch that never
reaches the grade of the considered multivector, as shown in blue dashed
arrows in Figure 4. These branch discard tests require only binary operators
(very fast to compute) and can sometimes remove half of the recursive calls.
The pseudocode of this speed-up way for the outer product is presented in
Appendix E. The speed-up in running time is clear since it removes some calls
in the original algorithm, but the complexity study becomes too complicated
to be considered in this paper.
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1

e1 e2 e3 e4

e12 e13 e14 e23 e24 e34

e123 e124 e134 e234

e1234

(A)
1

e1 e2 e3 e4

e12 e13 e14 e23 e24 e34

e123 e124 e134 e234

e1234

(B)
1

e1 e2 e3 e4

e12 e13 e14 e23 e24 e34

e123 e124 e134 e234

e1234

(C)
1

e1 e2 e3 e4

e12 e13 e14 e23 e24 e34

e123 e124 e134 e234

e1234

(D)

FIGURE 4. Tree structure for some resulting multivectors of grade 4 (A),
grade 3 (B), grade 2 (C), grade 1 (D) in a 4-dimensional vector space, taken
from the figure 8 of [5]. Useless branches are depicted in green dashed
arrows above the targeted multivector and in blue below. The targeted
nodes are surrounded by a black rectangle.
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6.3. Recursive inner product
As stated in Section 4.1, when gb > ga, the inner product is defined by the
left contraction whereas it is by the right contraction when gb ≤ ga. These
two cases are thus treated separately.

The left contraction is a metric product and requires a metric to be
defined. Let Md×d be the d× d symmetric matrix defining the vector inner
product of the vector space of dimension d. In this context, we assume that
the metric is diagonal. If not, the metric is assumed to be diagonalized (see
Section 1.3). Thus, the metric will be only referred as its diagonal vector
m = diag(Md×d), where m(i) = Md×d(i, i), such that

m(1)= e1 · e1,
m(2)= e2 · e2,

...
m(d)= ed · ed.

(66)

Definition 6.6 (Recursive left contraction). The construction of the recursive
left contraction acb is defined as

at depth n
computation: cλ += aγcbδ, if |δ| = gb

recursive calls: cλ = ∑d
i=σ m(i)aγ+icbδ+i, σ ∈ [max(λ) + 1, · · · , d]

recursive calls: cλ+σ = aγcbδ+σ, σ ∈ [max(λ) + 1, · · · , d]
(67)

Note that the above recursive formula is equivalent to

at depth n
computation: cλ += aγcbδ, if |δ| = gb

recursive calls: cλ+σ = aγcbδ+σ + m(σ)aγ+σcbδ+σ+ψ, σ ∈ [max(λ) + 1, · · · , d],
ψ ∈ [max(λ) + 1, · · · , d]

(68)

Algorithm 2 presents a simple and intuitive way to implement the
recursive left contraction.

Definition 6.7 (Recursive right contraction). The construction of the recur-
sive right contraction abb is defined as

at depth n
computation: cλ += aγbbδ, if |δ| = ga

recursive calls: cλ = ∑d
i=σ m(i)aγ+ibbδ+i, σ ∈ [max(λ) + 1, · · · , d]

recursive calls: cλ+σ = aγ+σbbδ, σ ∈ [max(λ) + 1, · · · , d]
(69)

The algorithm of the recursive right contraction is presented in Algo-
rithm 3.

Theorem 6.8. The complexity crec
· of the recursive inner product C = A ·B between

two homogeneous multivectors A and B of respective grade ga and gb, with resulting
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Algorithm 2: Recursive left contraction C = AcB
1 Function leftCont

Input: aγ, bδ: nodes of multivectors A and B,
cλ: nodes of the resulting multivector C
complement: recursive value ( ±1).
sign: recursive sign coefficient ( ±1).
m: diagonal coefficients of the metric.

2 if |δ| = gb then
3 cλ += sign× aγ × bδ

4 foreach σ ∈ [max(λ) + 1, · · · , d] do
5 // m(i)aγ+σcbδ+σ

6 leftCont(aγ+σ, bδ+σ, cλ, m(σ)× sign,−complement)

7 foreach σ ∈ [max(λ) + 1, · · · , d] do
8 // aγcbδ+σ

9 leftCont(aγ, bδ+σ, cλ+σ, sign,−complement)

10 First call: leftCont(a0, b0, c0, 1, 1)

Algorithm 3: Recursive right contraction C = AbB
1 Function rightCont

Input: aγ, bδ: nodes of multivectors A and B,
cλ: nodes of the resulting multivector C
complement: recursive value ( ±1).
sign: recursive sign coefficient ( ±1).
m: diagonal coefficients of the metric.

2 if |γ| = ga then
3 cλ += sign× aγ × bδ

4 foreach σ ∈ [max(λ) + 1, · · · , d] do
5 // m(i)aγ+σbbδ+σ

6 rightCont(aγ+σ, bδ+σ, cλ, m(σ)× sign,−complement)

7 foreach σ ∈ [max(λ) + 1, · · · , d] do
8 // aγ+σbbδ

9 rightCont(aγ+σ, bδ, cλ+σ, complement× sign, complement)

10 First call: rightCont(a0, b0, c0, 1, 1)

grade gc = |ga − gb|, is expressed as

crec
· = O

((
d
gc

)( d− gc
ga + gb − gc

2

))
, (70)

where d is the dimension of the vector space.
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Proof. Lemma 6.4 still holds even for the recursive inner product. Namely,
the siblings at any depth (grade) of the resulting prefix tree have the same
number of inner products, i.e. the same number of recursive calls. Further-
more, there are ( d

gc
) nodes of grade gc in the prefix tree represented in the

d-dimensional vector space. The number of products of a given depth is thus
the multiplication of the binomial coefficient and the number nd−gc ,ga of inner
products per node of grade gc. The overall complexity is thus

crec
· = O

((
d
gc

)
nd−gc ,ga

)
. (71)

To compute this number nd−gc ,ga of recursive calls, let us focus on the evolu-
tion of grade ga with respect to a depth of recursion gc. The following proof
is divided in two parts. The first part is dedicated to the case ga ≥ gb while
the second part focuses on the case ga < gb.

In the first case, the considered product is the recursive left contraction,
resulting in the multivector c = acb. As stated in Equation (68), for a given
grade gc of the result, both recursive calls increase grade gc. The leftmost
term leaves grade ga unchanged on one hand (and increases the grade of b):

ngc ,ga → ngc+1,ga (72)

On the other hand, the second recursive call of Equation (68) increases ga
(and increases the grade of b).

ngc ,ga → ngc+1,ga+1 (73)

By replacing gc by d− gc and summing Equations (72) and (73), we obtain

nd−gc−1,ga+1 = nd−gc ,ga + nd−gc ,ga+1 . (74)

In this context, the cases where either d− gc = ga or ga = 0 correspond to
a final recursion condition, and thus we have nd−gc ,ga = 1. Therefore, Equa-
tion (74) corresponds to the recursive definition of the binomial coefficient:

nd−gc ,ga =

(
d− gc − 1

ga + 1

)
=

(
d− gc

ga

)
+

(
d− gc

ga + 1

)
. (75)

Hence, the complexity crec
c of the recursive left contraction is

crec
c = O

((
d
gc

)(
d− gc

ga

))
. (76)

In a similar manner, we have the complexity crec
b of the recursive right con-

traction is

crec
b = O

((
d
gc

)(
d− gc

gb

))
. (77)
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Accordingly, the complexity of the recursive inner product is

crec
· = crec

c + crec
b = O

((
d
gc

)( d− gc
ga + gb − gc

2

))
. (78)

�

6.4. Recursive geometric product
Similarly to the two other products, let us start with the definition of the
recursive geometric product.

Definition 6.9. Given two homogeneous multivectors A and B and the set
I = {|ga − gb|, |ga − gb|+ 2, . . . , ga + gb}, where ga and g are respectively
the grade of A and B, the recursive geometric product is expressed as

at depth n
computation: cλ += aγ × bδ, if |λ| ∈ I , |γ| = ga

recursive calls: cλ = ∑d
i=σ m(i)aγ+i ∗ bδ+i σ ∈ [max(λ) + 1, · · · , d]

recursive calls: cλ+σ = aγ+σ ∗ bδ + aγ ∗ bδ+σ, σ ∈ [max(λ) + 1, · · · , d]

.

(79)

The pseudocode for this definition is presented in Algorithm 4.

Algorithm 4: Recursive geometric product C = A ∗ B

1 Function geoProduct
Input: aγ, bδ: node of multivectors A and B,

cλ: nodes of the resulting multivector C
complement: recursive value ( ±1).
sign: recursive sign coefficient ( ±1).
m: coefficients of the metric.
I = {|ga − gb|, |ga − gb|+ 2, . . . , ga + gb}.

2 if |λ| ∈ I and |γ| = ga then
3 cλ += sign× aγ × bδ

4 foreach σ ∈ [max(λ) + 1, · · · , d] do
5 // m(i)aγ+σ ∗ bδ+σ

6 geoProduct(aγ+σ, bδ+σ, cλ, m(σ)× sign,−complement)

7 foreach σ ∈ [max(λ) + 1, · · · , d] do
8 // aγ+σ ∗ bδ

9 geoProduct(aγ+σ, bδ, cλ+σ, complement× sign, complement)
10 // aγ ∗ bδ+σ

11 geoProduct(aγ, bδ+σ, cλ+σ, sign,−complement)

12 First call: geoProduct(a0, b0, c0, 1, 1)
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Theorem 6.10. The complexity crec
∗ of the recursive geometric product C = A ∗ B

between two homogeneous multivectors A and B of respective grade ga and gb, with
resulting grade gc ∈ I = {|ga − gb|, |ga − gb|+ 2, . . . , ga + gb}, is expressed as

crec
∗ = O

((
d
gc

)( gc
ga − gb + gc

2

)( d− gc
ga + gb − gc

2

))
, (80)

where d is the dimension of the vector space.

For the sake of readability of this paper, this proof is shown in Appen-
dix D.

6.5. Recursive overall complexity
The complexities of the recursive products proposed by [5] are summarized
in Tables 2. The next section opens a discussion about these results and the
comparison with state of the art methods, as well as practical implementa-
tions.

7. Discussion
7.1. Complexity
The results of Section 6 are twofold. First, it shows that the recursive approach
proposed by Breuils et al. [5] for inner and outer products present a better
time complexity than the double sum approach used in the XOR-Walsh
method as well as in many others. For the geometric product, this recursive
method performs similarly to other methods, like XOR-Walsh. Second, it
shows that the complexity of this recursive approach is the same as the
complexity associated to the number of operations used in precomputed
source code. For a brief summary, all these complexities are presented in
Tables 1 and 2.

The low complexity of this recursive method is due to two reasons. First,
the sign computation in each product is usually quite expensive in state of the
art algorithms, when it is in constant time in the presented recursive method.
Second, the recursive computation only considers basis blade products that
do not intrinsically result in zero, e.g. e12 ∧ e1 is never considered with this
approach since no recursive call leads to this product.

Finally, the study presented in this paper naturally extends to the results
of [5] about the worst case situation, where the multivectors are full. In such
a situation, the complexity of the recursive method detailed in this paper is
exponentially better than the XOR-Walsh approach.

7.2. Asymptotic study and hidden constant in Big O
In this paper, we consider computational aspects of geometric algebra prod-
ucts of homogeneous multivectors through an asymptotic study. In this
context, the complexity of the outer product with the recursive prefix tree
approach is asymptotically exponentially more efficient than the XOR-Walsh
approach. Though, any asymptotic study may sometimes hide some large
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constants that are important in practice. This constant can be related to the
algorithm itself, as well as practical concerns, like programming language,
memory access, hardware, etc. A close analysis requires a study through ana-
lytic combinatorics [12], as well a consequent effort in producing benchmarks
that are out of the scope of this paper.

7.3. Implementation
This product complexity study naturally raises a subsidiary study about
effective implementations of geometric algebra products. A first approach
consists of pre-computing the products for a given algebra. The resulting
code always reaches the best complexity for multivectors. A second approach
consists of a syntax simplification of geometric algebra expression. In prin-
ciple, this technique also reaches the best complexity and can sometimes
perform even better by first simplifying some complex expressions.

In the context of pre-computed source code, the recursive approach can
make sens to speed up the code generation. This is especially true for meta-
programming when the compilation time is important.

For higher dimensional geometric algebras, the source code can not be pre-
computed anymore due to memory overflow (the resulting source code can
weigh gigabytes). In such a situation, like in R9,6 of [6], the products should
be computed at run time. A possibility is to use product tables to pre-compute
signs and resulting blades. In this situation, each product between A and
B requires to read all the entries of the table for the grades (ga,gb). Some
entries lead to a pre-computed product when many others just result in
zero. The complexity is then in O(( d

ga
)( d

gb
)) for every product. Thus, the table

approach is only optimal for the geometric product, but neither for the outer
product nor for the inner product. However, if the basis vector dimension
is really high, these tables, that require at least 2d × 2d elements for each
product, will clearly show some memory limitations. In such high dimensions
context where complexity computation really matters, the recursive method
presented in Section 6 is not subject to such memory overflow and still benefit
from a very favorable time complexity, as stated in Table 2.

8. Conclusion
This paper presents a study on the number of arithmetic operations required
for the outer, inner, and geometric products of geometric algebra for any full
homogeneous multivectors. In terms of time complexity, we proved that the
recursive method presented by [5] results in high improvements compared to
the usual state-of-the-art complexity. This study also shows that this recursive
approach reaches the theoretical lower bound computational complexity
for each product. As a perspective of this paper, we would focus on the
computational complexity of products with more than two homogeneous
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multivectors, as well as their effective implementation. Another natural next
step after this theoretical complexity analysis would be a more practical
software benchmarking.
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Appendix A. Development of the computation of the ratio
of Section 4.3

If ga < gb, then Equation (35) can be rewritten as

pth
·

pds·
=

(
d

gb − ga

)(
d + ga − gb

ga

)
(

d
ga

)(
d
gb

) . (81)

Simplifying this equation can be achieved by revealing either ( d
gb
) or ( d

ga
) in its

upper term. This is merely performed through first applying the symmetry
property of the binomial coefficient as follows.

pth
·

pds·
=

(
d

d + ga − gb

)(
d + ga − gb

ga

)
(

d
ga

)(
d
gb

) . (82)

http://glucat.sourceforge.net/
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Then, Equation (82) can be simplified using the trinomial property defined
in [17]:

pth
·

pds·
=

(
d
ga

)(
d− ga

d− gb

)
(

d
ga

)(
d
gb

) . (83)

For any grade and any dimension, ( d
ga
) 6= 0. We thus simplify Equation (83)

as below.

pth
·

pds·
=

(
d− ga

d− gb

)
(

d
gb

) . (84)

Finally the symmetry property of the binomial coefficient applied to the left
term yields

pth
·

pds·
=

(
d− ga

gb − ga

)
(

d
gb

) . (85)

As for the outer product, ∀ga ≥ 0, ( d−ga
gb−ga

) ≤ ( d
gb
).

If ga ≥ gb, a similar reasoning results in:

pth
·

pds·
=

(
d− gb
ga − gb

)
(

d
ga

) , (86)

and the same conclusion holds.

Appendix B. Proof of Proposition 5.2

Proof. In addition to the symmetry property and the trinomial property,
we will use here the Vandermonde’s convolution property of the binomial
coefficient whose proof can be found in Chapter 5 of [17]. We first introduce
a variable to drop divisions. Let us define

s =
gb − ga + gc

2
. (87)

Let us assume, without loss of generality, that ga > gb. Then, as gc ∈ I =
{|ga − gb|, |ga − gb|+ 2, . . . , ga + gb},

s ∈ {0, 1, · · · , gb}. (88)
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This yields

∑
gc∈I

(
d
gc

)( gc
ga − gb + gc

2

)( d− gc
ga + gb − gc

2

)

=
gb

∑
s=0

(
d

2s + ga − gb

)(
2s + ga − gb
s + ga − gb

)(
d− 2s + gb − ga

gb − s

)
.

(89)

We apply the trinomial revision property to the two leftmost terms in Equa-
tion (89), resulting in

gb

∑
s=0

(
d

s + ga − gb

)(
d− s + gb − ga

s

)(
d− 2s + gb − ga

gb − s

)
.

Next, we apply the same property to the two rightmost terms, yielding
gb

∑
s=0

(
d

s + ga − gb

)(
d− s + gb − ga

gb

)(
gb
s

)
. (90)

The symmetry property is then applied to the leftmost term. We have
gb

∑
s=0

(
d

d− s + gb − ga

)(
d− s + gb − ga

gb

)(
gb
s

)
. (91)

Again, we apply the trinomial revision property to the two leftmost terms in
Equation (91). We now have(

d
gb

) gb

∑
s=0

(
d− gb

d− s− ga

)(
gb
s

)
. (92)

Note that ( d
gb
) does not depend on s. Applying the Vandermonde’s convolu-

tion property to Equation (92) results in(
d
gb

)(
d

d− ga

)
. (93)

After using the symmetry property on the right term, we see Equation (54)
holds. �

Appendix C. Proof of Lemma 6.4
Let us prove it by induction using the recursive formula (58). The base case
is gc = 0. The recursive formula (58) yields:

at depth 0
computation: cλ += aγ ∧ bδ, if |λ| = gc

recursive calls: aσ ∧ b0 + a0 ∧ bσ, σ ∈ [max(λ) + 1, · · · , d]
. (94)

We remark that each node of the resulting outer product prefix tree of grade
1 is 2. Then, all the siblings of grade 1 induce the same number of products.
Let us assume that the proposition holds for a given grade of c, called kc ∈N.
Then the recursive products associated with any nodes cλ of grade kc can be
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seen as the sum of products with the same number of terms. For any node,
each single product can be written as

cλ = aµ ∧ bν. (95)

This product expand at the grade of kc + 1 is as follows.

at depth kc + 1
computation: cλ += aγ ∧ bδ, if |λ| = gc

recursive calls: cλ+σ = aµ+σ ∧ bν + aµ ∧ bν+σ, σ ∈ [max(λ) + 1, · · · , d]
(96)

Again, we remark that for any nodes of c of grade kc + 1, the number of
products remains the same. Thus, by induction, the number of outer products
remains the same for any node of the resulting prefix tree having the same
grade (depth).

Appendix D. Proof of Theorem 6.10

Proof. This proof is split into three parts, each of which is dedicated to one
term in Equation (80). As for the outer and inner products, the number of
recursive calls remains the same for any nodes of grade gc. Moreover, there
are ( d

gc
) products for each node of grade gc of the resulting multivector in the

d-dimensional vector space. Let us denote by nga ,gb ,gc the number of recursive
calls with respect to grades ga, gb, and gc. The overall complexity is then

crec
∗ = O

((
d
gc

)
nga ,gb ,gc

)
. (97)

Let us now reason the recursive formula of Equation (79). We remark that the
recursive calls that increase the grade of the resulting multivector are those
coming only from the outer product of Equation (58), corresponding to the
last recursive call of Equation (79). As previously studied in Equation (59),
for each possible grade of c, the number of calls associated with the recursive
outer product is(

gc

ga

)
=

( gc

ga − gb + (ga + gb)

2

)
=

(
d

ga − gb + gc

2

)
. (98)

Then, for any of the recursive outer product calls of the recursive geometric
product, the recursive calls can be split into

at depth n
computation: cλ += aγ × bδ, if |λ| ∈ I , |γ| = ga

recursive calls: cλ = ∑d
i=σ m(i)aγ+i ∗ bδ+i σ ∈ [max(λ) + 1, · · · , d]

recursive calls: cλ+σ = aγ+σ ∗ bδ, σ ∈ [max(λ) + 1, · · · , d]

(99)
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and
at depth n

computation: cλ += aγ × bδ, if |λ| ∈ I , |γ| = ga
recursive calls: cλ = ∑d

i=σ m(i)aγ+i ∗ bδ+i σ ∈ [max(λ) + 1, · · · , d]
recursive calls: cλ+σ = aγ ∗ bδ+σ, σ ∈ [max(λ) + 1, · · · , d]

.

(100)
We recognize the recursive right contraction of Equation (69) in Equa-

tion (99) whereas Equation (100) corresponds to the recursive left contraction
of Equation (67). This indicates that for each recursive outer product call,
recursive inner product calls are executed. Following the arguments of Theo-
rem 6.8, we see that the number of required recursive calls is

nga ,gb ,gc =

( gc
ga − gb + gc

2

)( d− gc
ga + gb − gc

2

)
(101)

for any grade gc ∈ I . By merging the above arguments, we have Equa-
tion (80). �

Appendix E. Pseudo-codes of the recursive products
In the optimized pseudo-code, the indices of the basis blades are represented
with a binary label. This binary label is useful to optimize paths in the prefix
tree. The binary label of a node is recursively computed using the binary
label of its parent node. A node with binary label u has its first child binary
label computed by

child label(u, msb) = u+ msb, (102)

where + is the binary addition and msb is the binary label of the basis vector
”added” to the basis blade by the outer product. So, msb contains only a single
bit set to 1. Note that this bit set to 1 in msb cannot be a bit already set to 1 in
u, otherwise the parent node and its child would have the same grade.

The contribution of msb is the most significant bit of child label(label,
msb), i.e., the first bit to 1 encountered while reading the binary label from
the left, which corresponds to the position of the 1-bit of msb.

We show the pseudo-code of the optimized outer product with the defi-
nition of these functions in Algorithm 5. In this algorithm, labelToMsb(label)
computes msb, the most significant bit from the considered label, i.e. the first
1 encountered in the binary word label when reading from left to right.

We also give the pseudo-codes of the optimized left contraction, right
contraction, and geometric product in Algorithms 6, 7, and 8, respectively.
The functions called inside these pseudo-codes are the same as those in
Algorithm 5.

Stephane Breuils
National Institute of Informatics, Tokyo 101-8430, Japan
e-mail: breuils@nii.ac.jp



36 Stephane Breuils, Vincent Nozick and Akihiro Sugimoto

Algorithm 5: Optimized recursive outer product C = A ∧ B

1 Function labelToMsb
Input: label: binary word

2 return position of first 1 ∈ label when reading from left to right

3 Function gradeKReachable
Input: label: the recursive position

msb: a label of the last traversed vector
k: the considered grade.

4 labelChildK← label+ msb(2k−grade(label) − 1)
5 return labelChildK < 2d

6 Function outer
Input: A, B: two multivectors,

C: resulting multivector,
ka, kb and kc: the respective grade of each multivector.
labela, labelb, labelc: recursive position on each tree.
sign: recursive sign index.
complement: recursive value ( ±1).

7 if grade(labelc) == kc then // end of recursion
8 C[labelc]+ = sign× A[labela]× B[labelb]
9 else // recursive calls

10 msba = labelToMsb(labela)
11 msbb = labelToMsb(labelb)
12 msbc = labelToMsb(labelc)
13 foreach msb such that

gradeKReachable(kc, msb, labelc)== true do
14 label = labelc + msb

15 if gradeKReachable(ka, msb, labela) then
16 outer(A, B, C, ka, kb, kc, labela +

msb, labelb, label, sign× complement, complement)

17 if gradeKReachable(kb, msb, labelb) then
18 outer(A, B, C, ka, kb, kc, labela, labelb +

msb, label, sign,−complement)

Vincent Nozick
Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI,
UMR 8049, Université Paris-Est Marne-la-Vallée, France
e-mail: vincent.nozick@u-pem.fr
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National Institute of Informatics, Tokyo 101-8430, Japan
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Algorithm 6: Optimized recursive left contraction C = AcB
1 Function leftcont

Input: A, B: two multivectors.
C: resulting multivector.
ka, kb and kc: respective grade of each multivector.
labela, labelb, labelc: recursive position on each tree.
sign: a recursive sign index.

2 complement: recursive value (±1).
3 m: vectors representing the metric diagonal matrix.
4 if grade(labelb) == kb then // end of recursion
5 C[labelc]+ = m× sign× A[labela]× B[labelb]
6 else // recursive calls
7 msba = labelToMsb(labela)
8 msbb = labelToMsb(labelb)
9 msbc = labelToMsb(labelc)

10 foreach msb such that
gradeKReachable(kb, msb, labelb)== true do

11 label = labelb + msb

12 if gradeKReachable(ka, msb, labela) then
13 leftcont(A, B, C, ka, kb, kc, labela + msb, label,

labelc, sign× complement, −complement,
metric×m(grade(labelb)))

14 if gradeKReachable(kc, msb, labelc) then
15 leftcont(A, B, C, ka, kb, kc, labela, label, labelc +

msb, sign,−complement, metric))
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Algorithm 7: Optimized recursive right contraction C = AbB
1 Function rightcont

Input: A, B: two multivectors.
C: resulting multivector.
ka, kb and kc: respective grade of each multivector.
labela, labelb, labelc: recursive position on each tree.
sign: recursive sign index.

2 complement: recursive value (±1).
3 metric: coefficients related to the metric.
4 if grade(labelb) == kb then // end of recursion
5 C[labelc+ = metric× sign×A[labela]× B[labelb]
6 else // recursive calls
7 msba = labelToMsb(labela)
8 msbb = labelToMsb(labelb)
9 msbc = labelToMsb(labelc)

10 foreach msb such that
gradeKReachable(ka, msb, labela)== true do

11 label = labela + msb

12 if gradeKReachable(kb, msb, labelb) then
13 rightcont(A, B, C, ka, kb,kc, label, labelb + msb,

labelc, sign× complement, −complement,
metric×m(grade(labelb)))

14 if gradeKReachable(kc, msb, labelc) then
15 rightcont(A, B, C, ka, kb, kc, label, labelb, labelc +

msb, sign,−complement, metric))
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Algorithm 8: Optimized recursive geometric product C = A ∗ B

1 Function geometric
Input: A, B: two multivectors.

C: resulting multivector.
ka, kb and kc: respective grade of each multivector.
labela, labelb, labelc: recursive position on each tree.
sign: a recursive sign index.
complement: recursive value (±1).
metric: coefficients related to the metric.
depth: current depth in the prefix tree.

2 if grade(labelb) == kb and grade(labela) == ka then
3 C[labelc]+ = metric× sign×A[labela]× B[labelb]

// end of recursion

4 else
5 msba = labelToMsb(labela)
6 msbb = labelToMsb(labelb)
7 msbc = labelToMsb(labelc)

8 for i in 2depth, 2depth+1, · · · , 2d−1 do
9 if gradeKReachable(kb, i, labelb) then

10 if gradeKReachable(ka, i, labela) then
11 geometric

(
A, B, C, ka, kb, kc, labela + i, labelb +

i, labelc, sign×
complement,−complement, metric×
m(i), depth+ 1)

)
12 if gradeKReachable(ka, i, labela) then
13 geometric

(
A, B, C, ka, kb, kc, label, labelb, labelc +

msb, sign×
complement, complement, metric, depth+ 1)

)
14 if gradeKReachable(kb, i, labelb) then
15 geometric

(
A, B, C, ka, kb, kc, labela, labelb +

i, labelc + i, sign,−complement, metric), depth+
1
)
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