Computational Aspects of Geometric Algebra Products of Two Homogeneous Multivectors
Résumé
This paper addresses the study of the complexity of products in geometric algebra. More specifically, this paper focuses on both the number of operations required to compute a product, in a dedicated program for example, and the complexity to enumerate these operations. In practice, studies on time and memory costs of products in geometric algebra have been limited to the complexity in the worst case, where all the components of the multivector are considered. Standard usage of Geometric Algebra is far from this situation since multivectors are likely to be sparse and usually full homogeneous, i.e., having their non-zero terms over a single grade. We provide a complete computational study on the main Geometric Algebra products of two full homogeneous multivectors, that are outer, inner, and geometric products. We show tight bounds on the number of the arithmetic operations required for these products. We also show that some algorithms reach this number of arithmetic operations.
Origine | Fichiers produits par l'(les) auteur(s) |
---|